

Delft University of Technology

Artifact
Masa: Responsive Multi-DNN Inference on the Edge
Cox, Bart; Galjaard, Jeroen; Ghiassi, Amirmasoud; Birke, Robert; Chen, Lydia Y.

DOI
10.1109/PerComWorkshops51409.2021.9431004
Publication date
2021
Document Version
Final published version
Published in
2021 IEEE International Conference on Pervasive Computing and Communications Workshops and other
Affiliated Events, PerCom Workshops 2021

Citation (APA)
Cox, B., Galjaard, J., Ghiassi, A., Birke, R., & Chen, L. Y. (2021). Artifact: Masa: Responsive Multi-DNN
Inference on the Edge. In 2021 IEEE International Conference on Pervasive Computing and
Communications Workshops and other Affiliated Events, PerCom Workshops 2021 (pp. 446-447). Article
9431004 (2021 IEEE International Conference on Pervasive Computing and Communications Workshops
and other Affiliated Events, PerCom Workshops 2021). IEEE.
https://doi.org/10.1109/PerComWorkshops51409.2021.9431004
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/PerComWorkshops51409.2021.9431004
https://doi.org/10.1109/PerComWorkshops51409.2021.9431004

Artifact: MASA: Responsive Multi-DNN Inference
on the Edge

Bart Cox
TU Delft

Delft, Netherlands
b.a.cox@student.tudelft.nl

Jeroen Galjaard
TU Delft

Delft, Netherlands
J.M.Galjaard-1@student.tudelft.nl

Amirmasoud Ghiassi
TU Delft

Delft, Netherlands
s.ghiassi@tudelft.nl

Robert Birke
ABB Research

Baden-Dättwil, Switzerland
robert.birke@ch.abb.com

Lydia Y. Chen
TU Delft

Delft, Netherlands
y.chen-10@tudelft.nl

Index Terms—Multiple DNNs inference, mean response
time, edge devices, memory-aware scheduling

I. INTRODUCTION

This artifact is a guideline how the EDGECAFFE

framework, presented in [1], can be used. EDGECAFFE

is an open-source Deep Neural Network framework for
efficient multi-network inference on edge devices. This
framework enables the layer by layer execution and
fine-grained control during inference of Deep Neural
Networks. EDGECAFFE is created to give more fine
grained-control over the execution during inference than
offered by the original code of Caffe [2]. EDGECAFFE

made it possible for MASA to outperform DEEPEYE [3]
and normal bulk execution. Besides the core implemen-
tation of EDGECAFFE, the repository holds additional
tools, Queue Runner and ModelSplitter, that make more
convenient to run experiments and prepare newly trained
networks

II. SETUP

In this section we describe different ways to set
up the EDGECAFFE framework; using Ubuntu server
18.04.4 (AMD64) or Raspberry Pi (Ubuntu server
18.04.4 ARM641). For this submission, release 1.3.92

of EDGECAFFE should be used for evaluation.
The setup for a Raspberry Pi has the following specific

instructions: When deploying on a Raspberry Pi, it

1http://old-releases.ubuntu.com/releases/18.04.4/ubuntu-18.04.
4-preinstalled-server-armhf+raspi4.img.xz

2https://github.com/bacox/edgecaffe/tree/v1.3.9

is important that a swap file exists3 and swapping is
enabled. It is recommended to use a swap file of 8 GB.

1) Swapping can be enabled in the grub file by adding
the cgroup_enable=memory argument.

2) By default swapping is turned off for Raspberry
Pi’s. This can be enabled by running the shell
command sudo swapon -a

To set up EDGECAFFE:
1) Clone the repository2

2) In the repository folder, run the shell script bash
setup.sh4

3) To set up the prepared networks, run the shell
script bash install_models.sh5.

