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a b s t r a c t 

In this work, we have used cyclic voltammetry to investigate the interfacial behavior of cocaine cut- 

ting agents at the electrified liquid-liquid interface formed between a solution of the water and 1,2- 

dichloroethane phases. Among 27 chemical species used to adulterate cocaine street samples, only 8 were 

detectable in the available potential window. These include procaine, lidocaine, levamisole, hydroxyzine, 

caffeine, phenylethylamine, diltiazem, and diphenhydramine. From the calibration curves obtained us- 

ing voltammetric data, we have extracted the electroanalytical parameters such as detection sensitivities, 

limits of detection, and limits of quantifications. Also, for each electrochemically active drug, we have cal- 

culated diffusion coefficients and plotted the ion partition and concentration fraction diagrams. All this 

information is discussed in a view of the cocaine sensors development focused on its detection from 

demanding matrix defined by the street samples composition. 

© 2021 The Author(s). Published by Elsevier Ltd. 
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. Introduction 

The estimate from 2009 states that 210 million people used il- 

icit drugs, which equals around 4.8% of the world’s population. 

he report states that in 2018 this number grew to 269 million 

nd 5.3%, respectively. This problem increases much faster in de- 

eloped as compared with developing countries. Adolescents and 

oung adults make the largest group of recreational drug users [1] . 

hese trends are directly responsible for the additional economic 

oad on our society. Another worrying issue is the rapid develop- 

ent of new drugs (known as NPS - new psychoactive substances). 

n 2018, there were 541 different NPS on the black market, 48 of 

hich were previously unknown [1] . Scientists around the world 

re constantly taking steps to counteract drug addiction. Control, 

uick and simple sample analysis is extremely important in this 

espect. 

Many analytical techniques are routinely used to detect narcotic 

ubstances. These include Gas Chromatography with Flame Ioniza- 

ion Detection (GC/FID) [2] , Gas Chromatography- Tandem Mass 
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pectrometry (GC/MS/MS) [3] , High-Performance Liquid Chro- 

atography (HPLC) [4] , Liquid Chromatography with Tandem Mass 

pectrometry (LC/MS /MS) [5] , Fourier Transformed Infrared Spec- 

roscopy (FTIR) [6] , Raman spectroscopy [7] , or even Scanning Elec- 

ron Microscopy-Energy Dispersive X-ray Spectroscopy (SEM/EDX) 

8] . In the last few years, the electroanalysis of illicit drugs has also 

ttracted a lot of attention. Electrochemical sensors cannot com- 

ete with spectroscopy and spectrometry-based techniques as the 

atter provide significantly higher selectivity. However, due to com- 

actness, low cost, and still highly reliable output, some electro- 

nalytical solutions may fulfill the requirements of the presump- 

ive illicit drugs detection [9–12] . The electroanalytical investiga- 

ion of street samples is complicated by the co-existence of the 

argeted drug with substances generally known as cutting agents. 

hese chemical species may interfere with the detection of narcotic 

ubstances and thus distort the analysis result [13] . Cutting agents 

re added to the street samples due to a few reasons, such as (i) 

ncreasing the profit of drug retailers as the overall drug content is 

educed, (ii) cutting agents may affect the pharmacological effect 

f the drug and finally (iii) the analytical screening of some mix- 

ures can be problematic, and hence, it may lead to complicated 

etection protocols [14] . The chemical substances frequently used 
under the CC BY-NC-ND license 
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s cutting agents include talc, milk powder, starch, sugars, but also 

ctive analgesics, stimulants, nootropic or antiallergic agents [15] . 

ccording to the European Drug Report, the average purity of co- 

aine retailed on the black market in Europe in 2018 ranged from 

3% to 87%. In the first six months of 2019, cocaine was the most 

requently distributed substance in Europe according to the Euro- 

ean Monitoring center for Drugs and Drug Addiction. 1011 cocaine 

amples subjected to analytical screening revealed that 57% of the 

amples contained only the drug and inactive compounds, while 

0% were found to be in combination with one or more pharma- 

ologically active cutting agents. The most commonly added adul- 

erants were levamisole (18,2%), caffeine (14,4%), phenacetin (9,7%) 

nd lidocaine (4,2%) [16] . Cocaine street samples, seized in Poland 

n 2018–2019, were very pure and contained between 64 and 99% 

f cocaine. The most commonly used adulterants were levamisol, 

affeine, benzocaine, lidocaine and procaine [17] . 

The result of the illicit drugs screening protocols used in foren- 

ic analytical laboratories, usually chromatographic techniques cou- 

led to mass spectrometry, sometimes may lead to false negatives 

r false positives in the presence of cutting agents existing in street 

amples [18] . Also, for electrochemical methods the challenge is to 

evelop a selective sensing interface. It is often desirable to modify 

he electrodes to adjust selectivity and improve detection limits. 

lorea et al . used a graphene-modified screen printed electrodes 

unctionalized by the electrodeposition of two polymers (start- 

ng from o-phenylenediamine or p-aminobenzoic acid monomers) 

or the analysis of cocaine in the presence of levamisole [19] . 

