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Though the commercialization of nanotechnology began only 30 years ago, it has developed into one
of the fastest growing industries in terms of research and design, with an unlimited amount of possi-
bilities that will transform industries from how we know them today. The advancement of nanotech-
nology relies on the actual production, control and integration of nanoparticles. VSPARTICLE is a
nano start-up which developed the VSP-G1, a generator that produces nanoparticle aerosols using a
gas-phase process called spark ablation.

The aim of this thesis is to develop and validate a computational model of the nanoparticle produc-
tion process in the VSP-G1. Such a model will simulate the effect of certain physical mechanisms on
the composition of the produced aerosol and track the corresponding particle size distribution (PSD)
throughout the production process.

Brownian coagulation and diffusion are identified as main aerosol mechanisms and form the math-
ematical basis of the model. Approximation formulas provide the initial conditions which directly
depend on the VSP-GI input parameters. The Log-Normal Method of Moments (Log-MoM) is used
to approximate the model by deriving the geometric mean, standard deviation and total particle con-
centration of the PSD. Last, the solution is computationally approached using the Forward Euler nu-
merical method.

A theoretical and experimental validation proved a sufficient accuracy of the model with respect to
nanoparticle growth in the VSP-G1. In particular, the predictions of the mean particle size maintained
nanometer accuracy in compliance with experiments. To assist future research, accuracy ranges are
presented that provide compliance criteria between the modelled results and the actual output of the
VSP-GL. Finally, an improved function for the particle size evolution due to pure, monodisperse coag-
ulation is derived based on the experimental validation process.

The computational model will provide researchers with an analysis regarding the sensitivity of the
VSP-G1 input parameters. Furthermore, the models framework, consisting of mathematical and phys-
ical processes, will provide a better scientific understanding of the system. Finally, the model can con-
tribute to the production of pure, tailor-made nanoparticles by performing as an operational guide
for the VSP-G1.

Bibianne van der Maesen
November, 2018
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Nanoparticles are the smallest building blocks of all materials on Earth. In size, they range from 1 to
100 nm and consist of single or a combination of (in)organic molecules. To compare, the typical size
of a nanoparticle to a football, is as a football to the Earth.

° ]
Qo Vv
(4]
The size of a ... to a football as a
nanoparticle is... football is.... to the earth.

Figure 1.1: Nanoparticle size on a comparative scale.

While bulk materials have consistent physical properties regardless of their size, for nanoparticles the
size dictates its physical and chemical properties [10]. For example, gold nanoparticles’ interaction
with light is strongly dependent on their size, resulting them to change in color to a rich red for par-
ticles in water of around 30nm[11]. Graphite and its two-dimensional form: graphene is another
example. Graphene was tested by MIT to be the strongest material ever known in 2009 [12], while
graphite is so soft that it is used as ordinary pencil lead.

The ability to control material properties at nanoscale will allow the development of new materials
with countless innovative applications in sectors like sustainable energy, health care and electronics.
Although nanotechnology is a relatively new field of research, BBC Research revealed that the global
nanotechnology market will increase from $39.2 billion in 2016 to $90.5 billion in 2021, growing at a
five-year compound annual growth rate of 18.2% [13].

An essential part of the advancement of nanotechnology relies on the actual production, control and
integration of nanoparticles. Traditionally, the production of tailor-made nanoparticles is performed
with chemical techniques, often leading to material impurities and waste-streams. VSPARTICLE side-
lined this approach by developing a system that makes producing nanoparticles as easy as pushing a
button. The nanotech start-up was founded in 2014 and developed a user-friendly tool, the VSP-G1,
which can produce any inorganic nanoparticle.



4 1. INTRODUCTION

1.1. VSP-G1

The VSP-G1 is a nanoparticle generator that uses a physical process in the gas phase called spark
ablation. This technique guarantees a user-friendly and fast production of ultra pure nanoparticles,
making it ideal for aerosol research. The production process consist of three phases as is shown in
Figure 1.2.
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Figure 1.2: Nanoparticle production process of the VSP-G1 (through flow).

First, a potential difference causes a spark which locally evaporates a microscopic piece of the bulk
material (electrodes). The material is ablated into single atoms forming a plasma of around 10* K in
temperature [14]. At the same time, the vapor blends with a continuous flow of carrier gas, which is
channeled perpendicular to- or through the electrodes. The gas is initially at room temperature and
is composed of either nitrogen, argon or air. When vapor meets gas, the sudden drop in tempera-
ture causes the material to condensate, producing an aerosol of pure singlet nanoparticles [15] with
a certain starting concentration Ny. The aerosol leaving the reactor chamber is called "throughflow"
when it is channeled through the electrodes and "crossflow" when channeled perpendicular to the
electrodes. A third method attaches the tube, shown in phase two, with an "insert", extending the
tube through the reactor chamber right to the spark.

In the second phase the aerosol is transported through a tube, allowing nanoparticles to interact due
to Brownian Motion and various other mechanisms [14]. When two or more particles collide they ei-
ther fuse into one larger, spherical particle or (loosely) stick together to form a non-spherical agglom-
erate. These mechanisms allow particles to "grow" in size and causes the total particle concentration
to decrease. In addition, the total particle volume also decreases due to diffusion losses to the walls of
the tube.

Particles are deposited onto a substrate in the third phase. There are three common deposition meth-
ods. A diffusion chamber lets particles randomly diffuse onto a surface, this creates a smooth coating
used for instance for the development of microchips. Impaction, displayed in Figure 1.2, is a tech-
nique that accelerates a stream of particles through a nozzle, literally "impacting” on the substrate
and making exact positioning of particles possible. Last, it is also possible to deposit particles of a
certain size range by applying a filter with a corresponding mesh size.
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1.2.

VSPARTICLE aims for a highly efficient and fully controllable system generating nanoparticles of any
desired quantity, particle size and shape. A computational model of the nanoparticle production pro-
cess is required to develop a scientific understanding of the system, test the sensitivity of certain input
parameters and eventually provide insights into how to operate the particle generator. It will con-
tribute significantly to a completely controllable VSP-G1 system and the production of pure, tailor-
made nanoparticles.

Mathematical and computational modelling are major concepts in this thesis. In general, modelling
knows four main stages [16], the first consisting of three sub-stages:

1. The development of the model.

(a) Set physical framework.
(b) Define mathematical equations.

(c) Solve using numerical methods.
2. Validating the model with theory.
3. Validating the model with experimental results.
4. Putting the model to use.

This thesis conducts the first three stages and prospects on the fourth stage in the conclusion in Chap-
ter 8.

First, it is necessary to define the system that going to be mathematically modelled. This thesis nar-
rows its scope down to the nanoparticle growth occurring just after the spark until just before it enters
the deposition chamber, leading to the underlying research goal:

Develop a numerical and computationally efficient model of the nanoparticle growth from
spark ablation in the gas phase.

A framework for the model is constructed based on the physical properties of the system such as tube
dimensions, ablation material, gas type and system settings for power and gasflow. It is impossible
to compute the exact behaviour of hundreds of billions of nanoparticles. Therefore, underlying as-
sumptions on the system and its environment are necessary. This thesis assumes nanoparticle growth
occurs in a closed tube over a certain residence time tg, from a certain starting concentration Ny. The
residence time corresponds to the time from when a particle is produced in phase one, until it reaches
the end of the tube in phase two. The starting concentration is the amount of atoms in the aerosol
produced in phase one. Particle growth is described exclusively by Brownian Motion and diffusion,
while other, less prominent mechanisms are neglected.

00 N °o
’ ° 020 ’ °
2 ° o €% 0 €°% 0
' particles
with different
for 0 <t <At for At<t<tr sizes and shapes

Figure 1.3: Framework of physical model for crossflow.



6 1. INTRODUCTION

Mathematical equations that sufficiently describe the systems physical framework and particle growth
mechanisms are chosen next. The Smoluchowski equation is applicable for simulating nanoparticle
behaviour and is introduced in Chapter 2, along with approximation formulas for the residence time
and initial particle concentration.

Solving the original Smoluchowski equation to obtain the particle size distribution (PSD) results in
a great deal of computation time. Therefore, the model itself is mathematically approximated using
the Method of Moments (MoM) in Chapter 3. This method summarizes the statistics by deriving the
mean, standard deviation and total particle concentration [16], providing the essential parameters to
reconstruct the particle size distribution.

The MoM obtains a set of ordinary, non-linear differential equations (ODEs) , forming an initial value
problem (IVP). The solution is approached using numerical methods and computational power. Nu-
merical methods divide continuous time into discrete intervals, and estimate the state of the system
at the start of each interval [16]. The approximate solution changes through a series of steps and the
numerical errors that accumulate are analyzed in Chapter 4.

Chapter 5 characterizes the qualitative behaviour of the model by analyzing the computed results in
dimensionless form. Kyoon Won Lee is a prominent aerosol scientist who performed a great deal of
research on (modelling) aerosol behaviour. His results, which are also in dimensionless form, are used
to theoretically validate the model of nanoparticle growth in the VSP-G1. Population balance models,
like the one in this study, obtain the qualitative feature that the long-term behaviour of the population
is independent of the initial conditions [16]. This asymptotic behaviour is a key validation principle
that the model must obtain.

An important part of the modelling process is to validate the model with experimental data and thereby
tailor it to VSPARTICLEs needs. Various particle size distributions are measured from experiments
conducted with the VSP-G1 under varying power P and flowrate Q settings. The corresponding val-
ues for P and Q are used in the approximation functions to derive initial conditions for the model.
The model is experimentally validated when the computed particle size distributions comply with the
measured, experimental results. The complete experimental model validation process and results are
given in Chapter 6.

The experimental validation process shows that the model approximates the particle size at nanome-
ter accuracy! Moreover, accuracy ranges are defined for the total concentration and geometric stan-
dard deviation of the PSD. These accuracy ranges can perform as benchmarks when interpreting re-
sults during future work. Furthermore, the model can be put to use for an input parameter sensitivity
analysis and it also provides a better scientific understanding of the aerosol dynamics inside the sys-
tem. Most importantly, it can function as a guide for operating the VSP-G1 to produce tailor-made
nanoparticles.



A mathematical model is a description of a system using mathematical concepts. In this study, the sys-
tem relates to physical nanoparticle growth in the VSP-G1 and the mathematical concept is defined
by the Smoluchowski equation, given in Section 2.1. This governing equation is formulated to obtain
two prominent particle growth mechanisms: coagulation and diffusion. The mathematical descrip-
tion of both terms is dependent on the environment and composition of the aerosol, which is treated
in Sections 2.2 and 2.3. The governing equation of the mathematical model and corresponding ini-
tial conditions are formulated in Section 2.4. Finally, non-spherical particle growth is analyzed and
mathematically approached in Section 2.5.

2.1.

The evolution of aerosol particle behaviour originates from internal and external mechanisms, which
are described by the Smoluchowski equation. Its original form only accounts for colloid coagulation
[17]. A colloid is a mixture of microscopically dispersed particles which are incapable of being dis-
solved and suspended with another substance. Coagulation is an inter-particle mechanism which
occurs when two particles collide and stick together to form a new, larger particle [3]. As coagula-
tion takes place the mean particle size increases, the particle concentration decreases, while the total
particle mass and volume stay constant. It is the most important nanoparticle growth mechanism to
consider when simulating aerosol dynamics and the growth of particles in particular as it is the base
of the Smoluchowski equation [3]:

M f ﬁ(v v=vn, Hnw-"1, t)dv—n(v,t)f ﬁ(v,v)n(v Hdv' 2.1

Equation 2.1 is called a "population balance equation" and gives the rate of change of the particle size
distribution in which v is the particle volume, ¢ the time and n the particle size distribution [17]. The
first term on the right hand side accounts for the formation of particles with volume v, by coagulation
of smaller particles. The factor 1/2 avoids double counting collisions. The second term accounts for
the loss of particles of volume v, by coagulation with others.

Coagulation is mainly driven by Brownian Motion of particles. In a homogeneous gas, Brownian Mo-
tion is the random motion of suspended particles due to their collisions with gas particles [3]. The
number of collisions between particles of two different sizes is given by the collision frequency kernel

B, V).

Another mechanism is the continuous diffusion of aerosol particles to the surface (i.e. the wall of the
transport tube), leading to a gradual decay in concentration [3]. Diffusion is modelled by adding a
sink term to the Smoluchowski equation.

on(v, t)
ot

f ﬁ(v v=v"n, Hnw-"v,0dv - n(v, t)f B, Vin@, ndv' +% (2.2)

7



8 2. MATHEMATICAL MODEL

The model developed in the current research approximates a solution for Equation 2.2, which ac-
counts for coagulation due to Brownian Motion and diffusion of nanoparticles in a closed space. The
result is an approximation of the particle size distribution in the VSP-G1.

Note, the Smoluchowski equation can be extended to account for particle transport due to carrier gas
flow by introducing a spacial coordinate x. Besides Brownian Motion, coagulation is also influenced
by thermophoresis (the temperature rise of an aerosol) and inter-particle varying velocities. These
concepts, along with most other aerosol mechanisms are incorporated in the extended Smoluchowski
Equation given in Appendix A.1.

2.2. COAGULATION
Coagulating particles in a closed space are mathematically described by Equation 2.1 and the rate of
coagulation is determined by the collision frequency kernel .

The collision frequency kernel is dependent on the size-ratio between the ablated nanoparticles and
the surrounding gas particles. It is necessary to introduce the gas mean free path A and the Knudsen
number Kn.

The gas mean free path is defined as the average distance travelled by a gas molecule between succes-
sive collisions [1]. The Knudsen number relates the gas mean free path to the particle diameter and
determines in which "regime" particle motion takes place. Each regime consists of a unique expres-
sion for the collision frequency kernel S.

