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2 1. Glossary

Term Definition

Allele Alleles are different forms of the same genetic region.

Anchored IRR For paired-end reads: when one of the reads is an IRR and the other
can be mapped to flanking sequence.

Coverage The number of unique reads that include a given nucleotide in the
reconstructed DNA sequence.

Diploid Two sets of chromosomes in a cell (corresponding to the number of
possible alleles).

Flanking reads Reads which contain part repeating region and part flanking region.

Flanking region The sequence on either side of a repeat.

Fragment length Applicable to paired-end reads, where fragment length corresponds to
the size of the two reads plus the insert.

Genotype The genetic sequence of an organism.

Haploid Single set of chromosomes / genome.

In repeat read (IRR) Read which completely consists of repeating material.

In silico Conducted or produced by means of computer modelling or
computer simulation.

Indel An insertion or deletion of nucleotides in the genome of an organism.

Long read data Sequencing data for which reads have a size in the range of 10 000 -
100 000bp.

Motif The sequence that is being repeated.

Paired IRR For paired-end reads: when both reads are an IRR.

Paired-end read Pair of two short reads, connected by an unsequenced middle section.

Pathogenic Causing disease.

Phenotype An observable physical property of an organism.

Read length The size of a read, expressed in number of base pairs (bp).

Repeat number How often a motif is repeated.

Short read data Sequencing data for which reads have a size in the order of hundreds
(100-600bp).

Spanning reads Reads which fully encompasses a repeat, i.e. this includes the whole
repeat as well as a part of the flanking regions.

Tandem repeat A repeated DNA sequence where the repeats are adjacent.

Variable number tandem repeat A tandem repeat with a varying number of repeats throughout a
population.
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Brief introduction biological concepts

2.1. Genome
A genome is the complete set of genetic material from an organism, which is contained within the DNA. A
DNA sequence consists of nucleotides (denoted by A, C, G and T). The human’s genome has a total length
of 6 billion nucleotides, divided over 46 pieces: the chromosomes. These chromosomes are grouped into 23
pairs, with each chromosome in a pair coming from one parent. Because the chromosomes are paired our
genome is diploid.

Each single chromosome consists of two strands (double-stranded), linked through chemical bonds, always
connecting A’s to T’s and C’s to G’s. Two coupled nucleotides make a base pair. When looking at a single strand
of DNA, the opposite strand is its reverse complement. For example, the reverse complement of CAAC would
be GTTG. The ends of the chromosomes are called telomeres. As cells divide, the telomeres shorten, leading
to shortening telomeres as we age.

Each cell contains the complete DNA, but only a small part is used depending on the cell type. DNA is like
a cookbook, with many recipes encoding the creation of various proteins (the building blocks of our body).
One recipe at a time gets transcribed into RNA, which is single-stranded and can be translated into proteins.
The parts of our DNA that get translated into proteins are what we call genes, or coding regions. Different
versions of a gene are called alleles. Genes only form a small part of our DNA, in between are large stretches
of non-coding regions. Some are known to regulate cellular processes, such as the rate of protein production.
For many other non-coding regions, their functionality remains unknown. It is suspected, however, that they
help protect coding regions from damage, simply by being so abundant that mutations are more likely to
happen in these non-coding parts.

Mutations can happen at all times and for a variety of reasons. There are many types of mutations that
can occur, of which we will discuss the three relevant to this paper. The first type is a single nucleotide
polymorphism (SNP), where one nucleotide gets substituted by another. The second type are indels, an
abbreviation for insertions and deletions, where nucleotides are inserted or deleted from the sequence. The
third type are tandem repeat variations, where there is a repeating sequence, and the number of repeats
changes.

2.2. Reference genome and sequencing
To study genetic variation, we need a way to get an individual’s genome and compare it to that of others. To
do this, DNA gets sequenced: the process of ‘reading’ its sequence of nucleotides. However, it’s not possible
to read all 6 billion nucleotides in one go. Instead, we get overlapping bits and pieces, called reads, which
have to be reassembled into one complete genome. This is done by mapping them to a reference genome.
A reference genome is a single-stranded consensus genome, based on the genomes of several individuals.
Using this as a template, reads can be allocated to their most probable position.

Genomes are sequenced multiple times, producing different, partially overlapping reads of the same area.

3



4 2. Brief introduction biological concepts

How often each nucleotide of the genome is captured in a read is called coverage (or depth). The higher the
coverage, the more confidently we can reassemble an individuals genome. The longer the reads, the easier the
reassembly. (more confident on variations) Short reads are currently the standard, with 100-200 nucleotides
per read. The number of nucleotides is denoted by bp (base pairs). The field is transitioning towards long
reads (tens of thousands of bp long), however, they are not as commonly available as short reads yet.

In this paper we use a specific type of short reads: paired-end reads. These are pairs of two connected
short reads, sequenced from each end towards the middle / each other. There is a piece of DNA between
these reads that is not sequenced. The total length of the two reads plus the unsequenced middle part is the
fragment length.

2.3. Alzheimer’s disease
Alzheimer’s disease (AD) is a neurodegenerative disease, leading to damaged or destroyed neurons. This
initially affects cognitive skills such as memory and problem-solving, but will eventually lead to difficulties
with basic bodily functions such as swallowing and walking. Despite the prevalence of AD, its mechanics are
not adequately understood.

One of the hallmarks of AD are amyloid plaques in the brains of AD patients, which are clumps of a protein
called amyloid beta (Aβ). It is believed that the Aβ plaques affect synapses and thereby neuron-to-neuron
communication, contributing to neural cell death.

