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A comprehensive toolbox for the gamma distribution: The
gammadist package

Piao Chena , Kilian Buisa, and Xiujie Zhaob

aDepartment of Applied Mathematics, Delft University of Technology, Delft, The Netherlands; bCollege of Management and
Economics, Tianjin University, Tianjin, China

ABSTRACT
The gamma distribution is one of the most important parametric models in probability the-
ory and statistics. Although a multitude of studies have theoretically investigated the prop-
erties of the gamma distribution in the literature, there is still a serious lack of tailored
statistical tools to facilitate its practical applications. To fill the gap, this paper develops a
comprehensive R package for the gamma distribution. In specific, the R package focuses on
the following three important tasks: generate the gamma random variables, estimate the
model parameters, and construct statistical limits, including confidence limits, prediction lim-
its, and tolerance limits based on the gamma random variables. The proposed package
encompasses the state-of-the-art methods of the gamma distribution in the literature and
its usage is illustrated by a real application.

KEYWORDS
confidence interval;
estimation; prediction
interval; sampling;
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1. Introduction

The gamma distribution is an important distribution that
has received considerable attention in the probability and
statistics literature. For example, due to its relation with
the exponential distribution, the gamma distribution is
frequently the probability model for waiting times (Lee
and Wang 2011; Lin and Lin 2015). In quality and reli-
ability engineering, the gamma distribution is extensively
used to fit the product lifetimes, as it could exhibit
decreasing, constant, and increasing failure rates (Chen
and Ye 2018; Wang and Wu 2018). Moreover, the
gamma distribution has shown to be an appropriate
model in many other application areas including
environments (Baran and Nemoda 2016), wireless com-
munications (Al-Ahmadi and Yanikomeroglu 2010), geo-
science (Gao et al. 2017), disaster monitoring (Xiao et al.
2021), and image analysis (El-Zaart 2010).

The gamma distribution Gamðk, hÞ has probability
density function (pdf)

f ðxÞ ¼ 1

CðkÞhk x
k�1e�x=h, x > 0,

where k> 0 is the shape parameter and h > 0 is
the scale parameter. In some applied fields, the

parametrization with shape k and rate b, which is the
inverse of h, is more common. The mean and vari-
ance of Gamðk, hÞ are kh and , respectively. The
gamma distribution includes the exponential distribu-
tion (k¼ 1) and the Chi-square distribution (h¼ 2) as
its special cases, and the normal distribution (k!1)
as its limiting case. In addition, the gamma distribu-
tion is also closely related to the beta distribution, the
Dirichlet distribution, and the F-distribution.

In order to successfully implement the gamma dis-
tribution in practice, some fundamental statistical
issues need to be addressed. The first issue is about
generating the gamma distributed random variables.
In the literature, this task is often performed by
considering k � 1 and k< 1 separately. Let X �
Gamðk, hÞ: Simulating X when k � 1 is generally easy
as transformations of X (e.g., logX and X1=3) can be
well approximated by a normal distribution. Using the
normal distribution as the envelope, the gamma vari-
ates can be readily obtained by the acceptance-rejec-
tion method with low rejection rate (Ahrens and
Dieter 1982; Marsaglia and Tsang 2000). This idea is
employed by the default rgamma function in R for
the k � 1 case. On the other hand, the k< 1 case is
not easy to deal with as an adequate approximation
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for X is lacking under small shape parameter and,
hence, a proper envelope is difficult to construct.
Some tailored envelope functions directly applied to
the gamma density have been proposed in the litera-
ture, including Ahrens and Dieter (1974); Best (1983);
and Kundu and Gupta (2007), with the first one being
used by the rgamma function. However, these envelope
functions generally do not provide an overall tight bound
on the gamma density and the corresponding accept-
reject algorithm could yield a high rejection rate. For
example, it is well known that the rgamma function in R
is relatively inaccurate and inefficient in sampling when
the shape parameter k is small (Liu, Martin, and Syring
2017). In view of this fact, some more efficient sampling
methods based on the limiting distribution of logX as
k! 0 have been proposed during recent years (Liu,
Martin, and Syring 2017; Xi, Tan, and Liu 2013). In the
proposed R package, a gamma random variable gener-
ator that suffices for all ranges of k will be developed.

The second important issue is how to estimate the
gamma parameters based on the gamma distributed
data. It is well known that the maximum likelihood
(ML) estimators of the gamma parameters do not
have closed-form expressions, and they have to be
numerically obtained by algorithms such as the quasi-
Newton method. However, these algorithms could
easily fail to converge when the shape parameter k is
small (Ye and Chen 2017). On the other hand,
although the moment estimators of the gamma parame-
ters have the closed forms, they are not efficient under
either small or large samples. Recently, Ye and Chen
(2017) proposed the ML-like closed-form estimators for
the gamma parameters deriving from the generalized
gamma distribution. The proposed estimators are shown
to perform almost identically to the ML estimators in
both finite and large samples. In addition, the proposed
estimators are consistent and asymptotically normally
distributed. Louzada, Ramos, and Ramos (2019) further
improved the performance of the estimators in finite
samples by considering bias correction, and these esti-
mators will be integrated in the gammadist package.