)

Kn=—
dp

(2.3)
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Figure 2.1: Particle dynamics in continuum, transition and free-molecular regime [2-4]. gas particle (grey), solid particles
(green)

The gas mean free path is defined as:

2

A= 1 , (2.4)
8RT
TMm

where R is the gas constant, T is the temperature, m,, is the molecular mass of the gas particle and
7 is the gas viscosity which is computed with the Sutherland constant, temperature and a reference-
viscosity and temperature:

B ( T )3/2T,ef+Su
=0T, T+Su
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Previous studies ([1, 3, 4, 18]) have defined
. regimes based on the Knudsen number. Fig-
3 \ e ure 2.2 visualizes these regimes for the par-
ticle size range and carrier gasses applicable
for this research. The free molecular regime
transition is considered for nanoparticles with diame-
ters up to 5nm. Particles exceeding this size
107 enter the transition regime. Although the

: 2;(90" continuum . . . . . .
 Nirogen continuum regime is not considered initially,
07— " % o s A it is treated in this chapter as its properties
particte diameter [nm] are necessary for the definition of the colli-

sion kernel in the transition scheme (Section

Regimes

Knudsen number [-]
=
)
2

Figure 2.2: Knudsen number and regimes based on the particle
diameter at room temperature 2.2.3).

2.2.1.
In the free molecular regime, collisions take place by a ballistic process in which all particles can be
treated as large molecules [3] (see Figure 2.1). The collision frequency kernel is defined as:

Br(v, U’):KF(%)I/S(%+%)1/Z(v”3+v'1/3)2 (2.5)
6k T\1/2
KF:( o ) , 2.6)

where v and v’ are particle volumes and kg is the Boltzmann constant. Values for the coagulation
constant Kr and gas density p; under conditions applicable for this study are presented in Table 2.1.

2.2.2.
Nanoparticles particles are in the continuum regime when their size is much larger than the mean free
path (Kn < 1). Collisions are described by the collision frequency kernel for the continuum regime !:

11
B, v') = Ke(v' + V’I/S)(_Ul/s + _y'1/3) 2.7)
2kpT
c= 31:7 : (2.8)

where 1) is the gas viscosity.

Non-continuum effects appear as the Knudsen number reaches its upper boundary: Kn = 0.25 [4],
[18]. To account for these effects, the Cunningham Slip Correction factor C(Kn) is incorporated into
Equation 2.7:

C(Kn) C(Kn'
Beo(,v) = Keo v + M3 ( v(l’?) + V(Tf;)) (2.9)
CKn) =1+ Kn(a + ﬁexp(—y/Kn)) 2.10)

where K¢, = K¢ and parameters a, § and y are adjusted to best fit the carrier gas and corresponding
regime. The following values hold in the transition regime for argon gas [7] %:

a =1227
B =042 2.11)
Yy =0

IFor the current research, fc is only necessary for the definition of the collision frequency kernel of the transition regime
(Equation 2.13).

2Rader conducted research on the Slip Correction Factor for small particles in nine common gasses [4] and found different
values for the parameters in 2.11, these are tabulated for various gasses in Appendix A.2
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Table 2.1 lists the densities, viscosity’s and corresponding coagulation constants for different gas types

and regimes under standard conditions®.

Gas pg lkg/m®] Kp [m>?/s] | pikg/ms] K¢ [m3/s]

Argon gas 1.645 1.221x107191.221 x 10710 | 2.52x 1075 1.820x 10716
Air 1.192 1.435x 10710 1.83x107° 2.239x 10716
Nitrogen gas  1.165 1.451 x 10710 1.74x 107> 2.328 x 10716

Table 2.1: coagulation constants for carrier gasses applicable for the VSP-G1 under standard conditions 3

2.2.3. TRANSITION REGIME

For particles with a diameter that is approximately the same as the gas mean free path (d, = 1), co-
agulation occurs in the transition regime. Fuchs developed the flux matching method to combine the
free molecular kernel fr and continuum kernel ¢, to obtain the transition kernel [9].

The method assumes that outside a distance [, from
the center of one of the colliding particles, the diffu-
sion theory is considered and fluxes are described as ~
they are in the continuum regime, (area I in Figure 2.3).
Within distance [, particle fluxes are approached by the
kinetic gas theory [19], (area II). Fluxes are matched at
the distance /. The location of the boundary varies per
method. The present research investigates the most ba-
sic method: the harmonic mean, and Dahneke (1983)’s
method, which is also known for its accuracy and simplic-

ity [9].

The harmonic mean matches the fluxes at the collision
sphere [9], which is the distance between the centers of Y,
two particles at the moment of collision (r] + r2). The Y
collision frequency kernel following the harmonic mean
method is equal to [19]:

-1
ﬁ H= ( 1 + 1 ) (2.12) Figure 2.3: Geometry of the collision model in the
ﬁCo(U’ V") ﬁF(V, V') flux matching method [5]

Dahneke describes diffusion as a mean free path phenomenon [9] and matches the two fluxes at a
distance equal to the mean free path of the particles. Various researchers prefer Dahneke’s kernel p
because of its accuracy relative to the harmonic mean, but also for its simplicity with respect to other
methods found by Fuchs and Wright [18], [9],[19].

Dahneke’s transition kernel allows the mathematically approximated particle environment to gradu-
ally shift from one regime to the other with increasing particle size. It is therefore applicable for the
entire particle regime.

1+Knp
= : (2.13)
P = b0 o knp 2k
v, v
Knp = .BCo( )
2fF (v, V")

3Ty =296.15 K; Py =101.325 kPa
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2.3.

Besides taking coagulation into account, Equation 2.2 also describes the affect of diffusion on the
particle concentration. According to [8] the decay in particle concentration due to diffusion to the
tube wall for a monodisperse aerosol in a circular tube is:

4.117DZ)’

? o ex (— 2.14)
no P R%ﬂ ’

D(r)=

(2.15)

where ny is the initial particle concentration, z is the position in the tube, R; the tube radius, i the
mean transport velocity of the aerosol through the tube, D the diffusion coefficient of particles de-
positing on the wall, r is the particle radius, kp the Boltzmann constant, 1 the gas viscosity, and C(Kn)
the Cunningham Coefficient.

This study requires Equation 2.14 to fit the time- and volume dependent format: M’;(”) Therefore,
the spacial coordinate z is converted to time with Equation 2.16, and the diffusion- and Cunningham

coefficients are written in terms of v and K¢,. (Recall: K¢, = Zléf]T)

z
t=— (2.16)

i
D C 2.17
(v) = 4\77 ) 2.17)

A

C(V)=1+\7—Ev_;(a+ﬁexp( X US)) (2.18)

Differentiating (2.14) over time, and inserting Equation 2.17 yields an expression for the sink term that
obtains a sufficient format to include in the original Smoluchowski equation:
0ngink (V) _ 1.67
ot - R? vl /3

KcoC(v)n(v, 1) (2.19)

2.4.

The aim of this research is to solve the Smoluchowski equation using Dahneke’s transition kernel
(Equation 2?) and diffusion effects formulated by the sink term in Equation 2.19:

on(v, t)

Y fﬁD(V v=v)n@, Hnw-v,0dv -

n(v,t)/ ﬁp(v,v’)n(v’,t)dv’—1'—S7KCOC(v)n(v,t) (2.20)
0 Rem

Now that all terms are treated, Equation 2.20 is defined as the governing equation for the mathematical
model. This function simulates an initial particle concentration Ny that is exposed to coagulation and
diffusion effects in a closed space over a residence time .

The residence time is the total time that a particle spends inside VSP-G1:

V. Vi
tp = chznber 4 tgbe i @2.21)
Viube = TR7 L
52cm®  cross flow

3

Vehamber = 10cm®  through flow

0.9m3 insert

where R; is the radius of the tube, L is the length of the tube and Q is the flow rate of the gas. The
volume of the reactor chamber is defined per flowtype.
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INITIAL CONCENTRATION

It is assumed that spark ablation initially creates an aerosol of pure, single atoms and the correspond-
ing concentration is noted with Ny. The initial concentration is determined by the spark frequency
and intensity, the material of the electrodes, and the flowrate of the gas. The corresponding approxi-
mation function yields*:

_ mANAIV
Q

where m,4 [mol/]] is the material dependent ablation rate and is determined either from theory or
experimental mass measurements (See Section 6.2). N, is Avogadros constant which defines the
amount of atoms per mol. Finally, I is the current in mA (expressing spark frequency), V is the voltage
in kV (representing spark intensity) and their product forms the power of the VSP-G1: P = IV.

No , (2.22)

Note, the approximation function suggests a linear relation between the ablation rate and the power.
This assumption is met through an analysis given in Section 6.2.

2.5. AGGLOMERATES

If two solid particles collide, the result may be an agglomerate or a spherical particle, depending on
the relative rates of fusion and collision. An agglomerate is a particle formed by two or more smaller
particles which have not fully fused into a sphere [3]. The mechanism that causes two particles to fuse
is called sintering. The rate of sintering is a strong function of temperature, particle size and material
properties [3].

The characteristic collision time defines the im-

portance of coagulation on aerosol dynamics o o
and is equal to the time it takes for particles to O fo < s 6
reduce to a concentration which is half its initial o
value [3].
When the characteristic time for sintering s is
greater than the characteristic collision time z¢, o
an agglomerate forms instead of a spherical par- o 2 c
ticle. o

to ~ ((ﬁ)“GKFNg’B) b e

4n
= Ad;, E 2.2 ° ([« ] o
fs—A pexp(ﬁ) (2.24) o W

where v is the total particle volume, Ny the ini-

tial particle concentration and K is the coagu-

lation constant in the free molecular regime as Figure 2.4: Particle morphologies v.s. collision rate (3]
defined in Equation 2.6, E is the activation en-

ergy for diffusion, R is the gas constant and A is

a constant.

4The approximation formula for Ny is derived in collaboration with VSPARTICLE.
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The transport properties of agglomerates are substantially different from spherical primary particle
properties. The mass fractal dimension, Dr defines the irregular structure of the agglomerates in terms
of its "openness" [3]. Typically D varies from 1 to 3. Dr = 3 defines a solid sphere, while Dr =1 cor-
responds with primary particles stuck together in a single line. According to previous research [15],
the VSP-G1 creates agglomerates with a fractal dimension between 1.7 < Dp <2.2.

(a) Picture of agglomerates taken from the VSP-G1 (b) Fractal dimension Df corresponding with the
after deposition irregular structure of agglomerates [20]

Figure 2.5: Agglomerate structures

IMPLEMENTATION IN MODEL
Agglomeration can be incorporated into the model when #, < t;. The empirical relation between the
agglomerate diameter d,g and corresponding singlet diameter ds according to [21] is:

dag _ dey*'Pr
dy  d

(2.25)

This is rewritten to formulate transfer functions between the agglomerate diameter and the close
packed diameter d;, which is the diameter of a spherical particle of the equivalent mass as the corre-
sponding agglomerate.

dag=d!Pal (2.26)
dag 1/F
der = (dsl-F) (2.27)
where F is a function of agglomerate radius dgg:
F=@3/Dp—-1)(1-e *as=4) 41 for dgg > ds
F=1 for dgg < ds,

where D = 2.18 holds for conditions applicable for the VSP-G1.

Note, the transfer functions may be applied to the output of the model to incorporate agglomerates,
but can also be used on experimental measurements. For example, measurement instruments char-
acterize particle sizes based on their agglomerate diameter. With Equation 2.27 these empirical results
are easily converted to formulate an equivalent output format as that of the model for validation pur-
poses.






The mathematical model of nanoparticle growth in the VSP-G1 is based on the Smoluchowski Equa-
tion using Dahneke’s kernel.

on(w,t) 1 v
%zg[ B, v—v"n(', Hnw-7v,ndv
0

~n(v, t)/ooﬁD(U, ', pdy' + k0 g,
0 ot
The framework of the model and mathematical equations are described in Chapter 2, where the par-
ticle size distribution n(v, t) is obtained after a certain residence time fz. This chapter studies the
solution method obtained by Pafnuty Chebyshev in 1887 to solve for n(v, t). The Method of Moments
(MoM) assumes particle volume conservation, and is therefore applicable for models approximating
particle growth in a closed spaces.

The MoM has been applied in a wide range of fields such as electromagnetism [22], planetary forma-
tion [23], finances, data processing [24], but also aerosol dynamics and nanotechnology [6, 7, 17, 25—
28]. Frenklach and Harris used the MoM in 1987 to simulate nanoparticle growth mechanisms like nu-
cleation, surface reaction and coagulation [28]. Without having to track the behavior of the entire par-
ticle size distribution (PSD), the MoM extracts specific information from the Smoluchowski equation,
so called "moments". The zeroth moment is equal to the total particle concentration My(t) = N(¢), the
first moment resembles the total particle volume and the second moment is the total particle volume
squared.

The result is a set of ordinary differential equations (ODEs) for the first three moments. Assuming
a log-normal distribution provides the correct initial conditions and format to solve the set of ODEs.
Nondimensionalization of the problem is required due to stiffness issues. Finally, the solution in terms
of moments provides information that enables the reconstruction of the PSD.

3.1.

The first task of the MoM is to convert the original Smoluchowski equation into a momentum equation
based on the size distribution [17]: the moment governing equation. The derivation of the moment
governing equation of the present study is conducted according to [23]. However, to the best of our
knowledge, including Dahneke’s kernel and diffusion into the governing equation is new in this field
of research.

The method of moments uses the fact that the k-th moment of the distribution, M¥, where k need not
be an integer is defined as:

M (1) :f v n, ndv (3.2)
0

15
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Five steps lead to the moment governing equation.

