<]
TUDelft

Delft University of Technology

Applying versioning to multi-LoD 3D city models

Vitalis, S.; Arroyo Ohori, K.; Stoter, J.

DOI
10.5194/isprs-archives-XLVIIl-4-W4-2022-177-2022

Publication date
2022

Document Version
Final published version

Published in
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS
Archives

Citation (APA)

Vitalis, S., Arroyo Ohori, K., & Stoter, J. (2022). Applying versioning to multi-LoD 3D city models.
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS
Archives, 48(4/W4-2022), 177-182. https://doi.org/10.5194/isprs-archives-XLVIII-4-W4-2022-177-2022

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.5194/isprs-archives-XLVIII-4-W4-2022-177-2022
https://doi.org/10.5194/isprs-archives-XLVIII-4-W4-2022-177-2022

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W4-2022
17th 3D Geolnfo Conference, 19—21 October 2022, Sydney, Australia

APPLYING VERSIONING TO MULTI-LOD 3D CITY MODELS

S. Vitalis',” K. Arroyo Ohoril, J. Stoter
13D geoinformation group, TU Delft, the Netherlands - (s.vitalis, k.ohori, j.e.stoter) @tudelft.nl

Commission IV, WG 1V/9

KEY WORDS: Versioning, CityJSON, CityGML, 3D city models, level of detail (LoD).

ABSTRACT:

Level of Detail (LoD) is a well known concept in 3D city models, used to designate different geometric detail that can be used in
different applications. Nevertheless, multi-LoD datasets are hard to maintain and manage because of their intrinsic complexity.
Versioning is a solution that aids in the storage and management of big and complex dataset, with its main goal being to facilitate
the tracking of changes and collaboration. In this paper, we investigate the effects of utilising versioning and, more specifically,
the concept of branches as a way to manage the evolution of multi-LoD datasets. We propose a framework according to which
every LoD is stored in its own branch and can be extracted and updated independently. We tested this framework on a tile from
3D BAG, a dataset of 3D buildings for the whole of the Netherlands containing four LoDs (namely, LoDO, LoD1.2, LoD1.3 and
LoD2.2). Our results suggest that there are certain benefits from this solution, such as the efficient tracking of changes for
individual LoDs and the ability to extract and update the model using one LoD at a time. Nevertheless, there is a lot of complexity

added to the process as a set of rules needs to be enforced when managing the model.

1. INTRODUCTION

3D city models are useful in a number of applications, such
as solar potential estimation and CFD simulations (Biljecki et
al., [2015} |Garcia-Sanchez et al., [2021). However, different ap-
plications need different geometric detail, which is why the
concept of Level of Detail (LoD) has been early adopted in
3D city models. LoDs are defined in the CityGML data model
specification (Open Geospatial Concortium}2021) and their re-
fined proposition by Biljecki et al.| (2016a) has been incorpor-
ated in CityJSON (Ledoux et al., 2019). Despite the existing
mechanism being available for years, there is still a scarcity of
multi-LoD datasets. This has mostly attributed to the difficulties
that arise from managing multiple LoDs in one file, which has
lead researchers into investigating alternative ways of storing
and utilizing multiscale datasets (Arroyo Ohori et al., [2015).

In |Vitalis et al| (2019) we have proposed a data structure to
incorporate versioning in 3D city models stored in CityJSON,
mostly focusing on retaining the evolution of a dataset. One
of the concepts introduced in this solution is branches, which
allows for different lines of evolution to be handled independ-
ently, while still allowing some interaction between them (e.g.
merging). Branches have been proposed to be used in applica-
tions such as storing different scenario outcomes for simulation.
However, the utilization of branches for handling individual lin-
eages of LoDs has not been investigated before.