The third task accomplished by the package is to
construct some important statistical limits (intervals) of
the gamma distribution, including the confidence limits,
prediction limits, and tolerance limits (see, e.g., Hayter
and Kiatsupaibul 2014). The confidence limits construc-
tion is undoubtedly a classical topic in statistics, as it
quantifies uncertainties during point estimation. On the
other hand, the prediction and tolerance limits are crit-
ical in knowing the properties of the future observations,
which play fundamental roles in quality control and
environment monitoring applications where the gamma

distribution is a popular model. In the literature, there
have been a multitude of methods of constructing these
statistical limits for the gamma distribution. For
example, the large-sample approximation or the boot-
strap are often used to construct the confidence limits
(see, e.g., Bhaumik, Kapur, and Gibbons 2009), while
the normal-based method (see, e.g., Krishnamoorthy,
Mathew, and Mukherjee 2008) and some complex ana-
lytical approximations (see, e.g., Bhaumik and Gibbons
2006) have been proposed for the other two statistical
limits. One drawback of these methods is that their per-
formance is not uniformly satisfactory in practice. For
instance, the large-sample approximation and bootstrap
only work well in large samples, and the normal-based
method does not perform satisfactorily when the shape
parameters are small. Until recently, the new paradigm
of the generalized pivotal quantity (GPQ) has been
developed for construing the statistical limits of the
gamma distribution, and its uniformly outstanding per-
formance has been verified by many studies (Chen and
Ye 2017a, 2018; Wang and Wu 2018). In the gammadist
package, the GPQ method will be implemented.

The remainder of the article will be organized as
follows. Section 2 introduces the underlying methodol-
ogies used in the package, including random variable
generation, parameter estimation, and statistical limits
construction. Section 3 presents the gammadist pack-
age, which consists of six functions. For each function,
its arguments and outputs are explicitly stated and its
demos are shown in R code. Section 4 illustrates the
package by a groundwater monitoring application. At
last, Section 5 concludes the article and discusses some
potential directions of extending the package.

2. Technical details

This section introduces the underlying technical
details used in the gammadist package. The methods
of generating random variables, estimating parameters,
and constructing statistical limits will be discussed in
the following subsections.

2.1. Random variable generation

As argued, we focus on generating gamma random
variables when 0 < k < 1, as the default rgamma
function in R is efficient when k � 1: We only need
to consider the random variable Y � Gamðk, 1Þ as the
scale parameter could be multiplied afterwards, that
is, X ¼ hY � Gamðk, hÞ: Liu, Martin, and Syring
(2017) considered the transformation Z ¼ �k log ðYÞ
and observed that Z ! Exp ð1Þ in distribution as k!

2 P. CHEN, K. BUIS, AND X. ZHAO



0, where Exp ð1Þ denotes the unit-rate exponential dis-
tribution. In specific, the density function h(z) of Z is

hðzÞ ¼ ce�z�e
�z=k

, z 2 ð�1,1Þ,
where c ¼ 1=Cðkþ 1Þ is the normalization constant. It
is easy to see that h(z) is log-concave, and it is ideally
suited to acceptance-rejection sampling with two expo-
nential envelopes oriented in opposite directions from
the mode m¼ 0. This is because any line tangent to
log hðzÞ lies above log hðzÞ, while the log exponential
density is a straight line. Thus, the aim is to find the
two exponential envelopes that minimize the rejection
rate. Toward this end, Liu, Martin, and Syring (2017)
obtained the optimal envelop function as follows:

gðzÞ ¼ ce�z, if z � 0,
cwkekz, if z < 0,

�

where w � wðkÞ ¼ k=½eð1� kÞ� and k � kðkÞ ¼
ð1=kÞ � 1: Thus, the two exponential distributions are
Exp(1) and -Exp(k), respectively. In addition, the ratio
of sampling from Exp(1) and -Exp(k) is 1=w:
Therefore, we only need to sample from the following
mixture of two exponential distributions:

1
1þ w

Exp ð1Þ þ w
1þ w

�Exp ðkÞ½ �, [1]

which can be easily achieved by the uniform random
variable generators such as the runif function in R.
Once a z is sampled from Eq. [1], it is accepted only if
hðzÞ=gðzÞ > u, where u is a realization of Unifð0, 1Þ,
that is, the standard uniform distribution. The gamma
random variable can then be obtained based on the
transformation relation Z ¼ �k log ðYÞ: To summarize,
Algorithm 1 shows the pseudo-code for generating the
gamma random variables for all the range of k> 0.

Algorithm 1: Generation of the gamma ran-
dom variables.

Input: Shape parameter k and scale parameter h
Output: Gamma random variable X � Gamðk, hÞ

1 do
2 if k � 1 then
3 X  rgammaðk, hÞ // rgamma is the

default function in R that gener-

ates gamma random variable with

shape parameter k and scale param-

eter h
4 end
5 else
6 w k=e=ð1� kÞ; k 1=k� 1; r  1=ð1þ wÞ
7 U1  runifð0, 1Þ // runif(0,1) gener-

ates the standard uniform ran-

dom variable

8 if U1 � r then
9 z  rexpð1Þ // rexp(k) generates

the exponential random variable

with rate k
10 end
11 else
12 z  �rexpðkÞ
13 end
14 U2  runifð0, 1Þ
15 if hðzÞ=gðzÞ > U2 then
16 Z  z
17 Y  exp ð�Z=kÞ
18 X  hY
19 end
20 end
21 until X is generated

2.2. Parameter estimation

The closed-form estimators proposed in Ye and Chen
(2017) and Louzada, Ramos, and Ramos (2019) are
used for parameter estimation. The underlying idea is
to use the generalized gamma distribution
GGamðk, h, bÞ, which has pdf

gðxÞ ¼ b

CðkÞhbk x
bk�1e�ðx=hÞ

b

, x > 0:

When b¼ 1, the generalized gamma distribution
degenerates to the gamma distribution. Let X �
GGamðk, h, bÞ and X1, :::,Xn be independent and iden-
tically distributed copies of X. Thus, the score equa-
tions are

�wðkÞ � b log hþ b
n

X
i

logXi ¼ 0,

�kþ 1
n

X
i

ðXi=hÞb ¼ 0,

1
b
þ k
n

X
i

log ðXi=hÞ � 1
n

X
i

ðXi=hÞb log ðXi=hÞ ¼ 0:

By setting b¼ 1 in the above equations and noting
b ¼ 1=h, the closed-form estimators for k, h, and b
could then be obtained as

k̂ ¼ n
P

i Xi

n
P

i Xi logXi �
P

i logXi
P

i Xi
,

ĥ ¼ n
P

i Xi logXi �
P

i logXi
P

i Xi

n2
,

b̂ ¼ n2

n
P

i Xi logXi �
P

i logXi
P

i Xi
:

[2]

Ye and Chen (2017) numerically showed that these
estimators perform almost identically to the ML
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estimators in finite samples and they are nearly effi-
cient in large samples. To facilitate small-sample
applications, the authors further proposed the bias-
corrected estimators for the parameters. Because the
estimator of k is based on an asymptotic argument
and it still has systematic biases in finite samples,
Louzada, Ramos, and Ramos (2019) further proposed
an improved version. The idea is to subtract the
second-order bias of the ML estimator, and a useful
approximation was proposed by the authors; see
Louzada, Ramos, and Ramos (2019) for more tech-
nical details.

In summary, the bias-corrected estimators for k, h,
and b are, respectively, given by

~k ¼ k̂ � 1
n

3k̂ � 2k̂

3ð1þ k̂Þ �
4k̂

5ð1þ k̂Þ2
" #

,

~h ¼ n
n� 1

ĥ ¼ n
P

i Xi logXi �
P

i logXi
P

i Xi

nðn� 1Þ ,

~b ¼ n� 1
nþ 2

b̂ ¼ n2ðn� 1Þ
ðnþ 2ÞðnPi Xi logXi �

P
i logXi

P
i XiÞ ,

[3]

where the closed-form expressions of k̂, ĥ and b̂ are
given in Eq. [2]. Algorithm 2 illustrates the overall
estimation procedures.

Algorithm 2: Estimation of the parameters of a
gamma distribution.

Input: n observations x1, :::, xn:
Output: Estimates of k, h and b.

1 Compute the closed-form estimators k̂, ĥ and b̂ by
using Eq. [2]

2 Compute the bias-corrected closed-form estimators
~k, ~h and ~b by using Eq. [3]

2.3. Construction of statistical limits

In this section, the GPQ method will be implemented
for constructing the statistical limits of the gamma
distribution. We first give a brief introduction of the
GPQ method. As its name stands for, GPQ is a gener-
alization of the classical pivotal quantity, and it is par-
ticularly useful in constructing statistical limits in the
presence of nuisance parameters. Since its first intro-
duction by Weerahandi (1993), the GQP method has
received significant attention in the literature for its

outstanding performance in interval estimation; suc-
cessful applications can be found in Krishnamoorthy,
Mallick, and Mathew (2011), Chen and Ye (2017b),
and Wang et al. (2021a), to name a few. Suppose that
we are interested in making inference of one
unknown parameter h 2 h, where h is the vector of
all the unknown parameters. Then, GhðX, x, hÞ, which
is a function of the random sample X ¼ ðX1, :::,XnÞ,
the observed data x ¼ ðx1, :::, xnÞ and the unknown
parameters h, are a GPQ for h if it satisfies the fol-
lowing two conditions:

C1. GhðX, x, hÞ has a probability distribution that is
free of unknown parameters h:

C2. The observed pivotal, defined as Ghðx, x, hÞ, only
depends on h, that is, it does not depend on the
nuisance parameters.

Based on the distribution of GhðX, x, hÞ, the confi-
dence interval for h can be constructed, which is
known as the generalized confidence interval (GCI).
Asymptotically, the GCI achieves the exact coverage
under some mild conditions (Hannig, Iyer, and
Patterson 2006). Moreover, numerous studies in the
literature showed the excellent performance of the
GCI under small and moderate sample sizes (see, e.g.,
Krishnamoorthy, Lee, and Zhang 2017; Wang
et al. 2021b).

2.3.1. GPQs for the gamma parameters
GPQs for the parameters of the gamma distribution
were first developed in Chen and Ye (2017a, 2017b),
and later the GPQ for the shape parameter k was
improved by Wang and Wu (2018). In the R package,
the GPQs proposed by Wang and Wu (2018) are used
as they yield better performance in terms of the cover-
age probabilities. In specific, let T ¼ log ð~X=�XÞ where
~X ¼Qi X

1=n
i and �X ¼Pi Xi=n: Iliopoulos (2016)

showed the distribution of T only depends on the
shape parameter k. Let FðTjkÞ be the cumulative dis-
tribution function (cdf) of T and then FðTjkÞ � Uk,
where Uk follows the standard uniform distribution.
In other words, T ¼ QðUkjkÞ, where QðpjkÞ repre-
sents the pth quantile of T and it depends on k only.
On the other hand, the quantiles could be approxi-
mated by the Cornish-Fisher expansion, that is,