Both sides of the equation 3.1 are multiplied by v* and integrated over volume v. Also, Expression 3.2
is applied to the LHS .

dMi [ pdn(,1)
dt _fo YT ar d

1 (o) v
U:Ef f vk, v -1 nw—- v, Hn@, ndv'dv
o Jo

00 oo o0 dng; T
—f f vEBp(w, v n(w, Hn(v', t)dl/dv+f v"—nsmk(v ) av 3.3)
o Jo 0 dt

A Heaviside function, H(v — v'), is introduced such that:

, 1 v=1v'=0
Hv-v)=

0 v-—v'<0,

to extend the limits of the integral over v’ from (0, v) to (0,00).

dM, 1 [ v
_tkzif f v*HWw - Bp, v—-v)nw—-v,0nW', ydv'dv
o Jo

d
o0 (o0} (e0) d . ,t
—f f vkﬁp(v,v’)n(v,t)n(v’,t)dv’dwf v"—nsmk(y )dv (3.4)
o Jo 0 dt

u=v-v,du=dvand vk = (u+v' )k are substituted into Equation 3.4. As the first integral is integrated
over purely positive values for u, the Heaviside function is always equal to one.

dMy

D
dt 2[0 fo (u+ )" Bp(w, v n(w, HnW', ndv'du

(o] o0 (o0} .
—f f vk Bp(w, v n(v, Hn, t)dv’dv+f vkwmz (3.5)
o Jo 0

Without loss of generality, v is substituted for u, allowing the two integrals of the population balance
equation to merge.

dM, 00 (oo ] - dng; Lt
2k :f f [—(U+ v = vk Bp (v, V) n(, t)n(v’,t)dvdv’+f vkmdv 3.6
dt o Jo L2 0 dt

Due to symmetry the equation above also holds for v* = v’¥, and the expression for the moment
governing equation is obtained.

dM;

® dngin(v, 1)
= vV ——
dt

1 o0 o0
—f f [(v+ k= vk v Bp (v, V) n(w, t)n(v’,t)dvdv’+f
2Jo Jo 0 dt

dv (3.7

Now the key is to convert the integral term on the RHS of Equation 3.7 to a set of closed ordinary dif-
ferential equations for the zeroth-, first- and second moment.
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3.2.

Given the moment Equation 3.7 and Dahnekes kernel:

1+Knp
1+2Knp +2Kn?

Bp = Pco(v, V)

_ ﬁCO(v) V,)
KD = o Bw, o7
C) C(V’))

N 1/3 1/3
ﬁCO(v)V)_KCO(U +v )( U1/3 Ul1/3

Brw, 1) = KF(i)l’B(l N i)l/z(yusa + 011/3)2
4an v v

Due to non linearity (unlike for the free molecular and continuum kernels), it is not possible to inte-

grate Dahnekes kernel directly using Expression 3.2. Therefore the solution is approached in the lim-

iting regimes first, and are subsequently used to obtain an expression for the entire regime in terms of

moments [9]. In addition, a separate moment function is defined for the sink term. The result is an

ordinary differential equation for any k" moment:

dM; B d My ( 1+Knp )+de (3.8)
dt — dt |co\1+a@)Knpx+2Kn2,, ) dt | .
|
|,
1,dM; dM | -1
Knpp=—-|—— —
Dk 2( dt CO)( dr F)

a(o) =2+0.7In%(0) +0.851n° (o)

Here a(o) is a correction function compensating for mathematical errors due to an increasing stan-
dard deviation [9].

In this section the log-normal method of moments is used to express each term in Equation 3.8 in

dM;

terms of dimensionless moment functions. Starting with the limiting regimes % |F and ;5|  to

‘Co
formulate Dahneke’s transition kernel % o Finally, also the sink term % - is expressed in terms
SIn.

of dimensionless moments.

3.2.1.
The log-normal particle size distribution is defined as

—In? v/ vg (1)
18In% o (1)

n,t) = i N ex]
V50 Varinoe T

(3.9

where N(1) is the total particle concentration at time ¢, vg(f) the geometric mean particle size, v the
particle size and o (#) the geometric standard deviation [6, 7, 9].

The k™ moment of a log-normal size distribution is defined as [6, 7, 9]:

—In? v/ vg(t)
18In 0 (1)

dv

) (3.10)
v

1 (o 0]
M, :—/ vk ex
k 3V2xlno(r) Jo P

and the properties of a log-normal function allow the following equation to hold for any k™" moment
(6, 71:

9
Mk:Mové‘exp(Ekzlnz(a)), (3.11)
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Besides obtaining the total particle concentration from the zeroth moment My = N, expressions for vg
and o are also necessary to compute the particle size distribution: Expression 3.9. These are obtained
by writing Equation 3.11 for k = 0, k = 1, k = 2 and rearranging it in terms of v; and o:

M}
Ve = T3 /102 (3.12)
My =M,
1 Moy M;
Inc==1In 022] (3.13)
9 | M2

Equations 3.11 - 3.13 operate as tools to solve the ordinary differential equations in the limiting regimes
first, and are later used in Equation 3.9 to express the particle size distribution.

3.2.2.
A set of ODEs is derived for both limiting regimes, starting with the free molecular regime. This corre-
sponds to the following function when neglecting diffusion effects:

dM;,
dt

- %f f [(U+ vk — vk - U/k]ﬁF(U, Vn(, Hn(', Hdvdv' (3.14)
F 0 0

In the free-molecular regime, it is difficult to expand the kernel ¢ (Equation 2.5) into a power series

[29]. Therefore, a coefficient b is introduced such that: 4/ % + % = b(\/; + \/;) The coefficient b is
dependent on the polydisperisty of the aerosol [7], which is represented by the geometric spread of
the particle size distribution o. The function b is fitted to only depend on ¢ by Park, Lee, Otto and
Fissan in [7]:

b(o) =1+ 1.2exp (—20) — 0.646 exp (—0.350) (3.15)

The collision frequency kernel for the free-molecular regime is written as:

3 \1/6 1 1
,BF(U,U,):b(O')KF(E) (\/;+\/;)(v“3+v’”3)2 (3.16)

Inserting the new expression for fr into the moment governing equation yields:

_ bKp( 3 \1/6 [o° [ nk_ ko ik 1 Lo, 1342 ' '
F_T(E) fo fo [(v+l/) -v-v ]( U_i+ U—j)(vl- +v; ) nw, Hn@', dvdv

1/3 21/1/3 U/2/3 UZ/B

dMy
dt

bKp ( 3 \l/6 [ [ Nk k_ k|(.1/6,1/62V / !
:T(E) .[0 fo [(v+v) —v—v ](U v + TG + UI/Z+v,1/2)n(v,t)n(l/,l‘)dvdl/

(3.17)

The current research is interested in the first three moments. Letting k =0, k =1 and k = 2 and using
the expression for any k™ moment in Equation 3.11 formulates a set of unclosed ODEs.

dM, 1/6
4 =—bKp(2) " (MyeMo+2My3M-1/6 + Maj3M-1/2)

aMm,
an =0 (3.18)

1/6
% =2bKp(2)"" (M7/6 My + 2My 3 Ms6 + M2 Ms3)

Substituting Equations 3.11 - 3.13 closes the set of ODE’s:

dMo|  _ . (pg151/72 13136 3 19/72 131/72 ) 7/36 3 g~1/72 | pg127/72 p f11/36 ~5/72
T |p T DK (M7 My BEOM P12 4 2 M2 MO M, T2 4 M2 My 0 M 2 )

am _
dt F =0 ’

daM, — 7d 19/72 3 r=97/36 p 431/72 —1/72 A g=77/36 p 711/72 =5/72 A g=73/36 p 17/72
G|, = 2bKp(My?' "2 MO MIVTE 4 2 MV TE MO My VTR 4 MO M TS0 VTR

(3.19)

dt

~ 1/6 1/2
where the collision constant is redefined to maintain clear notations: Kg = (%) (M) .

Pg
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The set of ODE’s is too stiff to solve. Therefore dimensionless moments My and dimensionless time 7
are introduced such that the following holds [6]:

My = M Ny l/ko exp (gkzln2 09) (3.20)
t=7(vy ReNo) ™' (3.21)
b(o (1)) = B(1) (3.22)

Substituting equations 3.20 - 3.22 into 3.19 results in the set of ordinary differential equations for the
moments functions in the limiting molecular free regime.

d Mg 1l __ 13 __ 19
dT°| ~Bapw)|My ™ M, ® My™ exp(—ln 00)...
F

-+ 2My ™ My M, 7 exp( In? 09)... (3.23)

=B(1r)go
d1\71| o
dTF F~
=& (3.24)
d M o __ 47 __31
d_rz F=2B(1F) M072M1*5M272 exp(—ln 09)...

-+ 2My 7 M, % M, 72 exp (—ln 00) (3.25)

=B(Tr)&

To maintain clear and understandable notations, the RHSs of Equations 3.23- 3.25 are noted in terms
of g and B(tF) for the remainder of this thesis.

3.2.3.
Along the same route, a set of closed ordinary differential equations for the the first three moments in
the continuum regime is derived from:

dM
£k f f (v+ )k v’k]ﬁCO(v, Nn(w, o', ydvdy' (3.26)
From [2], for Kn <~ 1, the fractal set of ODEs is defined as:
1/3
% co = —Kco [MS +Miy;3sM_q3+ Aﬂ(%”) (MoM_y/5 + M1/3M—2/3)]
an =g (3.27)
1/3
% co = 2Kco [Mf + MysMajs+ AA(37) " (My Mays + M4/3M1/3)]
Where:
2kgT _
Kco = m3s™1
2n
A=1.591

A = gas mean free path

By applying Equations 3.11 - 3.13, a set of closed ODE:s is derived in terms of My, M) and M.
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dMo __ 2 19/9 A 7—2/9 A 71/9 4 _\1/3 (5 23/9 7 71975219 25/9 3 r—11/9 3 7419
| = Keo| M3+ MO M 29 MY 4 AA(37)"" (MBI M7 710 M3 + M2YI° My 119 319) |

am, =0
dt Co

aM _ 2 1/9 3 716/9 3 s1/9 4 1332193 717/9 7 7-1/9 4/9 3 r13/9 3 71/9
G| =2Kco| M2+ MMM + AA(3m)" (MO MITO M VO + MO ML M) |

(3.28)
Using the dimensionless parameters from [9]:
My = M Novgoexp (gk2 In® o)
t=7co(NoKco) ™! (3.29)

i 4
A= ALY (- 5n)“3 /Vg0, (3.30)

the set of ODEs is nondimensionalized:

M, PESLE P
%ko M() + My % M; ¥ M,?® exp(ln Uo)
(3.31)
B T __2 B o4
~+A(M09M1 o M29exp( In0g)+ My ® My ® M® exp (= lnzao)))
= o
dM,
7|CU=0 (3.32)
Efll
Mo [ ., . 1 16 __1
el ( xp (91n? 00)+M09M19M2 exp (10In? o) ...
2 1 __ -1 s B __1
+A(M09M19M2 9 exp(—ln 00) + Mo® My © My ® exp(—ln 00)))/exp(181n200)
(3.33)

hy

To maintain clear and understandable notations, the RHSs of Equations 3.31- 3.33 are noted in terms
of h; for the remainder of this thesis.

3.2.4.

Now that the differential moment equations in the limiting regimes % |C , and % |  are defined, it
is possible to combine them using Dahneke’s method to formulate an expression for the entire regime.
Equation 3.8 (sink term excluded) is defined as:

. . dMi/dtc,
de‘ _ dMy 2dMldtr (3.34)
dr I drcoloy . a(o) dAMy/drce (de/drcO)z ’
Zdﬁk/d'rp Zde/dTF

The transition kernel contains two dimensionless expressions for time. However under the same con-
ditions, both obtain the same value for t when converted back to dimensional time. Therefore, the
timestep applicable for the free molecular regime can be expressed in terms of the timestep for the
continuum regime:

d dreov I/GKF (3.35)
Tp=—>—— .
Kco

Recall the notation for the dimensionless moment differential equations in the free molecular regime

B(rr)8k. Using Equation 3.35 it is possible to express ‘%f - in terms of 7¢,. Note that [29] states
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B(tF) = B(1 o) which is validated by calculations in this research. This leads to the following deriva-
tion:

dM;.

—-B &
drr |F (TF) 8k
de KCo ~

= : = B(1co) 8k
dtco!F Véé)(;KF 0§
__ 1/6
adM Voo KF
- K = B(rco)—S— gk
dtceF Kco

The current research uses 7¢, to obtain a solution for the moment governing ordinary differential
equation 3.8. Therefore, this report will use notation: 7 = 7¢, in further research content. Also, the
1/6

Voo KF | ~
£— is noted as: B(1).
Co

extended correction function B(7)

Concluding, the new expression for the differential moment equation for Brownian coagulation ap-
plicable for the entire regime yields:

— R () 8k
de ~ 1+B(T)m
| =8k . (3.36)
D Sk Sk
1+a(0)Bm £+ 2(B(r) 2%)
3.2.5.
The last term to deal with is the sink term %) —_ Recall from Section 2.3:
sin
ansink(v) _ 1.67
a1 R KcoC(v)n(v) (3.37)
A 1 Y 5 1
C(v)=1+\7—4§nv 3(a+ﬁexp(—z %U?’)), (3.38)

where @ + =1.67,y =0 [8].

Applying the MoM requires multiplying both sides of Equation 3.37 with v* and integrating over the
entire particle size range.

©  dngnk(v) dM, 1.67 © _2
k sink _ k _ k
fo v dv=—=| = _RZTKKCOj[; (v73 +2.690v73) v n(v)dv

Applying Expression 3.2 for k =0,k =1 and k = 2 yields:

e
ar sink —or Kco(M-1/3 +2.69AM_23)
o sink — o Kco(May3 +2.69AMy3)
dM; _ 167

“ar sink 722 Kco(Ms3 +2.69AMy3)

Once more, Equations 3.11 - 3.13 allows closure of the set of ODEs:

AL u -7 2 20 -6 5
Ty = ew Koo (Mg My M +2.69A My M,® M;)

~ o 2 8 - 5 05 o1

G| = HorKeo(Mg M} M," +2.69A Mg M} M, ) (3.39)
~ sin =1 5 5 =1 8 2

dM; 3 as8as0 T g9 s

| = e Koo (Mg MY My +2.69A My My M)
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The final step is to nondimensionalize 3.39 using Expressions 3.20 and 3.21.

dMo _ 1.67 H%ﬁ_%ﬁg -1 (11 ) :
dr lsink  NoR?m 0 1 27 Vg exp (5 In“op)...
0__1__s 4
4 2.67TAMy O My O My® Ugo exp 21n% 7) (3.40)
A
aMy| | 167 (Bl s Olon)..
dr lsnk NorZz{ ° ! 2 UgO exp 2In® o
S vATyAR (3.41)
42, 67/1M0 M;° M, Vgo exp( In2 00) /exp( In2 7o)
=7
dMp| 167 rber i ( 5 on).
dr lsink  NoRZm| ° 1 M2 Vgo exp n’ g
VARIVAIVA (3.42)

-+ 2. 67)1M0 YM; % My?® l)go exp(81n o) /exp(181n o)

I

To maintain clear and understandable notations, the RHSs of Equations 3.40- 3.42 are noted in terms
of I for the remainder of this thesis.