In this research, we propose a methodology to store and ma-
nipulate multi-LoD datasets in a versioned CityJSON file. Our
intention is to evaluate the feasibility and usefulness of stor-
ing different LoDs as different branches, so that lineage of se-
mantics and attributes is separated from that of geometries; and
individual LoDs hold their own line of evolution for their geo-
metry. We use 3D BAG (Peters et al., [2022)) as a use case; 3D
BAG is a dataset which contains 3D models of all buildings in
the Netherlands in three LoDs: LoD1.2, LoD1.3 and LoD2.2.

* Corresponding author

2. RELATED WORK

2.1 3D City models

3D city models have been standardized since the introduction
of CityGML, which is now in its third iteration (Kolbe et al.,
2021). CityGML defines an object-oriented data model to rep-
resent features of a city. It, also, describes a GML-based data
format for storing and exchanging such data. Ledoux et al.
(2019) introduced CityJSON as a JSON encoding of the
CityGML data model, in order to overcome some of the
shortcomings of the GML nature of the CityGML data format
(e.g. its verbosity and complexity).

2.1.1 Level of Detail (LoD) Level of Detail (LoD) is a
concept which stems from 3D graphics, used to efficiently
render 3D models of high detail (Luebke et al.| 2002).
CityGML has in-corporated LoDs as a way to represent scale
in 3D city models. The standard defines five LoDs based on
their overall details: LoDO, LoD1, LoD2, LoD3 and LoD4.
Biljecki et al, (2016a) argued that the originally proposed
LoDs can be further sub-divided based on the horizontal and
vertical scale and proposed a more advanced LoD scheme
(Figure . In addition, Lowner et al., (2016) proposed a more
flexible mechanism of LoDs, that allows authors of 3D city
models to define their own LoDs ac-cording to their needs.

LoDs in 3D city model are particularly important due to the
complexity of 3D city models and the wide range of applica-
tions that can be related to them. While intuitively geometries
of higher detail might be considered always superior to lower
detailed ones, there is evidence that they do not always contrib-
ute to more accurate results (Biljecki et al.|2017). In addition,
geometries of higher LoDs might present more validation issues
(Biljecki et al., 2016b).

Multi-LoD datasets are relatively scarce and are considered hard
to maintain. According to Biljecki et al, (2014), this is related
to the lack of consistency, due to the use of different acquisition,
modelling and storage techniques.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIlI-4-W4-2022-177-2022 | © Author(s) 2022. CC BY 4.0 License. 177

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W4-2022
17th 3D Geolnfo Conference, 19—21 October 2022, Sydney, Australia

LOD x.0 LOD x.1 LOD x.2 LOD x3

LODO s —

LOD0.0 LODO.1 LOD0.2 LODO0.3

v ww

LOD1O LODLI LOD1.2 LODL3
Lob2 | I R | l l L= = l » %
LOD2.0 LOD2.1 LOD22 LOD2.3

LOD3.0 LOD3.1 LOD3.2 LOD3.3

Figure 1. The proposed concept of dual-level LoD as proposed
by [Biljecki| (2017) (Figure from Biljecki (2017)).

The real building

BAG
polygon

Above terrain >
Below terrain

Figure 2. The three LoDs that are automatically reconstructed in
3D BAG (figure from http://3dbag.nl).

2.2 3D BAG

3D BAG is a dataset of all buildings in the Netherlands in 3D
(Peters et al., 2022). The buildings are created based on two
open datasets of the country: the footprints of buildings from
the “Basisregistraties Adressen en Gebouwen” (BAG), or the
Building and Address register of the Netherlands; and LiDAR
point data from the “Actueel Hoogtebestand Nederland” (AHN),
the national height model of the Netherlands. The reconstruc-

tion produces three different LoDs per building (Figure[2): LoD1.

(i.e. prismatic volumes of the footprint), LoD1.3 (i.e. prismatic
volumes based on a subdivision of the footprints to better much
the building’s vertical profile) and LoD2.2 (i.e. volumes with
actual roof shapes).