he utilization of the latter monomer allowed for the construc- 

ion of a sensor providing better electroanalytical parameters, and 

ence, it was selected as the optimal one. Good selectivity for 

DMA (3,4-methylenedioxymethamphetamine) and morphine was 

chieved using a sensor modified with high surface area carbon 

anohorns decorated with Pt nanoparticles (CNHs@PtNPs). It al- 

owed the detection of both substances starting from very low con- 

entrations of circa 20 nM [20] . Parrilla et al., developed a method 

or the determination of amphetamine (requiring earlier derivatiza- 

ion) at graphite screen-printed electrodes (SPEs). The effect of the 

ommon cutting agents on the signal originating from function- 

lized amphetamine was also tested to evaluate sensor selectiv- 

ty [21] . Since the majority of illicit drugs are amines, the electro- 

nalytical protocols developed for their direct analysis are usually 

ased on carbon electrodes (bare or modified with nanomaterials 

ike e.g. carbon nanotubes, graphene oxide). Amine oxidation over 

arbon-based support may lead to the formation of a stable cova- 

ent linkage between carbon surface and the nitrogen atom, and 

ence, electrode passivation [ 22 , 23 ]. Another issue related to illicit 

rugs sensing from the street sample at carbon and other types of 

olid electrodes is the nature of the cutting agents that frequently 

ontain amine functionalities undergoing oxidation at similar po- 

ential values as the target analytes [ 13 , 24 ]. These two drawbacks

an be partly overcome by replacing carbon-based electrodes with 

he interface between two immiscible electrolyte solutions (ITIES) 

s this can be easily renewed (solution to fouling and passivation) 

nd allows for the detection not limited to redox reactions (sensing 

t ITIES mainly result from interfacial ion transfer). The most com- 

only used ITIES experimental configuration consists of an aque- 

us solution of a highly hydrophilic salt contacted to an organic 

olvent being a solution of a strongly hydrophobic salt [25] . The 

oft junction formed between these two solutions can be polar- 

zed and further used to study interfacial charge transfer of i.e., 

on, electron, facilitated ion transfer, or conjugated ion and elec- 

ron transfer reactions [26] . These interfacial reactions can find 

pplications in broadly defined analytical chemistry [ 27 , 28 ]. ITIES 

an be applied in ion extraction [29] , electrochemical sensing [30] , 

r biomimetic junctions formation [31] . Existing reports cover a 

ide range of target analytes including drugs [ 32 , 33 ], biomolecules 
2 
 34 , 35 ] such as amino acid [ 36 , 37 ], and proteins [38] . ITIES can

e also employed as the sensors for illicit drugs (e.g. cocaine) de- 

ection [39] . A number of pharmaceuticals classified as psychoac- 

ive substances, including cocaine cutting agents, holding amine 

roup within their structure were also investigated at the elec- 

rified LLI: lidocaine, dicaine [40] , hydroxyzine [41] , procaine [42] , 

opamine [43] , γ -aminobutyric acid [44] , and a number of opi- 

ids and amphetamine-type drugs. [45] The superior properties of 

he ITIES based sensing platform for illicit drugs detection requires 

omprehensive study devoted to the determination of the interfa- 

ial properties of the cutting agents frequently found in street sam- 

les. 

In this work, we have comprehensively studied 23 cocaine cut- 

ing agents at the polarized liquid-liquid interface (LLI) formed be- 

ween aqueous sodium chloride solution or Britton Robinson buffer 

BRB), and bis(triphenylphosphoranylidene)ammonium tetrakis(4- 

hlorophenyl)borate (BTPPATPBCl) dissolved in 1,2-dichloroethane. 

ested chemical species included sugars, inorganic salts, inorganic 

cids, and organic compounds. With cyclic voltammetry we have 

efined and calculated a number of electrochemical, electroanalyt- 

cal, and physicochemical parameters such as limits of detection 

LODs), limits of quantification (LOQs), voltammetric detection sen- 

itivity, diffusion coefficients, standard Galvani potentials of the ion 

ransfer reaction ( �aq 
org ��), standard Gibbs free energy of the ion 

ransfer reaction ( �aq 
org G �), water – 1,2-dichloroethane partition co- 

fficients ( log P �aq/org ) and finally defined the experimental con- 

itions governing the cutting agents interfacial activity/inactivity. 

hese results build guidelines for the development of the illicit 

rugs street samples sensors that are based on ITIES. 

. Methods and materials 

.1. Materials 

D-Glucose anhydrous (Fisher chemical, M = 180.16 g •mol −1 ), 

-Maltose monohydrate ( ≥ 99%, Sigma-Aldrich, M = 360.31 

 

•mol −1 ), D-(-)-Fructose ( ≥ 99%, Sigma-Aldrich, 180.16 g •mol −1 ), 

-Lactose monohydrate (Sigma-Aldrich, M = 360.31 g •mol −1 ), D- 

 + )-Saccharose ( ≥ 99%, Acros Organics, M = 342.29 g •mol −1 ), 

-(-)-Mannitol ( ≥ 99%, Fisher Chemical, M = 182.17 g •mol −1 ), 

odium carbonate anhydrous (Na 2 CO 3 , ChemPur, M = 105.99 

 

•mol −1 ), sodium bicarbonate (NaHCO 3 , pure, ChemPur, M = 84.01 

 