Now that all terms are defined, Equation 3.36 is extended to formulate the expression for the dimen-
sionless time derivative of the k™ moment accounting for coagulation and diffusion for the entire
regime. This is an ordinary, nonlinear differential equation and is numerically approached in the next
chapter.

+ 1, (3.43)

— B(r)-Sk
de_~ [ 1+B(T)2;~lk
dT _gk

5 5 \2
B(T)-2k B(1)-2k
1+a(0)Bm £ +2(Bn) £ )
The dimensionless initial conditions are derived by writing Equation 3.20 in terms of M;:
M (0) = —— Nowk exp(gkzlnzao)zl 0<T<7g (3.44)
Mi(0) 78T 2 ‘

Note, all quantities in Equation 3.43 have been defined in previous sections and an overview is listed
in Appendix B.1.



The ordinary, nonlinear differential equation for the dimensionless k" moment accounting for coag-
ulation and diffusion of nanoparticles for the entire regime is repeated here:

A, 1+ B(1) ngkk

a8k

+l~k (4.1)

- 2 Y
1+a(@)Bm £ + z(B(r)Zngk)
Recall that all terms are defined in Appendix B.1.

Equation 4.1 is too complex to solve analytically, therefore the solution is approximated using numeri-
cal methods. To do so, the model applies the Forward Euler- and Modified Euler numerical discretiza-
tion method, explained in Section 4.1. The corresponding stepsize At is analyzed to obtain a value
which is computationally attractive and which leads to acceptable truncation errors in Section 4.2.
The accuracy of the implementation of the model is analyzed by estimating the order of the error in
Section 4.3 and the computational efficiency is presented in Section 4.4. A motivation for applying
Forward Euler is given in the final section.

4.1.

To maintain simple notations, the right-hand side of Equation 4.1 is joined to formulate one nonlinear
function fi. The corresponding first - order initial value problem yields:

E — F M. M Mo —
{il Jew, Mo, My, M) >70, K=10,1,2) w2
Mi(t9) =Myy
Integrating and approximating the solution for a discrete timestep 7, obtains:
_— _ Tn+l _ —
Mk,n+1 :Mk’n+f fk(T,Mo,Ml,Mg)dT (4.3)
Tn

The integral in Equation 4.3 considers only one time interval, therefore single-step numerical methods
are used to approximate the solution [30]. Forward Euler is a relatively simple, explicit method and is
initially applied to the model. It approximates the step by multiplying the step length by the derivative
at the start of the interval [16]:

Mi ps1 = My + AT fie(Tn, Mo,y My, M ) (4.4)

Modified Euler is another easy to implement, explicit numerical method and has a higher accuracy
when approximating the solution.

predictor: M\;,*nﬂ = M. + AT fi (1, Mo, My, M2 )

— — AT ~ —~ —~ —~ ~ —~ % —~ % —~ %
corrector: Mk,n+1 = Mk,n + ?(f(anMO,n’ Ml,n; M2,n +f(T}’lrMO'n+1)M1,n+11M2'n+1)) (45)

23
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Both schemes are implemented in the model and analyzed in terms of stability, accuracy, running
time and their impact on results.

4.2.

An input of the model that has no physical representation (in contrast to the initial concentration or
tube length) but that is of great importance for the performance of the model, is the dimensionless
stepsize At. Itis dependant on the dimensional stepsize by:

AT = ]’lNoKCO,

where £ it the stepsize:
IR
h=—
S

Here, tz is the residence time and S' is the total amount of steps.

A first estimation for / is done based on the physical problem. A typical residence time is approxi-
mately equal to one second. Obviously, a stepsize of i = 0.5s is unsuitable. Furthermore, the stability
of the model is determined by At, which is defined by the product of i, Ny and the coagulation con-
stant K¢,. Test runs were performed to derive a stability condition. Computational errors prevented
the model to finish calculations if the stepsize is taken too large for large Ny. Table 4.1 lists the results
for stability tests which were performed for both schemes?. This leads to an empirical condition for a
stable stepsize which is Ny-dependant.

Forward Euler hNy <1 x 10 (4.6)

Modified Euler hNy <2 x 10" 4.7)

Euler Forwards Modified Euler

Test Np [m~] h S stability h S stability

1 1x107 | 1.14x1073 441 yes 2.08x1073 241 yes
2 1x10Y7 | 1.16x1073 431 no 2.17x1073 231 no
3 1x10%® | 1.22x10™ 4101 yes 2.38x 1074 2101 yes
4 1x10'% | 1.25x107* 4001 no 2.5%x107% 2001 no
5 1x109 | 1.22x107° 41001 yes 2.38x107° 21001 yes
6 1x1019 | 1.25%x107° 40001 no 25%x107° 20001 no
7 1x10%0 | 1.24x1076 400001 yes 2.38x 1078 210001 yes
8 1x10%0 | 1.25x107® 390001 no 2.5%x1076 200001 no

Table 4.1: Stability tests for various Ny and h

1n numerical mathematics, the total amount of steps in a numerical problem is usually noted with N. However, this thesis
already defines N as the total concentration of nanoparticles. To avoid confusion the total amount of steps is notated with S
in this research.

2Note, K¢, is gas dependent and was calculated for argon during these tests. Conditions 4.6 and 4.7 may need to be redefined
for other gases.
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THEORETICAL ANALYSIS OF h
[30] states that the stepsize F is stable if the order of the global error of the numerical method can be
estimated by:

My t,ni2 — M, t,n

~2P, (4.8)
Myt hia — Mt ni2

where My, is the solution computed by the model at time ¢ using stepsize h and p is the order of
the numerical method (p = 1 for Forward Euler, p = 2 for Modified Euler). Equation 4.8 is called the
linearity test and is executed using Richardson Extrapolation [30].

The linearity test is performed for the maxi-

mum stable stepsize under the conditions 4.6 Richafgs'zfé’;;’;’:;ilaﬁon

and 4.7. It is met for over 98% of the time INO = 1e417 »
for both methods. The remaining 2% are out- s !
liers. This occurs when two values in Equa-
tion 4.8 differ by many orders of magnitude
and cannot be treated correctly by floating-
point operations [31]. These outliers decrease
for smaller timesteps and do not indicate any
instability of #. An example is shown in Fig-
ure 4.1, where the linearity test is performed L N—

for the first moment computed with the For- . — .
ward Euler method. o h time [s] o

=
o

Test result
N w » w
o o o o

-
o

o
o

Figure 4.1: Richardson Extrapolation performed on M; for Eu-
ler Forward.

THEORETICAL ANALYSIS OF AT
For most ordinary differential problems, both numerical methods obtain equivalent stepsize stability
conditions. However, this is shown not to be the case in the present study. In theory; it is possible to
compute the exact stability of the stepsize At [30]. For this it is necessary to compute the eigenvalues
A = p+iv of the Jacobian matrix:
oMy OM; OM;
o= |9 oh an
"T oM, oMy OM:
Sh Ok Of
oMy o0M; oMl

The theoretical stability conditions for At are defined by:

Forward Euler: [1+AT|<1 (4.9)

1
Modified Euler: |1 +AT+ 5 (ATA)? <1, (4.10)

Im(az2)

The corresponding stability regions for the com-
plex hA-plane are shown in Figure 4.2. The ex-
tent and the non-linearity of Equation 4.1 makes
the analytical computation of the Jacobian and its

Re(ard) eigenvalues unfeasible. However, the difference in
stable stepsize observed in Table 4.1 implies that
the eigenvalues are complex, since real eigenvalues
yield equal stability conditions for the two numer-
ical methods.

Figure 4.2: stability regions for A7 on ATA-plane
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4.3. ORDER OF ERROR
A model is stable if a small deviation of the input parameters gives a small deviation of the solution
[30].

Definition 1 The global truncation error is the cumulative error caused by many iterations and defined
as:
en=Yn— Wn, (4.11)

where e, is the global error after n time steps, y is the exact solution and w is the numerical approxi-
mation of the solution.

The global errors are computed for both schemes at n = S (i.e. at time #g) for h, g, %, %, 1_he’ % By
absence of an analytical solution, the "exact" solution is approximated using a stepsize which is one
thousand times smaller than the original stepsize: hexact = ﬁ. Both models use the same initial
conditions:

No=1x10"7, tz=0.5s, h=0.001
The relative error & is obtained by scaling the global error with the exact £ moment at time 5.

|Mk,tR,exact - Mk,tR,h|

€k,h = 4.12)

M, k, tg,exact

The global and relative error of Euler Forwards is O(h)[30], meaning that the error is proportionate to
the stepsize h. Figure 4.3 shows indeed that the numerical error resulting from Forward Euler obtains
the same slope as the stepsize (blue), complying with the theory. Modified Euler obtains an error of
O(h?), meaning that the error is proportionate to 2. In other words, given stepsize h with error é, then
the halved stepsize h/2 yields a numerical error of é/4. This corresponds with the results in Figure 4.3.

Global Error
_, N0 =1e+17
= 107° {tres = 0.5 .
= h-0.001 )
I .
g .
=
g 10—3 4
= Mo, FE
w
o —-—- My, FE
s_ e M-, FE
o 1074 4 2
3 — My, ME
< —-—- My, ME
N Rt M, ME
107" 5 —— stepsize h
h/32 h/16 h/8 h/4 h/2 h

stepsize h

Figure 4.3: Global Error for Forward Euler and Modified Euler numerical approximation methods.
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4.4.

The efficiency of the model and numerical methods is analyzed in terms of computational time.
Model runs were performed for three initial conditions which correspond to a range applicable for
the VSP-G1. For each test, the maximum stepsize was used according to Conditions 4.6 and 4.7.

Computational time [s]
Np [Im~3] | Forward Euler Modified Euler

1x 108 1.1 1.13
1x10' 10.4 10.7
1x 1020 111.7 115.8

Table 4.2: Computational Efficiency tests

Table 4.2 shows that the computational time is proportionate to the initial concentration. The maxi-
mum running time is just under two minutes, which is acceptable for this study.

4.5.

The Modified Euler numerical method is proven to be more accurate in terms of numerical errors than
Euler Forward. However, Euler Forward is simpler to implement and slightly faster than Modified Eu-
ler, hence computationally more attractive.

Moreover, the model is based on a list of assumptions to approximate the actual behaviour of hun-
dreds of billions of nanoparticles. The errors originating from these assumptions are quantified in
Chapter 6 and estimated to be considerably larger than any numerical error. Therefore, the contri-
bution of the Modified Euler method in terms of model accuracy is negligible, allowing the Forward
Euler method to be sufficient for this research.






It is important to validate the model with theoretical results. This chapter uses various works of Lee
et. al. to test certain aspects of the model.

In 1984, Lee et. al. [6] used the method of moments to obtain a particle size distribution for aerosol
particles in a closed space in the free molecular regime. Characterizing parameters such as the di-
mensionless particle concentration N/Ny, mean geometric volume vg/vgo and geometric spread of
the size o were used to reconstruct the dimensionless PSD. The results obtained from Lee’s research
are used to validate the mathematical model of the current research. In theory, when coagulation
occurs in a closed space the corresponding particle size distribution approaches a log-normal size
distribution with constant geometric standard deviation o, [1]. This principle is tested in Section 5.1.

The transition regime is implemented using the set of ODEs derived in Section 3.2.4 and tested by
analyzing the characteristic, asymptotic behaviour of the geometric standard deviation. Section 5.2
quantifies the impact of adding the transition regime to the original model.

The sink term is analyzed with respect to previous research conducted by Lee and Gieseke 22 in Sec-
tion 5.3. Diffusion effects are computed to determine its theoretical impact on nanoparticle growth.

Note that all parameters in this chapter are in dimensionless form, scaled to their corresponding val-
ues at ¢ = 0. The initial values used in the theory are unknown to the present study. Therefore, the
scales obtained in this study may not comply with the theoretical plots in absolute sense. Still, the
model is sufficiently validated when obtaining equivalent qualitative behaviour between theoretical-
and computed results.

5.1.

The model in its simplest form simulates pure coagulation of spherical nanoparticles in the constant
free molecular regime and neglects diffusion effects. It obtains the following format for the Smolu-
chowski equation:

on(v, t) 1

———f ﬁp(l/,y—v’)n(v’,t)n(v—v’,t)dv/—n(v,t)f Brw, V) n', Hdv'
ot 2 Jo 0

29
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which is converted to a set ordinary differential problem in Section 3.2.2. Recall Equations 3.23 - 3.25:

d M, __ 151 __ 13 __ 19
20 B[ My My M, exp(—ln 09)...
dTp
+21\7foﬁlf/f%1\‘/fzﬁexp[ In®0y)
L7 __u__ s
A+ My M BM, exp( In®0y)
dM,
=0
dTF
dM, 1 __a
y 2 =2B(1)| My ™ M, * M, exp(—ln 00)...
TF

7

for 0 < 7 < Ty and initial conditions:

My(0) =

Ny=1
My (0)

— 1
M;(0) = MO ——— NoVgo exp( In0p) =1

1
0 Nov2yexp(18In%og) =1
Ma(0) = M(O)Ogo p( 0)
The plots in Figure 5.1 are derived by solving equations listed above and correspond to those obtained
from Lee et. al [6]. The results show equivalent trends and are even comparable in absolute sense,
confirming a correct implementation of the method of moments.