Another hallmark of AD is the formation of tau tangles, an accumulation of tau proteins. Tau proteins
stabilize microtubules, vital for the structure and functioning of neuronal cells, thus abnormal tau leads to
unstable microtubules. Furthermore, tau tangles block the transport of essential molecules, such as nutrients,
inside neurons.
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Abstract

Motivation: Alzheimer’s disease (AD) is a highly prevalent disease whose genetic risk factors remain

largely unknown. One potential genetic risk factor is tandem repeat expansions, which have been

associated with over 40 diseases, most of which affect the nervous system. Detecting VNTRs from

short-read data is a challenging task, leaving many VNTRs unidentified. To date only one variable number

tandem repeat (VNTR) expansion (in the ABCA7 gene) has been linked to AD. We hypothesize there are

many more VNTR expansions to be discovered that associate with an increased risk of AD.

Results: We created a pipeline with which we overcame the common limitations of VNTR detection

(namely, the need for a predefined set of repeats and limited detectable VNTR sizes due to read length).

We performed a genome-wide search for VNTRs with a motifsize ≥ 7 bp that show repeat size variations

associated with AD. We detected 71 VNTR expansions and 1242 contractions, including expansions in

genes ADAMTSL3, ARHGEF10, DIP2C, EVC2, GRM8, MPPED1, PID1 and an expansion in the SCIMP

gene close to a well-known AD single nucleotide polymorphism (SNP). Our pipeline is, to our knowledge,

one of the very few to detect VNTRs exceeding read length without a predefined set of repeats. It is able

to detect both previously reported and novel VNTRs, resulting in a promising set of VNTRs showing an

association with AD.

1 Introduction

Alzheimer’s disease (AD) is a complex neurodegenerative disease,

characterised by a steady decline of cognitive capabilities. It is currently

the most common form of dementia, the most prevalent cause of death

at old age and estimated to affect 50 million people worldwide. This

number is predicted to be tripled by 2050, making AD one of the major

health challenges of the 21st century [23]. Despite its high prevalence,

the biology underlying AD remains largely unknown. Understanding the

genetic risk factors for AD is an essential step in developing and refining

a cure. Based on twin studies, an estimated 60-80% of the risk of AD has

been attributed to genetics [20], with an approximate 30% of the genetic

risk being attributed to the ε4 allele of the APOE gene [4, 8], making

genetics an essential research direction to learn more about AD.

One of the recent efforts to determine the genetic risk factors of AD

was a genome wide association study (GWAS), analysing 680K samples,

of which 110K were AD patients. They identified 83 single nucleotide

polymorphisms (SNPs) associated with an increased risk of AD [5].

Although SNPs are an extensively studied type of genetic variation, they

can not always be directly related to biological consequences affecting the

disease they have been associated with. A recent example of this is the AD

association with the ABCA7 gene. For African Americans the association

could be explained by a SNP, leading to a premature termination codon

(PTC). However, this did not hold for Caucasian cohorts, leading the

researches to explore other types of genetic variations. They discovered a

tandem repeat expansion that leads to isoforms due to alternative splicing,

explaining the ABCA7 association to AD for Caucasian cohorts [9].

Tandem repeats (TRs) are a type of genetic variation where a piece

of DNA sequence, the motif, is adjacently repeated at least two times.

Based on the size of the motif, we distinguish between a short tandem

repeat (STR), with a motif size of 2 - 6bp, and its longer counterpart, a

variable number tandem repeat (VNTR) with a motif size ≥ 7 bp [49].

Tandem repeats tend to be unstable in their number of repeats: when the

repeat number is increased or decreased, we speak of an expansion or

contraction, respectively.

The identified VNTR in the ABCA7 gene has a repeating motif of

25bp, with a pathogenic boundary around 230 repeats (5720bp total TR

size) [9]. Furthermore, the VNTR is in linkage disequilibrium with the

rs3764650 SNP (D’=0.92 and r2=0.23) [9], showing that AD-associated

SNPs can be an indication for TR variations nearby. To date, the ABCA7

VNTR expansion is the only TR variation that has been associated with

AD specifically. Still, more than 40 known diseases, most of which related

to the nervous system, are associated with repeat expansions [56]. For

example, a CAG repeat (pathogenic at 35+ repeats) in the HTT gene causes

Huntington’s disease [50], and a GGGGCC expansion (pathogenic at 24+

repeats) in the C9ORF72 gene causes amyotrophic lateral sclerosis (ALS)

[21] and fronto-temporal dementia (FTD) [28].

We hypothesize that there may be more TR variations to be discovered

associated with an increased risk of AD. So far, mainly STRs have been
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studied due to technical constraints imposed by the length of short reads

(100-200bp). As VNTR sizes often exceed short read length, it becomes

challenging to detect and estimate their sizes. Long read (10Kb-100Kb)

data would be able to capture and genotype these VNTRs, however, long

reads are not as accessible yet, making larger samples sizes unfeasible at

the moment and leaving most of the VNTRs understudied.

We set out to push the boundaries of detecting VNTRs using paired-end

short read data. In order to do so, we utilise ExpansionHunter (EH) [12, 13]

and ExpansionHunter Denovo (EHdn) [11], which are computational tools

able to detect VNTRs exceeding short read length. EHdn has been used to

characterize genome-wide repeat expansion variations [18] and to identify

TR expansions associated with autism [67], proving the potential of EHdn.

However, our pipeline of chaining EHdn and EH together does not only

overcome the common limitations (namely, the need for a predefined set

of repeats and limited detectable VNTR sizes due to read length), but

also provides accurate size estimates. This kind of pipeline has, to our

knowledge, not been reported yet. We utilised this pipeline to detect

common (occurring in >1% of cases [60]) VNTRs (motifsize ≥7bp),

whose contractions or expansions are associated with an increased risk

of AD.

