DELFT UNIVERSITY OF TECHNOLOGY

MASTERS THESIS

Reverse Engineering Relational Data for
Entity Type Recognition in Enterprise
Solutions at ING

Author: Supervisor:
A.R. BREURKES Dr. C. LOFI

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Web Information Systems Group
Software Technology

Student number: 4398033
Thesis committee: Prof. dr. A. van Deursen, TU Delft, Chair

Dr. C. Lofi, TU Delft, Supervisor
Dr. A. Katsifodimos, TU Delft
Drs. H.A.J. Brons, ING

An electronic version of this thesis is available at
https://repository.tudelft.nl/.

May 20, 2021


http://www.tudelft.nl
https://www.tudelft.nl/ewi/over-de-faculteit/afdelingen/software-technology/web-information-systems/people/christoph-lofi
http://www.wis.ewi.tudelft.nl/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology/
https://repository.tudelft.nl/




iii

DELFT UNIVERSITY OF TECHNOLOGY

Abstract

Electrical Engineering, Mathematics and Computer Science
Software Technology

Master of Science

Reverse Engineering Relational Data for Entity Type Recognition in Enterprise
Solutions at ING

By A.R. Breurkes

Database entity type recognition is the practice of recognizing conceptual entity types
for which given data sets contain data. In big data or data lake settings, it is not al-
ways known which conceptual entity types are represented in each data set, making
it difficult to extract value from the data. Depending on the logical schemas, each
conceptual entity type can also be represented in the data instances in multiple dif-
ferent ways. This phenomenon, called semantic heterogeneity, poses a challenge when
attempting database entity type recognition. Narrowing down the problem space to
a specific organization makes it easier to cope with such problems. Organizations
know which entity types are used in the organization and require only those to be
recognized. And while there is heterogeneity in representation, there is likely a com-
mon set of rules each logical schema adheres to which can be exploited to recognize
semantic heterogeneity. Furthermore, experts at an organization can provide exam-
ple data instances for each conceptual entity type of interest, which provide ground
truth for the proposed database entity type recognition solution. The proposed solu-
tion makes data profiles of the example data instances, and then attempts to recognize
entity types in previously unseen data instances using a rule-based approach. Rules
are used to maximize the ease of explainability of results, as is often desired at a
bank, and can easily be added to or removed from the solution to maximize adapt-
ability. Experiments using the proposed solution show promising results, with up
to 90 percent of entity types correctly recognized over a total of 170,000 entities.


HTTP://WWW.TUDELFT.NL
https://www.tudelft.nl/en/ewi/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology/




Acknowledgements

I'would like to thank my academic supervisor, Christoph Lofi, for continuously help-
ing me to raise the bar high, having numerous discussions with me on (un)related
matter, and for his mentorship throughout my time as his mentee. I am sure that
without his array of persistent guidance, I would not have learned as much as I
have done now.

Secondly, I would like to thank my industry supervisor, Jerry Brons, for his undi-
vided interest, attention and help. Jerry was virtually always available for discus-
sion and to open doors to resources at ING, but also eagerly provided insightful
articles on progress in our field of research.

I would also like to thank Georgios Siachamis for always being available for quick
questions, proof reading and discussion. It was nice to have someone to discuss re-
search with without having to be formal.

Finally, I want to thank the thesis committee for their time and energy to evalu-
ate my work, and I want to thank my friends and family for their unconditional
support.






Contents

Abstract
Acknowledgements

1 Introduction

1.1 Contributions . . . . . . . . . e
1.2 ThesisOutline . . . . . . . . . . o e e

Problem Description

21 Theoriginoftheproblem . .. ... ................. ...
2.1.1 Therules leading to specialcases . . . .. ... ..........

1. The table contains data on multiple subtypes from some
entity type inits taxonomy. . . . . ... ..o

2. The table contains data on a type at the bottom of its taxon-
omy, and only thattype. . .. ... ... ........

3. The rows in the table contain data on a combination of mul-

tiple entity types, or part thereof, possibly from dif-
ferent taxonomies . . . .. ... ... .o L.
22 Theproblem . . ... ... .. ... ...
221 Problemone(P1) . ... ... ... ... ... . ... .
222 Problemtwo(P2) . ... ... . ...
2.3 Formal Problem Definition . . . . . ... ..................

Research Methodology
3.1 Decision making process . . . . ... ... ... . .o o
3.2 Theresearch environment . . . . . . . . . . . . ...

Background

4.1 Similarresearch . . .. ... .. ... .. L o o
4.1.1 Reverseengineering . . .. ... ..................
Andersson: reverse engineering to ECR+ . . . . ... ... ...
Chiang et al.: reverse engineeringto EER . . . . ... ... ...
Malpani et al.: reverse engineeringtoEDM . . . . . .. ... ..
412 Entity typerecognition. . . . ... ... ... o 0oL

Sleeman et al.: fine-grained entity type recognition in knowl-
edgebases . .......... ... .. ... ... .

Giunchiglia et al.: semantic heterogeneity detection for knowl-
edgebases . ... ... ... ... .. ... . ...
42 Supportiveresearch . . . . ... ... ... Lo o oo
421 Cardinalities. . . . ... ... .. .. Lo oo
422 Patternsand datatypes ... ... .. ... .. ... .. ...
423 Semantic domain classification . . . ... ... ... ... ...
424 Inclusiondependencies . . .....................



viii

43 Conclusion . . . ... ... L 21
Proposed Solution 23
51 Thesolutioningeneral . . . .. ... ..... ... .. ... .. ... 23
52 Clustering & data profiling . . . ... ... .. ... ... ... .. ... 24
52.1 Clustering methods for unlabeled exampledata . . . . ... .. 25

1. The table contains data on multiple subtypes from some
entity type inits taxonomy. . . . .. ... 25

2. The table contains data on a type at the bottom of its taxon-
omy, and only thattype. . ... ............. 26

3. The rows in the table contain data on a combination of mul-

tiple entity types, or part thereof, possibly from dif-
ferent taxonomies. . . . ... ... L oL 27
52.2 Specification of the data profiles . . . .. ... ... ....... 27
53 Entity typerecognition . . . . ... ... Lo oo oo 29
53.1 Rule-based classification . . . . .. ... .. ...... .. ..., 29
53.2 Output &interpretation . . . . ... ... ... .......... 31
54 Conclusion . . . .. ... . L 32
Results & Evaluation 35
6.1 Experimentalsetup . . ... ... ... ... ... .. . L. 35
6.1.1 Thedatagenerator . ... ... .. ... ... ........... 36
6.2 Clusteringresults . . .. ..... ... .. ... .. ... .. .. ... 37
6.2.1 All entity (sub)types from the same taxonomy in the same table 37
6.2.2  One entity type represented inatable . . . ... ... ... ... 38
6.2.3 Discrepancies withrealdata. . . . . . ... .. .......... 38
6.3 Classification experiments & results . . ... ... ... ... ... .... 39
6.3.1 Experiment 1: relatively little diversity . ... ... .. .. ... 40
6.3.2 Experiment 2: many entity types with relatively little diversity 41
6.3.3 Experiment 3: many entity types with relatively high diversity 42
6.3.4 Experiment 4: little entity types with very little diversity . . . . 43
6.3.5 Experiment 5: evaluationonrealdata . . ... ... ....... 43
6.4 Conclusion & Discussion . . . . ... ... ... ... ........ 45
Conclusion 47
71 FutureWork . . . ... ... ... .. 48

Bibliography 49



iX

List of Figures

2.1

4.1

4.2

51

6.1

6.2

An example entity type taxonomy, truncated to compact cars and SUVs. 4

The database reverse engineering process vs. the database entity type
recognition process. . . . . . . . . ..o 14
A classification of data profiling tasks. The leaves represent profiles,
while the higher levels represent categories. Profiles are not limited to
their category, but are grouped based on (Abedjan et al., 2015, Fig. 1)
and (Naumann, 2014, Figure1). . . . . .. ... ... ... .. ... ... 19

The method flowchart for the proposed solution. . . . . ... ... ... 24

The result of clustering a data instance that adheres to rule one de-
finedinTable2.3. . .. ... ... .. ... .. .. ... . 37
The result of clustering a data instance that adheres to rule two de-
finedinTable2.3. . . . ... ... .. ... .. .. ... . 38






xi

List of Tables

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29
2.10

4.1

5.1
52
5.3
54
5.5

5.6

5.7

5.8

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

Definitions of terminology frequently used in this thesis. . . . ... .. 3
An example conceptual representation ofa VW Polo. . . . .. ... .. 4
An overview of the rules for logical schema design. . . ... ... ... 5
An example logical schema for the first special case. . . . ... ... .. 5
An example data instance for the first special case. . . . . .. ... ... 6
An example logical schema for the second special case. . . . ... ... 6
An example data instance for the second specialcase. . . ... ... .. 7
An example logical schema for the third special case. . . ... ... .. 7
An example data instance for the third special case. . . ... ... ... 7
The notation for sets and corresponding elements used in the formal

problem definition. . . . . ... ... o o o oo 9

An overview of how literature was acquired. Cursive phrases indicate

search queries used to browse Google Scholar. . . . ... ... ..... 22
An example data instance that adheres to the firstrule. . . ... .. .. 26
The binary representation of Table5.1. . . . . ... ............ 26
Entity type representation clusters for Table5.1. . . .. ... ... ... 26
Example data instances that adhere to the third rule. . . . . . . ... .. 27
Data profile attributes used in this solution, with their respective de-

scriptions. The thick line separates explicit from implicit attributes. . . 28
Example data profiles. Rows, columns and values have been trun-

cated forbrevity.. . . . .. ... L L o 29
An example input row and the result of running it through the entity

type recognition algorithm. . . ... ... ... ... .. .. ... ... 32
Example aggregated results. The data instances each adhere to, in

similar order, onerulein Table2.3. . . . . . . .. .. .. ... .. .... 32
The metrics used for evaluation of the method. . . . ... .. ... ... 36
The data characteristics for the first experiment. . . . .. ... ... .. 40
The resulting metrics of the first experiment. . . . ... ... ... ... 40
The data characteristics for the second experiment. . . . . . . ... ... 41
The resulting metrics of the second experiment. . . .. ... ... ... 42
The data characteristics for the third experiment. . . . . ... ... ... 42
The resulting metrics of the third experiment. . . . ... ... ... ... 42
The data characteristics for the fourth experiment. . . . ... ... ... 43
The resulting metrics of the fourth experiment. . . .. . ... ... ... 43
The data characteristics for the fifth experiment. . . . . ... ... ... 44

The resulting metrics of the first experiment. . . . ... ... ... ... 44






Chapter 1

Introduction

Nowadays, organizations store vast amounts of relational data in data warehouses
and data lakes (and other possible structures). Each set of data within is created
and managed by its own team in the organization and contains data on a collection
of real world entities, where an entity is a specific real world thing with distinct and
independent existence. Conceptually, each entity is part of some collection of entities
that have the same attributes (e.g. cars, jobs, people, etc.), otherwise known as the
entity type. But ING (where this thesis is conducted) identified the problem that it is
often difficult for teams to work with data managed by another team; it is not always
obvious which entity types each of the data sets in the organization contain data on,
making it difficult to extract value and hindering data-driven progress. For example,
a team working with cars might want to process data on engines, tires and license
plates but do not own data on such entity types themselves. A naive solution would
be to ask the owner(s) of each available data set for a comprehensive summary of the
data, but this would require time of the owner(s) that they would otherwise (rather)
spend on their own tasks. As such, an automated solution is desired.

Furthermore, semantic heterogeneity arises when multiple data sets contain data
on the same entity types but represent them differently, is usually caused by the use
of different logical schemas, and exacerbates the problem (Giunchiglia et al., 2020);
semantically heterogeneous data sets are not immediately compatible but are gen-
erally more valuable when combined. For example, two teams (A and B) in the
organization manage data on car engines but use different logical schemas to store
the data. Team A wishes to compare their engines’ performance to those of other
teams, but require data on the other engines to do so. Team A does not know that
team B also stores data on engines, so they cannot ask team B for the data directly.
Instead, they wish to find the data in the available data warehouse or lake, but strug-
gle because there is a large number of data sets stored within that they know nothing
about. And above that, team B’s engines are represented in the data differently than
team A’s engines, making it more difficult to recognize team B’s engine data as suit-
able. While humans are relatively good at recognizing conceptual entity types and
semantic heterogeneity, human computation does not scale well. Therefore, this the-
sis proposes an entity type recognition method to help people identify data sets of
their interest stored within their organization.

In the future, ING would like to evaluate whether entity type recognition could
be a part of data integration. This would be an approach alternative to what precur-
sors to this thesis focused on (Ionescu, 2020; Psarakis, 2020), namely schema match-
ing. Instead of matching data content and schemas directly, entity type recognition
could be used to match data instances on semantic similarity and recognize semantic
heterogeneity in order to combine data. The goal is to offer a solution that recognizes
the entity types present in relational data sets of interest and, in case of semantically



2 Chapter 1. Introduction

heterogeneous data, points out the cause for semantic heterogeneity. The latter is im-
portant because it gives context on how the semantically heterogeneous data could
be combined.

For this thesis, the problem space of entity type recognition is narrowed down
to a specific organization—ING in this case. When approaching the problem from
a specific organization’s perspective, the problem space is constrained naturally: it
is known which conceptual entity types possibly reside in the data and there are
examples of how each of these can be represented; the employed DBMS(s) is/are
known; and the handful of general design choices for logical schemas are known.
Such design choices specify how entities of a certain entity type are represented in
the data instances, and are defined in the logical schema. An example design choice
would be to store all data on an entity type in one table, as opposed to dividing
parts of the entity type over multiple tables and keeping references (e.g. storing
birth dates in another table than the other characteristics of a person). How these
constraints will be exploited will be elaborated on in chapter 5.