•mol −1 ), boric acid (H 3 BO 3 , pure, ChemPur, M = 61.83 g •mol −1 ),

cetylsalicylic acid (99%, Sigma, M = 180.16 g •mol −1 ) crea- 

ine hydrochloride ( ≥ 97%, Sigma, M = 149.58 g •mol −1 ), 2- 

henylethylamine (99%, Acros Organics, M = 121.18 g •mol −1 ), 

iphenhydramine ( ≥ 98%, Sigma-Aldrich, M = 108.14 g •mol −1 ), 

henacetin ( ≥ 98%, Sigma, M = 179.22 g •mol −1 ) griseofulvin 

97%, Acros Organics, M = 352.76 g •mol −1 ), levamisole hydrochlo- 

ide (Chemat, M = 240.75 g •mol −1 ), hydroxyzine dihydrochlo- 

ide (Chemat, M = 447.83 g •mol −1 ), diltiazem (Sigma-Aldrich, 

 = 450.98 g •mol −1 ), paracetamol (Synoptis Pharma, tablets, 

aracetamol concentration 0.89 g/g, M = 151.16 g •mol −1 ), caf- 

eine (98.5%, Argenta, M = 194.19 g •mol −1 ), benzocaine ( ≥ 99%, 

igma-Aldrich, M = 165.19 g •mol −1 ), procaine hydrochloride ( ≥
7%, Sigma, M = 272.77 g •mol −1 ), lidocaine (97.5%, Acros Or- 

anics, M = 234.34 g •mol −1 ) were all used as received. Sodium 

hloride (NaCl, ChemPur M = 58.44 g •mol −1 ), phosphoric acid 

H 3 PO 4 , 80%, ChemPur, M = 97.99 g •mol −1 ), acetic acid (CH 3 COOH,

 99.5%, ChemPur, M = 60.05 g •mol −1 ) and boric acid (H 3 BO 3 ,

ure, ChemPur, M = 61.83 g •mol −1 ) were used to prepare Britton- 

obinson buffer (BRB). 

The aqueous phase used to form ITIES was either 10 mM NaCl 

olution or 10 mM NaCl in a BRB buffer with a pH in the range

rom 2 to 11. The value of pH was adjusted with 1 M NaOH. BRB

uffer was prepared from a stock solution of the buffer matrix con- 
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aining 0.04 M of a mixture of boric acid (H 3 BO 3 ), ortho phos-

horic acid (H 3 PO 4 ), and acetic acid (CH 3 COOH). The desired pH 

alue for BRB was adjusted with a pH meter (Orion STAR, A111, The 

etherlands) using a polymer pH electrode (Polilyte Lab, Hamilton, 

witzerland). 

Bis(triphenylphosphoranylidene) ammonium tetrakis(4- 

hlorophenyl)borate was obtained by reacting a potassium 

etrakis(4-chlorophenyl)borate (KTPBCl, ≥ 98%, Sigma-Aldrich) 

ith bis(triphenylphosphoranylidene)ammonium chloride (BTP- 

ACl, 97%, Sigma-Aldrich) [46] . 1,2-dichloroethane (1,2-DCE) was 

sed as the solvent for the organic phase. 

.2. Electrochemical cell 

All experiments described in this work were conducted in a 

lassical macroscopic electrochemical glass cell dedicated to the 

LI-based experiments (see ESI Fig. S1). Four electrodes were used 

o polarize the ITIES. The aqueous phase counter electrode (Pt 

ire) was always placed in the main/middle compartment of the 

ell. The organic phase counter electrode (Pt wire sealed in glass 

apillary) was crossing the upper aqueous phase and was situ- 

ted at the cell bottom in the organic phase. Silver/silver chloride 

ires (Ag/AgCl) served as the reference electrodes. The aqueous 

hase reference electrode was directly contacted with the aqueous 

hase through the upper Luggin capillary. The organic phase ref- 

rence electrode was placed in the aqueous phase solution (con- 

aining common cation with the organic phase background elec- 

rolyte) being contacted with the organic phase in the bottom Lug- 

in capillary. Electrochemical measurements were performed us- 

ng an Autolab 302N from Methrom (Metrohm Autolab B.V., The 

etherlands) operated via NOVA 1.11. 

Cell I shows the composition of the electrochemical system 

sed in this study: 

g| AgC l| 10 mM NaC l 10 mM HC l and/or BRB 

x μM cut t ing agent 

∣∣∣| 5 mM 

BT PPAT PBCl 
| 10 mM NaC l 

10 mM BT PPAC l 
| AgC l| Ag (Cell I) 

y definition, the interfacial potential difference is defined as the 

otential of the aqueous phase minus the potential of the organic 

hase. The sign of the recorded currents is attributed to the fol- 

owing interfacial ion transfer reactions: positive currents – cation 

ransfer from the aqueous to the organic phase or anion transfer 

rom the organic to the aqueous phase; negative currents – cation 

ransfer from the organic to the aqueous phase or anion transfer 

rom the aqueous to the organic phase. 

.3. Data treatment 

Unless otherwise stated, values of the peak currents in all mea- 

urements were determined by subtracting the capacitive current 

rom the current values defined by peak height. Since caffeine ion 

ransfer was overlaid with the transfer of ions limiting the poten- 

ial window, the current values plotted on the corresponding cali- 

ration curve were obtained after blank (voltammogram recorded 

efore the analyte addition) reading subtraction. 