2 Methods

2.1 Study population & data preprocessing

In this study, we use a sample of individuals from the Alzheimer’s Disease

Sequencing Project (ADSP). The ADSP project aims to identify gene

variants that are a risk factor for, or protect against, Alzheimer’s disease

(AD) by sequencing and analysing genomes of a large number of well

phenotyped individuals. Additional information about the ADSP study

design, AD diagnosis assessment as well as ethical committee approvals

are publicly reported on the ADSP website1.

We filtered the samples based on four aspects: (i) NIH racial category,

to all be of the category ‘Whites’, (ii) origin, excluding samples from

ADNI to avoid batch effects, (iii) families, retaining 1 sample per family,

(iv) phenotypes, retaining those with label ‘no dementia’ (controls),

and ‘definite AD’ or ‘probable AD’ (cases). Except for filtering the

samples, we directly use the paired-end sequencing CRAM files as

supplied by ADSP. The CRAM files are aligned to the GRCh38 build

(GRCh38_full_analysis_set_plus_decoy_hla2). We estimated coverage

for each sample using mosdepth [57].

Sequence data from the ADSP is available by application to the NIA

Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS) Data

Sharing Service (DSS)3.

2.2 Summary of the pipeline

An overview of the pipeline is given in Figure 1. The first step in the pipeline

is the discovery of candidate VNTRs. To do so, we used ExpansionHunter

Denovo (EHdn), which identifies In-Repeat-Reads (IRRs) (i.e reads

consisting of a repeating motif) for each sample. EHdn then analyses

if the coverage for each repeating region is significantly higher than the

overall coverage as this could indicate an expanded repeat. The repeating

regions for which there is an unusually high coverage for cases compared to

controls are reported by EHdn: these are the candidate VNTRs. Because

EHdn considers a subset of all aligned reads (only IRRs) and its size

estimates are essentialy a proxy for coverage, the output should be

1 niagads.org/adsp

2 ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/

reference/GRCh38_reference_genome

3 dss.niagads.org

interpreted as an indication that a VNTR may be present at a specific

location.

To obtain more precise repeat size estimates, we use ExpansionHunter

(EH) to further analyse the candidate VNTRs identified by EHdn.

However, prior to running EH we need to convert the reported candidate

VNTRs into a variant catalog. A variant catalog is a file describing the

genomic coordinates and motif information (motif size, motif pattern)

of each repeat to be analysed. As EH greatly depends on the accuracy

of the provided coordinates and those outputted by EHdn are imprecise,

we establish accurate start and end coordinates for each candidate VNTR

based on the reference genome during the variant catalog creation. EH then

analyses each of the repeats from the catalog, combining the information

from multiple types of reads (spanning, flanking and anchored IRRs), and

estimates diploid repeat sizes.

After estimating repeat sizes for all candidate VNTRs for all samples,

we identify the AD-associated VNTRs. To do so, we first test for cohort-

wide differences by comparing the distributions of repeat size between

AD cases and healthy controls using the Wilcoxon Rank Sum Test.

This gives us a set of VNTRs that show cohort-wide differences. Since

expanded/contracted VNTRs are likely to occur in a subset of individuals,

additionally we implemented an outlier analysis to specifically compare

outlier counts between AD cases and controls using Fisher’s exact test and

the odds ratio (OR). We take the union of the two Fisher’s-detected and

OR-detected sets and end up with a set of VNTRs that are expanded and

a set of VNTRs that are contracted in AD cases.

The identified sets of AD-associated VNTRs were put in genomic

context, annotating whether they fall within or near either a gene or a

functional non-genic element (e.g. enhancer), and we check for gene-

set enrichment. Furthermore, we check the genomic context for GWAS

identified SNPs associated with AD using snpXplorer. Finally, we report

the most promising VNTRs that show an association with AD.

2.3 Candidate VNTR discovery

2.3.1 Identifying candidate VNTRs using ExpansionHuner Denovo

To identify candidate VNTRs without a predefined set of repeats, we run

ExpansionHunter Denovo (EHdn) (v0.9.0) with each of our samples. We

first generate an ‘STR profile’ (short tandem repeat profile) for each sample

individually with the ‘profile’ command using the default settings. This

procedure takes a sample’s aligned CRAM (or BAM) file and the reference

genome as input, and outputs a file with all the identified IRRs exceeding

read length.

Next, we create a manifest.tsv file, listing all samples together with

their names (e.g. sample1), labels (AD case or control) and the location

of the relative STR file. We aggregate all sample’s STR profiles using the

‘merge’ command and the manifest.tsv file using the default settings (motif

length between 2 and 20 bp). This command outputs a multi-sample STR

profile containing the IRR counts of each sample, for each repeat.

We run the ‘casecontrol.py’ executable with the ‘locus’ option, taking

the generated multi-sample STR profile and the manifest file as inputs.

The ‘locus’ option uses the anchored IRRs, identifying the repeats longer

than read length but shorter than fragment length. This analysis compares

the distribution of IRRs between AD cases and controls and outputs (i)

the approximate location of the VNTR on the reference genome, (ii) the

repeated motif, (iii) the normalised IRR counts for each sample, (iv) the

p-value from Wilcoxon Rank Sum test and (v) the Bonferroni corrected p-

value. Note that the outputted motif is the lexicographically smallest repeat

unit under circular permutations and reverse complement operations.