1.1 Contributions

The goal of this thesis is to offer a solution for database entity type recognition,
which also helps to recognize semantic heterogeneity in relational data stored within
a specific organization. As such, the contributions of this thesis are as follows:

¢ A method for entity type recognition based on clustering and data profiling.
Data profiles describe metadata on the given relational data, but contain no
real data for privacy preservation purposes. In this case, the profiles consist of
cardinalities (as described in (Abedjan et al., 2015)).

¢ Animplementation of the method that, based on given data profiles, performs
entity type recognition on data sets by matching each row in each data set to
the best-fitting data profile. The matching is performed in a rule-based fashion
to maximize explainability, as is often desired in a bank.

¢ A feasibility evaluation of the method, acquired by performing experiments
on the implementation.

1.2 Thesis Outline

This thesis continues by giving a detailed and formal problem description in chap-
ter 2, where the constraints of the problem space will also be covered. The research
methodology is then described in chapter 3, after which relevant literature will be
discussed in chapter 4 in two parts. The first part covers literature that aims to solve
similar problems, while the second part covers literature that is (partially) incor-
porated into or had influence on the proposed solution covered in chapter 5. The
proposed solution will be evaluated in chapter 6 using experiments, after which the
thesis will be concluded in chapter 7. The conclusion includes recommendations for
future work and how to continue research using the proposed solution.



Chapter 2

Problem Description

This chapter will give a detailed description of the problem at hand. First, the ter-
minology that will be used frequently throughout this thesis is defined in Table 2.1.
After this overview has been provided, section 2.1 covers the cause of the problem
through description and examples, and finally, the problem will be presented for-
mally.

TABLE 2.1: Definitions of terminology frequently used in this thesis.

Entity A thing in the real world with independent existence.
Entity Type A collection of entities that have the same attributes
and adheres to a taxonomy.

Conceptual Schema A concise description of data requirements, including

properties, entity types, relationships and constraints.
Does not include implementation details (Elmasri et

al., 2000).

Conceptual Instance A collection of entities, with each entity represented as
specified in the conceptual schema.

Logical Schema A mapping of the conceptual schema to the DBMS-

specific data model, translating the conceptual schema
into terms of tables, columns, column data types, for-
eign keys, etc. (Elmasri et al., 2000).

Data Instance The stored state of entities in the DBMS, as a result
of applying the logical schema to the conceptual in-
stance. Data instances are a part of data sets.

Semantic Heterogeneity The problem that arises when multiple data sets con-
tain data on the same conceptual entity type, but rep-
resent it differently due to the application of different
logical schemas (Giunchiglia et al., 2020).

Data Profile An informative summary of a data instance.

Data Integration Combining data from several sources, with the unified
view as the result.

2.1 The origin of the problem

To get a good understanding of the problem, it should be clear how the problem
came to be. In other words: it should be clear how an entity is transformed into its
representation in the data instance and why semantic heterogeneity occurs. There-
fore, assume the following as a running example.



4 Chapter 2. Problem Description

Assume the task to store a specific Volkswagen (VW) Polo in a relational database.
The VW Polo is the entity; it is a real world thing with distinct and independent ex-
istence. The entity itself can obviously not be stored in a database, but a correspond-
ing representation can. The first step to getting to that representation is defining
the conceptual schema, which concisely describes the data requirements (entity type,
properties, relationships and constraints) but no implementation details (Elmasri et
al., 2000).

Rather than defining a conceptual schema for every entity, it is done for collec-
tions of entities that share the same attributes. These collections are called entity
types, and each entity type has its own definition in the conceptual schema. The
result of applying the conceptual schema to entities of its corresponding type is the
collection of data requirements for the given entities; the conceptual instance. The VW
Polo from the example would look something like in Table 2.2.

TABLE 2.2: An example conceptual representation of a VW Polo.

entity type vehicle — motorized — car — compact

relationships: has engine, has tires, has license plate, owned by company, etc.
make Volkswagen

model Polo

color Dark Green

year built 2014

mileage 254,429

etc.

In the next step, the logical schema maps the conceptual schema to the DBMS'’s
data model in terms of tables, columns, column data types, foreign key constraints,
etc. (Elmasri et al., 2000). It is now important to note that entity types generally ad-
here to a certain taxonomy, as depicted in Figure 2.1. For example, the Volkswagen
Polo is a compact car, which is a type of car, which is a type of motorized vehicle,
which is a type of vehicle. The presence of entity type taxonomies depends on the
definition of the conceptual schema within the organization, as does their level of
detail; some entity types might be part of a fine-grained taxonomy, while other en-
tity types might be alone in theirs. However, this thesis assumes that entity type
taxonomies are defined as simple as possible, meaning that taxonomies contain no
entity types that have only one subtype. For example, if compact cars in Figure 2.1

Vehicle

N

Motorized

Is Type Of /\

Car

TN

Compact SUV

FIGURE 2.1: An example entity type taxonomy, truncated to compact
cars and SUVs.



2.1. The origin of the problem 5

were the only type of cars, there would be no Car subtype. The definition of each
taxonomy partially dictates the design of logical schemas, resulting in one of three
special cases that will be considered in this thesis.

2.1.1 The rules leading to special cases

Each table in a logical schema adheres to one of the three rules with regard to entity
type taxonomy listed in Table 2.3, resulting in three special cases. Each of these cases
will be described using the running example of the VW Polo. In reality, there are
many more possible rules for logical schema design, as well as the special cases that
result from applying those rules. However, this thesis will consider only these three
rules to maintain focus on the overall method, leaving other special cases subject to
future work.

TABLE 2.3: An overview of the rules for logical schema design.

# Rule

1 The table contains data on multiple subtypes from some entity type in its tax-
onomy.

2 The table contains data on a type at the bottom of its taxonomy, and only that
type.

3 The rows in the table contain data on a combination of multiple entity types,
or part thereof, possibly from different taxonomies.

1. The table contains data on multiple subtypes from some entity type in its tax-
onomy.

In this case, the logical schema is designed such that a resulting table contains data
on all of the types in one taxonomy from some point downward. For example, if the
logical schema defines a table for all types of vehicles (see Figure 2.1), that would
look something like in Table 2.4.

TABLE 2.4: An example logical schema for the first special case.

Table: Columns:

Vehicle [int:id(PK), date:year_built, int:engine_id(FK)
int:license_id(FK), string:make, string:model,
string:color, int:front_left_tire_id(FK), etc.]

LicensePlate [int:id(PK), string:number, date:valid_through, etc.]

Tire [int:id(PK), float:recommended_pressure, etc.]

etc.

As can be concluded from Table 2.4, the first table is designed to contain data on
all types of vehicles, the second on all types of license plates, and the third on all
types of tires. Foreign key constraints are used to specify relationships between the
entities represented in each table. This means that the VW Polo of the example, a
compact car, will be represented in a table that also holds representations of SUVs
and other types of vehicles, but points to other tables for data on the license plate and
tires. The data instance resulting from applying this logical schema to the conceptual
instance in Table 2.2 can be seen in Table 2.5.



6 Chapter 2. Problem Description

TABLE 2.5: An example data instance for the first special case.

Table: Rows:

Vehicle [id=0, year_built=2014, engine_id=0, license_id=0,
make=Volkswagen, model=Polo, color=DarkGreen,
front_left_tire_id=0, etc.]

LicensePlate [id=0, number="0-AAA-00", valid_through=2022-1-1, etc.]

Tires [id=0, recommended_pressure=2.1, etc.]
Tires [id=1, recommended_pressure=2.1, etc.]
Tires [id=2, recommended_pressure=2.1, etc.]
Tires [id=3, recommended_pressure=2.1, etc.]
etc.

2. The table contains data on a type at the bottom of its taxonomy, and only that
type.

In this case, the logical schema is designed such that a resulting table contains data
on one entity type at the bottom of the taxonomy. For the example taxonomy seen in
Figure 2.1, that means that compact cars, SUVs and other types of cars each get their
own table. A logical schema that adheres to this rule would look something like in
Table 2.6.

TABLE 2.6: An example logical schema for the second special case.

Table: Columns:

Vehicle.Car.Compact [int:id(PK), date:year_built, int:engine_id(FK)
int:license_id(FK), string:make, string:model,
string:color, int:front_left_winter_tire_id(FK),
etc.]

Vehicle.Car.SUV [int:id(PK), date:year_built, int:engine_id(FK)
int:license_id(FK), string:make, string:model,
string:color, int:front_left_winter_tire_id(FK),

etc.]

LicensePlate.Car [int:id(PK), string:number, date:valid_through,
etc.]

Tire.Car.Winter [int:id(PK), float:recommended_pressure, etc.]

etc.

Each table in this logical schema is designed to hold data on only one entity type
and use foreign key constraints to specify entity relationships. This means that the
VW Polo will be represented in a table that stores data only on the same entity type
(compact cars), and points to other tables for data on the license plate and winter
tires. The result of applying this logical schema to the conceptual instance in Ta-
ble 2.2 can be seen in Table 2.7

3. The rows in the table contain data on a combination of multiple entity types, or
part thereof, possibly from different taxonomies

In this final case, the logical schema is designed such that a resulting table represents
multiple entity types from different taxonomies. For the VW Polo example, this



2.2. The problem 7

TABLE 2.7: An example data instance for the second special case.

Table: Rows:

Vehicle.Car.Compact [id=0, year_built=2014, engine_id=0,
license_id=0, make=Volkswagen, model=Polo,
color=DarkGreen, front_left_winter_tire_id=0,

etc.]
LicensePlate.Car [1d=0, number="0-AAA-00",
valid_through=2022-1-1, etc.]
Tire.Car.Winter [id=0, recommended_pressure=2.1, etc.]
Tire.Car.Winter [id=1, recommended_pressure=2.1, etc.]
Tire.Car.Winter [id=2, recommended_pressure=2.1, etc.]
Tire.Car.Winter [id=3, recommended_pressure=2.1, etc.]

etc.

could mean that the resulting table stores data on the car, its tires, and its license
plate. An example logical schema that would result in such a table can be seen in
Table 2.8.

TABLE 2.8: An example logical schema for the third special case.

Table:  Columns:

Vehicle [int:id(PK), date:year_built, string:make, string:model,
string:color, string:engine_name, string:license_number,
date:license_valid_through, float:recommended_tire_pressure,
etc.]

The resulting data instance of applying this logical schema is a single table that
contains data on all vehicle types and their related entity types. The VW Polo will
be represented as in Table 2.9.

TABLE 2.9: An example data instance for the third special case.

Table: Rows:

Vehicle [id=0, year_built=2014, make=Volkswagen, model=Polo,
color=DarkGreen, license_number="0-AAA-00",
license_valid_through=2022-1-1, recommended_tire_pressure=2.1,
etc.]

2.2 The problem

Teams within an organization will design their logical schemas based on rules such
as those covered in subsection 2.1.1. The data instances resulting from applying
these logical schemas are stored in data warehouses or lakes withing the organiza-
tion. With the right authorization, members of the organization can access the data
instances. However there are likely a lot of data instances available, and a common
problem when working with a lot of data is that it is not always obvious which con-
ceptual entity types are represented in each data instance, making it difficult to use
the data sensibly. Furthermore, when different logical schemas have been used to
map the same entity type to different representations in the data instances, semantic
heterogeneity occurs and exacerbates the problem (Giunchiglia et al., 2020). Entity



8 Chapter 2. Problem Description

type recognition can be used to solve these problems by recognizing conceptual en-
tity types for which data instances in each given data set contain data. Within an
organization, the problem space for entity type recognition can be narrowed to that
specific organization, making it a more feasible task. This thesis therefore makes the
following assumptions to narrow down the problem space:

1. The organization knows which conceptual entity types might be encountered
in their data and are interested in recognizing only those entity types.

2. Each data instance adheres to one of the rules listed in Table 2.3. The rules are
covered in detail in subsection 2.1.1.

3. The organization provides example data instances for each of their entity types’
distinct representations. These data instances are labeled with their respective
entity type(s) (training data).

4. All entity types are defined in one conceptual schema, no entity type has more
than one conceptual specification.

With the assumptions above, the problem will be defined in two parts, P1 and
P2. The proposed solution to both problems will be covered in chapter 5.

2.2.1 Problem one (P1)

Given unlabeled data instances and the data instances labeled with their respec-
tive entity type(s), recognize which of the known entity types are likely stored
within each unlabeled data instance.

Imagine that an organization stores data on, among other entity types, the vehi-
cles they lease to their clients like in the running example used in this chapter. In
this case, the vehicles are represented in the data instances following one of the
three rules defined in Table 2.3. In other words, each vehicle can be stored in one
of three semantically heterogeneous data instances. The goal is to identify the en-
tity type(s) represented for each row in each data instance. For example, the entity
types of the row given in Table 2.9 should be recognized as [vehicle.car.compact,
license_plate.car, tire.car.winter], thus distinguished from [vehicle.car.SUV,
license_plate.car, tire.car.winter], [vehicle.car.compact] and all other (com-
binations of) entity types the organization keeps data on.

2.2.2 Problem two (P2)

Given the result of P1, recognize the rules used to map the conceptual schema to
the logical schema, for each logical schema.

While P1 is focused on the mere recognition of entity types in data instances, this
problem is focused on recognizing semantic heterogeneity. This is important be-
cause it enables data integration by putting data instances in terms of the conceptual
schema. In essence, this is the reverse engineering of the steps covered in section 2.1.
These steps can then be re-applied to create a unified view of data on the same entity
type, i.e. perform data integration. Note that the "rules" in this problem definition
refer to the rules listed in Table 2.3.



2.3. Formal Problem Definition 9

2.3 Formal Problem Definition

This section will conclude the chapter by formalizing the problem description given
in section 2.2, providing a concise mathematical definition. An overview of the used
set and element notation is provided in Table 2.10.

TABLE 2.10: The notation for sets and corresponding elements used
in the formal problem definition.

Set Definition Element
D  The set of data instances d
R The set of all rows in a data instance r
E  The set of entity types used in the organization e
C  The set of conceptual representation of entities c
L® The set of logical schemas where entity type e is defined ¢

An organization stores relational data in a collection of data instances D. Each data
instance d; € D comprises a collection of rows R;, where i indicates the it data
instance in D. Analogously, with j indicating the j row, the relationship ri € Rj =
d; € D holds.