The formal ion transfer potential for all studied interfacially ac- 

ive cocaine cutting agents was calculated using the internal stan- 

ard method. The Galvani potential scale of cyclicvoltammograms 

ubject to calculations was corrected using tetramethylammonium 

ation formal Galvani ion transfer potential ( �aq 
org φ

′ 
T M A + = 160 mV) 

47] . The formal Galvani potential of the studied cocaine cutting 

gents was calculated using the following relationship: 

aq 
org φ

′ 
T MA + �

aq 
org φ

′ 
Dru g + = �aq 

org φ
”+” peak 
T MA + �aq 

org φ
”+” peak 
Drug + (1) 

here �aq 
org φ

′ 
Dru g + is the formal Galvani ion transfer potential for 

he studied cocaine cutting agent, �aq 
org φ

”+” peak 
T MA + is the forward (pos- 

tive) peak position of TMA 

+ on non-calibrated potential difference 
3 
cale and �aq 
org φ

”+” peak 
Drug + is the forward (positive) peak position of 

ocaine cutting agent on non-calibrated potential difference scale. 

. Results and discussions 

In Table 1 we have summarized all cocaine cutting agents (cho- 

en based on literature overview and the knowledge originat- 

ng from the Central Forensic Laboratory of the Police, Poland) 

 17 , 4 8 , 4 9 ] subjected to comprehensive analysis at the electrified

LI. In first, we have performed the logical evaluation of the in- 

erfacial activity of tested compounds to simply list the molecules 

hat may undergo electrochemically controlled simple interfacial 

on transfer reaction giving a signal within the available potential 

indow. At this point, it is relevant to mention that the limiting 

urrents on the lower and higher potential scale are originating 

rom the interfacial transfer of the background electrolyte ions. On 

he less positive side of the potential window the limiting currents 

ill be originating from the interfacial transfer of the aqueous 

hase background electrolyte anions (chloride, phosphate, borate, 

r/and acetate), since the standard Galvani potential of the most 

ydrophilic anion transfer (chloride, �φ1 / 2 = −0.53 V) is signifi- 

antly different from the standard Galvani potential of the BTPPA 

+ 

ransfer ( �φ1 / 2 = −0.70 V). Aqueous phase cations (H 

+ or Na + ) are 

xpected to limit the potential window on the more positive side. 

lso, at pH > 5, the potential window limiting currents originating 

rom the transfer of Na + from the aqueous to the organic phase 

ay overlay with TPBCl - transfer from the organic to the aqueous 

hase. For tested sugars (glucose, maltose, fructose, lactose, sac- 

harose, and mannitol – see ESI Fig. S2-S7) no additional signals 

ithin the available potential window have been recorded. The 

Ka values for saccharides are rather high ( > 12) [50] , and hence, in

he entire studied pH range investigated molecules will be neutral 

nd as expected will not experience the potential difference drop 

cross the ITIES. Dissociation and generation of a negative charge 

ithin sugars structure may happen at pH close to or higher than 

2. Such conditions are not interesting from the amine-based il- 

icit drugs sensing perspective since these will be deprotonated 

nd hence interfacially inactive. 

Inorganic chemical species such as sodium carbonate, sodium 

icarbonate, and boric acid (see ESI Figs. S8–S10) have the abil- 

ty to dissociate into ions when dissolved in the aqueous phase. 

he interfacial transfer of the resulting charged cationic or anionic 

pecies across the polarized LLI most probably overlays with or 

appens beyond Galvani potential difference defining the trans- 

er of the background electrolyte ions. As such, these cutting 

gents should not directly affect the interfacial properties of the 

ocaine and other amine-based illicit drugs which may transfer 

ithin the available potential window. The indirect influence of 

he mentioned cutting agents is related to the fact, that these in- 

rganic salts can buffer, and hence, affect the pH of the aqueous 

hase. Since the concentration fraction and interfacial properties of 

mine-based illicit drugs are pH-dependent, the experimental de- 

ign of the envisaged sensor should ensure the fixed proton con- 

entration being insensible to the analyte together with its matrix 

ddition. The remaining class of cutting agents is defined as or- 

anic compounds known as pharmaceuticals or biologically active 

ubstances. Acetylsalicylic acid has a carboxyl group in its struc- 

ure (pKa value 3.49 [51] ), which under appropriate pH conditions 

ay partially dissociate into carboxylate anion and proton (up to a 

alue of about 3.5). However, neither the proton (its transfer over- 

ays with the transfer of sodium cations) nor the obtained anion 

ave a signal in the potential window (see ESI Fig. S11). Below this 

H value, the compound is in a neutral form in solution. Griseoful- 

in (see ESI Fig. S12) has ketone and ester groups within its struc- 

ure which under studied experimental conditions remain neutral, 



P. Borgul, K. Sobczak, K. Rudnicki et al. Electrochimica Acta 402 (2022) 139553 

Table 1 

Cocaine cutting agents studied at ITIES. Chemical structures and indications about interfacial activity/inactivity of the studied chemical species are given. 
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nd hence, ensure this compound inactivity at ITIES. We have ob- 

ained the same results for phenacetin and paracetamol (see ESI 

igs. S13 and S14) holding an amide group. Additionally, chemical 

onstituents of the tablet (fillers) this is polyvinylpyrrolidone, corn 

tarch, sodium carboxymethylstarch, and stearic acid did not give 

 signal for the given experimental conditions. With two amine 

roups, which can easily be protonated giving the overall positive 

harge, we did not record the signal for creatine in the studied 

H range (2–11) (see ESI Fig S15). Benzocaine is an example of a 

harmaceutical that, despite the presence of an amine function- 

lity, did not give a clear signal at the ITIES (see ESI Fig. S16).

t studied concentration, benzocaine ion transfer is entirely over- 

aid with the H 

+ transfer from the aqueous to the organic phase 

positive current) and can be only observed after blank reading 

ubtraction [39] . The lowest employed pH value being equal to 

 did not suffice to reach a high concentration fraction of proto- 

ated (positively charged) benzocaine molecule having relatively 

ow pKa ( ∼2.5) [52] . 2-phenylethylamine, diphenhydramine, hy- 

roxyzine, levamisole, diltiazem, caffeine, procaine, and lidocaine 

ere also investigated and were found to give a clear signal within 

he available potential window. For these compounds, clear signals 

ere obtained at polarized LLI. These chemical species were sub- 

ected to comprehensive studies. 