Additionally, we run the ‘outlier.py’ executable with the ‘locus’ option

in a similar fashion. Compared to the ‘casecontrol’ setting, this analysis

does not compare distributions (thus does not report a p-value), but rather

calculates the z-score for cases exceeding the mean of the compared

https://www.niagads.org/adsp/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/GRCh38_reference_genome/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/GRCh38_reference_genome/
https://dss.niagads.org/


3

Fig. 1: An overview of our pipeline, distinguishing between the three main steps: (i) Candidate VNTR discovery, (ii) Identifying the VNTRs associated

with AD and (iii) Adding genomic context tot the AD-associated VNTRs.

cases+controls IRR count distribution. Instead of p-values, it outputs the

highest z-score of a case sample and the IRR counts for cases with a z-

score > 1.0. The outputted repeats are our candidate VNTRs with which

we will proceed.

2.3.2 Filtering candidate VNTRs

To focus on the most interesting repeats, we filter the candidate VNTRs

outputted by EHdn. Since we run EHdn in two settings (‘casecontrol’ and

‘outlier’), we have two outputs to select from. For the case-control outputs,

we select those with an uncorrected p-value < 0.05 to select the repeats

showing differences between cases and controls. For the outlier outputs,

we select the repeats where the top z-score for a case is ≥ 10 to select

the most variable VNTRs and where a minimum of 15 (3%) cases has a

z-score > 1 to select the common repeat expansions. For both outputs, we

select only the repeats with a motif size > 6 as we specifically focus on

VNTRs and exclude the repeats on sex- and decoy chromosomes. Only

the repeats that remained after these filtering steps were converted into a

variant catalog.

2.3.3 Converting candidate VNTRs into a variant catalog

In order to run ExpansionHunter (EH) on the candidate VNTRs identified

by ExpansionHunter Denovo (EHdn), the repeats need to be encoded in a

‘variant catalog’. Such a catalog describes the start and end positions on

the reference genome and which motif is repeated.

The accuracy of the positions in the catalog greatly affects the quality

of the estimates by EH. The positions can be off by a few basepairs, but the

approximate locations (±500bp) as outputted by EHdn are too imprecise

to be used directly. Therefore we must identify more precise start and end

coordinates.

To determine the precise start and end positions, for each candidate

VNTR we extract the corresponding sequence from the reference genome

using the pysam package4 between the coordinates outputted by EHdn,

extended by 500bp on each side . We then scan the obtained reference

sequence for occurrences of the repeat motif, keeping track of perfect

stretches of copies. Each perfect stretch of copies is extended if an adjacent

imperfect copy is followed by another perfect copy of the motif. We

4 github.com/pysam-developers/pysam

assume that the longest stretch in the reference is most likely to be the

source of the repeat, thus we select the longest stretch of copies. If there

are multiple positions with the maximum number of copies, we can not

establish which is the most likely source of the repeat. In such cases, we

decided to be conservative, and we retain all positions. Only the real source

of the repeat will come up as significant in our downstream analysis, so the

only downside of this is a larger variant catalog, meaning longer running

times.

In addition to defining more accurate start and end position for the

candidate VNTRs, an additional check on the repeated motif is needed. In

fact, EHdn outputs the lexicographically smallest version of the repeated

motif, including reverse complement operations. This means it might be

that the reverse complement is the motif that corresponds to the orientation

of the reference. Therefore, we should decide between the outputted motif

and its reverse complement. To do so, for each VNTR, we scan the

extracted reference sequence for the reverse complement of the motif as

well and again select the longest stretch of copies. We compare the results

from both the outputted motif and its reverse complement and select the

positions with the longest stretch of copies. The re-established positions

plus the selected motif are formatted and outputted. The detailed algorithm

can be found in Appendix A and the source code is available through

GitHub5.

2.3.4 Estimating number of repeats using ExpansionHunter

To get a more accurate and diploid estimate of the number of repeats for

each candidate VNTR, we run ExpansionHunter (EH) for each sample

individually. We run EH (v4.0.3) with the variant catalog, reference

genome and the sample’s CRAM files as inputs. For each repeat in the

variant catalog, the algorithm will (i) collect the reads mapping to that

repeat and (ii) will determine the most probable repeat size for each

allele using these reads. The output consists of a report for each sample

containing copy number estimates for each repeat. These are diploid

estimates, with a consensus value for each of the two alleles as well as

the corresponding confidence intervals.

5 github.com/francesca-lucas/ehdn-to-eh

https://github.com/pysam-developers/pysam
https://github.com/francesca-lucas/ehdn-to-eh
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2.4 Identifying VNTRs associated with AD

After running EH, a diploid repeat size estimate for each sample and each

VNTR is available. We subsequently divide the diploid repeat size into a

shortest and longest allele, based on which has the least and the most copies,

respectively. We test the association of the VNTRs with AD risk using the

shortest allele, the longest allele and the sum of these two (summed allele),

separately. We then take the union of the VNTRs detected based on these

separate allele values.

2.4.1 Cohort-wide detection of AD-associated VNTRs

We define cohort-wide VNTRs as those that show a significantly different

distribution for cases compared to controls. To detect these, we compare

the repeat size distributions of cases and controls using the Wilcoxon Rank

Sum test and select the entries with a false discovery rate (FDR) corrected

p-value of < 0.05.

2.4.2 Identifying outliers

To detect VNTRs that may be expanded/contracted in a subset of cases,

next to the cohort-wide analysis we implement an outlier analysis. To

identify the outliers, we use the interquartile rule. This rule is based on the

25th percentile or first quartile (Q1), the 75th percentile or third quartile

(Q3) and the interquartile range (IQR = Q3 − Q1). A datapoint x is

considered an outlier when:

x < Q1− c · IQR or

x > Q3 + c · IQR
(1)

where c is a constant determining the sensitivity of these boundaries. The

default value for c is 1.5, however, we use a more inclusive value for

the constant: c = 1.0. We establish the outlier boundaries based on the

distribution of the controls, as this is our null distribution against which

we compare cases.