QðpjkÞ ¼ zp þ 1
6
~c3ðz2p � 1Þ þ 1

24
~c4ðz3p � 3zpÞ � 1

36
ð~c3Þ2ð2z3p � 5zpÞ

þ 1
120

~c5ðz4p � 6z2p þ 3Þ � 1
24

~c3~c4ðz4p � 5z2p þ 2Þ þ 1
324
ð~c3Þ3ð12z4p � 53z2p þ 17Þ,

4 P. CHEN, K. BUIS, AND X. ZHAO



where ci is the ith cumulant of T, ~ci ¼ ci=ðc2Þi=2 and
zp is the pth quantile of a standard normal distribu-
tion. The expressions of ci’s are derived in Wang and
Wu (2018) and they are given by

c1 � c1ðkÞ ¼ log ðnÞ þ wðkÞ � wðnkÞ,
ci � ciðkÞ ¼ 1

ni�1
wi�1ðkÞ � wi�1ðnkÞ, i ¼ 2, 3, :::,

where wðkÞ ¼ C0ðkÞ=CðkÞ is the digamma function
and wið�Þ is the ith derivative of wð�Þ: With all these
treatments, the GPQ Gk for k can be readily obtained
by solving

log ð~x=�xÞ ¼ c1ðGkÞ þ c2ðGkÞ½ �1=2QðUkjGkÞ, [4]

where ~x and �x are the observed geometric and arith-
metic means, respectively. As seen, the distribution of
Gk only depends on the standard uniform distribution
Uk, so the first condition (C1) is satisfied. In addition,
the observed pivotal, where Uk is replaced by its
observed value, is equal to k, so the second condition
(C2) also holds. Therefore, Gk is a valid GPQ for k.
Because T is stochastically strictly increasing in k
(Iliopoulos 2016), the above equation can be easily
solved by bisection search given a realization of Uk.
As for the scale parameter h, observe that 2n�X=h �
v2ð2nkÞ, a v2 distribution with 2nk degrees of free-
dom. Conditional on Gk, the GPQ for h can be con-
structed as

Gh ¼ 2n�x=Uh,

where Uh � v2ð2nGkÞ: It is easy to check that Gh is
independent of k and h and its observed value is equal
to h. Therefore, Gh is a valid GPQ for h.
Consequently, the GPQ for the rate parameter b
is Gb ¼ 1=Gh:

The exact distributions of the GPQs are difficult to
derive. Nevertheless, their realizations can be readily
generated by using the Monte Carlo simulation, and
the procedures are summarized in Algorithm 3.

Algorithm 3: Generation of the realizations of the
GPQs of the gamma parameters.

Input: n observations x1, :::, xn and the number of
realizations B.

Output: B realizations of the GPQs of k, h, and b.
1 ~x  Q

i x
1=n
i ; �x  P

i xi=n
2 for i in 1:B do
3 Uk  runifð0, 1Þ // runif(0,1) generates

the standard uniform random variable

4 Gk  solution of Eq. [4]
5 Uh  rchisqð2nGkÞ // rchisq(a) gener-

ates the v2 random variable with a

degrees of freedom

6 Gh  2n�x=Uh

7 Gb  1=Gh
8 end

2.3.2. Confidence limits
One direct application of the derived GPQs is to con-
struct the confidence intervals of the parameters.
Mathematically, for a parameter h, we want to con-
struct two statistics, LðXÞ and UðXÞ, such that the
coverage probability

P LðXÞ � h � UðXÞ½ � ¼ 1� a,

where 1� a is the pre-determined confidence level.
Common values of a include 0.01, 0.05, and 0.1. Once
the observed data x is available, the confidence inter-
val for h is ½LðxÞ,UðxÞ�: The one-sided confidence
limits are defined by taking LðxÞ ¼ �1 (upper confi-
dence limit) and UðxÞ ¼ 1 (lower confidence limit).
Similar to the use of classical pivotal quantities, the
quantiles of the GPQs can be treated as the confi-
dence intervals of the parameters, which can be well
approximated by the empirical percentiles of the GPQ
realizations. The detailed procedures of constructing
confidence intervals of the gamma parameters are
illustrated in Algorithm 4.

Algorithm 4: Construction of confidence limits of the
gamma parameters.

Input: n observations x1, :::, xn, the number of real-
izations B, and the confidence level 1� a:

Output: confidence interval, lower confidence limit,
and upper confidence limit of k, h and b.

1 Obtain B realizations of GPQs for the parameters by
using Algorithm 3

2 Use the a=2 th and ð1� a=2Þ th empirical percen-
tiles as the 1� a confidence interval, the ath empir-
ical percentile as the 1� a lower confidence limit,
and the ð1� aÞ th empirical percentile as the 1� a
upper confidence limit

2.3.3. Prediction limits
The prediction interval is another important statistical
interval, which predicts the range of a future observa-
tion with a certain probability. Consider two statistics
PLðXÞ and PUðXÞ, and the next sample variable
Xnþ1: A 1� a prediction interval ½PLðXÞ,PUðXÞ� sat-
isfies

P LðXÞ � Xnþ1 � UðXÞ½ � ¼ 1� a,

where 1� a is the confidence level. The one-sided
prediction limits can be easily constructed as the
open-ended version of the prediction interval.
Regarding the gamma distribution, its prediction lim-
its construction plays an important role in

JOURNAL OF QUALITY TECHNOLOGY 5



applications such as environment monitoring and
quality control (Chen and Ye 2017a; Wang and Wu
2018). The GQP method can again be invoked. In
specific, for each pair of realizations ðGk,GhÞ, a
gamma variable is generated. Afterwards, B gamma
variables will be generated based on B realizations of
ðGk,GhÞ, whose empirical percentiles can be used as
the prediction limits. The detailed procedures are
summarized in Algorithm 5.