The dataset is available through different data formats, one of
which is a set of CityJSON files; every file constitutes a tile ac-
cording to the subdivision used by the reconstruction method.
Every CityJSON file contains all information available per build-
ing as attributes; four geometries are available per building: the
footprint, as LoDO, and the 3D geometries of the three LoDs
mentioned before. It is important to clarify that one footprint of
a building does not always correspond to one geometry. This
is because, as depicted in Figure [2] a footprint in BAG might
contain areas with no elevation (e.g. a yard) or constructions
below the ground level, which cannot be reconstructed by the
methodology used in 3D BAG. Therefore, in CityJSON a build-
ing city object contains only the attributes for the whole build-
ing and its footprint geometry as LoD0. Then, the three LoDs
produced by the reconstruction are represented as multi-LoD
building parts which are the building’s children. There can be

as many building parts per building as the individual
volumes produced during the reconstruction.

2.3 Versioning of 3D city models

Versioning of GIS data has been investigated, mostly by
practi-tioners with software such as GeoGi@ and the QGIS
versioning plugi Due to the complex nature of 3D city
models, though, these solutions do not apply.

CityGML 3.0 contains a proposal for a versioning module
based on Chaturvedi et al] (2017). The proposal defines
mechanisms to store both temporal information for city objects
(e.g. the ‘cre-ation’ and ‘termination’ date and time for a
feature) and inform-ation related to their lineage (e.g. through
the use of concepts such as feature transitions between
different versions). In our opinion, the CityGML versioning
module conflates the concept of versioning with the idea of
life-cycle modelling. In addi-tion, it aims to store
information related to changes between versions of features.
This complicates the proposed solution (e.g. by modelling
versions, transitions and transactions) and introduces
redundancy (e.g. linking features from both versions and
transactions) which result in a delicate data model.

2.3.1 Proposed CityJSON versioning In Vitalis et al.
(2019) we proposed a data structure to incorporate
versioning of 3D city models stored in CityJSON. Our
approach aimed to incor-porate the successful characteristics
of Git’s data structure in the context of CityJSON.
Therefore, it focused only on solv-ing the problem of storing
the versions of multiple city objects efficiently in CityJSON.

The solution suggests that a CityJSON file can contain all
ver-sions of city objects ever existed; and versions can be
composed by linking to the individual city objects that are
contained in it. This file (called a “versioned CityJSON file”)
can be considered to be the equivalent of a repository in Git.
Every version is, therefore, just metadata containing
information about it (e.g. the author, a message and a
timestamp) and links to the list of objects that belong to it. In
addition, every version holds a link to its parent (i.e. the
previous version). Therefore, the lineage of the dataset can be
tracked by traversing the list of version from the latest to the
earliest.

The system can contain branches and tags similarly to Git,
by associating them to a specific version. Therefore, a
branch is just a link to the latest version of its history.

To test our proposed system, we have implemented the
afore-mentioned functionality in a prototype software (named
c j. The software supports all basic commands expected by
a com-plete versioning system:

e commit, that creates a new version based on a given
CityJSON model.

e checkout, that extracts a CityJSON model from the ver-
sioned dataset.

e branch, that creates a new branch based on a given ver-
sion.

! http://geogig.org/

2 https://github.com/Oslandia/qgis-versioning

3 https://github.com/tudelft3d/
cityjson-versioning-prototype

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIlI-4-W4-2022-177-2022 | © Author(s) 2022. CC BY 4.0 License. 178

http://3dbag.nl
http://geogig.org/
https://github.com/Oslandia/qgis-versioning
https://github.com/tudelft3d/cityjson-versioning-prototype
https://github.com/tudelft3d/cityjson-versioning-prototype

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W4-2022
17th 3D Geolnfo Conference, 19—21 October 2022, Sydney, Australia

e merge, that creates a new version based on two branches.
e log, that shows the history of a given set of branches.

e diff, that shows the differences between two versions (at
the city object level).

3. METHODOLOGY

A multi-LoD dataset can be stored in a versioned CityJSON
file (from now on, called a “repo”). The repo will contain one
branch which tracks the evolution of the city objects attributes
(main). Then, each LoD of the objects is stored in one branch
(Lod/x, where x is the name of the LoD).