Each row r in any data instance represents at least one entity depending on the
logical schema. As such, each row r in any data instance represents a collection of at
least one conceptual entity type E, where |E,| > 1 from a collection of entity types
E, C E used within the organization.

Each data instance is the result of applying a logical schema to a conceptual in-
stance. Each logical schema ‘€ L¢ defines the rules to map an entity type e € E
to a row r in a data instance. The process of mapping a conceptual representation ¢
of an entity of type e € E is defined as c —¢, r, where ¢, is the m™" logical schema
in L°. It can happen that L N L% # @ for {e;,ej} C E and i # j, indicating that
there is a logical schema that combines entities of types ¢; and ¢; to one row in a data
instance (rule three in Table 2.3).

The individual problems are then defined as:

P1: Given unlabeled data instances D and data instances previously labeled with
their entity types D’, predict the entity type(s) E, for every r € D using the
examples in D’.

P2: Given the results of P1, recognize which of the following rules! holds for every
—¢c L for every e € E.

1. Eg, the set of entity types represented in R, is taxonomically a subset of
some entity type e, i.e. Egx C e € E and |Eg| > 1.

2. |Er| = 1and e € Eg has no subtypes, i.e. its only taxonomic proper subset
is the empty set.

3. |E,| > 1, |Eg| > 1,and E, C Eg, wheree; ej for each {ei,e]-} C Eg.

1 As listed in Table 2.3.






11

Chapter 3

Research Methodology

The following parts of this thesis will cover the research conducted to result in the
proposed solution. This section will introduce the applied research methodology,
including a description of the research environment. The decision making process
throughout the thesis will be covered first.

3.1 Decision making process

This thesis succeeds the work of two theses conducted at ING, but takes a slightly
different path. Both Ionescu and Psarakis conducted research into schema match-
ing for data integration (Ionescu, 2020; Psarakis, 2020), which is different from this
thesis. The decision to take this path came from discussions with the supervisors
at Delft University of Technology and ING, where new approaches to data integra-
tion were initially the subject. Because of recent personal interest in data profiling,
discussions were generally held on how data profiling could potentially fit into a
data integration subject for this thesis. As a result, database entity type recognition
was identified as a potential subtask for data integration that could be a standalone
thesis topic.

After these discussions, the literature review covered in chapter 4 uncovered
that there was little published research on this or similar topics, especially on lit-
erature incorporating data profiling. That discovery led to the decision to develop
a database entity type recognition solution that utilizes data profiling by personal
thought process and supportive literature review. Altogether, the literature review
in the next chapter is divided into two parts. The first part (section 4.1) covers some-
what similar research that was recently published, while the second part (section 4.2)
discusses literature that will support the solution proposed in chapter 5.

Finally, during the development stage of this thesis, the implementation to eval-
uate the proposed solution was developed. Some parts of the implementation were
implemented based on the supportive literature covered in section 4.2, but most of
the pipeline was developed through personal thought process. Some times, the tasks
in the pipeline are tackled through the first solution that came to mind. If that so-
lution worked well, it would remain in the pipeline, but a substitute was found by
examining existing literature otherwise. In conclusion, the success of this approach
shows that simplicity can be fruitful.

3.2 The research environment

The proposed solution, covered in chapter 5, will be made specially for ING, but can
be adapted to different environments if desired. But because ING is a bank, the so-
lution has to adhere to the expectations of a bank. This means that integrity is of the



12 Chapter 3. Research Methodology

utmost importance, and thus that privacy and explainability standards are high. The
solution will therefore store no sensitive data or any data at all, and explainability
will be guaranteed by using rule-based decision making.

ING will be providing two types of data: generated data and real data used at
ING. The generated data should resemble real data at ING!, but without sparking
any integrity concerns when used outside of ING’s secure environment; it contains
no real (sensitive) information. The generated data is used because it is versatile,
providing options for any desired data set size or complexity that can be employed
in the evaluation of the proposed solution’s performance. The real data will be used
in a secure environment to validate the evaluation results and, with that, the appli-
cability of the proposed solution to real problems at ING.

To conclude, there will be weekly contact with supervisors at Delft University
of Technology and ING, and there will be meetings with teams within ING on a
biweekly basis to inquire ideas for and identify possible issues in the solution. These
occasions are to provide updates and receive feedback on the research progress. This
is vital to the process, as it allows for validation of the research and whether the
proposed solution will serve its purpose once finished.

IThough the generator was programmed by an expert with many years of experience at the com-
pany, the resemblance must still be validated.



13

Chapter 4

Background

This chapter will cover background information in two parts. In section 4.1, litera-
ture on similar research will be reviewed. However, there is little recently published
literature on entity type recognition, and there will thus mostly be review of tech-
niques that are similar to entity type recognition. Then, section 4.2 will focus on
techniques that will support the proposed solution. The chapter will be concluded
in section 4.3, which will include an overview of the acquisition of the reviewed
literature in Table 4.1.

4.1 Similar research

This first part of the literature review is aimed at analyzing similar research. How-
ever, "entity type recognition" is either not a commonly accepted name for the field
of research, or it has seen little popularity; Searching for "“entity type recognition” -
omics -biology -biomedical’’ on Google Scholar gives only 67 results, of which all were
published between 2009 and 2021. Before this time, somewhat similar research was
published as “relational database reverse engineering”. Instead of recognizing entity
types within relational databases, this research focused on uncovering the concep-
tual schema from relational databases using reverse engineering. Because of the
similarity between these two fields of research, literature on database reverse en-
gineering will be reviewed in subsection 4.1.1, after which entity type recognition
research will be covered in subsection 4.1.2.

4.1.1 Reverse engineering

In 1994, Andersson identified problems with relational databases that obstructed
the path to distributed computing, something that was rapidly increasing in popu-
larity at that time (Andersson, 1994). They saw that lack of documentation and non-
uniformity across databases prevented them from working together or otherwise
were the cause for high maintenance costs. That same year, Chiang et al. identified
similar issues, stating that some databases in organizations exist without anyone
knowing what the data or relationships between the data are (similar to this the-
sis) (Chiang et al., 1994). Nearly two decades later, Malpani et al. published a tool
that would also reverse engineer databases (Malpani et al., 2010), but with the goal
to bootstrap application development. The first two of these publications proposed
reverse engineering relational databases into the conceptual schema. The concep-
tual schemas would be represented in the form of an extended Entity-Relationship
(EER) model, or something similar (ECR+) in case of (Andersson, 1994). Malpani et

LIf "omics", "biology" and "biomedical" are not excluded words, there are about two million search
results. However, most of these results are outside the scope of this thesis.



14 Chapter 4. Background

al. proposed to reverse engineer into Microsoft’s Entity Data Model (EDM), a model
that contains implementation specific information and is therefore not a conceptual
schema. The three approaches will now be analyzed individually.

Andersson: reverse engineering to ECR+

Andersson proposed to extract the conceptual schemas from data manipulation state-
ments present in application code. They argued that all relationships represented in
a database should be present in a set of queries that reflects the database manipula-
tion completely, and thus that their approach would completely uncover the seman-
tics as intended by the database designer or application programmer. The problem
with this approach is that the application code must cover all aspects of the database
design, as well as that the relevant application code must be available. These are
reasonable assumptions in Andersson’s problem space, where they look for options
to modernize outdated database systems of which is known what they contain data
on. However, the problem in this thesis is that it is not known which entity types are
represented in the data, only which entity types we might encounter. Furthermore,
it might not be known which application produced the data, or there might not even
be application code available. Andersson’s approach is reverse engineering from the
application level, not from the data level, and thus not a suitable approach for this
thesis.

Chiang et al.: reverse engineering to EER

Chiang et al.’s approach to database reverse engineering is relatively similar to database
entity type recognition as described in chapter 2, as is illustrated in Figure 4.1. Al-
though rather than detecting entity types, they aim to infer the conceptual schema
from data instances using the corresponding table and attribute names, and primary
keys (Chiang et al., 1994). Their methodology consists of four steps to infer the EER
model from the database:

1. Infer functional dependencies and primary keys, and keep these in third normal form
(3NF). A functional dependency X — A indicates that the values of attribute
set X uniquely determine the values of an attribute A (Papenbrock et al., 2015).

Real World Objects Real World Objects
Validation Validation
Mapping - Semantic Degradations Mapping (Conceptual Schema)
K Conceptual Schema Conceptual Entity Types
Database Design and c tal Inst
Maintenance onceptual Instance
Mapping - Semantic Degradations Mapping (Logical Schema)
Reverse Engineering Entity Type Recognition
A
Logical Schema Data Instance

(A) Database reverse engineering as described (B) Database entity type recognition as proposed
in (Chiang et al., 1994, Fig. 1). in this thesis.

FIGURE 4.1: The database reverse engineering process vs. the
database entity type recognition process.



4.1. Similar research 15

Keeping the functional dependencies in at least 3NF eases the rest of the pro-
cess by ensuring that each entity in the EER model is either strong, regular or
weak, but not a combination of the three. Modern systems using this approach
may benefit from the relatively recently published evaluation study on func-
tional dependency discovery algorithms in (Papenbrock et al., 2015). Experi-
ments could be done with relaxed functional dependencies ((Hai et al., 2019))
to evaluate the feasibility of this approach on data lakes instead of one DBMS.

2. Classification of relations (strong, regular, weak). Classification is performed by
matching each relation to the following rules:

Strong The primary key of the relation does not properly contain the key of
another entity.

Regular The primary key of the relation is the concatenation of primary keys
of other entities.

Weak The primary key consists partially of keys of other relations, and par-
tially of keys not in any other relation.

3. Generation of inclusion dependencies. Chiang et al. included a set of heuristics for
the generation of inclusion dependencies. Since their publication, many efforts
have been made to perform inclusion dependency detection more efficiently,
especially because the size and amount of available data instances has scaled
up significantly since 1994. For instance, Tschirschnitz et al. have proposed
an algorithm to efficiently detect single-attribute inclusion dependencies on a
lot of data in (Tschirschnitz et al., 2017). Similar efforts have been made for
multiple-attribute inclusion dependencies in (Shaabani et al., 2017), exploiting
the characteristics of single-attribute inclusion dependency detection.

4. Identification of entities and relationships, and assignment of attributes. The pre-
viously classified relations are identified as entities or relationships, and at-
tributes are assigned to each entity. The result is a model that meets EER spec-
ifications.

The result of this reverse engineering method is the conceptual schema for the database
in question. This result would solve P2 (subsection 2.2.2), as it is now known how
every data instance relates to the conceptual schema. It would also solve P1 (sub-
section 2.2.1) because conceptual schemas contain entity type specifications. How-
ever, the approach raises viability concerns with regards to time complexity; the
worst-case time complexity for any dependency algorithm, i.e. for both functional
and inclusion dependencies, is exponential in terms of the number of attributes (i.e.
columns) (Abedjan et al., 2015). Given the very large amounts of data sets orga-
nizations have to deal with in the present, and the fact that this method calls for
the detection of dependencies twice, the time complexity issue makes this specific
method a non-viable approach for this thesis.

Malpani et al.: reverse engineering to EDM

Malpani et al. had the goal to bootstrap application development by reverse engi-
neering databases (Malpani et al., 2010). They stated that available tools for that
purpose shared one common shortcoming; the tools would assign each table one
entity type and each foreign key one relationship, disregarding the possibility of



16 Chapter 4. Background

inheritance or other relationships. Thus, Malpani et al. propsed a method and pub-
lished a tool called EdmGen++2 that would fit a database-first approach to appli-
cation development. EdmGen++ would reverse engineer relational databases into
Microsoft’s entity data model (EDM) in a fashion relatively similar to the methodol-
ogy published in (Chiang et al., 1994). The steps in EdmGen++’s method are:

1. Extracting a default model from the table. This model is made by evaluation of the
following rules.

¢ Every table represents an entity.
¢ Every foreign key represents a relationship.

* Every table consisting merely of foreign keys to two other tables repre-
sents a many-to-many relationship.

2. Further identify the entities and relationships in the default model by evaluating each
rule specified in the method ((Malpani et al., 2010, Table 1)). Before each rule is
evaluated for each entity or relationship, certain preconditions must be met.
If a precondition is not met, the rule is not evaluated for that specific entity
or relationship. Preconditions were introduced in order to avoid performing
computations that are likely to give meaningless results. In addition, postcon-
ditions must be met in order to avoid superfluity of information.

The upside to this method is that the resulting model enables object-oriented com-
munication between applications and the database without manual implementation
of the application code. The downside to this method is that it cannot function on
(relational) data that does not reside in a functioning DBMS, as it requires access
to schema specifics such as foreign key definitions. This constraint could be worked
around by manually providing foreign key relationships, or by finding them through
inclusion dependency detection as previously covered, in case data comes in another
form such as in comma separated files.

Another issue that would arise if either Chiang et al.’s or Malpani et al.’s method
were to be used in this thesis, is that both methods require the availability of sensible
table and column names to result in sensible models. Furthermore, to automatically
identify semantic heterogeneity, table and column naming should be consistent for
the representation of similar entity types throughout the entire organization. Oth-
erwise, these methods would require a human in the loop to verify or adjust every
result. How these conditions will be avoided for the entity type recognition solution
will become clear in chapter 5.

4.1.2 Entity type recognition

There are little publications available when searching for "entity type recognition”
(except in the field of biology), indicating that the term itself might not be well es-
tablished. However, efforts toward solving a problem similar to the one identified
in this thesis were made in (Sleeman et al., 2015) and (Giunchiglia et al., 2020). Both
perform entity type recognition in knowledge bases, but Sleeman et al. focuses on
detecting fine-grained entity types (e.g. distinguish compact cars from other vehi-
cles), and Giunchiglia et al. focuses on detecting semantic heterogeneity between
knowledge bases. The methods will now be reviewed individually.