2.4.3 Outlier-based detection of AD-associated VNTRs

We define common pathogenic VNTRs as those that show an expansion

or contraction in ≥1% of cases, which is ≥ 6 cases in our study. To

detect expanded VNTRs, we count the number of datapoints above the

upper boundary (Equation 1) for both cases and controls. These outlier

counts are captured in a contingency table, with outlier/non-outlier as

rows and cases/controls status as columns. We use Fisher’s exact test on

this contingency table to test the difference in outlier counts between cases

and controls, using both the calculated p-values and odds ratio (OR). To

detect contracted VNTRs, we start with the counts of datapoints below the

lower boundary (Equation 1), and process these counts analogous to the

expansions. As we are mainly interested in the VNTRs where AD cases

show a clear expansion or contraction, we perform a one-sided test with the

alternative hypothesis that cases are more likely to be outliers. We finally

apply multiple testing correction to the significance values using FDR, and

we consider the VNTRs which have an FDR < 0.20 as significant.

Due to our cohort size, the repeats which show an expansion or

contraction in <2% of the cases will likely come up as insignificant after

FDR correcting Fisher’s significance values. This may exclude VNTRs that

show a clear separation in repeat size and fall within our scope of common

VNTRs (>1% of cases). To detect these VNTRs (expanded/contracted in

1-2% of cases), we select the VNTRs where the outlier counts show an

odds ratio (OR) > 5 and that occur in ≥1% of cases (in our study, ≥6

cases).

2.4.4 Visualisation of AD-associated VNTRs using scatterplots

We visualised the identified VNTRs using scatterplots. As we are dealing

with discrete data, we added some random noise to the datapoints to be

able to see the point clouds. We use the scatterplots to visually check the

identified pathogenic VNTRs.

2.5 Adding genomic context

2.5.1 Gene annotation

To get an idea of where a VNTR might exert influence we provide genomic

context. We annotate genes based on the RefSeq genes (v98) from NCBI6.

This file contains multiple gene models for each gene. We first select the

entry with the highest number of exons (exonCount). If there are multiple

entries left, we select the entry with the widest transcription coordinates.

After selecting one entry for each gene, we define the following regions:

• ‘transcription’ from transcription start (txStart) to end (txEnd)

coordinate

• ‘coding’ from coding start (cdsStart) to end (cdsEnd) coordinate

• ‘exon’ from each exon start (exonStarts[i]) and its corresponding end

(exonEnds[i]) coordinate

• ‘telomere’ within 5Mb of the ends of chromosome arms

• ‘promotor’ as 1Kb before transcription start (txStart)

A VNTR gets an annotation when it overlaps the defined regions. We define

a VNTR to be ‘genic’ if it overlaps one of these regions: transcription,

coding or exon. If a VNTR has no direct genic or functional element

annotation, we search for the nearest gene within 50Kb and annotate this

as its ‘nearest gene’.

2.5.2 Functional element annotation

There are many non-genic functional elements that influence biological

processes (e.g. promoters or enhancers). In order to annotate these, we

use the NCBI RefSeq Functional Elements table7. This table contains

various functional elements that have been experimentally validated,

such as regulatory elements, protein binding sites, mobile elements,

recombination features and sequence features. We included all entries

from the table in this annotation step. We use the start (chromStart) and

end (chromEnd) positions to define each region and the type of element

(name). If a VNTR has no direct annotation to a functional element, we

search for the nearest functional element within 50Kb and annotate this as

its ‘nearest functional element’.

2.5.3 Gene set enrichment

To assess whether there is an over-representation of biological pathways

in the genic VNTRs, we test for gene set enrichment. Gene set

enrichment analysis was performed with the web application g:Profiler,

using the g:GOSt analysis8. g:GOSt performs gene set enrichment

analysis on an input gene list, mapping genes to functional terms

and detecting the terms that are statistically significantly enriched. We

selected the ‘gene’ annotations and combined them into our set of

input genes. We used the default g:GOSt settings except for FDR

correction as multiple testing correction. The default settings include

annotations from all data sources made available by g:GOSt, which

are the following: (i) Gene Ontology sources (GO molecular function,

GO cellular component, GO biological process), (ii) biological pathway

sources (KEGG, Reactome, WikiPathways), (iii) regulatory motifs in DNA

(TRANSFAC, miRTarBase), (iv) protein databases (Human Protein Atlas,

CORUM) and (v) Human phenotype ontology (HP).

6 genome.ucsc.edu/cgi-bin/hgTables/

ncbiRefSeqCurated

7 genome.ucsc.edu/cgi-bin/hgTables/

refSeqFuncElems

8 biit.cs.ut.ee/gprofiler/gost

https://genome.ucsc.edu/cgi-bin/hgTables?db=hg38&hgta_group=genes&hgta_track=refSeqComposite&hgta_table=ncbiRefSeqCurated&hgta_doSchema=describe+table+schema
https://genome.ucsc.edu/cgi-bin/hgTables?db=hg38&hgta_group=genes&hgta_track=refSeqComposite&hgta_table=ncbiRefSeqCurated&hgta_doSchema=describe+table+schema
https://genome.ucsc.edu/cgi-bin/hgTables?db=hg38&hgta_group=regulation&hgta_track=refSeqFuncElems&hgta_table=refSeqFuncElems&hgta_doSchema=describe+table+schema
https://genome.ucsc.edu/cgi-bin/hgTables?db=hg38&hgta_group=regulation&hgta_track=refSeqFuncElems&hgta_table=refSeqFuncElems&hgta_doSchema=describe+table+schema
https://biit.cs.ut.ee/gprofiler/gost
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Table 1. An overview of the samples included in

our study. EOAD indicates the percentage of early-

onset Alzheimer’s disease (onset age < 65) vs late-

onset AD (onset age ≥ 65) within our AD cases.