Compounds marked in Table 1 as active at the polarized LLI 

ere subjected to an electroanalytical assessment. Each of the 

ight interfacially active compounds was initially dissolved in the 

queous phase, which was a solution of 10 mM NaCl and 10 mM 

Cl (pH 2). At given protons concentration, all cutting agents were 

ully charged (pH << pKa) meaning that the recorded signals 

ollow the simple interfacial ion transfer reaction. Fig. 1 shows 

he cyclic voltammograms (ITVs) recorded for the increasing con- 

entration of all chosen compounds. To transfer the protonated 

olecules (cations) from the aqueous to the organic phase, the 

LI was polarized towards more positive potentials on the for- 
v

4 
ard scan giving a positive peak current. The reversed scan was 

lways stating at the positive end of the cyclic voltammogram 

nd was going towards negative potential values. The peak cur- 

ent signals recorded during this process were due to the cation 

ack transfer from the organic to the aqueous phase. The transfer 

f all studied species was reversible as indicated by the shape of 

he curves and the forward and reversed peak current ratio being 

ound around unity. For procaine ( Fig. 1 -A), lidocaine ( Fig. 1 -B), lev-

misole ( Fig. 1 -C), hydroxyzine ( Fig. 1 -D), phenylethylamine ( Fig. 1 -

), diltiazem ( Fig. 1 -G), diphenhydramine ( Fig. 1 -H) the analyzed 

oncentration range was from 3 μM to 100 μM. Since the ionic cur- 

ents attributed to the caffeine ( Fig. 1 -E) ion transfer were strongly 

verlaid with the limiting currents values originating from the 

odium and proton interfacial transfer, its quantification at lower 

oncentrations was impossible. Thence, the calibration of caffeine 

ook place in the range from 100 to 500 μM. Based on the obtained

esults we have plotted the calibration curves that can be found in 

ig. 1 on the right from the corresponding cyclic voltammograms. 

Using the linear fit equations from the positive and negative 

urrent values we have calculated a number of electroanalytical 

arameters which are summarized in Table 2 . The lower limit of 

etection (LOD) for each compound is calculated using the follow- 

ng equation: 

OD = 

3 . 3 · SD 

S 
(2) 

hereas and the limit of quantification (LOQ) was obtained by 

roper substitution to eq. 3: 

OQ = 

10 · SD 

S 
(3) 

here SD and S are the standard deviation of the intercept and the 

lope of the calibration curve, respectively (values taken from 

he parameters of the linear fit equation). The sensitivity of the 

oltammetric detection is defined as the slope of the calibration 
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Table. 2 

The summary of the electroanalytical and physicochemical parameters calculated or taken from the literature for the interfacially active cocaine cutting agents. 

Name Procaine Caffeine Lidocaine Levamisole Hydroxyzine Phenethylamine Diltiazem Diphenhydramine 

z 1 1 1 1 2 1 1 1 

pK a 8.9 [55] 10.4 [56] 7.9 [57] 9.5 [58] 2.1 and 7.1 [59] 9.8 [60] 7.5 [61] 9.0 [62] 

LOD ( + ) / M 5.12 • 10 −6 1.57 • 10 −4 8.37 • 10 −6 9,73 • 10 −6 2.45 • 10 −5 3.20 • 10 −6 1.00 • 10 −5 2.57 • 10 −6 

LOD (-) / M 7.24 • 10 −6 1.32 • 10 −4 6.79 • 10 −6 8.76 • 10 −6 2.99 • 10 −5 4.58 • 10 −6 1.83 • 10 −5 5.75 • 10 −6 

LOQ ( + ) / M 1.54 • 10 −5 4.70 • 10 −4 2.51 • 10 −5 2.92 • 10 −5 7.34 • 10 −5 9.60 • 10 −6 3.01 • 10 −5 7.70 • 10 −6 

LOQ (-) / M 2.17 • 10 −5 3.95 • 10 −4 2.04 • 10 −5 2.63 • 10 −5 8.98 • 10 −5 1.37 • 10 −5 5.49 • 10 −5 1.72 • 10 −5 

Sensitivity ( + ) / A •M 

− 1 0.187 ± 0.005 0.071 ± 0.010 0.147 ± 0.007 0.199 ± 0.010 0.118 ± 0.010 0.160 ± 0.002 0.161 ± 0.006 0.172 ± 0.003 

Sensitivity (-) / A •M 

− 1 0.128 ± 0.005 0.061 ± 0.007 0.132 ± 0.005 0.203 ± 0.009 0.105 ± 0.011 0.132 ± 0.003 0.184 ± 0.014 0.168 ± 0.006 