2The source code of the project is no longer available. However, an executable seems to be published
at https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/ef/edm-generator-edmgen-
exe.


https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/ef/edm-generator-edmgen-exe
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/ef/edm-generator-edmgen-exe

4.1. Similar research 17

Sleeman et al.: fine-grained entity type recognition in knowledge bases

Sleeman et al. state that schemas for structured data are often either unavailable
or semantically weak, making them unsuitable evidence for entity type recogni-
tion (Sleeman et al., 2015), especially for fine-grained entity type recognition. Thus,
they propose using semantic graphs to perform entity type recognition, but acknowl-
edge that this approach brings along challenges that have to be overcome. Semantic
graphs are required to be ontologically defined to make this feasible, and on top of
that, it requires the data to follow the same ontology sufficiently—something that is
likely rare in many big data scenarios. The main goal of their contribution is to iden-
tify coreference within relational data. That is, identify which parts of given data
represent the same entity types, while distinguishing between fine-grained entity
types.

The first step in the entity type recognition process, as defined by Sleeman et al.,
is acquiring a well-defined model of entity types from a knowledge base. This model
is limited to a certain domain, such as the medical domain, and reinforced by using
it to identify entity types in data in the same domain. The entity type model consists
of equivalence, hierarchical and pattern similarity relationships.

The next steps is concerned with improving the model’s efficiency by identifying
the attributes of each entity type that have a high likelihood of indicating such an
entity type. Entities” types can then be identified based on the presence of these spe-
cific attributes, instead of matching each attribute of each entity of unknown type to
each attribute of each known entity type, thus avoiding possibly unnecessary com-
putation. As this is an approach based on linguistics, Sleeman et al. have adopted
measures to properly handle synonymous attributes.

The final step is classification, which is done through support vector machine
(SVM) models. The features for the SVMs are the attribute values that remained
after performing the previous steps. All entities for which no entity type could be
identified, are classified as the same "unknown" type.

Sleeman et al.’s approach to entity type recognition relies on semantic graphs, ontol-
ogy and proper presence thereof. There is no guarantee that such requirements can
be satisfied in this thesis” setting due to the possible specificity of entity types used
within organizations. However, if organizations are able to provide semantic graphs
regarding their internally utilized entity types, this approach might show promising
results.

Giunchiglia et al.: semantic heterogeneity detection for knowledge bases

In their work, Giunchiglia et al. aim to perform entity type recognition in knowledge
bases without eliminating semantic heterogeneity (Giunchiglia et al., 2020). Rather,
they want to understand how semantically heterogeneous representations relate to
each other—quite similar to solving P2 stated in subsection 2.2.2.

Giunchiglia et al. propose to embrace semantic heterogeneity rather than trying
to resolve it, because diversity in data is unavoidable. Their approach therefore
involves acquiring and maintaining a set of high-quality knowledge bases, which
will in turn be used to perform entity type recognition. The knowledge bases are
contextually compared using unity and diversity as metrics, where unity indicates
shared attributes and diversity indicates the opposite. Note that strong unity does
not exclude strong diversity or vice versa.



18 Chapter 4. Background

In the method’s first step, the comparison metrics mentioned above will be used
to determine which reference knowledge base can best be used to perform entity
type recognition on a given input knowledge base. This decision is made based
on the reference knowledge base that maximizes both the unity and the diversity
with the input knowledge base. These conditions should minimize misalignment
between the two knowledge bases and minimize the confusion between entity types
respectively.

The next step is the classification of entity types in the input knowledge base.
For this purpose, Giunchiglia et al. represent the reference knowledge bases, similar
to the approach in (Sleeman et al., 2015), as semantic graphs. They then use NLP
to deal with stop words, synonyms, etc. in the labels of each entity type and their
attributes to avoid misclassifications based on minor variations in the labels. Finally,
each selected reference knowledge base is used to train its own decision tree model
used to recognize entity types.

Similar to Sleeman et al.’s approach, Giunchiglia et al. require the availability of
semantic graphs. However, now there should be multiple, and each should be of
high quality. Furthermore, the labels in the semantic graphs should also be inter-
pretable by an NLP pipeline. There is, again, no guarantee that these requirements
can be met in this thesis. And even if semantic graphs could be provided, type and
attribute labels might be too domain-specific for an NLP pipeline to provide sensible
results.

4.2 Supportive research

From section 4.1 can be concluded that, in order to solve the problems defined in
section 2.2, a different approach than previously published should be taken. This
section will therefore cover literature on data profiling, as that supports the solution
proposed in chapter 5.

Data profiling is the process of analyzing data and collecting its metadata (Abed-
jan et al., 2015). There are several use cases for data profiling of relational data, such
as database reverse engineering, data integration and big data analytics. A classifi-
cation of the possible data profiling tasks has been given in Figure 4.2. It is based on
the comprehensive contributions provided in (Naumann, 2014; Abedjan et al., 2015).
This section will continue by elaborating on the data profiling tasks that will likely
prove to be useful for the entity type recognition solution.

4.2.1 Cardinalities

Cardinalities are arguably the simplest form of metadata that can be extracted from
relational data. They provide insight on data instance characteristics such as row
or column count, length of column values, amount of distinct values, etc. Counts
and lengths can be determined using a single, stateless pass over each data instance,
making their computations straightforward and cheap. Cardinalities that require
stateful passes over data instances are computationally more expensive, but the dif-
ference is relatively small when it is done right. Counting distinct values, for exam-
ple, can be done in relatively small space complexity using hashing methods.
Harmouch et al. have conducted an experimental survey regarding cardinality
estimation (Harmouch et al., 2017). They state that the number of distinct values



4.2. Supportive research

19

Single Column

Single Source

Multiple Columns

Cardinalities

Domain
Classification

Patterns & Data
Types

Value Distributions

Correlations &
Association Rules

Data Profiling

Dependencies

Clusters/Outliers

Summary/Sketch

Unigueness

Inclusion dep.

Functional dep.

Topical Overlap

Topic Discovery

Topical Clustering

Multiple Sources

Schematic
Overlap

Schema Matching

Cross-schema
Dependencies

Data Overlap

Duplicate
Detection

(
L
[
[

l

{
!

Record linkage

FIGURE 4.2: A classification of data profiling tasks. The leaves rep-
resent profiles, while the higher levels represent categories. Profiles
are not limited to their category, but are grouped based on (Abedjan

etal., 2015, Fig. 1) and (Naumann, 2014, Figure 1).



20 Chapter 4. Background

is among the most important metadata, and thus that it is important to use algo-
rithms that efficiently estimate this cardinality. In use cases where estimations are
a sufficient measure, time and space complexity can be reduced by using the right
algorithm, as can be concluded from (Harmouch et al., 2017).

4.2.2 Patterns and data types

Recognizing basic column data types is relatively easy. For instance, if a column
comprises merely decimal values, it can easily be classified as such. Similar rules
hold for strings, characters, integers, etc. More complex data types, such as dates,
usually follow strict patterns that can be exploited to identify such data types.

Patterns can also be used to determine whether a value fits a certain column.
This is useful for tasks such as detecting erroneous values in a data instance (quality
preservation), but also for accepting or rejecting candidates in entity type recogni-
tion. However, when the values of a column follow a certain pattern, this pattern is
not necessarily defined in a data instance, but rather hidden in an application. And
thus, it is difficult to verify data quality or perform entity type recognition based on
this characteristic without identifying the patterns first.

A common way of specifying a pattern that should be followed is through regu-
lar expressions (regex). These expressions can get complex, especially when expect-
ing longer, non-uniform values. It is thus desirable to perform the identification of
patterns automatically, such as through the methods described in (Fernau, 2009).

4.2.3 Semantic domain classification

Semantic domain classification regards, as the name suggests, the meaning of a col-
umn. That is, rather than determining the column data type, the goal is to determine
whether a column represents addresses, birth dates, IPv4 addresses, etc. Desirably,
the distinction between semantic domains such as birth date and expiration date is
also made.

Many efforts have been made to successfully perform semantic domain classi-
fication. Khalid et al., for instance, used a keyword-based approach to match both
columns values and names (if available) to a topic (Khalid et al., 2019). Koehler
et al. took a more complex approach by introducing dependencies that generate
tuples for data columns in a similar semantic domain (Koehler et al., 2017). Both
approaches rely on available keyword corpora, and Khalid et al.’s approach is even
more restricted because it applies only to values in natural language. Column values
can adhere to very specific semantic domains within organizations, making either of
these approaches ill-suited to contribute to solving the problems stated in section 2.2.

Zhang et al. have recently published Sato, an algorithm that attempts to extract
context from all columns in a table to identify the semantic domain of each col-
umn (Zhang et al., 2019). Out of the box, Sato works well in a simple general setting,
i.e. making distinctions between countries, cities and dates. In an organization-
specific setting, Sato should be (re)trained accordingly to be able to deal with such
organization-specific semantic domains. This does require a very large set of labeled
training data, which is likely not readily available at most organizations. However,
it might be worthwhile exploring this option, as Sato should work on all semantic
domains, not only those that are in natural language.



4.3. Conclusion 21

4.2.4 Inclusion dependencies

Inclusion dependency detection is used in tasks such as foreign key discovery. An
inclusion dependency is defined for any column A of a relation R and column B for
relation S, stating that each value in A also appears in B (Abedjan et al., 2015). This
is formally denoted as R.A C S.B or A C B. The same property applies to subsets of
columns X of relation R and Y of relation S, denoted as R.X C S.Y or X C Y, stating
that each combination of values in X also appears in Y.

Inclusion dependency detection can be divided into several special cases: unary,
n-ary, partial/approximate and conditional inclusion dependencies. The former two
cases focus on the amount of columns on each side of the dependency, one or n
respectively. According to (Shaabani et al., 2017), all algorithms for finding n-ary
dependencies require the computation of all unary dependencies first. Furthermore,
the worst case time complexity of any dependency detection algorithm is exponen-
tial in terms of the number of attributes (Abedjan et al., 2015). Hence, solving the
n-nary dependency problem is computationally more expensive than solving solely
the unary dependency problem. Tschirschnitz et al. have proposed an algorithm to
efficiently detect unary inclusion dependencies on a lot of data in (Tschirschnitz et
al., 2017). Similar efforts have been made for n-ary inclusion dependencies in (Shaa-
bani et al., 2017), exploiting the characteristics of single-attribute inclusion depen-
dency detection.

The latter-mentioned three special cases are non-exact special cases. That is, there
is no guarantee that they hold for all rows in a data instance. Partial dependencies
hold for a fraction (e.g. 90%) of the rows. If such a dependency is found, it might be
worthwhile to evaluate whether this dependency holds for a certain condition, e.g.
for all rows where the creation date is after the year 2000. If that is the case, then
this dependency is also considered conditional. Approximate dependencies, on the
other hand, are non-conditional dependencies that are not guaranteed to hold for
all rows in a data instance. Rather, they hold for a sample of the data instance.
In use cases where being exact is important, approximate dependencies should be
avoided. Similarly, partial and conditional dependencies should only be used in use
cases where their characteristics are desired.

4.3 Conclusion

From the similar research, reviewed in section 4.1, it can be concluded that there is
little to no published research that connects well to entity type recognition as iden-
tified in chapter 2. This indicates that the solution that will be proposed in chapter 5
should explore different approaches than the database reverse engineering and en-
tity type recognition solutions proposed in the reviewed literature. Semantic graphs,
as used in the literature covered in subsection 4.1.2, are still an option for future re-
search, but their requirements cannot be met during this thesis’ time frame.
Because of these limitations, there is a need for different approaches to summa-
rize the data used within organizations. In section 4.2, data profiling was identi-
fied as a promising method to enable entity type recognition. Especially seman-
tic domain classification (subsection 4.2.3) could prove valuable for this task, once
high quality training data can be provided for the organization-specific semantic
domains. For the time being, cardinalities, patterns and data types will be used to
recognize similarities in representations of conceptual entity types. Rule three de-
fined in Table 2.3 enables representations of conceptual entity types to be spread
over multiple tables. As such, inclusion dependencies will be used to connect rows



22

Chapter 4. Background

in different tables that likely belong together. How such data profiles are used for

their intended purposes will be elaborated on in chapter 5.

An overview of the acquired literature, and how it was acquired, can be found in
Table 4.1.

TABLE 4.1: An overview of how literature was acquired. Cursive
phrases indicate search queries used to browse Google Scholar.

§ Topic Literature How acquired?
(Andersson, 1994) reverse engineering
database reverse (Chiang et al., 1994) database
engineering (Malpani et al., 2010) recorpmended by su-
pervisor
i1 functional (Papenbrock et al., 2015) | functional dependency
" | dependencies (Hai et al., 2019) discovery
. (Sleeman et al., 2015) "entity type
:gs(l)ty tl}t,f(); (Giunchiglia et al., 2020) | recognition” -omics
n -biology -biomedical
— data profiling Egﬁiﬂzis ;éiz)o 1) data profiling
cardinality estimation | (Harmouch et al., 2017) F. Naumann’s profile
value patterns (Fernau, 2009) learmng regular
expressions
4.2 semantic domain (Khalid et al., 2019) Springer website
classification (Koehler et al., 2017) IEEE website
(Zhang et al., 2019) semantic type detection
inclusion (Tschirschnitz et al., 2017) | inclusion dependency
dependencies (Shaabani et al., 2017) detection



https://scholar.google.com/citations?user=Pqf21y0AAAAJ
https://link.springer.com/conference/medi
https://cci.drexel.edu/bigdata/bigdata2017/AcceptedPapers.html

23

Chapter 5

Proposed Solution

This chapter will propose a solution to the entity type recognition problem identified
in chapter 2. From section 4.1 can be concluded that there is little published similar
research, and that there is thus need for a new approach toward solving this prob-
lem. The proposed solution will therefore utilize data profiling techniques covered
in section 4.2 to perform entity type recognition.

This chapter is structured as follows. First, the general idea behind the solution
will be described in section 5.1. This section divides the solution into two phases,
which will be elaborated on in detail in section 5.2 and section 5.3. And finally, a
comprehensive summary of the two phases will be provided in section 5.4.