Figure [3] shows an example of this approach for a dataset with
two LoDs: LoD1 and LoDZﬂ main stores just the attributes at
the city object level and contains no geometry. Branches 1od/1
and 1od/2 contain the same city objects with only the respect-
ive LoD geometry. When attributes of city objects are updated,
the LoD branches can be updated by merging from main.

O—0O 0O
O main O

lod/1 O

Figure 3. An overview of the evolution of a repo containing a
model with two LoDs. Three branches are used: main (blue
line) for the semantics and attributes of the objects; 1od/1 (red
line) for LoD1; and 1od/2 (orange line) for LoD2.

3.1 Creation of the dataset

First, a repo is created using a CityJSON model without geo-
metries, so only the city objects with their attributes are con-
tained; this is stored in branch main. Then, we create one
branch per LoD. This is done by using a CityJSON file with
the same city object hierarchy as in main, but also containing
one geometry of one LoD at a time to make a commit in each
of the branches. Therefore, a city model with only LoD1 geo-
metries is committed to the model and the new commit creates
branch lod/1. Then, similarly, branch 1od/2 is created. This
results in a file with three branches as shown in Figure [4a]

3.2 Updating the model

When one wants to update the semantic aspect of the model,
they need to check out from main, edit the respective informa-
tion and, finally, make a new commit to main (Figure . Then
for each individual LoD branch, a merge needs to occur so that
semantics are updated in their lineage (Figure [4c).

When a change in the geometry of an LoD is required, then
one just checks out the respective LoD branch and makes the
change to the file. Then this file is committed back to its original
branch.

4 While we encourage the use of advance LoDs (e.g. LoD1.2) in real
datasets, we use simple LoDs for simplicity in this example.

3.2.1 Merging without conflicts Conflicts can occur during
a merge operation between two branches, when both branches
have changed the same piece of information (Pol). Pol defines
what is the minimum possible change that a system can identify.
For instance, in our previous implementation of a versioning
prototype we considered every city object as Pol. This means
that, before, when a city object was changed in both branches
that were being merged, this was considered to be a conflict
even if the changes inside the object were not affecting the same
properties (e.g. two different attributes being changed). To re-
solve this, a more comprehensive system was implemented for
this research, so that it treats as Pol every individual property of
every city object.

Assuming such a system in place, the proposed solution should
not trigger any conflicts. This is because every branch updates
different properties of the city objects: the LoD branches would
only update the "geometry" property and main would update
everything else except for it.

3.2.2 Adding a new city object Adding a new city object
can add some complexity to the process. This is because under
normal circumstances an object would be created alongside its
geometries. To resolve this, one can create the city object in
a CityJSON file with all its geometries, then create individual
versions of the files by filtering out the geometries (e.g. using a
tool like cji(ﬂ) and submit to the individual branches.

3.3 Extracting one or more LoDs

It is possible to extract one LoD of the dataset by simply check-
ing out the specific LoD branch. Before checking out an LoD
branch, it is important to ensure that the latest version of main
has been merged so that the attributes of the model are up-to-
date.

To extract a multi-LoD dataset, one can merge the individual
LoDs together in a different branch. Given that a merge can
only occur between two branches, this has to be conducted in
incremental steps. For example, assuming a dataset with three
LoDs (1, 2 and 3), the process can be done as follows:

1. A new branch is created based on any of the existing LoD

branches (e.g. on 1od/1). We can name thismultilod/1/2/3

to denote that this is used to combine all three LoDs.

2. One of the other two branches (e.g. 1od/2) is merged to
multilod/1/2/3.

3. The last branch is merged to multilod/1/2/3.

4. TESTING WITH 3D BAG

To test our approach, we use a CityJSON tilfﬂ from 3D BAG.
As mentioned in Section every tile contains four LoDs:
LoDO0, LoD1.2, LoD1.3 and LoD2.2. The LoDs are assigned to
buildings and building parts, so that every building contains all
attributes and the LoDO geometry (i.e. the building’s footprint)
and it has one building part with LoD1.2, LoD1.3 and LoD2.2
geometries for every derived volume from the reconstruction

(Figure[5).