Ethnicity values correspond to: 0 = Non-Hispanic, 1

= Hispanic. The reported ages are those at AD onset

for cases and those at inclusion into the study for

controls.

AD Cases Controls

Total 513 616

EOAD 13% n/a

Female 51% 63%

Ethnicity (0-1-NA) 502 - 8 - 3 492 - 124 - 0

Age 76 ±9 80 ±6

Age range 47 - 89 60 - 90

Coverage 38x ± 4 38x ± 5

Read length 148 ±10 151 ±0.5

Fragment length 369 ±16 373 ±16

2.5.4 Link to GWAS data using snpXplorer

In addition to visualising the promising VNTRs using scatterplots, it is

interesting to put VNTRs in the context of known genome-wide association

studies summary statistics. To do so, we use the web application9, which

has the possibility to superimpose association densities from multiple

studies, displaying regional information such as SNP associations and

structural variations [66].

3 Results

3.1 Study population

In this study, we used a sample of Alzheimer’s disease (AD) cases (N=513,

mean age at onset 76± 9 years) and non-demented controls (N=616, mean

age at inclusion 80±6 years) from the ADSP project. The AD cases were a

mix of early-onset AD (EOAD, age at onset < 65, N=66), and late-onset AD

(LOAD, age at onset ≥ 65, N=447). We analysed their paired-end short-

read whole-genome sequencing data, with 98% of individuals having a

read length of 150bp, while 2% (N=24) had a read length of 100bp. A

summary of metadata on the study population can be found in Table 1.

3.2 Candidate VNTRs

3.2.1 Candidate VNTRs identified by ExpansionHunter Denovo

The initial set of candidate VNTRs were generated with ExpansionHunter

Denovo (EHdn). We ran both the case-control and the outlier analysis,

detecting VNTRs occurring in, respectively, a high and low fraction of the

cases. The case-control analysis returned 11 794 VNTRs, with 1319 (11%)

having an uncorrected p-value < 0.05 and 41 (0.3%) having a Bonferroni

corrected p-value < 0.05. The outlier analysis reported 319 091 VNTRs,

with 3824 having at least one case with a top z-score ≥10. The full output

for both analyses can be found in Supplementary Table 1. Of the candidate

VNTRs returned by the case-control analysis, 97% also occured in the

output of the outlier analysis.

3.2.2 Filtering candidate VNTRs and creating the variant catalog

We filtered the outputs to focus on the most promising candidate VNTRs.

See Methods Section 2.3.2 for a detailed explanation of the applied filters.

We retained 923 from the case-control analysis after filtering on motif size

(motif≥ 7bp) and p-value (p < 0.05). From the outlier analysis we retained

9 snpxplorer.net

(a) VNTR in the TRIO gene with its

FDR corrected p-value.

(b) VNTR in the CTNAP gene with its

FDR corrected p-value.

Fig. 2: Violin plots for the two most significant VNTRs having a ‘gene’

annotation, detected with our cohort-wide analysis.

1771 candidate VNTRs after filtering on motif size (motif ≥ 7bp), z-score

(≥ 10), and support (≥ 3%). Taking the union of these sets gives us a total

of 2129 candidate VNTRs, which were transformed into a variant catalog

of 3818 entries.

3.3 Identified VNTRs associated with AD

3.3.1 Cohort-wide AD-associated VNTRs

For each candidate VNTR, we tested for cohort-wide differences

in the repeat numbers estimated by EH (see Methods 2.4.1). Our

analysis returned 1064 regions with an FDR corrected p-value < 0.05

(Supplementary Table 2). Despite a significant difference according to

the test, upon visual inspection the distributions did not differ much and

it seems the differences were in the tails. The violin plots of the 10 most

significant VNTRs with a ‘gene’ annotation can be found in Supplementary

Figure 1, of which we show the two most significant in Figure 2.

3.3.2 Outlier-based AD-associated VNTRs

In addition to the cohort-wide analysis, we performed an outlier analysis

on each candidate VNTR to identify differences in tails (see Methods

2.4.3). We detected VNTRs that show either an expansion or contraction

for cases. The number of detected VNTRs are summarised in Table 2.

Expansions

We detected significant (FDR corrected p < 0.2) VNTRs based on each

allele value, giving us 29 based on the shortest allele, 22 based on the

longest allele and 24 based on the summed allele. There is overlap between

these results; taking the union gives 52 unique VNTRs.

We detected 52 expansions with an odds ratio (OR) > 5 and occurring

in more than 1% (≥6) of cases, with 25 based on the shortest, 25 on the

longest and 27 on the summed allele. Taking the union of the 52 Fisher’s-

detected expansions and the 52 OR-detected expansions gives us a total of

71 VNTRs showing an expansion in AD cases compared to non-demented

controls.

Contractions

We detected 1237 VNTRs that show a contraction in cases compared to

controls and have an FDR corrected p < 0.2. From those, 45 VNTRs came

up as significant based on the shortest allele, 1138 based on the longest

allele and 1056 based on the summed allele.