5.1 The solution in general

The solution proposed in this chapter should solve the two problems described in
subsection 2.2.1 and subsection 2.2.2 in a given organization. That is, the solution
should recognize which conceptual entity types are represented in any given data
instance, and which of the rules listed in Table 2.3 was used to get to each represen-
tation. The following assumptions were made to ensure that solving these problems
remains a feasible task:

1. The organization knows which conceptual entity types might be encountered
in their data and are interested in recognizing only those entity types.

2. Each data instance adheres to one of the rules listed in Table 2.3. The rules are
covered in detail in subsection 2.1.1.

7

3. The organization provides example data instances for each of their entity types
distinct representations. These data instances are labeled with their respective
entity type(s) (training data).

4. All entity types are defined in one conceptual schema, no entity type has more
than one conceptual specification.

The first assumption is made to narrow down the problem space, and thus to en-
sure that the solution expects to only find entity types used within the organization.
Assumption two restricts the solution from recognizing special cases that are not
commonly used within the organization. Assumption three helps the solution to
recognize relevant entity types by providing ground truth. And assumption four
ensures that representations of the same entity types are always conceptually com-
patible.

The proposed solution consists of two phases, as depicted in Figure 5.1, which
will now be introduced and then covered in more detail in section 5.2 and section 5.3.



24 Chapter 5. Proposed Solution

1. Clustering & Data Profiling: Cluster rows in data instances based on pro-
vided labels or similarity and create data profiles for each cluster.

2. Entity Type Recognition: Use the acquired clusters and their correspond-
ing data profiles to recognize similar rows in previously unseen data in-
stances.

Labels Provided Clustering

{ Profiling }4 ------- ;

\

Profiles ﬁ

Establish
Rules

.‘

Unlabeled
Data

Entity Type
Recognition

\
Labeled
Data

FIGURE 5.1: The method flowchart for the proposed solution.

5.2 Clustering & data profiling

Before entity type recognition can be performed, a ground truth has to be estab-
lished. The organization will therefore provide example data instances for each of
their entity types” distinct representations. This data will be used as example data
for phase two. But to do so, similar representations must be clustered together, and
data profiles should be extracted for each cluster. In that way, rows in previously
unseen data instances can be matched to the acquired data profiles in phase two.



5.2. Clustering & data profiling 25

The input for phase one is thus a collection of data instances. Ideally, the rows in
these data instances have been labeled with the conceptual entity types they repre-
sent. However, providing entity type labels can be deferred to later in the process,
resulting in the two following different approaches.

Labels provided: The rows in the given example data instances are clustered
based on their provided labels.

Labels not provided: The rows in the given example data instances are clus-
tered based on the methods described in subsection 5.2.1. The acquired
clusters are assigned a generated label, but must later be validated and
labeled by the user.

It can be concluded that working with labeled input data instances is the most
straight forward; cluster as specified and extract data profiles. Working with unla-
beled input data is more difficult because it requires the clustering algorithm to de-
termine how rows in each data instance should be clustered. Thus, before covering
the data profiling specifications in subsection 5.2.2, subsection 5.2.1 will elaborate on
how to deal with unlabeled example data.

5.2.1 Clustering methods for unlabeled example data

To maximize the ease of explainability of the employed clustering method, the pro-
posed solution will incorporate its own custom clustering algorithm based on binary
representations of the data. This method is easily explainable and should work given
that the rows in unlabeled data instances each adhere to one of the rules stated in
Table 2.3, as per assumption two in section 5.1. This means that the solution can use
this knowledge as a means to perform the clustering of rows inside each example
data instance. Each of the rules requires its own approach, as will now be covered
in detail.

1. The table contains data on multiple subtypes from some entity type in its tax-
onomy.

In this case, the table contains data that can represent any entity type in one taxon-
omy. For the taxonomy illustrated in Figure 2.1, for example, that would mean that
each row in the table can represent a different type of vehicle (e.g. compact, SUV,
etc.). An example of such a table is given in Table 5.1.

If no labels have been provided to indicate which row represents which type in
the taxonomy, the algorithm should figure out how to cluster the rows in this table
itself. That means that the algorithm should make distinctions between the differ-
ent representations. One way of doing so would be to represent each row in the
example data as a binary vector; a zero or one indicates an empty or populated cell
respectively. There are several other ways of doing this, however, this is theoretically
a cheap solution to finding distinct representations in one table, as it requires only
one bit of information to be stored per cell in the data. Furthermore, binary repre-
sentations can be saved without causing privacy concerns, as there is no real data
involved. There are drawbacks to this method, however, as will become evident
shortly. The binary representation of Table 5.1 is shown in Table 5.2.

When analyzing both tables in this manner, it becomes clear that not every row
populates every column. This indicates that rows that populate different columns



26

Chapter 5. Proposed Solution

TABLE 5.1: An example data instance that adheres to the first rule.

idx Pl P2 P3 P4 P 5 P6 Pk-l Pk
0 41230 | FALSE | AUT028JB61 | 35216
1 52882 | FALSE | AUT028JB33 | 52904
2 76508 | FALSE | AUT028JB31 88cPigT TRUE
3 12614 | TRUE AUT028JB15 88cSlothY | TRUE
n-1 | 26578 | FALSE | AUT028JB42 11-05-20
38020 | FALSE | AUT028JB23 11-05-21 | 69199

TABLE 5.2: The binary representation of Table 5.1.

idx P] P2 P3 P4 P 5 P6 Pk-l Pk
1 1 1 1 1 10 |0 0 0
1 1 1 1 1 0 |0 0 0
1 1 1 1 0 1 1 0 0
1 1 1 1 0 1 1 0 0
1 1 1 1 0O |0 |0 1 0
1 1 0O |0 |0 1 1

likely represent different entity types. However, this only holds under the assump-
tion that columns in a table do not overlap semantically. For instance, a single col-
umn cannot represent a creation date in some rows, and an address in other rows.
Tables where column overlap does occur should be labeled before they are used in
this solution, or another clustering method can be used.

In conclusion, when Table 5.1 is used as example input, it can be seen that Py, P,
and Pj are shared among all different entity type representations in this table. But
the distinction between entity type representations can be made based on whether
Py4; P5s and Pg; or Py and/or Py have been populated (P is nullable in this example).
The resulting clusters are listed in Table 5.3.

TABLE 5.3: Entity type representation clusters for Table 5.1.

Cluster: Row indices
T o, 1, ...1
T, [2, 3, ...]
T3 [n-1, n, ...]

2. The table contains data on a type at the bottom of its taxonomy, and only that

type.

In this case, binary representations are not of much use. Each cell in each row will be
populated, unless dealing with nullable columns. The solution should give a single
cluster for tables that adhere to this rule.




5.2. Clustering & data profiling 27

3. The rows in the table contain data on a combination of multiple entity types, or
part thereof, possibly from different taxonomies.

When this rule applies to a table, there are two special cases that arise and should be
handled differently. The special cases are as follows:

1. All of the entity type’s attributes included by the logical schema are present in
the same row.

2. Some rows in the table may represent only part of one or more entity types and
refer to rows in other tables for the rest of their attributes.

Tables that fall in the category of the first special case can be handled using the same
approach as for rule one or two. The only difference is that the labels for the acquired
clusters should reflect that each cluster represents more than one entity type.

For the second special case, however, it is also important to establish links be-
tween the rows that refer to each other because they represent entity types together.
In Table 5.4, an example of such a special case is given. The last column in Table 5.4a
represents a foreign key relationship with Table 5.4b. Finding foreign key relation-
ships in the example data instances can be done through the inclusion dependency
algorithm mentioned in subsection 4.2.4 that best fits the use case. For instance,
approximate inclusion dependency detection can be employed to speed up this pro-
cess, at the sacrifice of accuracy. The implementation of this proposed solution will
include only the detection of unary inclusion dependencies to facilitate precise re-
sults for a wide array of use cases.

TABLE 5.4: Example data instances that adhere to the third rule.

(A) Table one, FKy refers to table two’s index. (B) Table two.

idx P1 Pz P3 FK4 idx P5 P6

0 76508 | FALSE | AUT028JB31 | O 0 88cPigT TRUE
1 12614 | TRUE AUT028JB15 | 1 1 88cSlothY | TRUE
2 41230 | FALSE | AUT028JB61 | 2 2 88cCodA FALSE
3 52882 | FALSE | AUT028JB33 | 3 3 88cGulZ TRUE
n-1 | 26578 | FALSE | AUT028JB42 | m-1 m-1 | 88cBisonX | FALSE
n 38020 | FALSE | AUT028JB23 | m m 88cDuckK FALSE

Clusters that were extracted from different tables but represent the same entity types
similarly should be merged, for example if there would be two different instances of
Table 5.1. Binary representations cannot be used to do this. Rather, the data profiles
described in subsection 5.2.2 should be compared, and their corresponding clusters
merged accordingly if there is a sufficient match. The merging of clusters can be
done automatically, but should ask for user verification if desired.

5.2.2 Specification of the data profiles

After acquiring the clusters for each example data instance, these clusters’ character-
istics should be summarized in data profiles. The data profiles in this solution will
consists of column data type specifications and several cardinalities. The benefit of
using data profiles is that they require a minimal amount of example data and give a
humanly comprehensible overview of the data’s characteristics, without storing any
real data. Furthermore, they can be used for multiple other applications than entity



28 Chapter 5. Proposed Solution

type recognition and can be substituted by other data profiles if desired—as long as
the rest of the process (e.g. classification rules) is adapted accordingly. Table 5.5 lists
all the data profile attributes used in this solution, and section 5.3 elaborates on how
the data profiles will be used for entity type recognition.

Some of these attributes, such as the number of string columns, represent explicit
characteristics of the rows in each cluster, and can be acquired with as little as one
example row of data. They are expected to be effective characteristics for entity
type recognition and require cheap matching rules in terms of time complexity. For
example, if a given row comprises twenty attributes but a given data profile specifies
fifty attributes, the two are likely not a match and the profile can be eliminated from
the matching process. These attributes are expected to eliminate most data profiles
as possible matches.

Other attributes represent implicit characteristics and require more expensive
measures to be worth including for entity type recognition. The degree of unique
values, for example, is only useful if all the values in its corresponding column are

TABLE 5.5: Data profile attributes used in this solution, with their
respective descriptions. The thick line separates explicit from implicit
attributes.

Attribute
num_attr

Description

Specifies the number of attributes (columns) the rows in the
cluster populate.

Specifies the number of attributes that are nullable.

A binary vector where zero and one indicate a non-nullable
and nullable attribute respectively.

num_nullable
nullable_ attr

num_str Specifies the number or string attributes.
num_int Specifies the number of integer attributes.
num_bool Specifies the number of boolean attributes.
num_float Specifies the number of float attributes.

num_datetime

Specifies the number of datetime attributes.

num_timedelta

Specifies the number of timedelta attributes.

num_object

Specifies the number of attributes that could be classified as
one of the types above.

attr_types A vector of all attribute data types in left-to-right order.

unique A vector representing the degree of unique values for each at-
tribute in left-to-right order.

range A vector that specifies the range for each numeric attribute,
null value otherwise in left-to-right order.

mean_std A vector that specifies the mean and standard deviation for the
numeric value attributes, null value otherwise, in left-to-right
order.

len_range A vector that specifies the range of string length for string at-

tributes, null value otherwise, in left-to-right order.

common_string

A vector that indicates whether all values of a string attribute
contain a certain substring, null value otherwise, in left-to-right
order. If a common substring is found, its hashed value is
stored in the vector for comparison during entity type recog-
nition.




5.3. Entity type recognition 29

TABLE 5.6: Example data profiles. Rows, columns and values have
been truncated for brevity.

cluster | # attr | # str | # int | # bool | ... | mean_std
Ty 16 7 5 2 wo | [..., [26452, 6123.42]]
To 77 42 21 9 .. | [[125746, 3214.11], ...]
Tn 15 6 5 2 .| [..., [34600, 807.05]]

stored somehow, preferably in a way that eliminates privacy concerns. These at-
tributes are expected to eliminate data profiles that have similar explicit attributes
but should not match, and should be evaluated after the explicit attributes because
they require more resources.

As stated before, the attributes in the data profile can be substituted for other
attributes if desired. For example, if you know that your data has very specific char-
acteristics that can be used for entity type recognition, these can be included as an
attribute. The ones in Table 5.5 have been chosen based on personal thought process
with regard to how an algorithm could distinguish one representation from another with-
out using semantic comparison, and are expected to be helpful in general. As of yet,
there is no evidence that these attributes will successfully help perform entity type
recognition. Their effectiveness will be evaluated in section 6.3.

All example data can be omitted once these data profiles have been acquired,
eliminating privacy concerns when dealing with sensitive data. The data profiles
can be saved to a file so that they do not have to be acquired again in the future, or
to be used on another system. How data profiles, such as those in Table 5.6, are used
for entity type recognition will be elaborated on in the next section.

5.3 Entity type recognition

The data profiles that are acquired during the first phase will be used as ground
truth in the second phase to perform entity type recognition. The general idea of
phase two is to match each row in each input data instance to one such data profile.
For example, the solution should recognize which data profile in Table 5.6 (T, T, or
Tn) best resembles the each row in an input data instance such as Table 5.1. And as
such, each input row is assigned an entity type label that states which conceptual
entity types are represented.

This section continues by describing how the proposed solution recognizes entity
types in subsection 5.3.1. Then, in subsection 5.3.2, the output of the proposed solu-
tion will be discussed, as well as how the output serves a solution to the problems
described in chapter 2.

5.3.1 Rule-based classification

The entity type recognition process will be fulfilled by a rule-based classification
algorithm. A rule-based approach is chosen to maximize the process’s transparency
and the ease of explainability of results, as this allows for easy evaluation of each
individual rule. The algorithm takes a single row, a table or a collection of tables
as input and evaluates rules to match each input row to the previously acquired
data profile that matches best. To maximize the versatility of the algorithm, the data
profile attributes listed in Table 5.5 can be substituted for any attributes that the user



30 Chapter 5. Proposed Solution

desires to work with. The same analogously applies to the set of rules used for the
classification of entity type representations. Therefore, the algorithm allows for the
use of user-defined rules, but only rules that apply to the attributes mentioned in
this thesis will be covered in this section.