Dimensionless total
particle concentration

1.04 — op=1
—_— 0p=1.5

— 0p=2

0.8 — =25

0.6 1

N/No

0.4 4

0.2 4

Material = Au
restime = 0.07 (s)
No= 1.00E+17

10-? 10! 10° 10t
T = Nov/®Kst

Dimensionless geometric

mean particle volume
14

Material =
restime = 0.07 (s)
No= 1.00E+17

124

N

104

Vg/Vgo

44 — 0p=1
— 0g=15
24 — 0p=2
— 09=2.5
0 T '0 N ! L . N . M
10 10 10 10 Z T

i 2x10 10" 1o o'
T = NovyKet |
0 KvEN
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geometric standard
deviation

2.5 1

Tp25

2.0 1
20

Material = Au
restime = 0.5 (s)
No= 1.00E+17

L1l 1 Lol L L1l L 1ol ! Lol
240° 02 [5 10° 10 10

|
KvgoNot

10°3 1072 107t 10° 10t 102
T=Novg/®Ket

Figure 5.1: Computational model (left), theory from [6] (right), both free molecular regime.

SELF-PRESERVING SIZE DISTRIBUTION

When coagulation occurs in a closed space, it is possible to write the PSD in dimensionless form [3],
becoming invariant with respect to time. The dimensionless PSD approaches a log-normal distribu-
tion with a constant geometric standard deviation o, = 1.355 as t — co. The so called self-preserving

size distribution (SPSD) is a function of the dimensionless volume 1 = -%:

Vg

n(v)v 1 [ —1In®(n) ]
= = 5.1
vy 3V27inos, 181n? (00o) &b

where vy is the geometric mean particle volume and N is the total particle concentration. An equiv-
alent, time-dependent form of the distribution function is derived when writing the PSD defined in
Equation 3.9 in terms of N/N(7) and v/vg(7),

—In® (v/vg(1))
181n? (0 (1))

n(v,r)v_ 1 ex
N(@)  3v2rlno() P

(5.2)

The dimensionless particle size distribution computed by the model is expected to approach Equation
5.1. The time required to reach the SPSD depends on the dispersity of the initial size distribution
0 and initial particle concentration Ny. Figure 5.2 shows that the model satisfies the property of
approaching a self-preserving size distribution with 0.

Dimensionless particle
size distribution

0.12
0.10 A
< 0.08
=
=
S 0.06
<
0.04] — t=0001, 0=179
— t=01, o=152
—— t=1, 0=139
.02 1
0:029 _ i_s o-136
0.004 =~ SPSD S5
0.1 0.2 0.4 1 2 a4 8

V/vy(t)

Figure 5.2: Dimensionless particle size distribution converges to the self-preserving size distribution for initial conditions: Ny =
lel7, oq = 1.8 after around 1s.
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5.2. TRANSITION REGIME

An important element to incorporate in the model is the effect of entering a new regime. Once the
particle diameter exceeds a value of five nanometers, the collision frequency kernel will gradually
shift from free-molecular to transition [9] due to increasing continuum effects. The implementation
of the transition regime required the introduction of B(r) which converts the dimensionless timestep
7r (Recall Section 3.2.4). To the best of our knowledge, this method for the implementation of the
transition regime is new to this field of research, therefore a proper validation process is necessary.

The geometric standard deviation is characterized by its asymptotic behaviour regardless of the regime
an aerosol originates from [7] or the initial dispersity. The value of the asymptoot characterizes the
regime in which nanoparticles endure (Figure 5.3). In the free molecular regime, the geometric spread
starts at 0 = 1.335, then decreases a bit in the transition regime before climbing to 1.320 in the con-
tinuum regime. The equivalent behaviour is shown for the computed geometric standard deviation
using Bp for the regime range applicable for this research.

Lee et. al.
Kng = 10000 Kng =10 | Kng=0.1 |
1.6 T
15 \ ‘
1.4 ‘ ‘
5 —77 owr =133 |
1.3 looe = 1.320
12 |
1.1 | \ \
Kng = 10000 Kng =10 Kng=0.1
o | | |
10" 10° 10° 10° 7

- w(T' 10" 1?‘ 10
NoKeot

free molecular —>l<— transition %‘e near continuum %‘%continuum

Model |

1.6
‘ — 0p=1.0

15 —_— 0p=15
: — 0p=2.0

‘ — 0p=2.5
14

b 13
1.2

1.1

1.0
1072 107t 10° 10t 102 103 10*

T=NoKcot

Figure 5.3: Asymptotic behaviour of geometric standard deviation generated by [7] (top) and model (bottom). Note, different
x-scales are due to unknown scaling conditions in [7].

Note, to compute o up to the continuum regime, the model requires the incorporation of a logarithmic
increasing computational stepsize. Instead, this research choose to use another validation approach
by analyzing the physical behaviour of entering the transition regime in the next section'.

1A third validation method using the geometric standard deviation that ensures equivalent x-axis values is discussed in Chapter
7
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ENTERING THE TRANSITION REGIME VS. REMAINING IN THE FREE MOLECULAR REGIME

Since it is known that the expression for fp gradually shifts from Br to Bc,, the transition model
should provide the same results as the free molecular model for small particles (d, < 5nm). In other
words, particles haven't "entered" the transition regime yet and the kernel is not affected by contin-
uum mechanisms. This hypothesis is shown to be true in Figures 5.4a and 5.4b where the initial parti-
cle concentration is 1 x 10'# particles per m~3 and the residence time is 0.5s.

By increasing the initial concentration to Ny = 1 x 10'9m™3, the chance of particle collisions and fusion
increases significantly (Figures 5.4c and 5.4d). The result is a faster decrease in particle concentration,
and an overall increase in particle diameter.

Particles gradually enter the transition regime around the dotted line. Under these conditions and
after a residence time of 1s, there is no visible difference between the two models in terms of particle
concentration (green). However, there is a sufficient distinction when analyzing the particle diameter
growth over time (black). This concludes that the transition regime is especially important to take into
account when aiming to control particle sizes at nanometer accuracy.

Dimensionless concentration-, Dimensionless concentration-,
geometric diameter- and spread geometric diameter- and spread
1.0001 207  pli4 10007 2.07 114
Model = free model = transition
0.975 4 Material = Au 2.06 F1.12 0.975 4 Material = Au L 2.06 F1.12
restime = 0.5 (s) restime = 0.5 (s)
No= 1.00E+14 No= 1.00E+14
0.9504 "° 205 F1.10 0.9504 2.05 1.10
o 0.925 2.04 3 [1.08 o 0.925 2.04 g F1.08
= 3 o = 3 S
S 2 S S
0.900 2.03 ° | 1.06 0.900 2.03 1.06
0.875 4 2.02 1.04 0.875 2.02 1.04
0.850 1 2.01 1.02 0.850 2.01 1.02
0.825 - : ‘ ‘ 2.00 1.00 0.825 : : . 2.00 1.00
1073 1072 107t 1073 1072 107t
time [s] time [s]
(a) Free molecular regime, Ny =1 x 1014 (b) Entire regime, Ng = 1 x 1014
Dimensionless concentration-, Dimensionless concentration-,
geometric diameter- and spread geometric diameter- and spread
] 120 ] 80 1.35
Lo Model = free r135 Lo model = transition
Material = Au Material = Au 70 L130
restime = 1 (: 100 t1.30 restime = 1 .
0.8 0.8 No= 1.00F 60
F1.25
80 F1.25
50
0.6 1 0.6 1 L
. s F1.20 s [120
3 60 T ) g 403 o
B < = s F115
0.4 115 0.4 30
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1.10 20 1.10
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(c) Free molecular regime, Ng =1 x 1019 (d) Entire regime, Np = 1 x 1019

Figure 5.4: Characterizing dimensionless parameters N/ Ny, d/dy and o under various Ny in m~2 for the free molecular regime
(left) and the entire regime (right).

5.3. DIFFUSION EFFECTS

Now that the transition model and the implementation of the method of moments is validated, it re-
mains to study behaviour of the sink term. The penetration of aerosol in transport is defined as the
percentage of the total initial particle concentration that is not deposited onto the tube wall through-
out the time of transport. Lee and Gieseke presented an approach using the method of moments for
calculating the fractional penetration of a log-normally distributed aerosol in a circular channel [8].
The current research nondimenionalized Lee’s set of ODE'’s and converted it to be dependant on time
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instead of space. Recall the moment equation consisting of diffusion effects only from Section 3.2.5
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Solving this ordinary differential problem results in Figure 5.5a. These computational results are used
to validate the sink term with theoretical results obtained by [8] in Figure 5.5b. Though the two plots
do not match in terms of absolute values due to different values for tube radius R and time ¢ (= flow
velocity u and tube length z in theoretical definition) the trends definitely agree, implying a sufficient

implementation.

Dimensionless concentration and total volume
under pure diffusion effects

N/No|
— — — V/Vo

N/No, V/Vo

— 0p=1.0
—_ 0p=1.6
— 0p=2.5
10°° 10-° 1074 1073 1072 = S 3 B
T=NoKcot Log (4117 2/R2 )
2 3 4 5
4.117t
l0g10(*47)
(a) dimensionless parameters computed by the model (b) dimensionless parameters by Lee an Gieseke

Figure 5.5: Diffusion effects on the dimensionless total particle concentration (-) and dimensionless particle volume (- -) for
various 0. Computational results (left), theoretical results (right) [8].
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IMPACT OF SINK TERM

The addition of the sink term should generate a larger decrease in particle concentration and break the
preservation of total particle volume (represented by M;). Figure 5.6 shows the impact of the sink term
on the course of four critical parameters over time, for two initial concentrations (black and green).
Overall it is shown that diffusion has a greater impact on aerosol with relatively small Ny, suggesting
that the impact of diffusion is not proportional to the particle concentration.
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Figure 5.6: Diffusion effects on nanoparticle properties after 1s for varying Ng in cm™3

For an initial concentration Ny = 1 x 101°cm™3 (black), the affect of particle diffusion influences the
particle growth (Figure 5.6d). Incorporating diffusion results in a mean particle diameter of 6 nm after
1s, while neglecting the sink term allows particles to grow to 10nm in diameter. Figure 5.6b shows
that the total particle volume is preserved when diffusion of nanoparticles to the walls is excluded.
Logically, this property ceases when the sink term is included. For aerosols with small initial concen-
trations all particles have endured diffusion effects after a certain amount of time, leaving almost no
particles in the aerosol concentration. The result is a sudden decrease in geometric standard devia-
tion, disregarding its asymptotic behaviour (Figure 5.6c).



36 5. VALIDATION WITH THEORETICAL RESULTS

1e13 psd at around t=0
4.0 - . — with sink
r=1-107s ——~ without sink
3.5 A
m 3.0 Material = Au
IE No =1le+19
2 2.5 0o=1.0
C
il
= 2.0 4
T 1.5
v
s
O 1.04
0.5 A
0.0
0.1 0.2 0.3 0.4 0.5 0.6
particle diameter [nm]
1e7 psd at around t=tg
7 A o — with sink
6 ——- without sink
5 Material = Au
‘E No=1le+19
A 0o=1.0
c 4
o
©
5 31
C
[J]
g
S 21
o
1 -
0 4
2 4 6 8 10 12 14

particle diameter [nm]

Figure 5.7: particle size distribution for various moments in time, Ny in m™3

The green plots in Figure 5.6 are computed results with initial conditions corresponding to the stan-
dard settings of the VSP-G1. Since the values for both models (with- and without sink) overlap, it is
stated that under these conditions, diffusion implemented according to [8] has no significant affect
on the characteristic properties of the aerosol. Never the less, the values for N, d,, and o are used
to construct the particle size distribution for various moments in time, shown in Figure 5.7. The top
graph analyzes the first period of the residence time while the bottom graph zooms in on the last few
tenths of the second. Though the effect is minimal, over time the PSD slightly skews to the left when
including the sink term. This corresponds to the physical mechanisms in the VSP-G1: the longer the
duration of particles inside the system, the more particles diffuse towards the wall, leading to a lower
concentration of interacting particles, hence a lower particle growth rate.



Now that model complies with the theory, the model is tested to comply with the output of the VSP
nanoparticle generator. This is done by comparing numerical results obtained from the model with
measurements obtained from actual experiments.

Twenty experiments have been performed to obtain the mode, the total concentration and the geo-
metric standard deviation of the particle size distribution for various VSP-G1 settings. The mode is
equal to the particle size with the highest concentration (i.e. the local maximum of the PSD). The ex-
perimental results were compared to the model predictions using initial conditions that are based on
the experimental settings. In order to obtain the same format for the particle size distribution as that
of the model, the raw measurements undergo a data conversion. This validation process is described
in detail in Section 6.1.

The initial conditions for the model are computed by means of approximation formulas which are in
direct relation with the settings of the experiment. Recall that the model is deterministic, meaning that
it ignores random variation, and will always predict the same outcome from a given input ?? (i.e. sys-
tem settings). Nanoparticle growth is influenced by Brownian Motion. Consequently, the probability
that the VSP-G1 will output the exact equivalent aerosol composition for multiple experiments with
constant system settings is extremely low. Therefore, upper and lower bounds for the model output
are computed by taking uncertainty factors for the initial conditions into account. The approximation
formulas and corresponding uncertainty factors are introduced in Section 6.2.

Next, the experimental and model results are presented in Section 6.3, completing the validation pro-
cess. A suitable relation is presented between the VSP-G1 settings for power and flowrate, and the
mode of the PSD. Accuracy ranges are presented for the mode, total concentration and geometric
standard deviation in terms maximum deviation between the modelled predictions and experimental
results.

Section 6.4 compares the modelled increase in geometric mean particle size over time with a theoret-
ical formula corresponding to pure, monodisperse coagulation [1]. When assuming that the model
predictions hold a sufficient accuracy, a corrected formula is presented for the evolution of the parti-
cle size.

The results presented in this chapter provide an improved scientific understanding of the VSP-GI1,

insights on the sensitivity of the main input parameters, and can perform as an operational guide for
the particle generator.

37
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Figure 6.1: Experimental validation process.