3 https://github.com/cityjson/cjio
6 We randomly chose tile no 3693.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIlI-4-W4-2022-177-2022 | © Author(s) 2022. CC BY 4.0 License. 179

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W4-2022
17th 3D Geolnfo Conference, 19—21 October 2022, Sydney, Australia

main

lod/1

(2)

O lod/2

main

lod/1
©

Figure 4. Evolution of the repo using our methodology. In (a),
after the repo is created, the main branch contains the initial
commit with geometry-less city objects and the LoD branches
derive from the initial commit contain the respective geometries.
In (b), a new commit is introduced in main containing the
updated semantics of the model. Finally, in (c) a merge occurs
towards every lod branch to update them with the semantic
changes.

v E NL.IMBAG.Pand.0355100000734847 (Lobo)

NL.IMBAG.Pand.0355100000734847-0
v H NL.IMBAG.Pand.0355100000735006

NL.IMBAG.Pand.0355100000735006-0

NL.IMBAG.Pand.0355100000735006-1

Figure 5. Example of the hierarchy of two buildings from a 3D
BAG tile, as shown in ninja (https://ninja.cityjson.org).
Object NL. IMBAG.Pand.0355100000734847 contains only
one volume, while NL . IMBAG.Pand .0355100000735006
contains two.

4.1 Initializing the dataset

To prepare the data we used cjio to create individual files: one
without geometries, and one for every other LoD. We initial-
ized a repo using cjv (our prototype software described in Sec-
tion[23-1) and committed the file without geometries. Then, we
created one branch for every LoD and committed every filtered
file to the respective branch.

4.2 Updating the model

To test the update of one attribute we updated one property of
a city object in the geometry-less file and committed it to main.
Then, we merged the respective change to every branch. Fig-
ure 6] shows the output of the history from cjv and the diff that
was created by the merge. We finally extracted the updated
LoDO0 model by checking out 1od/0 and inspected it in ninja,
so we validated that the change has actually applied.

We also tested the effect of updating a geometry, by altering
one vertex in the LoD2.2 geometry of an object then merging

This is the diff between f30ca22dd3896dc8c67e1a0fd38c791fa6d05761 and 12af8d7cba5922f3450af34b172bcbf820342754

2895 objects not changed.

(b) The diff shown by cjv on the 1od/0 branch after the change from main
was merged.

Figure 6. The status of the repo after updating an attribute in main
and merging the change to 10d/0.

main with the updated attribute. Figure @ shows the history of
lod/2-2 after this operation is completed.

4.3 Extracting multiple LoDs

To test the extraction of multiple LoDs we decided to export a
CityJSON file containing LoDO and LoD2.2 geometries. We
first created a branch named multilod/0/2-2 based on lod/O0.
Then we merged lod/2-2 to multilod/0/2-2. Finally, we
checked out multilod/0/2-2 to a CityJSON file and inspec-
ted its content with ninja. Figure @ shows the resulting model
containing just the two LoDs.

5. DISCUSSION

From our experimentation we concluded that cjv, despite be-
ing just a prototype, has been proven quite reliable and relat-
ively straightforward to use, in order for the proposed work-
flow to be applied. We believe that this highlights the robust-
ness of the versioning solution, which can be attributed to its
simplicity. The data structure that is designed to work on ver-
sions and branches, as inspired by Git, is hard to break as there
are no redundancies in the model; and Git, using a similar data
structure, has been used successfully in large source codebases
which share similar characteristics to large geographic datasets.