The algorithm evaluates rules in a specified order and allows for strict evalua-
tion, meaning that if a data profile does not match an input row for a given rule, the
algorithm can disregard that data profile during evaluation of the following rules.
This should allow for some speed up of the entity type recognition process, but
might not be desirable in some situations—hence its optionality. The rules included
in this thesis are the following:

1. Evaluate the number of attributes: match the number of attributes in an input
row to each data profile. This number should be in the range of [num_attr —
num_nullable, num_attr]| for each data profile, considering possible nullable
attributes.

2. Evaluate the number of data types: for each attribute data type, match the
number of attributes of that data type in the input row to the corresponding
attribute in the data profile. For example, if an input row contains 7 string
attributes, a matching data profile’s num_str should be 7. In case num_nullable
= a # 0 in a given data profile, allow for the input row to have at most a less
attributes of a data type across all attribute data types.

3. Evaluate the column data types: evaluates the order of attribute data types as
specified in each data profile in attr_types. In case num_nullable = a # 0 in
a given data profile, evaluate at most a attributes to the right in the input row
(in increments of 1).

4. Evaluate the degree of unique values: for each value in a given data profile’s
unique attribute that is (nearly) 1, evaluate whether the value for the corre-
sponding attribute in the input row has not yet been seen. This requires an
efficient and privacy-respecting approach to save all values of the correspond-
ing attribute in the example data during phase one.

5. Evaluate the range of numeric values: for each numeric attribute in an input
row, evaluate whether it falls in the range of the corresponding value in a given
data profile’s range attribute. This rule should again consider num_nullable
= aif a # 0, as its evaluation might be meaningless otherwise—for example
when trying to evaluate a numeric range on a string value.

6. Evaluate the mean and standard deviation of numeric values: for each nu-
meric attribute in an input row, evaluate whether its value falls within two (or
three) standard deviations of the mean value in a given data profile’s mean_std
attribute. This rule should only be applied to attributes of which the values fol-
low a normal distribution, as 95% (or 99.7%) of the values fall within two (or
three) standard deviations of the mean in that case'. This rule should again
consider num_nullable = a if a # 0, as its evaluation might be meaningless
otherwise.

7. Evaluate the length of string values: for each string attribute in an input row,
evaluate whether its length falls in the range of the corresponding value in

1This is called the 68-95-99.7 rule.



5.3. Entity type recognition 31

a given data profile’s len_range attribute. This rule is especially meaning-
ful in cases where the minimum and maximum of the range are equal, i.e.
where the string should be of an exact length. This rule should again consider
num_nullable = g if a # 0, as its evaluation might be meaningless otherwise.

8. Evaluate the presence of common substrings: for each string attribute in an
input row, evaluate whether it contains the corresponding value of a given
data profile’s common_string. This rule should again consider num_nullable
=aifa # 0, as its evaluation might be meaningless otherwise.

These rules, were established through personal thought process with the aim to
effectively exploit the attributes provided in the data profiles. This is also why they
have to be evaluated in a particular order. The first three rules are computationally
cheap and straightforward to evaluate and are expected to eliminate the vast major-
ity of data profiles; those that should obviously not be considered as a match. As
such, the remaining, computationally more expensive rules can be evaluated for a
limited number of data profiles to uncover implicit, more detailed similarities be-
tween given rows and data profiles. Again, there is not yet evidence that these rules
will live up to their expectations. This will also be evaluated in section 6.3.

5.3.2 Output & interpretation

Once all the rules have been evaluated for a given row, the algorithm provides an
assessment of which data profile best resembles the input row. This assessment con-
sists of a score on a range of [0, 1] for each data profile. For example, running the
row in Table 5.7a through the algorithm results in the scores in Table 5.7b. It be-
comes obvious that T, is the best matching profile for the given input row, and as
such the input row is classified as a representation of the conceptual type(s) that T,
represents. Unlike in the entity type recognition method proposed in (Sleeman et al.,
2015), this solution does not provide "unknown" labels because it should not have
to, as per assumption one in section 5.1. For any input row, the classification process
can result in one of the two following special cases:

1. There is a clear best-matching data profile (like in Table 5.7). In this case, the
algorithm can go ahead and assign an entity type label to the input row.

2. Multiple data profiles have acquired an (almost) equal score and there is no
data profile with a higher score. In this case, the algorithm does not know
which entity type label to assign. As such, it should present the highest scor-
ing data profiles as candidates to the user and ask the user to make the final
decision on the entity type label.

Once each row has been classified as a representation of specific conceptual entity
types, these results can be aggregated for each input data instance to solve problem
P1 and P2 as described in section 2.2. Such an aggregation should be an overview
of the distinct entity type labels for each input data instance. An example of such an
aggregation is shown in Table 5.8.

Problem P1, "given unlabeled data instances and the data instances labeled with their
respective entity type(s), recognize which of the known entity types are likely stored within
each unlabeled data instance,” has now been solved; each initially unlabeled data in-
stance has now received entity type labels.

Problem P2, “given the result of P1, recognize the rules used to map the conceptual
schema to the logical schema, for each logical schema,” can be solved by analyzing the



32 Chapter 5. Proposed Solution

TABLE 5.7: An example input row and the result of running it
through the entity type recognition algorithm.

(A) The input row.

idx P1 P2 P3 P4 P5 P6 .ee P14 P15
0 41230 | FALSE | AUT028JB61 | 35216 | 88cPigT | TRUE | ... 1

(B) The evaluation scores for the input row for each data profile listed in Table 5.6.

idx T1 T2 Tn
0 [078| 0 | .. 0924

entity type labels assigned to each initially unlabeled data instance. Each rule in
Table 2.3 can be identified as follows, in the same order:

1. The data instance has received more than one entity type label, but none of
these contain more than one conceptual entity type.

2. The data instance has received one entity type label containing exactly one
conceptual entity type.

3. The data instance has received one or more entity type labels, of which at least
one contains more than one conceptual entity type.

TABLE 5.8: Example aggregated results. The data instances each ad-
here to, in similar order, one rule in Table 2.3.

Data instance id clusters entity types
1 Ty, Tp [[vehicle.car.compact], [vehicle.car.SUV]]
2 T, [vehicle.car.compact]
3 Th [[vehicle.car.compact, engine.gasoline, tires.winter.car]]

5.4 Conclusion

The proposed solution performs entity type recognition in two phases. First, ex-
ample data is clustered and analyzed to obtain comprehensive data profiles. These
data profiles are then used in phase two to classify previously unseen data instances
in a rule-based manner, and assign entity type labels accordingly. The output of
the solution gives a comprehensive overview of which conceptual entity types have
been found in each data instance, such as in Table 5.8 for example. Analyzing the
assigned entity type labels enables the identification of which rules have been used
to map the conceptual schema to each logical schema. And as such, the problems
stated in chapter 2 have been solved.

The data profiles and the corresponding rules covered in this chapter are ex-
pected to be suitable means for database entity type recognition in cases where the
data profiles substantially point out diversity between entity type representations.
Furthermore, in scenarios where the explicit characteristics of entity type represen-
tations are mostly similar, the provided rules may be ineffective and their evaluation
slow. For example, if multiple entity type representations have the same number of



5.4. Conclusion 33

attributes as well as similar numbers of attribute types, this set of rules might not
be successfully applicable. Therefore, it must be noted that data profiles and their
corresponding classification rules are likely best evaluated for each individual use
case where the proposed method is employed.






35

Chapter 6

Results & Evaluation

The entity type recognition method proposed in chapter 5 will be evaluated through
performing fitting experiments on its implementation in Python. The used experi-
mental setup will be described in section 6.1. Then, some results of the clustering
and data profiling process (section 5.2) will be presented in section 6.2 to evaluate
its viability. The classification of entity types (section 5.3) is experimented with and
evaluated in section 6.3, after which the results will be summarized and discussed
in section 6.4.

6.1 Experimental setup

This thesis is conducted in cooperation with a bank, which dictates some rules for ex-
perimentation. First of all, experiments are not conducted on real data that contains
any client’s information. Second, any real data may only reside or be experimented
with in the bank’s secure environment. These two restrictions make evaluation on
real data difficult, though not impossible, because it limits the data available to per-
form evaluation on. The bank has therefore provided a data generator that outputs
data of any desired size, containing no real data but resembling the it well. Thus, the
data used for experimentation are:

¢ Generated data in varying sizes. The size is defined by the number of data
instances, rows per data instance and different entity type representations per
data instance. Furthermore, the generator provides the logical schema for each
generated data instance, which serves as ground truth. The size of the gener-
ated data is specified for each experiment in the following sections. What can
be expected of the data generator will be elaborated on in subsection 6.1.1.

¢ About 170,000 rows of real data sampled from nine tables, for which the ground
truth is provided by an expert at the bank. Experiments on real data will be
used to determine whether the experiments on generated data are of any value.

Furthermore, the metrics used for evaluating the experimentation are provided in
Table 6.1. Accuracyy, is the strictest used metric aimed at uncovering how well the
method works for each individual row. Accuarcyp however, evaluates how well the
method solves P1 in subsection 2.2.1, as P1 aims at recognizing which conceptual en-
tity types are represented in each data instance rather than each row. False positives
and negatives are measured to support Accuarcyp. Finally, rule efficacy evaluates
how much influence each rule introduced in subsection 5.3.1 has on the outcome of
each experiment. This metric can be used to evaluate whether some rules should be
replaced in the future, but also indirectly evaluates whether the attributes listed in
Table 5.5 are at all useful.



36 Chapter 6. Results & Evaluation

TABLE 6.1: The metrics used for evaluation of the method.

Metric Definition

Accuracyy The degree of rows for which entity type labels were predicted
exactly correctly (9/10 — 90%).

Accuracyp The degree of data instances for which distinct entity type labels

were predicted exactly correctly (9/10 — 90%).

False positive ~ Occurs when a data instance received an entity type labels of a
representation that it does not contain.

False negative Occurs when a data instance did not receive an entity label of a
representation that it does contain.

Rule efficacy =~ The absolute percentage of data profiles eliminated as match can-
didate, measured per rule.

6.1.1 The data generator

The data generator that will be used for experimentation is developed by an ex-
pert at ING. Its purpose is to generate relational data of desired any size without
sparking privacy or integrity concerns. This means that the resulting relational data
contains no real information and can thus be used outside of the bank’s secure en-
vironment (on faster machines). Furthermore, it also means that the relational data
can be shaped to evaluate the proposed solution under specific conditions (e.g. five
versus hundreds of attributes per entity type). The individual advantages of using
generated relational data for the majority of the experiments are as follows.

¢ It provides relational data of any desired size in terms of entity type taxonomies,
entity types, tables and rows.

¢ It allows for the specification of characteristics of the relational data, such as
the range of number of attributes per entity type, the range of rows per table,
and maximum number of specific data type attributes per entity type.

¢ It guarantees reproducibility under fixed parameters. That is, the data genera-
tor will provide the same relational data if and only if all specified characteris-
tics are the same.

¢ It allows for use of the relational data on any system.

Under the user-specified parameters, the generator will start off by generating
the conceptual schema. This specifies the entity type taxonomies and attributes per
entity type. It then generates a random amount of entities for each entity type, pop-
ulating each attribute of each entity with a value. These values are either random or
follow a pattern, depending on the conceptual schema. Finally, the data generator
outputs the generated relational data in three ways:

1. As combined as possible. Each table contains data on all entity types of the
same taxonomy (e.g. Table 5.1).

2. Separated complete entity types. Each table contains data on one entity type,
including the attributes that are specified in parent entity types.

3. As separated as possible. Each table contains data on the attributes of one
entity type, but refers to attributes of parent entity types in other tables.



6.2. Clustering results 37

These three special cases are relatively similar to the special cases mentioned
in Table 2.3. Only rule three in that table is not covered completely. However, as
was determined in subsection 5.2.1, tables that adhere to that rule can be clustered
similarly to those that adhere to rule one. In conclusion, there should be no problem
in covering all the rules specified in Table 2.3 during experimentation.

6.2 Clustering results

This section will evaluate whether the clustering methods proposed in subsection 5.2.1
deliver their intended results. That is, in case example data is provided without en-
tity type labels, these methods should identify exactly one cluster per distinct entity
type representation in a table, and each row in that table should be included in the
cluster that correctly reflects the entity type(s) it represents. To do so, clustering re-
sults will be presented for two generated data instances. One of these data instances
adheres to rule one, and the other to rule two listed in Table 2.3. As data instances
that adhere to rule three can be handled the same as those adhering to rule one, this
special case will not be evaluated separately. Finally, the method is also evaluated
on real data.

6.2.1 All entity (sub)types from the same taxonomy in the same table

Predicted Decomposition - singlde.koala.C1.combined.csv

singlde. koala..comblned.csv

58 B4 76 294 300 314 360 362 367 552 556 560

FIGURE 6.1: The result of clustering a data instance that adheres to
rule one defined in Table 2.3.

The classification in Figure 6.1 displays the result of clustering entity type represen-
tations in a table that contains data on several entity types from the same taxonomy.
The figure represents a classification of the entity type representations where:

¢ Turquoise vertices (gray for people with protanopia, deuteranopia) represent
clusters, each representing their own entity type(s).

¢ Cream vertices (pink for people with tritanopia) represent clusters that rep-
resent the same entity type as their parent vertex, but differ slightly in repre-
sentation because of null values.

* Vertex names can be substituted by real entity type labels, but:



38 Chapter 6. Results & Evaluation

— Numeric values indicate the first index in the data instance where this
entity type representation was encountered.

— String values indicate a parent entity type representation (e.g. car —
{compact, SUV}).

* Vertices with the same parent are subtypes of the same entity type.