6.1. PROCESS
The input for the model is derived by means of the following approximation formulas':

maNpP
OZ_AQA : 6.1)
t —K (6.2)
R QY .

where m, is the material dependent ablation rate in [mol/J], N, is Avogadro’s number, P is the power
in [J/s], Q is the flowrate in [m3/s], and V is the combined volume of the VSP-G1 reactor chamber, the
tube and the measuring system itself. Most parameters in Formulas 6.1 and 6.2 follow directly from
the experimental input settings (see Figure 6.1). In contrast, the ablation rate is derived empirically
from mass measurements which were performed parallel to particle size distribution measurements
of the gas.

1Derived in collaboration with VSPARTICLE engineers
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The size of nanoparticles can be measured using direct or indirect methods. Direct methods are based
on microscopy and indirect methods are based on the interaction of these particles with electromag-
netic fields. An indirect method is used in the current research. Indirect methods can directly measure
an aerosol but always a derivative property is measured and not the actual size. This complicates anal-
yses of particle size distributions and prevents a direct comparison with the model. Therefore, data
transformations are needed to convert the "raw" data to match the format of the model. Alog-normal
fit extracts the critical parameters: mode djy, total concentration N(fz) and geometric standard devi-
ation o. Note, the mode is computed with the geometric mean size and o [32]:

dy =exp(Indg — lnaz) (6.3)

6.1.1. EXPERIMENTAL SET-UP

The experimental set-up is shown in Figure 6.2. Nanoparticles are produced in the VSP-G1 (A) and
transported through a tube (B). The electrical mobility of charged particles in an electric field is mea-
sured by a Differential Mobility Analyser (DMA) (C).

The electric mobility is the velocity of
a charged particle in an electric field
of unit strength. The DMA is con-
nected to a Faraway Cup (D), which
detects charged particles by measur-
ing the current. A flowbox (E) analyzes
the data in terms of particle sizes.
When this procedure is performed in
scanning mode (by ramping the volt-
age and grouping the particle sizes in
bins) the setup is called a Scanning Figure 6.2: Experimental Set-Up. VSP-G1 (A), tube (B), SPMS (C-E)
Mobility Particle Sizer (SMPS) .

Twenty experiments where conducted using gold electrodes and argon gas. The tube was extended
right to the spark via an insert with the equivalent diameter to the tube d; = 0.4cm. The use of an
insert minimizes the volume in the reactor chamber and reduces the possibility of turbulent flow.
While the tube with length 9cm is fixed, the power P in [J/s] and flowrate Q in [[lpm] were varied per
experiment.

P=]1,2.8,54,8.8,13]

Q=19,7,5,3

Unfortunately the VSP-G1 ran into some issues for most of the experiments with Q = 51pm, therefore
all corresponding measurements are excluded from further analysis. This results in 15 usable empiri-
cal values for the mode, total concentration and geometric standard deviation (see Figure 6.1).

In parallel, mass measurements were performed to determine the ablation rate of gold electrodes
under conditions applicable for this experimental set-up. Spark ablation causes a microscopic part of
the electrode to vaporize into an aerosol. The ablation rate corresponds to the amount of material in

[mol/]] and is defined as:
_ Melloss N A

ma ) (6.4)

mm, P

where m,| joss is the "ablated mass" in [g/s] and is quantified by weighing the electrodes after each
experiment. Furthermore, m,, in [g] is the mass of one atom.

Note, for both the experiments and model, the inputs and results corresponding to all 15 experiments
are listed in Appendix C.1.

2Note, the flow rate must be converted to [m3/ s] before it can be inserted into Equation 6.1.



40 6. VALIDATION WITH EXPERIMENTAL RESULTS

6.1.2.

The SPMS produces raw data that requires a number of procedures to reconstruct the particle size dis-
tribrution in the desired format. First, the electric mobility is converted to a particle diameter based
on the mass dependence of the mobility. This affects the x-axis of the PSD. The data corresponding
with the y-axis requires three steps. Then, the particle count per bin is normalized by dividing by the
binsize, this ensures that each bin covers the same particle size range. Next, the particle concentra-
tion is calculated by taking into account the volumetric flow rate of the carrier gas. Finally, the total
aerosol PSD (including non-charged particles) is reconstructed by applying Wiedensohlers’ charge
distribution[33].

Measuring particles based on their electrical mobility is a common technique used in chemistry and
aerosol science. It is based on charged particles that are subject to an electrical field that influence
their orbits. Using Stokes law that calculates the drag force, the relation between the mobility and the
particle diameter is given by the Millikan mode (standardized in ISO 15900): [34]

d= neC(Kn)

6.5
3nnZ (65)

where ne is the particle charge, C(Kn) is the Cunningham Slip Correction factor, 7 is the gas viscos-
ity and Z the electrical mobility. These parameters depend on the gas type, the temperature and the
pressure.

For small nanoparticles the diameter of the gas molecules dg also plays a role, and by subtracted it
from d, the diameter of the solid particle is defined:

dy=d-dg

The software used in this experiment converts the mobility to a particle size using argon as carrier gas.
A scaling factor is used to compute the mobility diameter for other gasses as well:

_ C(Kn)ar - Ngas x

= d—d (6.6)
C(Kn)gasx * Mar &

p
As explained in Section 2.5, agglomerates start to form for large residence times. This conversion uses
the empirical relation between the agglomerate diameter d,g and corresponding singlet diameter d;
[? ]. The measured particle diameter of an agglomerate (hence let d, = dg) is converted to a diameter
corresponding to a sphere of the equivalent mass d.;.

dag 1/F
diF )

where F is a function of agglomerate diameter dg:

dclz(

F=(@3/Dp-1)(1-e “as=4) 41 for dgg > ds
F=1 for dug < ds,

where Dy = 2.18 holds for conditions applicable for the VSP-G1.

The charged particles enter the Faraday Cup and impact on a metal plate, causing a minuscule cur-
rent. This current is measured and translated into a number of particles. After the counted particles
are corrected per binsize yraw(dp), they are converted to a concentration by dividing by the volumet-
ric flow rate Q. Throughout the experiment, the flowrate through the DMA was kept fixed by using a
critical orifice  of 0.7911pm. The preliminary result obtains a size distribution of only the charged
particles.

3 ritical orifice flow devices are used to maintain a constant flow rate under varying load conditions. [35]. During this experi-
ment, the aerosol through the DMA maintains a constant flow rate of 0.7911pm.
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An empirical expression to convert a charged distribution to a total particle size distribution is derived
by Wiedensohler [33]. The approximation formula for the charge distribution is:

5 2 me(loe 22 )
f(ne) — 10[Zi=0 a;(ne) (lOg nm) ], (6.7)

where f is the percentage of particle size d,, that carry ne charge units?. For the current research the
DMA was set to attract particles with charge ne = +1, which corresponds to the following coefficients:

ap a ap as ay as
-2.3484 0.6044 0.48 0.0013 -0.1553 0.0320

Table 6.1: Coefficients for a; in Function 6.7

The SPMS has settings which make it possible
to output a particle count that directly com-

pensates for the uncharged particles, yielding
e aneerfunction so called "corrected data". The SPMS trans-
fer function is initially unknown but is de-
rived by dividing raw- by corrected data, it is
plotted against Equation 6.7 in Figure 6.3 to
test both functions. It is shown that both

Two transfer functions
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Figure 6.3: y-data transfer functions f(ne) . . . . .
resulting in the concentration per particle diam-
eter N(dp) in [em~3]:

1J’raw(dp)
—_— 6.8
Q IO ©8

Last, a Savitzy-Golay filter is applied to compensate for any unwanted noise from the Faraday cup.
This is a digital filter for the purpose of smoothing data and is achieved by fitting successive sub-sets
of adjacent data points with a low-degree polynomial by the method of linear least squares [? ].

N(dp) =

6.1.3.

For proper empirical results, the experimental process shown on the left side of Figure 6.1 requires an
accurate measuring system and a reliable data conversion method. Though both are well-thought out
of, it is necessary to identify possible factors that could affect the accuracy of the measurements:

* The efficiency of the Faraway Cup, defined by the percentage of correctly counted charged par-
ticles, is unknown.

* The accuracy of the conversion from a charged particle concentration using Wiedensohler is
questionable. Figure 6.3 shows two transfer functions. Applying either one could affect the con-
centration with as much as a factor two (especially for particles with lower mobility diameters).

* A high DMA measuring rate (a fast changing electrical field) may result in overlapping particle
size measurements. Even though a slow DMA rate of three minutes is used for all measurements,
overlaps in particle size measurements may still occur.

4In this approximation formula, ne corresponds to the charge unit of the measured particles and ot the total particle concen-
tration.
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6.2.

The initial conditions for the model Ny (6.1) and fz (6.2) are approximated, not measured. The log-
ical next step is to identify uncertainty factors that could induce deviations between the actual- and
approximated values. These uncertainty factors are quantified by measuring fluctuations, making
well-founded estimations and by mathematically analyzing the empirical data. Once quantified, it
is possible to incorporate them in the model by calculating upper and lower bounds for each PSD
parameter.

6.2.1.
Recall the approximation function for the initial concentration:
maNaP
NO = #
Q

Various uncertainty factors on Ny are identified here and analysed below.

¢ The ablation rate is computed by mass measurements and its corresponding standard deviation
is transmitted to the uncertainty on Njy.

¢ Power fluctuations are measured by the VSP-G1 and directly indicate a 15% possible deviation
on Ny.

* Based on previous experiments, other less quantifiable factors are estimated to have a combined
deviation on Ny of 5%.

The approximation formula for N states that the number of ablated atoms is linearly dependent on
the power P. A previous mass experiment validates this assumption by showing a linear relation be-
tween the mass loss of the electrodes (ablated material) and the power of the VSP-GI.

Mass loss of electrodes
3.0

4 measurements
— trendline

2.5

Mass loss [mg\h]

Power [J/s]

Figure 6.4: Hourly mass losses of gold electrodes for various power settings for Q = 2lpm.

Recall the ablation rate:
Me],loss Ng
mp=——
mm, P

The expression for m, suggests that the ablation rate is primarily power and material dependant.
However, experiments suggests that the flowrate also plays an import role. Therefore, the current
experiment measured mass losses for various flow rates. Since the linear dependence on the power
was already proven, it was sufficient to conduct four mass measurements varying in flowrate but using
a moreover constant power of P = 5.5]/s. The results turned out to fluctuate randomly with no direct
relation to Q (see Table 6.2):
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flow rate Q [Ipm] ‘ power P [J/s] electrode mass loss [mg/h] ablation rate [nmol/J]

9 6.03 2.4 0.561

7 5.09 1 0.277

5 5.50 0.9 0.231

3 5.20 3.5 0.950

average 0.504
standard deviation 0.33

Table 6.2: Results from mass measurements for varying flow rates using gold electrodes and argon gas.

It follows to use an ablation rate of m 4 = 0.504 J/s in the validation process. Furthermore, its corre-
sponding standard deviation is used to quantify the deviation of Ny in Equation 6.1.

POWER

The power P in [J/s] is determined by the current I and the voltage V settings of the VSP-G1:

P=IV (6.9)

Uncertainy factor on Power

due to fluctuating inputs
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2

Figure 6.5: Standard Deviation of Power [%]
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Both inputs are observed to be unstable sources. Measuring the fluctuations and using Equation 6.9
quantifies the deviation on Ny. Figure 6.5 shows the measured power deviations in percentages. The
majority is situated under 15%, independently of P. This has a direct affect on the initial concentration
and it follows to take the same deviation on Ny into account for further calculations.

OTHER UNCERTAINTIES

A less measurable factor of uncertainty is the deposition of particles onto surface areas inside the sys-
tem that are not taken into account in the model. Examples of such areas are the electrode holders
and the adapter between the G1 and the tube.

Figure 6.6: Deposition of particles on the electrode
holder inside the G1

Note that for cross flow the diameter inside the reactor
chamber is approximately 10 times larger than the tube
diameter. This sudden change results in particles de-
positing and sticking onto the surface of the adapter and
is analyzed in Appendix C.2. However, the current ex-
periment uses an insert which minimizes this effect (ex-
plained in Section 6.1.1). Another deviation on Ny could
result from imprecise alignment of the electrodes after
dissembling and reassembling the VSP-G1 in between
experiments. A third possible effect is the temperature
rise of the electrode, which is also expected to influence
the ablation rate m 4. These three factors are estimated
to ensure a merged maximum deviation of 5% on the ini-
tial concentration °.

5Estimated in by VSPARTICLE engineers
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6.2.2. RESIDENCE TIME

Throughout the experimental validation process, the residence time corresponds to the total duration
of a particle inside the system, from spark to measuring moment. It is approximated by dividing the
total volume, consisting of three main components (shown in Figure 6.7), by the flow rate Q.

_ Vi+Vo+ V3
Q ’

where V; = 0.9cm? is the volume of the spherical area at the electrode gap, V» = 1.13cm? corresponds
to the tube and insert dimensions, and Vs = 4cm? is the estimated volume inside the DMA.

tr (6.10)

Reactor chamber Tranport tube Measuring system

—».  —

Vi V) V3
Figure 6.7: volume components relevant for the current validation process.

The residence time as approximated by Formula 6.10 could be underestimated for two reasons:

¢ The flow is assumed to be fully laminar while turbulent flow at the in and outlet of the tube can
lead to an increase in fg.

* According to [36], the exact value of V3 is unknown but is somewhere in the range: 4 — 13cm3 .
The lower bound is taken in this study.
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6.3. RESULTS

The experimental results are the mode, mean, total concentration and standard deviation of the par-
ticle size (stars) as a function of power and flow rate. These values are plotted against the modelled
results (dots) computed with corresponding initial conditions. The upper and lower bounds on the
modelled results are computed by taking uncertainty factors for Ny into account. The observations
are discussed with respect to physical phenomena of aerosol theory in Section 7.4.
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Observations:
¢ Results agree within a range of 1 nm.
¢ QOverall higher mode for lower flow rate.

¢ Overall higher mode for higher power
rate.