D ( + ) / cm 

2 •s − 1 4.78 • 10 −6 ± 1.01 •
10 −6 

1.52 • 10 −6 ± 5.55 •
10 −7 

3.25 • 10 −6 ± 6.20 •
10 −7 

4.32 • 10 −6 ± 7.55 •
10 −7 

1.32 • 10 −6 ± 5.58 •
10 −7 

7.38 • 10 −6 ± 3.19 •
10 −7 

1.11 • 10 −5 ± 1.13 •
10 −5 

2.27 • 10 −6 ± 7.55 •
10 −7 

�aq 
org � � / V 0.110 0.272 0.005 −0.049 −0.019 0.271 −0.094 −0.091 

�aq 
org G 

′ / J •mol −1 −10,622.99 −26,272.87 −458.30 4698.82 3608.54 −26,137.79 9069.59 8731.89 

log P ′ aq/org −1.93 −4.76 −0.08 0.85 0.65 −4.74 1.64 1.58 

K D 6.5 – 520 1500 130 0.1 190 15,000 

p H [ Dr ug + aq ]=[ Dr u g org ] 8.0 – 5.2 6.3 4.9 9.7 5.3 4.8 

5
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Fig. 1. Cyclic voltammograms were recorded for the increasing concentration of studied cocaine cutting agents (A - procaine, B - lidocaine, C - levamisole, D - hydroxyzine, 

E - caffeine, F - phenethylamine, G - diltiazem, H - diphenhydramine) with corresponding positive and negative peak current intensities plotted in a function of a drug 

concentration. The scan rate was 25 mV •s −1 . pH was equal to 2 (aqueous phase was 10 mM NaCl, 10 mM HCl). Linear fit equations together with the correlation coefficient 

are given next to corresponding calibration curves. The points on the calibration curve correspond to the signals calculated from the third voltammetric repetition recorded 

for each concentration. 
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urve. It is expressed as an absolute value having a unit of A 

•M 

−1 .

iffusion coefficients were calculated from the positive and nega- 

ive peak current values (giving information about the analyte dif- 

usivity in the aqueous and the organic phase, respectively) plotted 

n function of the increasing scan rate (5; 10; 15; 20; 25 and 30 

V 

•s −1 ) for the fixed cocaine cutting agent concentration. Rear- 

anged Randles – Šev ̌cík equation was used in this respect: [53] 

 p = 2 . 69 · 10 

5 · n 

3 
2 · A · D 

1 
2 · c · v 

1 
2 (4) 

here D (cm 

2 •s −1 ) is the desired value of diffusion coefficient, I p 
A) is the peak current, n is the value of the charge transferred 

hrough a polarized LLI during a single event, A (cm 

2 ) is the ITIES

rea, c (mol •cm 

−3 ) is the concentration of the target analyte, and 

 (V 

•s −1 ) is the scan rate. 

Also, from the ITVs, we have extracted the values of formal 

alvani potentials differences ( �aq 
org �

′ ) of the ion (protonated cut- 

ing agents) transfer reaction. This parameter provides information 

bout the potential that needs to be applied to the LLI to transfer 

 molecule from the aqueous to the organic phase. Using �aq 
org �

′ 
nd Eq. (5) we have calculated formal Gibbs free energy ( �aq 

org G ’) 

f the ion transfer reaction. 

aq 
org G 

′ = − z · F · �aq 
org �� (5) 

here z and F is the charge and the Faraday constant, 

espectively. Based on the �aq 
org �

′ we also calculated the 

ater||1,2-dichloroethane partition coefficients (the ratio between 

he concentration of the ion in the organic and aqueous 
6 
hases , log P ′ aq/org ) using the formula derived from the Nernst-like 

quation for the ion simple ion transfer reaction [54] : 

og P ′ aq / org = − z · F · �aq 
org �

′ 

2 . 303 · R · T 
= log 

a 

org 

i 

a 

aq 

i 

(6) 

here R (8.3145 J 
mol ·K ) is the gas constant and T is the temperature 

288.15 K), a i is the activity of the ion (i) in the organic (org) or the

queous (aq) phase. Electroanalytical and physicochemical param- 

ters for all interfacially active cocaine cutting agents are summa- 

ized in Table 2 . 

K D is defined as the ratio between the neutral form of the com- 

ound in the aqueous and organic phases. Its relationship with 

hese studies will be explained at a later stage in the discussion 

f the results. 

As shown in Table 2 , most cocaine cutting agents being active 

t the ITIES possess the expected magnitude of the LOD and LOQ 

alues equal to a few μM. The exception was caffeine, which signal 

as significantly overlaid with the potential window limiting cur- 

ent (influencing data treatment) and hydroxyzine for which the 

alculated LOD was equal to around 25 and 30 μM for positive 

nd negative signal, respectively. The voltammetric sensitivity for 

tudied drugs found in the range from 0.07 to 0.20 A 

•M 

−1 (values 

or caffeine and levamisole, respectively) is in line with the 0.06 

 

•M 

−1 obtained for cocaine [39] . Diffusion coefficients calculated 

rom the scan rate dependencies hold expected order of magnitude 

nd follow the logical order with the 1.3 •10 −6 cm 

2 •s −1 for hydrox- 

zine (molecule having largest hydrodynamic radius) to 11.1 • 10 −6 
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2 •s −1 for diltiazem being significantly smaller. Another impor- 

ant parameter is logP DCE defining studied molecules hydrophobic- 

ty. The obtained data show that caffeine and phenylethylamine 

ill be the most hydrophilic, whereas diltiazem is the most hy- 

rophobic cutting agent among all studied species. The difference 

n the partitioning of the interfacially active drugs is a key as- 

ect defining the system selectivity. Cutting agents with logP DCE 

< logP DCE(cocaine) should not interfere during cocaine sensing at 

TIES. 