The results were verified by matching the clusters to the logical schema provided by
the data generator. Issues arose when a table contained entity type representations
with nullable attributes, but with no single row that populated all its corresponding
attributes. In other words, for each entity type representation in a table, for each cor-
responding row, at least one nullable attribute is null. This phenomenon caused the
clustering implementation to consider each such case to be its own entity type repre-
sentation, resulting in separate clusters for rows that actually represented the same
entity types. Apart from that, the method worked well. It can thus be concluded
that this method for clustering works on data instances that represent multiple en-
tity type of the same taxonomy, or where each row in the data instance can represent
part of, one or multiple entity types, but requires improvement.

6.2.2 One entity type represented in a table

Predicted Decompeosition - singlde.cheese.C21.combined.csv

singlde.cheese €31.combined.csv

FIGURE 6.2: The result of clustering a data instance that adheres to
rule two defined in Table 2.3.

The classification in Figure 6.2 displays the result of clustering entity type repre-
sentations in a table that contains data on one entity type. The figure represents a
classification of the entity type representation similarly to the one presented in sub-
section 6.2.1. The implementation experienced the same issues as with the previous
case, but worked well in most experiments performed on generated data.

6.2.3 Discrepancies with real data

Although the generated data should resemble the real data at the bank well, there
were some differences between these two that caused the clustering methods to per-
form suboptimally. The first issue that arises is that the clustering method separates



6.3. Classification experiments & results 39

the real data into too many clusters. In other words, it detects more different entity
type representations than are actually present in each data instance. This likely has
to do with the same null-value issue as identified while experimenting with gen-
erated data; the algorithm gets confused if there is no single row of an entity type
representation that populates all of its attributes, including nullable attributes. Fur-
thermore, the algorithm also started making mistakes if one of the columns in a table
was completely null. In the future, this requires more careful handling of null values
in each data instance or can be avoided completely if entity type labels are provided
beforehand. How this discrepancy influences the results of phase two of the method
will be covered in section 6.3.

One difference between the generated and the real data, is that the real data con-
tained columns that were always null. Such cases are especially tricky because there
is no guarantee that the attribute of an incoming row of the same entity type is also
null. As such, this could cause erroneous classification when evaluating some of the
implemented rules (e.g. the number of attributes). Future implementations should
consider this issue.

6.3 Classification experiments & results

This section will first cover a wide variety of experiments on generated data, after
which experiments on the real data will be performed. The generated data will be
different for each experiment, as for each experiment the generator will:

* generate at least one table in accordance with each logical schema design rule
specified in Table 2.3.

* generate a different amount of entity type taxonomies.

¢ apply different maximum taxonomy widths and depths, resulting in a larger
number of entity types per taxonomy as well as a larger possible number of
subtypes per entity type.

* apply different ranges of attributes per entity type, resulting in different ranges
of diversity between entity types in terms of the number of attributes as well
as the combinations of attribute data types. The diversity will be expressed in
terms or the range, mean and standard deviation of the number of attributes
per entity type. Justifiably so because each attribute can be of one of seven pos-
sible data types, resulting in 7" different possible combinations of attributes,
where 7 is the amount of attributes of a given entity type.

All experiments, except for the one on real data, will be performed using two
ratios of example to test data, namely nine-to-one and one-to-nine. This will be
done to evaluate whether there are notable differences in performance when little
example data is available, as this best represents a realistic scenario. This also means
that there is more room for error because there are considerably more rows to be
classified.

It must be noted that, although this was initially the intention, the experiments
will not be performed on more than 100,000 generated rows of data. This is due to
issues with the current version of the data generator that disabled it from generating
such amounts of data.



40 Chapter 6. Results & Evaluation

6.3.1 Experiment 1: relatively little diversity

TABLE 6.2: The data characteristics for the first experiment.

Characteristic: Value:
Generated or real data generated
Total number of tables 50

Total number of entity types 71
Maximum number of entity types in data instance 11

range, avg. and std. of number of attributes per type [2,18] | 8.38 | 4.58
Total number of rows 16,460
Example to test ratio 9:1-19

The first experiment will be performed on a small amount of data with relatively
little diversity. That is, entity types can have between two and eighteen attributes,
with an average of eight and a standard deviation of about five. There are still many
combinations of attribute types possible, but a lot less than for most of the upcom-
ing experiments. It also means that there is a relatively small presence of nullable
columns and that are relatively many entity types with (about) the same amount of
attributes in total. The characteristics of the used data are covered in Table 6.2.

The goal of this experiment is to evaluate whether the proposed solution works
well in a situation with some diversity, but with a low probability of having very
similar entity type representations. This offers possibilities of evaluating whether
the rules for this solution are chosen sensibly under conditions where it is unlikely
that two distinct entity type representations look very similar.

TABLE 6.3: The resulting metrics of the first experiment.

Metric: 9:1 1:9
Accuracyy 93.86% 91.40%
Accuracyp 74.0% 20.0%

False positive 12(66.67%) 79(95.18%)
False negative 6(33.33%) 4(4.84%)
Rule efficacy (%) | 83.09 | 527 1 5421 0.79 1 0.02 | 1.95 | 0.0

The results of this experiment, provided in Table 6.3, cannot be marked promis-
ing or unfavorable at first sight. It is clear that the nine to one example to test data
experiment performed well: the model scored high overall accuracy with seemingly
little false positives and negatives. The one to nine experiment scored poorly on the
data instance accuracy metric. However, this does not immediately indicate a poor
overall result, as this is almost entirely the case because of false positives. In fact, the
number of false negatives has decreased in comparison to the experiment with less
test data'. In conclusion, this means that the the value of using the proposed method
in this case depends on the use case. The results of this experiment indicate that the
proposed solution can be useful in cases where the classification of individual rows
is more important than the prediction accuracy for data instances, or in cases where
false positives are no issue.

IThe decrease in false negatives, with regard to the experiment with less test data, has occurred
because of the difference in data samples between the two experiments.



6.3. Classification experiments & results 41

The measured rule efficacy indicates that the classification results were mostly
thanks to the first three rules, focusing on the number of attributes, the number
of attribute data types, and the left-to-right order of attribute data types. These
three rules together eliminated on average nearly 95% of the data profiles as pos-
sible matches for each row. This indicates that there must have been high diversity
between the different data profiles in terms of attributes, something that this exper-
iment was supposed to have relatively little of. In retrospect, this result was to be
expected, as the standard deviation of the number of attributes is quite high at this
range. Partly therefore, the experiment in subsection 6.3.4 has been introduced, in
which the data has a standard deviation and range of the number of attributes that
is arguably more suitable to evaluate low attribute diversity performance. Finally,
the fact that 95% of the data profiles was eliminated as potential matches after eval-
uating three rules indicates that evaluating rules in order helps in reducing the time
it takes to classify all rows.

6.3.2 Experiment 2: many entity types with relatively little diversity

This experiment is focused on evaluating the method’s performance in a scenario
with many different entity type representations with relatively little attribute diver-
sity, as covered in Table 6.4. After seeing the results from the previous experiment,
it could be argued that the standard deviation of the number of attributes per entity
type is still quite high. However, this number is about half of that in the collected real
data, as can be seen in Table 6.10, and is therefore still considered relatively small.

TABLE 6.4: The data characteristics for the second experiment.

Characteristic: Value:
Generated or real data generated
Total number of tables 108

Total number of entity types 282
Maximum number of entity types in data instance 11

range, avg. and std. of number of attributes per type [2,28] | 14.13 | 5.97
Total number of rows 58,161
Example to test ratio 9:1-1:9

The goal of this experiment is to evaluate if and how the proposed solution
would scale with three times as many, slightly more diverse entity types as the pre-
vious experiment. Expectations are that the rule efficacy will stay roughly the same
as that in the previous experiment, due to the on average 7'41® possible different
combinations of attributes per entity type. In fact, this metric will likely only show
different results in scenarios where the vast majority of entity types have little at-
tributes, with maximum difference in scenarios where all entity types have only one
attribute.

Other than the rule efficacy, it is expected that the accuracy for both data in-
stances and rows will go up slightly. This is because of the higher diversity between
entity type representations in terms of attributes.

Judging from the results found in Table 6.5, the expectations are mostly satisfied,
with one small exception. Namely the data-instance-based accuracy for the exper-
iment with nine times more example test data than test data. This result is likely
incidental, as all the other metrics point to better performance in comparison with
the previous experiment.



42 Chapter 6. Results & Evaluation

TABLE 6.5: The resulting metrics of the second experiment.

Metric: 9:1 1:9
Accuracyy 94.11% 93.73%
Accuracyp 72.22% 30.56%
False positive 41(82.0%) 269(96.75%)
False negative 9(18.0%) 9(3.25%)

Rule efficacy (%) | 83.20 1 529 1 541 1 0.7510.02 | 1.97 | 0.0

6.3.3 Experiment 3: many entity types with relatively high diversity

The third experiment will have the same number of entity types and tables as the
previous, but with a drastic increase in attribute diversity. The entity types in this
experiment will have, on average, about ten more attributes and an almost twice as
high standard deviation as the entity types in the previous experiment. The charac-
teristics of the generated data can be found in Table 6.6.

TABLE 6.6: The data characteristics for the third experiment.

Characteristic: Value:
Generated or real data generated
Total number of tables 108
Total number of entity types 282
Maximum number of entity types in data instance 11

[3,58] | 23.33 | 11.19
58,161
9:1-19

range, avg. and std. of number of attributes per type
Total number of rows
Example to test ratio

The goal of this experiment is to evaluate the proposed solution in a scenario
with a high diversity in terms of attributes. The expectation is that the rule efficacy
will shift even more toward the first three rules due to their strict evaluation of the
number of attributes, attribute data types and the order thereof. Furthermore, the
accuracy scores will likely be better than those witnessed in the previous experiment,
because of the higher diversity but similar size of data instances. The results can be
found in Table 6.7.

TABLE 6.7: The resulting metrics of the third experiment.

Maetric: 9:1 1:9
Accuracyy 89.61% 91.07%
Accuracyp 72.22% 27.78%
False positive 32(65.31%) 200(95.69%)
False negative 17(34.69%) 9(4.31%)
Rule efficacy (%) | 86.41 | 729 | 4.41 1 0.08 1 0.00 | 0.97 | 0.0

The resulting rule efficacy holds up to its expectations. However, the accuracy
scores indicate that the effect of the rules based on attribute diversity on classification
accuracy saturate at some point. That is, employing the proposed solution on data
instances with ever-increasing attribute diversity does not necessarily lead to ever-
improving results. As a result, it can be argued that, starting at rule four, the rules
are not sufficiently effective for the proposed solution.



6.3. Classification experiments & results 43

When comparing the results to those in subsection 6.3.2, it is surprising that the
accuracy dropped slightly while the number of false positives and negatives have
both improved. However, this merely indicates that misclassifications are more
spread out over data instances than before.

6.3.4 Experiment 4: little entity types with very little diversity

This experiment will be performed on data with the smallest attribute diversity
among all experiments. The tables in the generated data will each comprise a single
entity type with about five attributes on average, as can be seen in Table 6.8.

TABLE 6.8: The data characteristics for the fourth experiment.

Characteristic: Value:
Generated or real data generated
Total number of tables 42

Total number of entity types 42
Maximum number of entity types in data instance 1

range, avg. and std. of number of attributes per type [2,10] | 5.14 | 1.84
Total number of rows 11,773
Example to test ratio 9:1-1:9

The results are expected to reflect a lower accuracy than measured before due to
the lesser diversity in terms of attributes and the influence the first few rules had in
the previous experiments. The rule efficacy will shift slightly to the right, and if it
does so sufficiently, the accuracy is expected to still be high because of the increasing
level of detail each of the subsequent rules evaluates.

TABLE 6.9: The resulting metrics of the fourth experiment.

Metric: 9:1 1:9
Accuracy, 97.49% 94.58%
Accuracyp 80.95% 21.43%
False positive 8(88.89%) 66(100%)
False negative 1(11.11%) 0(0%)

Rule efficacy (%) | 7293 1 8.81 1 827 1 1.29 1 0.03 | 3.9 | 0.01

From the results in Table 6.9, it can be concluded that the proposed solution also
achieves high accuracy in scenarios with little attribute diversity. However, this gen-
erated data for this experiment contains a relatively small amount of entity types. In
comparison to previous experiments, these results reflect a relatively high amount of
false positives per table, but very low false negatives. Thus, the results of this exper-
iment look promising if false positives are of little concern. It is, however, difficult to
think of example scenarios where false positives matter so little or rather cause little
inconvenience when performing database entity type recognition.

6.3.5 Experiment 5: evaluation on real data

The final experiment will be an evaluation of the proposed solution on real data in
tenfold. The real data will be composed of a total of ten tables, containing a total
of nineteen different entity types, and will draw different samples from the tables



44 Chapter 6. Results & Evaluation

in every iteration. As can be seen in Table 6.10, the average and standard deviation
of the number of attributes are high and indicate that this particular data source at
the organization potentially has high attribute diversity among among entity type
representations.

TABLE 6.10: The data characteristics for the fifth experiment.

Characteristic: Value:
Generated or real data real

Total number of tables 9

Total number of entity types 19
Maximum number of entity types in data instance 6

range, avg. and std. of number of attributes per type [11,56] | 39.11 | 11.79
Total number of rows 171,179
Example to test ratio 1:9(x10)

The goal of this experiment is to validate the results of experiments on generated
data. That is, results of experiments performed on generated data are only valid
if the results achieved by applying the proposed solution on real data are similar.
This is because the data generator could have been generating data that is perfectly
distinguishable by the proposed solution, while real data might prove to be different.
And above that, a solution that does not work on real data is arguably worthless.

The results for this experiment are presented in Table 6.11, though slightly dif-
ferent than for the previous experiments. Instead of performing experiments in two
different example to test data ratios, this experiment performed ten iterations with
the same one-to-nine ratio on different data samples. This choice was made because
setting up experiments in the organization’s secure environment takes considerably
more time than when doing so on generated data outside of this environment, and
can be justified by the consistent performance at this ratio in previous experiments.
The results thus represent the range of results from worst to best.