Algorithm 5: Construction of prediction limits of the
gamma distribution.

Input: n observations x1, :::, xn, the number of real-
izations B, and the confidence level 1� a:

Output: prediction interval, lower prediction limit
and upper prediction limit.

1 Obtain B realizations of ðGk,GhÞ by using Algorithm 3
2 For each realization of ðGk,GhÞ, generate a gamma
variable by using Algorithm 1

3 Use the a=2 th and ð1� a=2Þ th empirical percen-
tiles of the generated B gamma variables in the last
step as the 1� a prediction interval, the ath empir-
ical percentile as the 1� a lower prediction limit,
and the ð1� aÞ th empirical percentile as the 1� a
upper prediction limit

2.3.4. Tolerance limits
When the number of future measurements is either
large or unknown, the appropriate statistical lim-
its to quantify the range of future observations are
the tolerance limits. Consider two statistics TLðXÞ
and TUðXÞ, and ½TLðXÞ,TUðXÞ� is the ðc, 1� aÞ
tolerance interval if it contains at least a propor-
tion c of the population with confidence level 1�
a, that is,

P FXðTUðXÞÞ � FXðTLðXÞÞð Þ � c½ � ¼ 1� a,

where FXð�Þ is the cdf of the random variable X. If we
set TLðXÞ ¼ �1 and TUðXÞ ¼ 1, we get the ðc, 1�
aÞ upper and lower tolerance limits, respectively.

In terms of the gamma distribution, the one-sided
tolerance limits can be readily obtained based on their
relationship with the confidence limits for the quan-
tiles of the gamma distribution. In specific, the ðc, 1�
aÞ upper tolerance limit is equal to the 1� a upper
confidence limit for the cth quantile and the ðc, 1� aÞ
lower tolerance limit is equal to the 1� a lower confi-
dence limit for the ð1� cÞ th quantile. Because the
gamma quantiles are functions of the gamma parame-
ters, their one-sided confidence limits can be obtained
by using the GPQ realizations of the parameters.

Algorithm 6 summarizes the procedures to obtain the
one-sided tolerance limits.

Algorithm 6: Construction of one-sided tolerance
limits of the gamma distribution.

Input: n observations x1, :::, xn, the number of real-
izations B, the proportion of population c,
and the confidence level 1� a:

Output: lower tolerance limit and upper toler-
ance limit.

1 Obtain B realizations of ðGk,GhÞ by using
Algorithm 3

2 For each realization of ðGk,GhÞ, generate the
gamma quantile by using qgammaðc,Gk,GhÞ

3 Use the ð1� aÞ th empirical percentile of the gen-
erated B gamma quantiles in the last step as the
ðc, 1� aÞ upper tolerance limit

4 For each realization of ðGk,GhÞ, generate the
gamma quantile by using qgammað1� c,Gk,GhÞ

5 Use the ath empirical percentile of the generated B
gamma quantiles in the last step as the ðc, 1� aÞ
lower tolerance limit

On the other hand, the GPQ method is not directly
applicable to construct the two-sided tolerance inter-
vals, as there is no unique mapping between the toler-
ance interval and the gamma quantile. Based on the
investigation from Chen and Ye (2017a), the normal-
based method, proposed by Krishnamoorthy, Mathew,
and Mukherjee (2008), is more straightforward to
implement in terms of constructing the tolerance
intervals of the gamma distribution. The underlying
idea of the normal-based method is that the cube root
of the gamma random variable R ¼ X1=3 is approxi-
mately normally distributed due to the famous
Wilson-Hilferty approximation (Krishnamoorthy,
Mathew, and Mukherjee 2008). In the literature, con-
structing tolerance intervals for the normal distribution
has been well studied. Let �R and S2R be the sample mean
and sample variance based on the transformed variables
R1,R2, :::,Rn: The tolerance interval ½TLR,TUR� regard-
ing R has the form of �R6vSR, where v is the tolerance
factor. Exact values of v can be obtained by solving an
equation involving the integral and many satisfactory
approximations have been proposed in the literature.
The approximation used in the package is

v ¼ ðn� 1Þv21, cð1=nÞ
v2n�1, a

 !1=2

, [5]

where v21, cð1=nÞ represents the cth quantile of a non-
central v2 distribution with 1 degree of freedom and
noncentrality parameter 1=n, and v2n�1, a represents
the ath quantile of a v2 distribution with n� 1
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degrees of freedom. The outstanding performance of
this approximation even under small sample sizes has
been verified by the numerical studies in
Krishnamoorthy and Mathew (2009, sec 2.3). Once
½TLR,TUR� is available, the tolerance interval for the
gamma distribution can be computed as ½TL,TU� ¼
½TL3R,TU3

R�: For illustration, the procedure of con-
structing tolerance intervals for the gamma distribu-
tion is narrated in Algorithm 7.

Algorithm 7: Construction of two-sided tolerance
intervals of the gamma distribution.