¢ Better agreement of results for higher
power rate.

Observations:
* Results agree within a range of 1 nm.

¢ Overall higher mean diameter for lower
flow rate.

e Overall higher mean diameter for
higher power rate.

* Range of best agreements varies with
flowrate: where P =3 —5(J/s] for lowest
flow rate, and P = 8 —13[J/s] for higher
flow rates.

Observations:

* Modelled values are consistently lower
than experimental results with a factor
ranging between 1.1 and 6.3.

* Better agreement for lower powers.

e Higher experimental total concentra-
tion for higher power.

¢ Modelled total concentration remains
more or less constant regardless of
power.

e Overall higher total concentration for
higher flow rate.
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ACCURACY RANGES

The results from the validation process provide accuracy ranges for the models approximation of the
nanoparticles production in the VSP-G1, with respect to the particle size distribution. Overall, the
mode is approximated at 1 nm accuracy, the measured total concentration is at most 6.3 times larger
than computed by the model, and the geometric standard deviation is underestimated by a maximum
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Figure 6.9: The model approximates the PSD of nanoparticles produced by the VSP-G1 within a certain range of accuracy.
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6.4. AN IMPROVED FORMULA FOR THE MEAN PARTICLE SIZE
Hinds presented a function for the evolution the particle diameter increase for simple monodisperse
coagulation [1]. Monodispersity implies that all particles have the same size.

dcoagulation(t) = d0(1+N0Kt)m, (6.11)

where m = 1/3, dj is the initial particle diameter (i.e. atomic diameter), Ny is the initial concentration
and K is the coagulation coefficient which is defined by [1] for certain particle sizes and tabulated in
Appendix C.3. Equation 6.11 is a simplified version of the simplest Smoluchowski equation in 2.1, ne-
glecting diffusion. Recall, the model provides a more detailed definition for the coagulation frequency
coefficient depending on the particle size, gas properties and regime (noted as ff in Section 2.2).

Since the model approximates the particle diameter at nanometer accuracy throughout the validation
process, it is interesting to compare Equation 6.11 with the modelled particle size evolution over time.
Figure 6.10 shows a significant gap between dcoagulation ("- -") defined by Hinds [1] and the modelled
results ("-").
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Figure 6.10: (Geometric mean) particle diameter computed by the model dg(): "-", monodisperse coagulation defined by

Hinds (1] d(f)coagulation: "~" and an improved function d(f)new: "-.-". Note, sudden jumps occur in the results computed with
Equation 6.11, these are due to the discrete values for K for a certain particle size range, tabulated in Appendix C.3.

A new, simple and improved formula for the evolution of the particle size is obtained by deviating the
exponent m and the coagulation coefficient K in Equation 6.11 such that the corresponding particle
diameter of the improved formula dpe fits the modelled geometric mean particle diameter dg under
equivalent circumstances. This is performed for various initial particle concentrations resulting in
In (Np) —dependant fit-functions for the coefficients m and K, shown in Figure 6.11.
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dnew(t) = do(1 + NoK )™ (6.12)
m; =-0.011638365612901876
m = my In(Np) + my (6.13)
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Figure 6.11: Fit functions for coefficients m and K for the new formula for particle size increase due to coagulation over time.

Equation 6.12 is used to computed the particle size evolution for three initial conditions in Figure
6.10; Np =1 x 1018 [atoms/m3] resembles the lowest possible concentration produced by the VSP-G1
while Ny = 1 x 10%° [atoms/m?3] corresponds to the largest. Both extremes show an excellent overlap
for dnew(?) ("-.-") and dg (1) ("-").

It concludes that the models approximation for the evolution of the mean particle size can be com-
puted with Equation 6.12. This is useful when a low computational time (< 1 sec) is required, math-
ematical simplicity is preferred, and the interest lies exclusively in the geometric mean particle size
(rather than all properties of the PSD).

For a reversed approach, where the validation process is assumed to be sufficient and the model re-
sults are stated as accurate, Equation 6.12 with Coefficients 6.13 and 6.14 is seen as an improved func-
tion for the evolution of the particle size to that of Hinds [1].



This thesis obtained and validated a mathematical model that tracks the particle size distribution of
aerosol produced by a nanoparticle generator that uses a technique called spark ablation. This chap-
ter discusses certain assumptions, choices and results obtained throughout this thesis with respect to
previous work in this field of research.

Section 7.1 highlights choices for mathematical equations describing nanoparticle growth, the imple-
mentation of the transition regime and the definition for the Cunningham Slip Correction factor. The
motivation for applying the Method of Moments to obtain a solution for the Smoluchowski equation is
discussed by comparing it with two other solution methods in Section 7.2. Next, the magnitude of nu-
merical errors and errors due to uncertainty factors is discussed in Section 7.3. This chapter concludes
by relating results obtained from the validation process with scientific knowledge of nanoparticle and
aerosol physics.

7.1.

The original Smoluchowski equation was the first discrete governing equation for coagulation (1917)
[17]. As of today, it has developed into a nonlinear partial differential equation including a great deal of
aerosol mechanisms [17] (Appendix A.1). In this thesis, the model is based on Smoluchowski [3] and
contains equations that mathematically define coagulation due to Brownian Motion and diffusion.
In the development of a model, the most important mechanism is incorporated first. The choice to
include coagulation was trivial because it acts as the main driving force for small particles (< 1um) [8,
17,27, 37, 38]. The runner-up was identified to be diffusion due to the massive particle deposition on
surface areas inside the VSP-G1 observed in Figure 6.6. However, Section 5.3 showed that the impact
of diffusion, as defined by [8], is almost negligible for VSP-G1 standard settings.

Figure 2.2 in Section 2.2 shows that (gold) particles enter the transition regime when the particle diam-
eter exceeds 5 nm, which corresponds with a Knudsen number equal to 28.12 for argon gas (Equation
2.3). This criteria was set in collaboration with VSPARTICLE engineers and is based on their experi-
ence with the generator and aerosol science in general. Various publications obtain different criteria
for when the transition regime holds. Kodas [3] states that the transition regime applies for 1 < Kn < 50
while according to Rader [4, 37] it is defined much lower: 0.4 < Kn < 20. Even so, the location of the
boundary is not incorporated into the model and therefore does not affect results. It is only identified
after computations have been conducted as shown in Figures 5.3, 5.4b and 5.4d.

Dahneke’s kernel was introduced in Section 2.2.3 and approached with the method of moments in
Section 3.2.4. It enables the model to gradually shift from one limiting regime to the other, incorpo-

rating the transition regime. The implementation and affects of the transition regime were analyzed
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in Section 5.2 and the theoretical validation in Figure 5.3 shows asymptotic behaviour of o over time.
An absolute difference in x-axis values is noticed between the results obtained by Lee et. al. [7] and
the plot generated in this study, this due to the unknown scaling factors used by Lee et. al. to non-
dimensionalize the moment functions. A similar analysis was conducted by [9] where the geometric
standard deviation is a function of the Knudsen number instead of dimensionless time. The Knudsen
number is dependent on the particle diameter which doesn’t involve scaling. Not only will this lead
to an improved validation of Dahneke’s kernel, it will also provide better insights in particle sizes (or
Knudsen numbers) in the transition regime.

continuum transition free-molecular
1.36 i
135 | — numerical log-normal T
— —method of moments ]
1.34 — - analytical, this study <
1.33 --- Park et al. (1998) |
1.32 |
© |
1.31
1.30 :
2+ T |
0.01 0.1 1 10 100
Kn,

Figure 7.1: [9] analyzing the behaviour of o as a function of Kn for various models. Regime boundaries were added by this
thesis.

Recall the Cunningham Slip Correction Factor introduced in Section 2.2.2:
C(Kn) =1+ Kn(a + ,Bexp(—)//Kn))

which accounts for non-continuum effects when the Knudsen number reaches its upper boundary:
Kn =0.25 [4, 18]. It is included in the continuum collision frequency kernel ¢, and diffusion term in
Sections 2.2.2 and 2.3. The parameters were chosen according to [7-9] which sets y = 0 and therefore
excludes the natural logarithm from the equation.

Rader [4] conducted research on the Slip Correction Factor for small particles in nine common gasses,
the corresponding parameters for the transition regime are tabulated in Appendix A.2. Excluding the
natural logarithm does not hold for values obtained by Rader. Applying the method of moments for
the Smoluchowski equation using Raders parameters for C(Kn) would result in different moment
functions hy and [ (See Section 3.2).

The diffusion coefficient D(r) in the sink term is a function of C(Kn) (See Equation 2.15). Appendix
C.2.3 compares D(r) where the Slip Correction Factor is interpreted by Rader versus Lee et. al.. Though
no sufficient deviation is observed here, it is also interesting to adjust the coagulation equations to fit
Raders parameters and study the new results.

7.2.

The method of moments is used to obtain a solution for the Smoluchowski equation. However, [17]
presents two other methods to solve the Smoluchowski equation which are worth investigating.

The sectional method solves the Smoluchowski Equation at every interval in terms of timestep, parti-
cle size and spacial location [23] and can therefore be applied to the extended Smoluchowski equation
presented in Equation A.1. The solution is obtained using numerical discretization methods such as
Runge Kutta to approximate the Smoluchowski integrals. A finite element scheme can be applied for
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the spacial coordinate of the transport equation [38]. The sectional method is used to study the evo-
lution of the PSD over time [23], and generates the most detailed outcome. However, the massive
increase in computational costs make it quite impractical [17].

A stochastic particles approach is the other alternative for mathematically modelling of nanoparticle
growth. This method allows coagulation of two particles to occur with a certain probability and con-
tains various algorithms; the direct simulation algorithm (DSA) and the mass flow algorithm (MFA) are
the most popular [39], [40]. The stochastic particles approach or, Monte Carlo method, allows the PSD
to fully be determined along with the moments of the distribution. Also, it has proven to be compu-
tationally less expensive compared to the sectional method [40]. A draw back is that the derivation of
a stochastic coagulation model is mathematically complex and requires a thorough understanding of
probability theory. Moreover, the incorporation of computational fluid dynamics (CFD) is still limited
(17].

The Method of Moments is described in detail in Chapter 3. The computational expense of the sec-
tional method, and the complexity and limits of Monte Carlo are non-existent in the Method of Mo-
ments. Although the original MoM is unable to trace the evolution of the particle size distribution, the
log-normal MoM overcomes this by reconstructing the PSD from a log-normal distribution.

7.3.

Chapter 4 motivated the use of the Forward Euler numerical method to approximate a solution for the
moment equations. Recall that the Forward Euler is the simplest method obtaining a relatively high
order error. Applying a numerical method with a lower order of error seems as a logical next step to
improve model accuracy. However, the uncertainty factors presented in Sections 6.1.2 and 6.2 resultin
error ranges that are much larger than any numerical error due to Forward Euler. Adjusting the models
framework and approximation formulas in Section 6.2 is needed to obtain a better compliance with
experimental results and therefore has a higher priority.

7.4.

Figure 6.8 shows the experimental and modelled results for the mode, geometric mean particle size,
total concentration and the geometric standard deviation of the PSD for varying VSP-G1 settings in
terms of power and flow rate. These results and observations are discussed and related to aerosol
theory, measurement uncertainties and the approximation formulas for the initial conditions:
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Overall, a higher mode and mean particle diameter is observed for increasing powers and decreasing
flow rates (see Figures 6.8a and 6.8b). These settings imply a high initial concentration and a long
residence time, which increases the chance of particle collisions over a relatively long period of time.
This leads to an increase in mean particle size which is proportionate to the mode by Equation 6.3.
This relation is visualized in Figure 7.2.
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Figure 7.2: A flowchart visualizing the relation between VSP-G1 inputs, model inputs, total concentration and particle size.
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The high experimental total concentrations for increasing power settings in Figure 6.8c is directly re-
lated to the linear dependence of the ablation rate to power (Figure 6.4). Also, higher flow rates imply
lower residence times i.e. shorter coagulation times resulting in higher concentrations. The model
however, shows asymptotic behaviour for the total concentration which is a characterizing property
of the population balance equation for coagulation due to Brownian Motion. This implies that coag-
ulation overrules diffusion, complying with observations in Section 5.3.

Moreover, the model assumes coagulation in a closed space which induces the asymptotic behaviour
of o observed in Figure 6.8d. The geometric standard deviation approaches its self-preserving value
for lower flow rates, i.e. longer residence times. The measured values for ¢ are consistently higher
than the modelled results. This is likely due to the aerosol being exposed to other mechanisms which
are neglected by the model, such as the fact that the tube is open and coagulation does not actually
occur in a closed space.

UNRELIABLE PARTICLE CHARGE TRANSFER FUNCTION

The second uncertainty factor described in Section 6.1.3 regards the charge transfer function dis-
played in Figure 6.3. Notice that a miss-measurement in the electric mobility implies a large deviation
in the charged particle fraction due to its exponential behaviour for small particles. This affects the
reliability of all experimental results and explains the deviation in total concentration in particular
(Figure 6.8c).



The advancement of nanotechnology relies on the actual production, control and integration of nanopar-
ticles. VSPARTICLE developed a generator, the VSP-G1, which produces nanoparticles with a gas-
phase technique called spark ablation. The objective of this thesis was to develop a computational
model that simulates the nanoparticle production and obtains the particle size distribution of the
aerosol throughout the process. Recall the research goal:

Develop a numerical and computationally efficient model of the nanoparticle growth from
spark ablation in the gas phase.

This goal is met through the development of a numerical model that tracks the nanoparticle growth
at nanometer accuracy within an acceptable computational time. This was achieved by identifying
the physical framework of the model, defining mathematical equations, and using the method of mo-
ments to obtain the particle size distribution for a certain initial concentration and residence time.
A theoretical and experimental validation proved a sufficient accuracy of the model with respect to
nanoparticle growth in the VSP-GI.

The computational model will provide researchers with an analysis regarding the sensitivity of the in-
put parameters. The framework of the model consisting of mathematical and physical processes, will
provide a better scientific understanding of the system. Finally, the model can be used as operational
guide to produce pure, tailor-made nanoparticles.