Fig. 2 shows concentration fraction diagrams plotted for all co- 

aine cutting agents active at the employed polarized LLI. These 

lots were prepared using the pK a values summarized in Table 2 . 

he information provided by the concentration fraction diagram 

an be directly translated into a pH dependent studied cutting 

gent species composition in the aqueous phase, in our case 

RB. Additionally, on each graph we have marked the pK a (8.7) 

63] value for the cocaine – see green dashed line vertical to the 

 -axis – to indicate the conditions at which the ratio between the 

rotonated and neutral form of cocaine is equal to 1. Careful in- 

pection of all concentration fraction diagrams can be used to op- 

imize the conditions for cocaine sensors development. The pKa 

alues for procaine ( Fig. 2 A) and diphenhydramine ( Fig. 2 H) are

ery close to the pKa value of cocaine meaning that these two 

olecules will exhibit very similar concentration fraction profiles 

n the entire pH range. The cocaine detection in the presence of 

idocaine ( Fig. 2 B) and diltiazem ( Fig. 2 G) should be performed

t the pH equal to the cocaine pKa. At these experimental con- 

itions, the fraction of the protonated lidocaine and diltiazem ap- 

roaches zero, and hence, we expect to observe the largest separa- 

ion between recorded ionic currents peaks within the voltammet- 

ic potential window. The amines above their pKa, although de- 

rived of the charge, can partition to the organic phase and act as 

he ionophore facilitating the transfer of a proton from the aque- 

us phase to the organic phase (positive currents) [ 32 , 64 , 65 ]. The

acilitated transfer of proton occurs at potentials higher than the 

otential of the fully protonated and corresponding amine trans- 

er assuring a positive shift in the voltammetric peak position. The 

K a of levamisole ( Fig. 2 C), caffeine ( Fig. 2 E), and phenylethylamine

 Fig. 2 F) are higher than the pK a of cocaine meaning that the con-

entration fraction of the protonated forms of these cutting agents 

ill be always higher as compared with the cocaine close to its 

K a value. Nevertheless, these three molecules (especially caffeine 

nd phenylethylamine) are significantly more hydrophilic and give 

ignals at higher than cocaine Galvani potential difference values 

see Fig. 3 ). The last interfacially active cocaine cutting agent is hy- 

roxyzine having two protonable nitrogen atoms within its hete- 

ocycle. Its concentration fraction diagram is shown in Fig. 2 D. Di- 

ationic hydroxyzine exists at significant concentrations at pH < 

. This means, that for the conditions applied in this study (pH 

ange from 2 till 11) the aqueous phase mainly contained mono- 

ationic (in pH range from 2 to 7) and neutral (pH > 8) hydrox- 

zine species. Similar to lidocaine and diltiazem, cocaine detection 

n the presence of hydroxyzine should be performed at pH close 

o cocaine pK a as these conditions should assure the largest peak 

eparation. 

Using the data obtained from the cyclic voltammograms 

ecorded at different pH values (as the example see Fig. S17 be- 

ng a series of voltammograms recorded for phenylethylamine) 

e have plotted the ion partition diagrams where the half-wave 

alvani potential difference (( �aq 
org �1 / 2 ) for the concerned cutting 

gent is plotted against the aqueous phase pH (see Fig. 3 ). The 

queous phase pH affects the concentration fraction of the inter- 

acially active species and consequently their interfacial behavior. 

he change in �aq 
org �1 / 2 for each of the tested cutting agents was 

ollowed experimentally and can be predicted with the eq. 7 [66–
p

7 
8] : 

aq 
org �1 / 2 = �a q 

org �
′ + 

R · T 

F 
ln 

(
10 

−pH + K a + K a K D 

10 

−pH 

)
(7) 

here �aq 
org ��’ is the formal Galvani potential difference of the ion 

ransfer reaction; F is the Faraday constant, pH has its usual mean- 

ng, K a is the acid dissociation constant calculated from the pK a 

alue (see Table 2 for numerical values, for hydroxyzine the pK a 

as based on its pKa 2 value); and K D is the distribution constant 

f the neutral form of cocaine cutting agents between the aqueous 

nd the organic phase as expressed with the eq. 8: 

 D = 

c aq 
C 

c org 
C 

(8) 

c 
aq 
C 

and c 
org 
C 

stand for concentrations of the studied chemical 

pecies with the zero net charge in the aqueous and the organic 

hase, respectively. K D was the adjustable variable in the Eq. (7) , 

hich appropriate adjustment allows the best fit to the experi- 

ental data marked with the solid red line (see Fig. 3 ). K D val-

es found for each investigated cocaine cutting agent are listed in 

able 2 . Due to the difficulty in extracting �aq 
org �1 / 2 for caffeine 

nd plotting its ion partition diagram the K D for this molecule is 

ot available. 