Input: n observations x1, :::, xn, the number of real-
izations B, the proportion of population c,
and the confidence level 1� a:

Output: two-sided tolerance interval.
1 Cube-root transform x1, :::, xn to r1, :::, rn

where ri ¼ x1=3i
2 Compute the normal ðc, 1� aÞ tolerance interval
½TLR,TUR� by �r6vsr, where the tolerance factor v
can be computed by Eq. [5]

3 The ðc, 1� aÞ tolerance interval of the gamma dis-
tribution is ½TL3R,TU3

R�

3. The gammadist package

The algorithms in Section 2 will be realized as R func-
tions in the gammadist package to facilitate the use of
gamma distribution in practice. A summary of the
functions is given as follows:

	 rGamma: generate the gamma random variables
based on Algorithm 1.

	 parest: estimate the parameters of a gamma distri-
bution based on Algorithm 2.

	 pargpq: generate realizations of GPQs of the
gamma parameters based on Algorithm 3.

	 conflimits: construct confidence limits of the
gamma parameters based on Algorithm 4.

	 predlimits: construct prediction limits of the
gamma distribution based on Algorithm 5.

	 tollimits: construct tolerance limits of the gamma
distribution based on Algorithms 6 and 7.

Detailed description and demos of these functions
will be presented in the following subsections. All demos
are coded using R (version 4.0.4) on a computer with a
standard Intel i7 processor and a Windows 10 system.

3.1. rGamma function

Similar to the default rgamma function, the rGamma
function has the following four arguments:

	 n: number of observations, which is a posi-
tive integer.

	 shape: shape parameter of the gamma distribution,
which is a positive real number.

	 rate: rate parameter of the gamma distribution,
which is a positive real number. The default value
is 1.

	 scale: scale parameter of the gamma distribution,
which is the inverse of the rate.

Some examples of using the rGamma function are
as follows:
# generate 10 gamma variates with shape-

¼0.5 and scale¼2

R>set.seed(1)

R>gamma.rv1 <- rGamma(10, shape¼0.5,

scale¼2)

R>gamma.rv1

[1] 0.18822102 3.80508508 0.03421693

0.17101963 1.09029916 0.16829112

0.04693821 0.61642892 0.13760850

0.64494911

# generate 10 gamma variates with shape-

¼2 and scale¼1

# this is essentially generated by the

default rgamma function

R>set.seed(2)

R>gamma.rv2 <- rGamma(10, shape¼2)

R>gamma.rv2

[1] 0.6026224 0.5532367 0.4350155

1.6577979 0.7565759 1.2207949

0.7198031 2.0551237 2.9433563

1.0576008

3.2. parest function

The argument of the parest function is simply

	 x: observations from a gamma distribution.

In addition, the function returns the estimation
results as a list with components

	 shape: estimate of the shape parameter.
	 scale: estimate of the scale parameter.
	 rate: estimate of the rate parameter.

Some examples of using the parest function are
as follows:
R>set.seed(3)

R>x <- rGamma(10, shape¼0.5)
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# return a list that contains all the

estimates of the three parameters

R>est.all <- parest(x)

R>est.all

$rate

[1] 1.054187

$scale

[1] 0.7904987

# return the estimate of the shape par-

ameter

R>est.shape <- est.all$shape

R>est.shape

[1] 0.3624244

3.3. pargpq function

The use of the pargpq function is straightforward,
that is, it uses the observed data as the input and gen-
erates the realizations of the GPQs of the gamma
parameters as the output. In specific, the argu-
ments are

	 x: observations from a gamma distribution.
	 B: number of realizations of the GPQs. If B is not

specified, the default value is 2000,

and the returned data frame is a list of three variables

	 shape: B realizations of the GPQ of the
shape parameter.

	 scale: B realizations of the GPQ of the
scale parameter.

	 rate: B realizations of the GPQ of the
rate parameter.

An example of using the pargpq function is
as follows:
R>set.seed(4)

R>x <- rGamma(20, shape¼0.5)

# return a dataframe which contains the

10 realizations of the GPQs of the

parameters

R>set.seed(5)

R>gpq.all <- pargpq(x, B¼10)

R>gpq.all

shape scale rate

1 0.6255108 1.4501426 0.6895873

2 0.4401840 1.6614775 0.6018739

3 0.3396037 3.3207661 0.3011353

4 0.5836404 1.2473648 0.8016901

5 0.6936647 0.7959861 1.2563034

6 0.4347012 2.3959141 0.4173772

7 0.4928774 1.5773779 0.6339635

8 0.3945214 3.0475248 0.3281352

9 0.3078740 2.1524749 0.4645815

10 0.6883403 0.8667913 1.1536802

# return the 10 realizations of the GPQ

of the shape parameter

R>gpq.shape <- gpq.all$shape

R>gpq.shape

[1] 0.6255108 0.4401840 0.3396037

0.5836404 0.6936647

0.4347012 0.4928774 0.3945214

0.3078740 0.6883403

3.4. conflimits function

As illustrated in Algorithm 4, the conflimits function
has the following arguments:

	 x: observations from a gamma distribution.
	 a : 1� a is the nominal confidence level. If a is

not specified, the default value is 0.05.
	 B: number of realizations of the GPQs. If B is not

specified, the default value is 2,000,

and it returns a data frame consisting of
three variables

	 shape: 1� a confidence interval, lower confidence
limit, and upper confidence limit for the
shape parameter.

	 scale: 1� a confidence interval, lower confidence
limit, and upper confidence limit for the
scale parameter.

	 rate: 1� a confidence interval, lower confidence
limit, and upper confidence limit for the
rate parameter.