Lee et. al. [9] presented an analytical solution for the log-normal size distribution of pure Brownian
aerosol coagulation for the entire particle size regime. Lee and Gieseke [9] obtained an expression for
particle decay in aerosol transported through a circular tube as a function of tube length. This the-
sis combines these results and presents a numerical solution for the log-normal size distribution of
Brownian aerosol coagulation and diffusion for the entire particle size regime.

The numerical approach for coagulation starts by deriving ordinary differential equations using the
MoM for the limiting regimes: free molecular and continuum. The entire particle regime is approached
by inserted these ODEs into Dahneke’s Kernel, and by expressing the molecular-free dimensionless
timestep 7, in terms of the dimensionless timestep of the continuum regime 7¢, (See Section 3.2.4
in particular).

Furthermore, the diffusion term for aerosol was analyzed apart from coagulation by Lee and Gieseke
in [8] in 1980. The expression for particle decay as a function of a spacial coordinate is rewritten to be
time-dependent and converted to a set of ordinary differential equations by applying the MoM (See
Sections 2.3 and 3.2.5).

53



54 8. CONCLUSIONS

The moment equations describing coagulation and diffusion are joined to form one set of ODEs and
solved using the Forward Euler numerical method. The solution provides the particle size distribution
of an aerosol which is exposed to coagulation and diffusion over time.

The model is able to compute particle growth for any material and gas. However, it has only been
experimentally validated with gold electrodes and argon carrier gas. For an all-round reliable model,
itis necessary to repeat the validation process described in Chapter 6 with other materials and gasses.

Moreover, the same argument applies for the flowtype. While an insert is used in this research, the
depositing particles in Figure 6.6 are observed for cross- and through flow. This effect is not incorpo-
rated into the model. Quantifying it is necessary to obtain accurate results for all flow types.

The validation process will greatly improve when using particle counting systems that have a higher
accuracy and reliability, such as a condensation particle counter (CPC) . This method counts all par-
ticles, excluding the use of a charge distribution in the experimental data conversion (Section 6.1.2).
Also, quantifying the other uncertainty factors will provide accuracy ranges with a higher reliability
(presented in Section 6.3).

Besides Brownian Motion, coagulation of nanoparticles occurs due to thermophoresis, inter-particle
varying velocities and van der Waals forces. Taking one step back, besides coagulation and diffusion,
other dynamic processes also influence the composition of aerosol such as condensation and tur-
bulence. Before extending the model, these mechanisms should be evaluated on importance for the
nanoparticle growth process. After a sufficient mechanism is identified, it should be incorporated into
the model by applying the method of moments.
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MODEL FRAMEWORK MATHEMATICAL
EQUATIONS

A.1. SMOLUCHOWSKI

The extended Smoluchowski equation accounts for almost all aerosol dynamics including external
mechanisms due to aerosol transport through air [17], which introduces the spatial coordinate x, and
incorporates the Navier-Stokes equation:

on(,x, 1) o(un(v, x, 1) . o(umn(v,x,1))
ot 0x 0x
0 on(w,y,0\ 0(Grnw,x,0)
T ox (DB 0x ) * ov
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V*

+J(v*,x,06(@w-v")

—n(v)f Bw, v, onl, x, t)dv'+f a@Wbw|\VYnW', vdv'
v* v
—a)n(v, ) +.... (A.1)

where n(v, x, t) is the particle number density for particle volume v, spatial coordinate x, and time ¢;
the value B represents the collision frequency; u is the particle velocity, u;, is the velocity of particles
in response the change in temperature; Dp is the Brownian diffusion coefficient; G, is the particle
surface growth rate; J is the source term, i.e. the nucleation rate of atomic-sized particles v*; a and b
are parameters accounting for the breakage of (non)-spherical particles due to shear force along the
walls of the tube. [17].

A.2. CUNNINGHAM FREQUENCY CONSTANT

Rader [4] obtained different values for the parameters used in the Cunningham Slip Correction Factor
in the transition regime. Recall:

CKn) =1+ Kn(a + ﬁexp(—y/Kn))

Parameters | Argon Nitrogen  Air

a 1.227  1.207+5% 1.207
B 0.42 0.40+5% 0.40
Y 0.85 0.78 5% 0.78

Table A.1: Parameters for Cunningham Slip Correction factor for different gasses in the transition regime according to [4] under
standard conditions: Ty =296.15 K; Py =101.325 kPa
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SOLUTION METHOD

B.1. OVERVIEW OF FUNCTIONS IN MODEL EQUATION
The model solves the following dimensionless, nonlinear ordinary differential equation for k =0,k =
1,and k =2: )

B &k
1+B (TCO) %

M .
d;‘ & — i (B.1)
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& is a function describing the time-derivative of the k'-moment in the free molecular regime, g is
the equivalent but then for the continuum regime, and [ accounts for the diffusion effects on mo-
ment k.

B(7) is a collected function that prevents non-linearity in & and converts T = 7¢,.

7 is the dimensionless time used in this thesis, while 7 it the definition for dimensionless time when
only solving for Brownian coagulation in the free-molecular regime.

Adis a dimensionless constant used in 71, where A is the mean free path of the gas and Vgo is the initial
volume of the solid particle.

Lastly, N is the initial concentration and o is the geometric standard deviation with initial value oy.
R; is the tube radius, K¢, the collision constant for the continuum regime, Kr the collision constant
for the free-molecular regime, and ¢ is time.



EXPERIMENTAL RESULTS

C.1. EXPERIMENTAL AND MODELLED RESULTS

\ Experimental Input Model Input Output parameters

validation

experiment | P[J/s]  Qllpm] Nolm™]  tglms] | dylnm] dglnm] N(p)m™@] o
1 1 9 2.02x10"  26.8 1.80 2.01 3.68x101°  1.34
2 2.8 9 5.67x10'%  26.8 2.76 2.99 3.36x 10  1.33
3 5.4 9 1.09x10°  26.8 3.51 3.79 3.28x10®  1.32
4 8.8 9 1.78x10'%  26.8 4.17 4.49 3.29x10® 131
5 13 9 2.63x10° 268 4.76 5.12 3.34x10° 131
6 1 7 2.60x10'® 345 2.24 2.43 2.70x 10 1.33
7 2.8 7 7.29x10"® 345 3.21 3.58 255x 10  1.32
8 5.4 7 1.41x10° 345 4.19 4.51 2.55x10%  1.31
9 8.8 7 229x10"° 345 493 5.30 2.61x10% 131
10 13 7 3.38x10'° 345 5.60 6.00 2.69x10  1.30
11 1 3 6.08x10®  80.1 4.17 4.49 1.08x 10 1.31
12 2.8 3 1.70x10°  80.1 5.87 6.24 1.16x10'® 1.3
13 5.4 3 3.28x10"  80.1 7.20 7.69 1.25x 10  1.29
14 8.8 3 5.35x10"  80.1 8.32 8.87 1.34x10 1.29
15 13 3 7.90x10"¥  80.1 9.31 9.93 1.43x10%  1.29

Table C.1: Results corresponding to the validation process described in Chapter 6. Material = gold, gas = argon, flowtype =
insert, tube length =9 cm, ablation rate = 0.504 [nmol/J].
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C.2.

Four mass measurement experiments were conducted using filters to collect the output at the end of
the transport tube. The model is run with corresponding initial conditions, defined by the settings of
each experiment. The computed nanoparticle concentration to leave the end of the tube is converted
to a mass and compared to the actual mass gain in the filter. The sink term in the model is accurate if
these values comply.

C.2.1.

Gold electrodes were ablated by the VSP-G1 using 31pm argon crossflow. At a distance of 16 cm from
the spark the particles were collected by a filter. Four experiments where performed with the power as
only variable, this influences the initial concentration, not the residence time.

Just as in Section 6.1.1, the initial concentration was determined by the electrode mass loss after each
experiment. However, the ablation rate was skipped here and Ny was directly computed from the

electrode mass loss.
_ M), loss &1

my  Q

where mg] 1055 1S the mass loss of the electrodes in [mg/h], m,, it the molar mass of the electrode ma-
terial, Na is Avogadro’s number, and Q is the volumetric flowrate.

)

No

The nanoparticles in the filter formulate the experimental mass output 7e output. 1If it is comparable
with the mass output computed by the model the sink term is accurately approximates the diffusion
impact in the system.

2 My, M (tg)

Mg output = Mm,output =

— C1
Na g €D

where M (7g) the total particle volume at time g, and vgg the initial particle volume (equivalent to
the atomic volume). Figure C.1 is a schematic overview of the process.



C.2. QUANTIFYING DEPOSITION FOR CROSSFLOW

Experiment Model
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Figure C.1: Diffusion validation using cross flow, gold electrodes and argon gas.
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C.2.2.

Figure C.2 shows that the mass output derived by the model is much higher than it is experimentally
measured under equivalent conditions. This suggests that the theoretically derived sink term is too
weak to obtain reliable predictions for the nanoparticle concentration of the VSP-G1 when using cross
flow.

Mass Outputs

3.0
—— Mg joss
25

= Meg output
w
E 20 —— mm,output
£
&
< 15
Py
2
E]
§ 1.0
=

0.5

0.0

0 2 4 6 8 10 12 14

Power [J/s]

Figure C.2: mass loss of electrode corresponding to mass of Ny (green), experimental mass output (grey), modelled mass output
(black)

C.2.3.

Recall the sink term:
dngink(v) _4.117D(v)

= C , Cc.2
it na (W)n(v) (C2)
which was derived from:
R (_4.117DL)
ng P R2q )

There are possible explanations for under-approximated diffusion effects in the current model:

1. The diffusion coefficient is interpreted incorrectly due to the absence of transition regime pa-
rameters defined by Rader [4].

2. The residence time is under-approximated.

3. Particles deposit onto surface areas inside the system that are not taken into account in the
model.

The diffusion term is defined by [8] and written terms of particle volume:

D)= N0} (C3)

43in '
A1 Y 1

C(v)=1+\,7—43”v 3(a+ﬁexp(—z %lﬁ)) (C.9)

Section 5.2 showed that particles do enter the transition regime for initial conditions that are compa-
rable to those of this experiment (Np = 1E19m~3, 1z > 0.5 s). The parameters for Cunningham in the
transition regime according to [4] are: a = 0.1227, 8 = 0.42,y = 0.85. The affect this has on the diffusion
coefficient D(r) is shown in figure 22 (- - ).

The diffusion coefficients using both Cunningham factors are plotted for a radius range that is appli-
cable for this experiment: 1nm < r, < 15nm. Since the diffusion coefficient has a 1:1 impact on the
sink term, and the difference between Dy qe1 and Dgager is negligible, the first option is not a possible
explanation for the gap between experimental and modelled diffusion mass loss.
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Two Diffusion Coeffiecients
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Figure C.3: Diffusion coefficients for transition- and free molecular regime

The residence time could be underestimated due to the presence of turbulent flow. A longer residence
time allows more particles to be affected by diffusion and therefore contributes to a greater mass loss
and smaller mass output. Figure C.4 shows the affect of a larger residence time on the modelled mass
output with respect to the experimental data. Clearly, the impact of a longer residence time on the
mass loss (green) is still too weak to approach the experimental results (black). The largest residence
time corresponds to 8.4 s which makes it eight times larger than the original ¢, this is physically nearly

impossible to realize. Hence, even though the residence time could be overestimated, it is not an
explanation for the extreme experimental mass loss.

Mass output due larger residence times

o7 1 =1.05s, mg|oss = 0.66[mg/h]
21

41,
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Figure C.4: An increase in tg does not close the gap between expiremental- and modelled mass outputs.

The third possible explanation is the large deposition of particles onto surface areas inside the system
that are not taken into account in the model.

Examples of such areas are the electrode holders and the adapter between the G1 and the tube (Figure
6.6). Recall that for cross flow the diameter inside the reactor chamber is approximately 10 times larger
than the tube diameter. This sudden change can result in particles depositing and sticking onto the
surface of the adapter, rather than gradually flowing into the tube. This change in diameter is taken
into account when calculating the residence time, but is not directly incorporated into the sink term.
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The impact of this effect is quantified with an amplification factor which strengthens the models sink
term and closes the mass gap. The amplification factor is determined iteratively for each experiment
such that when it is multiplied with the the sink term the model mass output matches the experimen-
tal mass output. .

dM(;c;wnk _ Aalk
Where A, is an empirical amplification factor derived with linear regression.

Ag=3Ny-107* +5.5985 (C.5)

Amplification factor on Sink term Mass Outputs with
Amplification factor
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(a) Amplification factor fit (b) New model mass output graph

Figure C.5: Mass Ouput with A,

Model test runs have shown that it runs into errors for x < 19 in Equation C.5. This is due to the fact
that the sink effect becomes so large, that all particles are lost due to diffusion and there is no mass
left to output.

It is also predicted that the flow has a greater impact on the sink term than the magnitude of the
initial condition. Unfortunately, the current experiment was executed using a constant inflow and
therefore it is unable to quantify this effect. Advised is to repeat the experiment with different flow
rates and types, and to proceed with a flow and Ny dependant function A,. For the current research
the amplification factor is excluded in further calculations.
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C.3. PROPERTIES OF AIRBORNE PARTICLES FROM HINDS [1]

Particle

diameter [um] | Slip Correction Factor ‘ Coagulation Coefficient [cm3/s]
0.001 224.332 3.11x 10710
0.0015 149.753 3.81x 10710
0.002 112.463 4.40x 10710
0.003 75.174 5.39x 10710
0.004 56.530 6.21x 10710
0.005 45.344 6.93 x 10710
0.006 37.888 7.56x 10710
0.008 28.568 8.63x10710
0.01 22.976 9.48x 10710
0.015 15.524 1.09x 1079
0.02 11.801 1.15x 1079
0.03 8.083 1.14x 1079
0.04 6.229 1.07x 1079
0.05 5.120 9.92x10710

Table C.2: Properties of Airborne Particles[1], Calculated for standard density spheres at 293 K and 101 kPa.