As mentioned before, certain functionality had to be implemen-
ted in cjv to support the proposed workflow. Most notably, a
more comprehensive diffing and merging mechanism had to be
put in place, so that changes between attributes and geometries
conducted in different branches would not raise a conflict and
could be handled by the system itself.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIlI-4-W4-2022-177-2022 | © Author(s) 2022. CC BY 4.0 License. 180

https://ninja.cityjson.org

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W4-2022
17th 3D Geolnfo Conference, 19—21 October 2022, Sydney, Australia

Found 7 versions.

* version 3fcbbb682abcdce072f492e80b4414866f046381 (lod/2-2)
|\ Author: Stelios Vitalis

| Date: 2022-07-08 15:42:59.282702

Message:

Merge main to lod/2-2

version 8cd1805a77c7e8a197227b9336080f77d6c9b1cl
Author: Stelios Vitalis

Date: 2022-07-06 18:16:08.820911

Message:

Alter one vertex in LoD 2.2

Author: Stelios Vitalis
Date: 2022-07-05 18:52:17.541829
Message:

Add LoD 2.2 geometries
version f30ca22dd3896dc8c67e1a0fd38c791fa6d05761 (main)
Author: Stelios Vitalis
Date: 2022-07-06 23:14:06.534114
Message:

Update attribute

|
|
|
|
|
*
|
|
|
|
I
* version 69caa0923a4e1b82e17876b931a571a5358d4b09
|
|
|
|
|
|
|
|
|
|
|
|
|

/
version 12af8d7cb45922f3450af34b172bcbf820342754
Author: Stelios Vitalis
Date: 2022-07-05 18:49:00.806456
Message:

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[
*
|
|
|
|
|
|
[
*
|
|
|
|
|

Initial commit

Figure 7. The history of main and 1od/2-2 after updating one
attribute on the first and one geometry on the latter.

By experimenting on a complex dataset, such as 3D BAG, we
concluded that there are certain interesting nuances related to
the content of a city model that could be used to the advantage
of the proposed mechanism. For example, in 3D BAG all build-
ing part objects do not contain any attributes, therefore their ver-
sion in main is quite “hollow” (i.e. they are basically empty ob-
jects, with just the "parents" attribute). If it wasn’t for the ex-
istence of "parents" in the city objects, these would be empty
objects which would, eventually, have the same hash; and, as
such, they could all be stored as one instance in the data struc-
ture to save a lot of space. We believe that this is an interesting
scenario and one that highlights that it might be beneficial to
investigate ways of optimizing how city objects are stored, so
that they do not store unnecessary information in a versioned
CityJSON file. In this case, "parents" could be easily omitted
without affecting the integrity of the file; and, if necessary, a
small script could recover the property after a CityJSON file is
checked out from the repo.

Rl City Objects EXTITT)

Search for IDs, bjecttype or atrbutes.

e

[NLIMBAG Pand 0355100000724222 ()
A 510000072

Figure 8. The dataset containing only LoD0 and LoD2.2
visualized in ninja, after updated and extracted from the repo.

While our experience with the versioning mechanism was quite
straightforward (assuming certain familiarity with the software),
we noticed that a big number of intermediate files had to be
created in the process of implementing this workflow. This in-
cludes: (a) the different versions of the original tile, after filter-
ing the different LoDs; and (b) the different files that had to be
checked out and committed again. We believe that a more user-
friendly software could help with improving this aspect. For
the first problem, a specific script that filters the geometries and
commits them on the fly could be used; and for the second, a
software that allows to visualize and edit versions directly from
the versioned CityJSON file would simplify the process.

6. CONCLUSIONS

The proposed methodology provides a solution for separating
LoDs from each other, so eventually every LoD tracks its own
lineage. This provides a framework for maintaining a model
where the individual LoDs can be considered to be relatively
independent. The solution provides a better way or tracking
changes for individual LoDs and extracting subsets of the data-
set containing only the required LoD for an application.

Nevertheless, this approach has its own limitations and caveats.
First, using a versioning itself adds an overhead of complexity
with respect to maintenance, compared to traditional multi-LoD
datasets; this is less prominent, though, in cases where version-
ing is already utilized. Second, such a framework requires a
very structured workflow regarding updating the model. Se-
mantics and geometries have to be updated individually and
committed to separate branches, otherwise some post-processing
(e.g. filtering of geometries) needs to be conducted to separate
the changes from one another.