Below is an example of using the confli-
mits function.
R>set.seed(6)

R>x <- rGamma (10, shape ¼ 3, rate ¼ 2)

# return a dataframe that contains 95%
two-sided confidence interval and 95%
one-sided confidence limits for the

gamma parameters

R>set.seed(7)

R>conf.all <- conflimits(x)

R>conf.all

shape scale rate

low-int 0.6694231 0.2952957 0.4024307

up-int 3.9122894 2.4849002 3.3864400

low-lim 0.8201190 0.3304748 0.5453553

up-lim 3.4827415 1.8336673 3.0259501

# return 95% two-sided confidence
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interval and 95% one-sided confidence

limits for the shape parameter

R>shape.conf <- conf.all$shape

R>shape.conf

[1] 0.6694231 3.9122894 0.8201190

3.4827415

3.5. predlimits function

The predlimits function has the following
three arguments

	 x: observations from a gamma distribution.
	 a: 1� a is the nominal level. If a is not specified,

the default value is 0.05.
	 B: number of realizations of the GPQs. If B is not

specified, the default value is 2,000,

and it returns a data frame containing one vector,
where the first two elements are the 1� a prediction
interval, the third element is the 1� a lower predic-
tion limit, and the last element is the 1� a upper pre-
diction limit. Below is an example of using the
predlimits function.
R>set.seed(8)

R>x <- rGamma(20, shape¼0.5)

# return a vector that contains the 90%
two-sided prediction interval and 90%
one-sided prediction limits

R>set.seed(9)

R>pred.limit <- predlimits(x, alpha ¼
0.1, B ¼ 5000)

R>pred.limit

pred

low-int 0.002399023

up-int 1.327799978

low-lim 0.008398397

up-lim 0.930562341

3.6. Tollimits function

The arguments of the tollimits function are as follows:

	 x: observations from a gamma distribution.
	 a: 1� a is the nominal level. If a is not specified,

the default value is 0.05.
	 c: proportion of population. If c is not specified,

the default value is 0.99.
	 B: number of realizations of the GPQs. If B is not

specified, the default value is 2,000,

and it returns a data frame containing one vector,
where the first two elements are the ðc, 1� aÞ toler-
ance interval, the third element is the ðc, 1� aÞ lower
tolerance limit, and the last element is the ðc, 1� aÞ
upper tolerance limit. Examples of tollimits are
as follows:
R>set.seed(10)

R>x <- rGamma(20, shape¼2)

# return a vector that contains the

(99%,95%) two-sided tolerance interval

and (99%,95%) one-sided tolerance limits

R>set.seed(11)

R>tol.limit <- tollimits(x)

R>tol.limit

tol

low-int 0.04020652

up-int 7.09049988

low-lim 0.09236501

up-lim 6.25695963

4. Real application

In this section, a real groundwater monitoring appli-
cation will be used to illustrate the gammadist pack-
age. The leakage from waste disposal facilities could
be potentially harmful to human health and the envir-
onment, and it is of critical importance to detect the
earliest possible leakage. Toward this purpose, a com-
mon practice is to monitor the groundwater at the
disposal facilities by regularly measuring concentra-
tions of quality indices including alkalinity, organic
carbon, Kjeldahl nitrogen, and biochemical oxygen
demand. A sudden change of the measurements indi-
cates a potential occurrence of the hazardous leakage.

The groundwater monitoring can be formulated as
a statistical prediction problem. As an example, Table
1 shows the 27 measurements of alkalinity concentra-
tion in a groundwater obtained from a facility in
which no disposal of waste has yet occurred. Given a
future measurement, if its value is larger than the
upper prediction limit (with a pre-fixed confidence
level) computed from the data set, it indicates a pos-
sible contamination of the groundwater. A similar
comparison can be made between a large number of
future measurements and the upper tolerance limit.

The alkalinity concentrations data in Table 1 have
been well analyzed in the literature (Chen and Ye
2017a; Krishnamoorthy, Mathew, and Mukherjee
2008; Krishnamoorthy and Wang 2016; Wang and

Table 1. Alkalinity concentrations (mg/L) in groundwater.
58 82 42 28 118 96 49 54 42 39 40 60 63 59
51 66 89 40 51 54 55 59 42 70 32 52 79
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Wu 2018), and the gamma distribution is assumed in
all these studies. The estimates of the gamma parame-
ters can be obtained by using the parest function. The
so-obtained estimates ð~k, ~bÞ ¼ ð8:171, 0:141Þ are
slightly different from the ML estimates ðk̂ML, b̂MLÞ ¼
ð9:372, 0:161Þ: To check the accuracy, two simulations
are conducted. The first simulation generates samples
using rGamma (27, 8.171, 0.141) and the second using
rGamma (27, 9.372, 0.161). Under each setting, 10,000
replications are used to estimate biases and root mean
square errors (RMSEs) of the estimators by the two
methods, and the results are reported in Table 2. As
seen, the estimators by parest clearly outperform the ML
estimators under the two settings, indicating that
ð~k, ~bÞ ¼ ð8:171, 0:141Þ should be more appropriate for
this dataset. In addition, the conflimits function is used
to construct the 90% confidence intervals for k and b,
and the results are ð5:352, 13:55Þ and ð0:091, 0:235Þ,
respectively. This is consistent with the confidence inter-
val developed in Krishnamoorthy and Wang (2016).

