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I. INTRODUCTION

This artifact is a guideline how the EDGECAFFE

framework, presented in [1], can be used. EDGECAFFE

is an open-source Deep Neural Network framework for
efficient multi-network inference on edge devices. This
framework enables the layer by layer execution and
fine-grained control during inference of Deep Neural
Networks. EDGECAFFE is created to give more fine
grained-control over the execution during inference than
offered by the original code of Caffe [2]. EDGECAFFE

made it possible for MASA to outperform DEEPEYE [3]
and normal bulk execution. Besides the core implemen-
tation of EDGECAFFE, the repository holds additional
tools, Queue Runner and ModelSplitter, that make more
convenient to run experiments and prepare newly trained
networks

II. SETUP

In this section we describe different ways to set
up the EDGECAFFE framework; using Ubuntu server
18.04.4 (AMD64) or Raspberry Pi (Ubuntu server
18.04.4 ARM641). For this submission, release 1.3.92

of EDGECAFFE should be used for evaluation.
The setup for a Raspberry Pi has the following specific

instructions: When deploying on a Raspberry Pi, it

1http://old-releases.ubuntu.com/releases/18.04.4/ubuntu-18.04.
4-preinstalled-server-armhf+raspi4.img.xz

2https://github.com/bacox/edgecaffe/tree/v1.3.9

is important that a swap file exists3 and swapping is
enabled. It is recommended to use a swap file of 8 GB.

1) Swapping can be enabled in the grub file by adding
the cgroup_enable=memory argument.

2) By default swapping is turned off for Raspberry
Pi’s. This can be enabled by running the shell
command sudo swapon -a

To set up EDGECAFFE:
1) Clone the repository2

2) In the repository folder, run the shell script bash
setup.sh4

3) To set up the prepared networks, run the shell
script bash install_models.sh5.

4) To compile and install run the shell script bash
compile.sh

5) Set the correct owner to the installed owner
by executing the following command in the
terminal: sudo chown -R $USER:$USER
/opt/edgecaffe

III. USAGE

After EDGECAFFE has been installed success-
fully, the binaries can be accessed from the folder
/opt/edgecaffe. The experiments can be found in
the folder experiments. Yaml files describe the structure

3https://linuxize.com/post/how-to-add-swap-space-on-ubuntu-18-04/
4Execute chmod +x <filename> if the script is not executed

with bash
5The models used in this script are located at https://gitlab.com/

bacox/edgecaffe-models/-/tree/v1.1
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and parameters of the experiments. To automate the
execution of all the experiments, the script Queue Runner
is included. With Queue Runner we can queue a set of
experiments that will be executed one after the other.

A. Basic Example

To set up a basic example with Queue Run-
ner, the next commands should be executed in the
/opt/edgecaffe folder:

1) To generate the experiment files run bash

scripts/percom/gen_basic_queue_file.sh

2) Add the generated file to the Queue
Runner by executing: python3
scripts/percom/queue_runner.py
add --file=example.tmp.txt

3) Start the Queue Runner to process all the
experiments in the background: python3
scripts/percom/queue_runner.py run

B. PerCom experiments

In order to set up and run the experiments of the Masa
paper with Queue Runner, the next commands should be
executed in the /opt/edgecaffe folder:

1) To generate the experiment files run bash

scripts/percom/gen_percom_queue_file.sh

2) Add the generated file to the Queue
Runner by executing: python3
scripts/percom/queue_runner.py
add --file=percom-rpi-4.tmp.txt

3) Start the Queue Runner to process all the
experiments in the background: python3
scripts/percom/queue_runner.py run

C. Results

The outcomes of the experiments are written to the
folder /opt/analysis. Each experiments results in
the following files:

• Arrival file: All the networks that have arrived
during this experiment.

• Network statistics file: The arrival, waiting, and
execution time of each arrived network.

• Layers file: The arrival, waiting, and execution time
of each layer in each arrived network.

• Worker file: For each worker and individual file is
saved with the duration the worker is busy and the
duration the worker is idle.

IV. NEW NETWORKS

The EDGECAFFE framework offers 10 networks that
are prepared to use. New networks can be altered in
order to be executed with EDGECAFFE. A network folder
contains the following elements:

• Prototxt file describing the structure of the network.
• Caffemodel file containing the trained weights and

parameters of the network.
• description.yaml describing the elements of

a network in more detail.
• Partials folder containing the caffemodel files for

each of the layers separately.
A network trained with Caffe already has a prototxt and a
caffemodel file. Two additional steps needs to be taken to
prepare a new network for execution with EDGECAFFE.
First, information describing the network is put in the
file description.yaml. The tool ExtendNetworkDe-
scription (included in EDGECAFFE) can used to make
this process easier. Secondly, the caffemodel file needs
to be split into separate caffemodel files for each layer
in the network. The tool ModelSplitter can be used to
automate this process.

When a trained network is prepared successfully, it
can be used by placing it in the network folder and refer
to the model in the configuration file of the experiment.
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