We detected 610 contractions with an odds ratio (OR) > 5 and occurring

in more than 1% (≥6) of cases, with 49 based on the shortest, 518 on

the longest and 485 on the summed allele. Taking the union of the 1237

Fisher’s-detected contractions and the 610 OR-detected contractions gives

us a total of 1242 VNTRs showing a contraction.

https://snpxplorer.net/
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Table 2. The number of detected AD-associated VNTRs showing

either an expansion or a contraction in cases and based on which

allele they were detected.

Method Shortest

allele

Longest

allele

Summed

allele

Total

Expansions Fisher’s 29 22 24 52

Odds ratio 25 25 27 52

Total 71

Contractions Fisher’s 45 1138 1056 1237

Odds ratio 49 518 485 610

Total 1242

Fig. 3: The distribution of motif sizes in bp for the expanded (N=71) and

contracted (N=1242) AD-associated VNTRs as well as for the whole

variant catalog.

The distribution of motif sizes for the detected 71 expansions and

1242 contractions can be found in Figure 3. The full list of detected

expansions and contractions can be found in Supplementary Table 3 and

Supplementary Table 4, respectively.

3.4 Genomic context

3.4.1 Gene and functional element annotation

We annotated the whole variant catalog as well as the expansions and

contractions that came up as significant. We noticed a telomeric enrichment

in the regions in the variant catalog (p < 1e-16) and the detected

contractions (p < 1e-16). For the significant expansions, the telomeric

enrichment is less but still present (p = 0.038). None of the regions from

the variant catalog occurs in promotor regions. The annotation frequencies

are summarised in Table 3.

3.4.2 Gene set enrichment

We selected the ’gene’ annotations from the expanded and contracted

VNTRs and checked the two sets of genes for enrichment. As some VNTRs

overlap multiple genes, this gave us 19 genes for the expanded and 218

genes for the contracted VNTRs.

For the expansions, 3 of the 19 genes were excluded by g:GOSt as

they exclude uncharacterized LOC genes. For the remaining 16 genes,

annotation terms that came up as significant were from the categories GO

cellular component (GO:CC), biological pathway WikiPathways (WP) and

Table 3. Annotation frequencies of the VNTRs

Variant catalog expanded VNTRs contracted VNTRs

total 3818 100% 71 100% 1242 100%

genic 1611 42% 15 21% 371 30%

telomeric 1441 38% 10 14% 352 28%

promotor 0 0% 0 0% 0 0%

exonic 57 1.5% 0 0% 5 0.4%

func elem 25 0.7% 0 0% 11 0.9%

near gene (50kb) 964 25% 26 37% 400 32%

near func elem (50kb) 55 1.4% 7 8% 9 0.7%

protein database CORUM. An overview of the gene set enrichment can be

found in Figure 4a and Table 4b, for which the full results can be found in

Supplementary Table 6.

For the contractions, 33 of the 218 genes were excluded by g:GOSt as

these were uncharacterized LOC genes. For the remaining 185 genes,

annotation terms that came up as significant belong to the categories:

GO molecular function (GO:MF), biological pathway sources KEGG

and Reactome (REAC), protein databse CORUM, regulatory motifs in

DNA from TRANSFAC (TF) and Human phenotype ontology (HP). An

overview of the gene set enrichment can be found in Figure 4c and Table

4d, for which the full results can be found in Supplementary Table 6.

3.5 A selection of VNTRs

3.5.1 A selection of expanded VNTRs in genes

We made a selection of the most interesting expanded VNTRs based on

their annotation. As there are no expanded VNTRs falling within functional

element annotations, we select only those with a ‘gene’ annotation giving

us a shortlist of 15 VNTRs, summarised in Supplementary Table 5. Upon

visual inspection of their scatterplots, we noticed that the VNTRs in

GALNT17 and DLGAP2 did not show a clear division between cases

and controls and showed many controls with a large expansion (see

Supplementary Figure 2). The GRM8 gene was detected based on the

shortest allele, and although there was not a clear separation visible on

that axis, it did show a clear separation for the longest allele, therefore

we decided to retain this VNTR in our selection. The remaining shortlist

consists of 13 expanded VNTRs, which are summarised in Table 4.

The corresponding scatterplots and snpXplorer images can be found in

Supplementary Figure 3. In Figure 5 we highlight the three VNTRs in genes

ADAMTSL3, MPPED1 and SCIMP, as these showed a clear expansion for

cases and AD-associated SNPs in the snpXplorer.

3.5.2 A selection of contracted VNTRs in genes

We curated five contracted VNTRs based on three criteria: (i) the VNTR

has a ‘gene’ annotation, (ii) the scatterplot shows a clear separation for the

contracted AD cases, (iii) the VNTR does not have neighbouring variant

catalog entries with a similar motif (to avoid reporting technical effects)

and (iv) snpXplorer shows activity for the concerned gene. Here we show

the plots for the contracted VNTR in RASA3 and DNM2. An overview

of these five VNTRs are captured in Table 5, and its scatterplots and

snpXplorer images in Supplementary Figure 4.

3.5.3 Which VNTRs get detected is sensitive to the outlier constant

We noticed that the outlier constant greatly affects which VNTRs could

be detected. Both smaller and larger constants result in the detection

of different VNTRs that show a clear expansion for cases. We show a

detected VNTR for each of the outliers constants 0.5, 1.5, 2.0 and 2.5 in

Supplementary Figure 5. These four VNTRs show that a different constant
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(a) A visual overview of the gene set enrichment analysis for expanded VNTRs.

Source Term name Adjusted p

GO:CC cell trailing edge membrane 0.023202

GO:CC uropod membrane 0.023202

WP GPCRs, Class C Metabotropic glutamate, pheromone 0.044345

CORUM Glutamate receptor 8 complex, metabotropic 0.000735

CORUM mGluR2-mGluR8 complex 0.000735

CORUM mGluR3-mGluR8 complex 0.000735

(b) The significant results from the gene set enrichment analysis for expanded

VNTRs.