The biggest weakness in the solution, regarding its usability, is
the requirement for updating the attributes using files without
geometries. While this is, in theory, possible and often updat-
ing the semantic aspect of a model is done without the need
to visually examine its geometry, the coexistence of semantics
and geometries in a 3D city model is a key component and this
solution undermines this.

At the current stage, we can consider this methodology more of
an exercise that demonstrates versioning’s strengths and weak-
nesses, than a mature solution to be used in practice. This does
not rule out the possibility that such a solution can be used as an
underlying mechanism in the future, as soon as a comprehens-
ive interface is built on top of it to allow users to interact with
the versioned dataset at a higher level. For example, a user-
friendly application with a graphical user interface can allow
the user to easily extract specific LoDs and commit them back,
while the software would take care of separating the changes to
multiple files and committing them to the individual branches.

Through our experimentation we were able to further test our
initially proposed versioning data structure and further clarify
certain concepts and processes related to it. More specifically,
we had to emphasize on the complexity of merging branches
and its repercussions. Merging is a process heavily depend-
ent on identifying changes between objects and, therefore, we
had to implement a robust, yet efficient, diffing solution for city
objects. In addition, we had to further define the concept of
conflict between two branches. Such a notion is not straight-
forward and requires a more comprehensive analysis. We con-
cluded that one of the key challenges related to diffing and mer-
ging is to define the concept of an object’s “identity”. At the

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIlI-4-W4-2022-177-2022 | © Author(s) 2022. CC BY 4.0 License. 181

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W4-2022
17th 3D Geolnfo Conference, 19—21 October 2022, Sydney, Australia

city object level this is not as much of a problem, as one can
assume that the object’s name (in the form of an “id”) can be
used to derive its identity. But at a lower level, for instance,
when multiple geometries are in place this is not always a pos-
sibility (in CityGML geometries are not forced to have ids, and
in CityJSON this is not possible at all). This raises questions
in cases such as when two geometries have been added in two
branches; there is no deterministic approach to derive if these
are two separate geometries added in the object (hence, result-
ing in two additions after the merge) or if they concern the same
geometry added in both branches (which constitutes a conflict
or should result in a combined version of the two geometries).

Based on the above, and for this specific solution, we decided to
identify geometries based on their LoD. This strategy should be
in line with the expectations of the system, as it was designed.
Nevertheless, this solution cannot be considered universal, as
in CityJSON it is possible to have multiple geometries of LoDs
and in other versioning use cases this might be utilized. This
leads us to conclude that, especially with respect to diffing (and,
therefore, merging) the specific application for which the ver-
sioning system is designed can majorly impact the decisions
made. In other words, a versioning system cannot be “unopin-
ionated” and universally designed.

Another important aspect that arose from our research is that
the concept of LoD cannot be considered necessarily independ-
ent of geometry. This is a major aspect of GIS information,
in the sense that generalization of features can affect both their
semantic and geometric aspect. 3D BAG’s structuring of city
objects highlights this as well; the dataset uses different city
objects at different levels to store LoDO0 separate from LoD1.2,
LoD1.3, and LoD2.2. Our methodology was able to handle this
designation successfully, but depending on another applications
this might complicate the workflow furthermore.

References

Arroyo Ohori, K., Ledoux, H., Biljecki, F., Stoter, J., 2015.
Modeling a 3D City Model and Its Levels of Detail as a True
4D Model. ISPRS International Journal of Geo-Information,
4(3), 1055-1075.

Biljecki, F., 2017. Level of detail in 3D city models. PhD thesis,
Delft University of Technology.

Biljecki, F., Ledoux, H., Stoter, J., 2014. Improving the consist-
ency of multi-LOD CityGML datasets by removing redund-
ancy. Lecture Notes in Geoinformation and Cartography,
Springer International Publishing, 1-17.