Fig. 3 summarizes the ion partition diagrams for all cut- 

ing agents giving a clear signal within the available voltammet- 

ic potential window. This data not only allow careful exami- 

ation of mechanisms governing pH-dependent interfacial charge 

ransfer reaction but also gives a number of parameters describ- 

ng molecular partitioning between the aqueous phase and 1,2- 

ichloroethane. Fig. 3 A is a schematic representation of the ion 

artition diagram (plotted for pK a = 9; K D = 10 0 0) aiming at de-

cribing the pH-dependent interfacial charge transfer mechanism 

ommon to all cocaine illicit drugs studied in this work. In the pH 

ange for which the concentration fraction of the fully protonated 

positively charged, pH << pK a ) studied drug is equal to unity 

100%) the recorded ionic currents are due to the simple cation 

nterfacial transfer reaction giving a positive current during the 

ransfer from the water phase to the organic phase and the nega- 

ive current on its back transfer. At the pH equal to around 5 (value 

arked with the red solid line perpendicular to the x-axis) the 

oncentration of the monocationic form of the drug in the aque- 

us phase ( [ Drug + aq ] ) is equal to the concentration of the neutral

orm of the corresponding drug in the organic phase ( [ Dru g org ] ) 

39] . From this point, further decrease in the proton concentra- 

ion results in the positive shift of the �aq 
org �1 / 2 . At pH > pK a 

he concentration fraction of the neutral drug species having the 

bility to spontaneously partition to the organic phase increases. 

s such, the charge transfer mechanism is switched from the sim- 

le ion transfer reaction (protonated drug going from one phase 

o another) to the facilitated proton transfer reaction (see Fig. 3 A 

or the scheme). Existence of basic amine groups in the organic 

hase facilities the transfer of a proton from the aqueous to the or- 

anic phase giving positive ionic current recorded at voltammetric 

urves. The shape of the ionic partition diagram is highly related 

o the neutral form of the drug hydrophilicity/hydrophobicity de- 

ned by the distribution constant (K D see Eq. (8) ). The molecules 

aving a higher affinity to the organic phase will have higher val- 

es of the K D factor. The data extracted from Fig. 3 B −3G pro-

ided the K D equal to 15,0 0 0, 150 0, 520, 190, 130, 6.5, and 0.1

or diphenhydramine, levamisole, lidocaine, diltiazem, hydroxyzine, 

rocaine, and phenylethylamine, respectively. The output of this 

xperiment is not surprising since even the inspection of the 

hemical structures suggests that diphenhydramine should be the 

ost hydrophobic among all interfacially active cutting agents. All 

arameters related to molecular partitioning are summarized in 
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Fig. 2. Concentration fraction diagrams for the cocaine cutting agents being electrochemically active at the electrified LLI. A – procaine, B – lidocaine, C – levamisole, D –

hydroxyzine, E – caffeine, F – phenylethylamine, G – diltiazem, H – diphenhydramine. For the pK a values refer to Table 2 . Green dashed line vertical to the x -axis indicate 

the pK a value for the cocaine. 

8 
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Fig. 3. Ion partition diagrams for the illicit drugs cutting agents being electrochemically active at the electrified LLI (experimental data – black circles, best fit using Eq. (7) –

solid red line, theoretical ion partition diagram for the cocaine – dashed blue line). A – an exemplary theoretical diagram with a schematic transfer of ions in individual 

pH values, B – lidocaine, C – levamisole, D - diphenhydramine, E – phenethylamine, F – diltiazem, G – procaine, H - hydroxyzine. The vertical red line perpendicular to the 

x -axis indicates the pH for which [ Drug + aq ] = [ Dru g org ] (for details refer to the text). 

9 
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able 2 . Each subsection of Fig. 3 contains the ion partition dia- 

ram for the studied cutting agent (red line) and cocaine (dashed 

lue line). From the sensing point of view, the signals originat- 

ng from cocaine, lidocaine ( Fig. 3 B), and phenethylamine ( Fig. 3 E)

ill be sufficiently separated ensuring ITIES based sensor selectiv- 

ty in the entire pH range. Detection of cocaine in the presence 

f procaine ( Fig. 3 G) and levamisole ( Fig. 3 C) should be performed

nly at the pH < pK a of the corresponding cutting agents (in prac- 

ice pH = 7, see Fig. 2 C and G). Caffeine should not constituent

 problem since its transfer overlays with the background current 

n the positive side of the potential window. Cocaine displays in- 

erfacial characteristics similar to diphenhydramine ( Fig. 3 D), dilti- 

zem ( Fig. 3 F), and hydroxyzine ( Fig. 3 H), and hence, these three

utting agents are potentially problematic in a view of cocaine de- 

ection at ITIES. In the future, we plan to validate the findings pre- 

ented in this work with other voltammetric methods allowing for 

etter signal deconvolution (AC Voltammetry and differential pulse 

oltammetry). 

. Conclusions 

In this work, the electrified liquid-liquid interface also known 

s the interface between two immiscible electrolyte solutions was 

sed to study cocaine cutting agents (chemical frequently used to 

dulterate cocaine street samples). Among 23 chosen target ana- 

ytes only 8 (procaine, lidocaine, levamisole, hydroxyzine, caffeine, 

henylethylamine, diltiazem, and diphenhydramine) were found to 

ive a signal within the available potential window. Based on our 

esults we have provided a number of electroanalytical (voltam- 

etric detection sensitivity, LODs, LOQs), physicochemical (diffu- 

ion coefficients, formal Galvani potential difference of ion trans- 

er, formal Gibbs free energy of ion transfer), and pharmacological 

partition coefficient, distribution constant) parameters for the in- 

erfacially active cutting agents. Based on the obtained results we 

rovided a number of guidelines for the development of a sensor 

llowing for the selective detection of cocaine in street samples. 
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