Based on the estimates of the parameters, we could
assess the goodness-of-fit of the gamma distribution
to this dataset. One way is to use graphical tools such
as probability-probability (P-P) plot and quantile-
quantile (Q-Q) plot. As seen from Figure 1, the blue
data points are reasonably close to the red straight
line, indicating an adequate fit of the gamma distribu-
tion. Alternatively, we could use quantitative tools
such as the Kolmogorov–Smirnov statistics and the
Cram�er–von Mises statistics for the goodness-of-fit
test. For example, the Kolmogorov–Smirnov test gives

a p-value of 0.8178, supporting the use of the gamma
distribution. Other tests all yield the same conclusion.
At last, we could use the predlimits and tollimits to
compute the upper prediction limits and the upper
tolerance limits, respectively. The statistical limits
under different confidence levels are shown in Table
3, which tally well with the results in Krishnamoorthy,
Mathew, and Mukherjee (2008); Chen and Ye (2017a);
and Wang and Wu (2018). The detailed R codes used
in this section are provided in the Appendix.

5. Conclusion

This article introduces the gammadist package, which
implements the up-to-date statistical methods for the
gamma distribution. In specific, the rGamma function
efficiently generates the gamma variates for all ranges of
the parameter values, the parest function provides the
closed-form estimators for the gamma parameters, and
the conflimits, the predlimits, and the tollimits functions,
respectively, construct the confidence limits, prediction
limits, and tolerance limits with an accurate coverage for
the gamma distribution. All these functions essentially
deal with the fundamental statistical problems of apply-
ing the gamma distribution in practice. For each func-
tion, its associated methods have been introduced and
its demo codes have been provided. A real environment
monitoring application has demonstrated the usefulness
of the package. The package is available on https://
github.com/statcp/gammadist.

Further development of the package could focus on
incorporating more functions related to the gamma
distribution. For example, goodness-of-fit test of the
gamma distribution is a premise to implement the
model in practice. We show in Section 4 that the use
of the parest function could be the first step to facili-
tate graphical assessments or some commonly used
tests. Nevertheless, the uncertainties in the estimators
may weaken the power of those tests. If more accurate

Table 2. Estimated biases and RMSEs for the estimators by
parest and ML estimators.
Setting ~k ~b k̂ML b̂ML
ðk,bÞ ¼ Bias 0.066 0.002 1.025 0.018
(8.171, 0.141) RMSE 2.393 0.043 2.855 0.051
ðk,bÞ ¼ Bias 0.300 0.006 1.430 0.026
(9.372, 0.161) RMSE 3.035 0.054 3.643 0.065

Figure 1. P-P plot (left) and Q-Q plot (right) based on the fitted gamma distribution to the alkalinity data.
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and advanced methods of testing goodness-of-fit of
the gamma distribution become available, they could
be integrated to the gammadist package as a separate
function. As another example, the three-parameter
gamma distribution with an additional scale parameter
is often used to fit lifetimes of products/units that
cannot fail below a threshold (see, e.g., Ye, Hong, and
Xie 2013). The rGamma function can be naturally
extended to generate random variables from a three-
parameter gamma distribution. However, estimation
of parameters is a difficult research problem, let alone
construction of the statistical limits. Substantial efforts
are needed in order to include the three-parameter
gamma distribution in our package. At last, the pack-
age may be further extended to deal with the gamma
process, which is a commonly used stochastic model.
Although the gamma distribution and the gamma
process have a close relationship, some fundamental
issues for the gamma process, such as accurate estima-
tion and prediction, have not been completely
addressed in the literature. The authors will pay spe-
cial attention to the methodology development of the
gamma process and are willing to enrich the gammad-
ist package once these methods become available.
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Appendix: R codes for real application

## Load package and alkalinity concentra-
tions data
library(gammadist)
x <- c(58,82,42,28,118,96,49,54,42,39,
40,60,63,59,51,66,89,40,51,54,55,59,42,70,
32,52,79)
## Point estimates and confidence intervals
of parameters
est.all <- parest(x)
est.shape <- est.all$shape
est.rate <- est.all$rate
conf.all <- conflimits(x,alpha¼0.1)
## Graphical goodness-of-fit test
# compute the empirical cdf
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Fn <- ecdf(x)
# P-P plot
plot(pgamma(x,est.shape,est.rate),Fn(x),
col¼’blue’,cex.main¼1.5,cex.lab¼1.5,ce-
x.axis¼1.5,
xlab¼’theoritical distributoin’, ylab¼
’empirical distribution’)
abline(0,1,col ¼ ’red’)
# Q-Q plot
plot(qgamma(Fn(x),est.shape,est.rate),x,-
xlim¼c(20,100),ylim¼c(20,100),
col¼’blue’,cex.main¼1.5,cex.lab¼1.5,ce-
x.axis¼1.5,

xlab¼’theoritical quantile’,ylab¼’empiri-
cal quantile’)
abline(0,1,col¼’red’)
## K-S test
ks.test(x,"pgamma",est.shape,est.rate)
## Upper prediction limits
predlimits(x,0.1)$pred[4]
predlimits(x,0.05)$pred[4]
predlimits(x,0.01)$pred[4]
## Upper tolerance limits
tollimits(x,0.05,0.9)$tol[4]
tollimits(x,0.05,0.95)$tol[4]
tollimits(x,0.05,0.99)$tol[4]
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