Biljecki, F., Ledoux, H., Stoter, J., 2016a. An improved LOD
specification for 3D building models. Computers, Environ-
ment and Urban Systems, 59, 25-37.

Biljecki, F., Ledoux, H., Stoter, J., 2017. Does a finer level of
detail of a 3d city model bring an improvement for estimating
shadows? Advances in 3D Geoinformation, Springer.

Biljecki, F., Ledoux, H., Stoter, J., Vosselman, G., 2016b. The
variants of an LOD of a 3D building model and their influ-
ence on spatial analyses. ISPRS Journal of Photogrammetry
and Remote Sensing, 116, 42-54.

Biljecki, E., Stoter, J., Ledoux, H., Zlatanova, S., Coltekin, A.,
2015. Applications of 3D City Models: State of the Art Re-
view. ISPRS International Journal of Geo-Information, 4(4),
2842-2889.

Chaturvedi, K., Smyth, C. S., Gesquiere, G., Kutzner, T., Kolbe,
T. H., 2017. Managing versions and history within semantic
3d city models for the next generation of citygml. Advances in
3D Geoinformation, Springer, 191-206.

Garcia-Sanchez, C., Vitalis, S., Paden, 1., Stoter, J., 2021. THE
IMPACT OF LEVEL OF DETAIL IN 3D CITY MODELS
FOR CFD-BASED WIND FLOW SIMULATIONS. The In-
ternational Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, XLVI-4/W4-2021, 67-72.

Kolbe, T. H., Kutzner, T., Smyth, C. S., Nagel, C., Roens-
dorf, C., Heazel, C., 2021. OGC City Geography Markup
Language (CityGML) Version 3.0 Part 1: Conceptual Model
Standard. Open Geospatial Consortium. International Stand-
ard.

Ledoux, H., Ohori, K. A., Kumar, K., Dukai, B., Labetski, A.,
Vitalis, S., 2019. CityJSON: a compact and easy-to-use en-
coding of the CityGML data model. Open Geospatial Data,
Software and Standards, 4(4).

Lowner, M.-O., Groger, G., Benner, J., Biljecki, F., Nagel,
C., 2016. PROPOSAL FOR A NEW LOD AND MULTI-
REPRESENTATION CONCEPT FOR CITYGML. ISPRS
Annals of Photogrammetry, Remote Sensing and Spatial In-
formation Sciences, IV-2/W1, 3-12.

Luebke, D., Watson, B., Cohen, J. D., Reddy, M., Varshney, A.,
2002. Level of Detail for 3D Graphics. Elsevier Science Inc.,
New York, NY, USA.

Open Geospatial Concortium, 2021. OGC City Geography
Markup Language (CityGML) Part 1: Conceptual Model
Standard.

Peters, R., Dukai, B., Vitalis, S., van Liempt, J., Stoter, J., 2022.
Automated 3D Reconstruction of LoD2 and LoD1 Models
for All 10 Million Buildings of the Netherlands. Photogram-
metric Engineering & Remote Sensing, 88(3), 165-170.

Vitalis, S., Labetski, A., Ohori, K. A., Ledoux, H., Stoter, J.,
2019. A DATA STRUCTURE TO INCORPORATE VER-
SIONING IN 3D CITY MODELS. ISPRS Annals of the Pho-
togrammetry, Remote Sensing and Spatial Information Sci-
ences, IV-4/W8, 123-130.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIlI-4-W4-2022-177-2022 | © Author(s) 2022. CC BY 4.0 License. 182

	Introduction
	Related work
	3D City models
	Level of Detail (LoD)

	3D BAG
	Versioning of 3D city models
	Proposed CityJSON versioning

	Methodology
	Creation of the dataset
	Updating the model
	Merging without conflicts
	Adding a new city object

	Extracting one or more LoDs

	Testing with 3D BAG
	Initializing the dataset
	Updating the model
	Extracting multiple LoDs

	Discussion
	Conclusions