4) To compile and install run the shell script bash
compile.sh

5) Set the correct owner to the installed owner
by executing the following command in the
terminal: sudo chown -R $USER:$USER
/opt/edgecaffe

III. USAGE

After EDGECAFFE has been installed success-
fully, the binaries can be accessed from the folder
/opt/edgecaffe. The experiments can be found in
the folder experiments. Yaml files describe the structure

3https://linuxize.com/post/how-to-add-swap-space-on-ubuntu-18-04/
4Execute chmod +x <filename> if the script is not executed

with bash
5The models used in this script are located at https://gitlab.com/

bacox/edgecaffe-models/-/tree/v1.1

2021 PerCom Artifacts

978-0-7381-4348-4/21/$31.00 ©2021 IEEE 446

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 P

er
va

siv
e

Co
m

pu
tin

g
an

d
Co

m
m

un
ic

at
io

ns
 W

or
ks

ho
ps

 a
nd

 o
th

er
 A

ffi
lia

te
d

Ev
en

ts
 (P

er
Co

m
 W

or
ks

ho
ps

) |
 9

78
-1

-6
65

4-
04

24
-2

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

PE
RC

O
M

W
O

RK
SH

O
PS

51
40

9.
20

21
.9

43
10

04

Authorized licensed use limited to: TU Delft Library. Downloaded on September 22,2022 at 09:06:29 UTC from IEEE Xplore. Restrictions apply.

and parameters of the experiments. To automate the
execution of all the experiments, the script Queue Runner
is included. With Queue Runner we can queue a set of
experiments that will be executed one after the other.

A. Basic Example

To set up a basic example with Queue Run-
ner, the next commands should be executed in the
/opt/edgecaffe folder:

1) To generate the experiment files run bash

scripts/percom/gen_basic_queue_file.sh

2) Add the generated file to the Queue
Runner by executing: python3
scripts/percom/queue_runner.py
add --file=example.tmp.txt

3) Start the Queue Runner to process all the
experiments in the background: python3
scripts/percom/queue_runner.py run

B. PerCom experiments

In order to set up and run the experiments of the Masa
paper with Queue Runner, the next commands should be
executed in the /opt/edgecaffe folder:

1) To generate the experiment files run bash

scripts/percom/gen_percom_queue_file.sh

2) Add the generated file to the Queue
Runner by executing: python3
scripts/percom/queue_runner.py
add --file=percom-rpi-4.tmp.txt

3) Start the Queue Runner to process all the
experiments in the background: python3
scripts/percom/queue_runner.py run

C. Results

The outcomes of the experiments are written to the
folder /opt/analysis. Each experiments results in
the following files:

• Arrival file: All the networks that have arrived
during this experiment.

• Network statistics file: The arrival, waiting, and
execution time of each arrived network.

• Layers file: The arrival, waiting, and execution time
of each layer in each arrived network.

• Worker file: For each worker and individual file is
saved with the duration the worker is busy and the
duration the worker is idle.

IV. NEW NETWORKS

The EDGECAFFE framework offers 10 networks that
are prepared to use. New networks can be altered in
order to be executed with EDGECAFFE. A network folder
contains the following elements:

• Prototxt file describing the structure of the network.
• Caffemodel file containing the trained weights and

parameters of the network.
• description.yaml describing the elements of

a network in more detail.
• Partials folder containing the caffemodel files for

each of the layers separately.
A network trained with Caffe already has a prototxt and a
caffemodel file. Two additional steps needs to be taken to
prepare a new network for execution with EDGECAFFE.
First, information describing the network is put in the
file description.yaml. The tool ExtendNetworkDe-
scription (included in EDGECAFFE) can used to make
this process easier. Secondly, the caffemodel file needs
to be split into separate caffemodel files for each layer
in the network. The tool ModelSplitter can be used to
automate this process.

When a trained network is prepared successfully, it
can be used by placing it in the network folder and refer
to the model in the configuration file of the experiment.

V. ACKNOWLEDGEMENTS

This work has been partly funded by the
Swiss National Science Foundation NRP75 project
407540 167266.

REFERENCES

[1] B. Cox, J. Galjaard, A. Ghiassi, L. Y. Chen, and R. Birke, “Masa:
Responsive multi-dnn inference on the edge,” in IEEE PerCom,
p. to appear, 2021.

[2] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell, “Caffe: Convolutional
architecture for fast feature embedding,” in ACM International
Conference on Multimedia, pp. 675–678, 2014.

[3] A. Mathurz, N. D. Lanezy, S. Bhattacharyaz, A. Boranz, C. For-
livesiz, and F. Kawsarz, “DeepEye: Resource efficient local exe-
cution of multiple deep vision models using wearable commodity
hardware,” MobiSys, pp. 68–81, 2017.

2021 PerCom Artifacts

447Authorized licensed use limited to: TU Delft Library. Downloaded on September 22,2022 at 09:06:29 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T19:22:46-0400
	Preflight Ticket Signature