TABLE 6.11: The resulting metrics of the first experiment.

Metric: 1:9 (worst) 1:9 (best)
Accuracyy 78.49% 88.78%
Accuracyp 77.78% 100.0%
False positive 1(50%) 0

False negative 1(50%) 0

Rule efficacy (%) 6144 15541001217 112410.010.0

The resulting accuracy ranges between roughly 78 and 88 percent and 77 and
100 percent for rows and data instances respectively. While this is a decrease in per-
formance on individual rows, this is a considerable increase in performance on data
instances. It could be argued this result is unsurprising due to the small number of
data instances considered. However, the resulting rule efficacy would suggest oth-
erwise. In essence, together with the cumulative sum of the rule efficacy scores of
roughly 70 percent, this indicates that entity type representations in each data in-
stance are not at all diverse in terms of attributes. This explains that, while individ-
ual row accuracy might have fallen behind slightly, the proposed solution classified
rows in data instances as the wrong entity type representation from the correct data
instance. Hence the strong results on data instance accuracy.



6.4. Conclusion & Discussion 45

As these results are quite similar to the results of experiments on generated data,
the experiments on generated data can be considered a relevant evaluation of the
proposed solution as a concept. However, it is advised that more experiments are ran
on a wide variety of real data to specifically scrutinize and tailor-make the employed
data profiles and corresponding rules. That is the case because there is likely no one
solution that fits all use cases, but the concept of the solution could stay the same.

6.4 Conclusion & Discussion

This sections will summarize the results of the performed experiments and shed
light on concerns that arose. There are a few key takeaways that can be summed up
as follows.

Individual row accuracy ranged between 78 and 97 percent and seemed to be hardly
affected by a decrease in example data size. This is a promising result con-
sidering the simplicity of the proposed solution. It should be noted that the
experiments on real data failed to reach row accuracy above ninety percent.
However, this does not discredit concept of the proposed solution, but rather
indicates that data profiles and their corresponding classification rules should
be modified to fit the general data characteristics in the organization.

Data instance accuracy was poor on generated data but fine on the small amount of
gathered real data. It is difficult to draw conclusions from this result because of
the discrepancy in results between experiments on real and generated data. In
conclusion, the gathered real data was insufficient in terms of size and attribute
diversity to validate the data instance accuracy results.

False positives and negatives show mixed results. The number of false negatives
looks promising, but the number of false positives is larger than desired. If the
goal is to recognize which conceptual entity types reside in each given data
instance, it would be inconvenient to set up the proposed solution on real data
and then have to filter out hundreds of false classifications. A minimum could
be set on the number of times a conceptual entity type is classified in a data
instance before it is considered as actually present. However, this introduces a
new potential problem, as this requires a sensible threshold to be established
and would cause false negatives in cases where some entity types in a data
instance do not meet the threshold.

Rule efficacy shows that ordering the classification rules has the desired effect of
skewing the number of data profiles considered as a potential match per rule.
As a result, the time complexity is reduced for the overall classification process.
However, it also indicates that improvement can be found in modifying the
rules for each use case. In fact, the mean and standard deviation, and the com-
mon substring attributes and their corresponding rules proved to be hardly to
not effective. This is likely because the formermentioned attribute captures a
characteristic that is too general, while the lattermentioned captures a charac-
teristic that is too specific. Finally, it should also be noted that changes in the
rule order likely change the rule efficacy scores, as each consecutive rule has
less candidates to evaluate and reject. This analogously means that how valu-
able each rules and their corresponding attributes are depends on the order in
which the rules are evaluated.



46 Chapter 6. Results & Evaluation

Runtime can likely be improved dramatically. The implementation of the solution
for this thesis paid little attention to runtime complexity, with the order of
rules being the only measure to improve it. And though it was not included
in the individual results, it is worth noting that the implementation seems to
classify a minimum of 22 rows per second’. Increasing the average number
of attributes per entity type from 14 to 23 seemed to have little effect on the
runtime. The runtime results on real data cannot be compared because they
were run on a different system.

In essence, these takeaways indicate that the proposed solution works well as a
concept, but requires tailoring to specific use cases if it is to be employed in organi-
zations. The solution would require proper establishment within the organization,
including (preferably labeled) example data input from each team within the orga-
nization, if the desired result is to reach as close to 100% accuracy as possible.

The proposed solution was developed through personal thought process after
identifying that there was little to no published research available on database en-
tity type recognition (see chapter 4). Coincidentally, the results look very promising
considering the simplicity of the solution. And as an added advantage, the clas-
sification model is easily explainable with little effort, making it applicable within
organizations that wish to radiate integrity. In conclusion, this means that interested
organizations should look into tailoring the concept that is presented in this thesis
to their needs, and they will likely have a well-explainable automated solution for
database entity type recognition, from clustering and profiling through the classifi-
cation model.

2Performance measured in a single-threaded setting, on a UNIX-based machine (2.3GHz 8-core
Intel i9, 16GB RAM).



47

Chapter 7

Conclusion

This thesis aims to introduce a novel method for relational database entity type
recognition within organizations. Apart from recognizing conceptual entity types
present within data instances, the solution should also aim to uncover semantic het-
erogeneity, which is the phenomenon that occurs when multiple data sets contain
data on the same conceptual entity type but represent it differently (Giunchiglia et
al., 2020). Semantic heterogeneity occurs due to the use of multiple different logical
schemas in this case. Narrowing the scope of the problem to a specific organiza-
tion constraints the problem space and enables domain-specific assumptions. Such
assumptions include the availability of example data for each distinct entity type
representation, or that the set of logical schema design rules is identifiable.

During the review of relevant literature, it became evident that there was lit-
tle published research on tackling database entity type recognition. Furthermore,
potentially helpful tools such as Sato (Zhang et al., 2019) were not ready to be em-
ployed as is, and required too much time to be prepared during this thesis’ time
frame. These findings resulted in a personal thought process that led to the solution
proposed in this thesis.

The collaboration with a bank led to two minimum requirements for the pro-
posed solution: maximal explainability and the elimination of integrity concerns.
Based on these requirements and personal interest, the choice was made to use data
profiling to make representations of the characteristics of the example data. This al-
lowed for the solution to keep a summary of the data without storing any real infor-
mation, eliminating integrity concerns. The entity type recognition process would
then classify not-before seen data in a rule-based manner. This allows for easy expla-
nations of the results in the form of a step-by-step walkthrough. Furthermore, data
profile attributes and their corresponding rules are easily substitutable, maximizing
the adaptability of the proposed solution.

The proposed solution was evaluated through performing experiments on its
implementation. The data used for these experiments was subject to the bank’s poli-
cies on securely handling data. Therefore, most of the experiments were conducted
using generated data, and only one of the experiments was conducted using real
data to validate the other results. The generated data was acquired by using a data
generator developed by an expert at ING. It should resemble real data at the bank
well. That is, the generated data should have roughly similar table, column and row
characteristics as real data. And while the generated data did not perfectly resemble
the real data, the experiments show that the evaluation on generated data is valid.

Results from all experiments reflect that the proposed solution is a promising
concept for relational database entity type recognition, but that some tweaks in
the implementation are necessary to optimize results. This requires organization-
specific preparation, including the gathering of example data, preferably with entity
type labels, as well as the establishment of fitting data profiles and classification



48 Chapter 7. Conclusion

rules. It is important that this preparation is done with care to avoid inaccuracy.
But with proper preparation, the proposed solution is a promising concept for entity
type recognition in relational databases stored within organizations, and shows that
simple solutions can be fruitful.

7.1 Future Work

The main purpose of developing a database entity type recognition solution was
to help individuals or teams within organizations with identifying the conceptual
entity types that are represented in data maintained by other individuals or teams,
for which the proposed solution shows promising results. The proposed methodol-
ogy could also be taken one step further, such as being applied to data integration.
Rather than using schemas and data content directly as the basis for data integra-
tion, as is done in a practice called schema matching, database entity type recogni-
tion could be used to gather semantic context of the data instances in a data lake or
warehouse. However, this would probably require a more sophisticated approach to
uncovering semantic heterogeneity. In conclusion, entity type recognition solutions
such as the one presented in this thesis might be a prevalent subtask of the data
integration pipeline in future work.

Other future work in relation to database entity type recognition should look into
the development of semantic graphs, such as done recently in (Sleeman et al., 2015;
Giunchiglia et al., 2020). Semantic graphs appear to be a promising technique for
keeping semantic context extracted from many data sources, albeit more complex
than the approach taken for the solution in this thesis, but also providing a more
sophisticated semantic context. Constraining semantic graphs to the domain within
a specific organization arguably makes their application a lot more feasible than
when doing so in the open world. And while their development likely requires quite
some effort from experts at the organization, so does acquiring sufficient labeled
example data for the solution presented in this thesis.



49

Bibliography

Abedjan, Ziawasch et al. (2015). “Profiling relational data: a survey”. In: The VLDB
Journal 24.4, pp. 557-581.

Andersson, Martin (1994). “Extracting an entity relationship schema from a rela-
tional database through reverse engineering”. In: International Conference on Con-
ceptual Modeling. Springer, pp. 403—419.

Chiang, Roger HL et al. (1994). “Reverse engineering of relational databases: Extrac-
tion of an EER model from a relational database”. In: Data & knowledge engineering
12.2, pp. 107-142.

Elmasri, R et al. (2000). Fundamentals of Database Systems. Springer.

Fernau, Henning (2009). “Algorithms for learning regular expressions from positive
data”. In: Information and Computation 207 .4, pp. 521-541.

Giunchiglia, Fausto et al. (2020). “Entity type recognition-dealing with the diver-
sity of knowledge”. In: Proceedings of the International Conference on Principles of
Knowledge Representation and Reasoning. Vol. 17. 1, pp. 414—423.

Hai, Rihan et al. (2019). “Relaxed functional dependency discovery in heterogeneous
data lakes”. In: International Conference on Conceptual Modeling. Springer, pp. 225-
239.

Harmouch, Hazar et al. (2017). “Cardinality estimation: An experimental survey”.
In: Proceedings of the VLDB Endowment 11.4, pp. 499-512.

Ionescu, Andra (2020). “Reproducing state-of-the-art schema matching algorithms”.
MSc Thesis. Delft University of Technology.

Khalid, Hiba et al. (2019). “Metadata Discovery Using Data Sampling and Exploratory
Data Analysis”. In: International Conference on Model and Data Engineering. Springer,
pp. 106-120.

Koehler, Martin et al. (2017). “Data context informed data wrangling”. In: 2017 IEEE
International Conference on Big Data (Big Data). IEEE, pp. 956-963.

Malpani, Ankit et al. (2010). “Reverse engineering models from databases to boot-
strap application development”. In: 2010 IEEE 26th International Conference on
Data Engineering (ICDE 2010). IEEE, pp. 1177-1180.

Naumann, Felix (2014). “Data profiling revisited”. In: ACM SIGMOD Record 42.4,
pp. 40-49.

Papenbrock, Thorsten et al. (2015). “Functional dependency discovery: An experi-
mental evaluation of seven algorithms”. In: Proceedings of the VLDB Endowment
8.10, pp. 1082-1093.

Psarakis, Kyriakos (2020). “Holistic Schema Matching at Scale”. MSc Thesis. Delft
University of Technology.

Shaabani, Nuhad et al. (2017). “Incremental discovery of inclusion dependencies”.
In: Proceedings of the 29th International Conference on Scientific and Statistical Database
Management, pp. 1-12.

Sleeman, Jennifer et al. (2015). “Entity type recognition for heterogeneous semantic
graphs”. In: AI Magazine 36.1, pp. 75-86.

Tschirschnitz, Fabian et al. (2017). “Detecting inclusion dependencies on very many
tables”. In: ACM Transactions on Database Systems (TODS) 42.3, pp. 1-29.



50 Bibliography

Zhang, Dan et al. (2019). “Sato: Contextual semantic type detection in tables”. In:
arXiv preprint arXiv:1911.06311.



	Abstract
	Acknowledgements
	Introduction
	Contributions
	Thesis Outline

	Problem Description
	The origin of the problem
	The rules leading to special cases
	1. The table contains data on multiple subtypes from some entity type in its taxonomy.
	2. The table contains data on a type at the bottom of its taxonomy, and only that type.
	3. The rows in the table contain data on a combination of multiple entity types, or part thereof, possibly from different taxonomies


	The problem
	Problem one (P1)
	Problem two (P2)

	Formal Problem Definition

	Research Methodology
	Decision making process
	The research environment

	Background
	Similar research
	Reverse engineering
	andersson1994extracting: reverse engineering to ECR+
	chiang1994reverse: reverse engineering to EER
	malpani2010reverse: reverse engineering to EDM

	Entity type recognition
	sleeman2015entity: fine-grained entity type recognition in knowledge bases
	giunchiglia2020entity: semantic heterogeneity detection for knowledge bases


	Supportive research
	Cardinalities
	Patterns and data types
	Semantic domain classification
	Inclusion dependencies

	Conclusion

	Proposed Solution
	The solution in general
	Clustering & data profiling
	Clustering methods for unlabeled example data
	1. The table contains data on multiple subtypes from some entity type in its taxonomy.
	2. The table contains data on a type at the bottom of its taxonomy, and only that type.
	3. The rows in the table contain data on a combination of multiple entity types, or part thereof, possibly from different taxonomies.

	Specification of the data profiles

	Entity type recognition
	Rule-based classification
	Output & interpretation

	Conclusion

	Results & Evaluation
	Experimental setup
	The data generator

	Clustering results
	All entity (sub)types from the same taxonomy in the same table
	One entity type represented in a table
	Discrepancies with real data

	Classification experiments & results
	Experiment 1: relatively little diversity
	Experiment 2: many entity types with relatively little diversity
	Experiment 3: many entity types with relatively high diversity
	Experiment 4: little entity types with very little diversity
	Experiment 5: evaluation on real data

	Conclusion & Discussion

	Conclusion
	Future Work

	Bibliography