(c) A visual overview of the gene set enrichment analysis for contracted VNTRs.

Source Term name Adjusted p

GO:MF acetylgalactosaminyltransferase activity 0.018199

KEGG Calcium signaling pathway 0.026744

REAC O-linked glycosylation 0.011054

REAC DAG and IP3 signaling 0.011054

CORUM PKC-alpha-PLD1-PLC-gamma-2 signaling complex 0.046943

TF Factor: AP-2; motif: MKCCCSCNGGCG 0.000735

HP Bilateral generalized polymicrogyria 0.028588

(d) The most significant result per source from the gene set enrichment analysis for

contracted VNTRs.

Fig. 4: The gene set enrichment plots for the expanded and contracted VNTRs. The full results for this analysis can be found in Supplementary Table 6.

Table 4. An overview of the expanded VNTRs within genes, listing for each VNTRs the gene, their location on the reference genome (Location GRCh38), repeated

motif & motif size, Fisher’s p-value, its FDR corrected counterpart, the odds ratio (OR), number of cases above the outlier boundary (Cases), number of controls

(Controls) above the outlier boundary and if the VNTR has been reported before by Linthorst et al. [44].

Gene Location GRCh38 Repeated motif Fisher’s p Corrected OR Cases Controls Status

ADAMTSL3 15: 83674672 - 83674772 ACACACATATATACATATAT (20) 3.3e-5 0.01 inf 13 0 novel

ARHGEF10 8: 1919435 - 1919475 CCATGGGTGATGGAGCTGTT (20) 1.9e-2 1.00 8.5 7 1 reported

CLDN14 & LOC107984737 21: 36496794 - 36496826 AAGGAAGGGAGGGAGG (16) 1.2e-3 0.16 8.0 13 2 novel

DIP2C & DIP2C-AS1 10: 658264 - 658288 ACCTGCCCCTGG (12) 2.6e-3 0.06 4.3 24 7 novel

EVC2 4: 5706427 - 5706447 ACATAGATAGATAGATAGAT (20) 8.6e-3 1.00 inf 6 0 reported

GRM8 7: 126903616 - 126903756 ATATATATATGTATATGTGT (20) 3.9e-4 0.09 1.6 166 143 novel

LINC02050 3: 80770373 - 80770613 AACGTACGTGCGCTCCTCTC (20) 1.4e-4 0.20 6.2 20 4 reported

LOC101928269 21: 35993052 - 35993084 AACTCACACACACCCC (16) 1.9e-2 1.00 8.5 7 1 novel

LOC101928764 13: 21290679 - 21290759 AATACAGATATGACACCCGC (20) 1.1e-3 0.16 2.8 31 14 reported

MPPED1 22: 43432765 - 43432841 AAAGGGAGGAGAGAGAGAG (19) 6.6e-6 0.002 22.3 18 1 reported

PID1 2: 229184495 - 229184512 ATATATATATATCCCGT (17) 2.3e-3 1.00 12.2 10 1 reported

SCIMP & ZNF594-DT 17: 5232351 - 5232365 AAACAGTGCAGTGT (14) 9.5e-3 1.00 9.7 8 1 reported

TRANK1 3: 36880047 - 36880065 AAACATACAAATATATGT (18) 4.1e-4 0.09 3.3 29 11 reported

can lead to the detection of other expanded VNTRs, indicating a sensitivity

to this constant. Here we highlight a VNTR in the ALK gene, detected

with an outlier constant of c = 1.5, showing a massive expansion for the

longest allele (Figure 7). This VNTRs is located at 2:29831155-29831164

on the reference, with an ‘AAGAAGGAG’ (9 bp) motif, 9 cases and 1

control above the outlier boundary, an uncorrected Fisher’s p = 4.7e-3,

FDR corrected p = 0.6 and OR = 11.

4 Discussion

We present our findings of a genome-wide search for variable number

tandem repeats (VNTRs) related to Alzheimer’s disease (AD). We

focussed on VNTRs with a motifsize ≥ 7 bp and whose total size exceed

read length. We report 71 VNTR expansions and 1242 contractions, of

which 15 expansions and 371 contractions occur in genes. The gene

set analysis shows an enrichment for neurological elements, with some

explicitly linked to AD. For example, within the enriched terms for

the expanded VNTRs (Figure 4b) is the ‘mGluR2-mGlurR8 complex’,

with mGluR2 activation triggering the production of Amyloid β [38] and

leading to neuronal degeneration [41].

4.1 Expanded VNTRs

The largest expansion was detected using a different outlier constant

(see Section 3.5.3). This concerns the VNTR in the ALK gene (Figure

7), showing an expansion on the longest allele, on which the largest

expansion has an estimated size of 288 repeats. The VNTR has a 9bp



8 Francesca Lucas

(a) The number of repeats on each allele for the expanded VNTR in ADAMTSL3, showing

the outlier boundary as a dashed line.

(b) The SNPs in and around ADAMTSL3, obtained from snpXplorer.

(c) The number of repeats on each allele for the expanded VNTR in MPPED1, showing

the outlier boundary as a dashed line.

(d) The SNPs in and around MPPED1, obtained from snpXplorer.

(e) The number of repeats on each allele for the expanded VNTR in SCIMP, showing

the outlier boundary as a dashed line.

(f) The SNPs in and around SCIMP, obtained from snpXplorer.

Fig. 5: For the three expanded VNTRs in ADAMTSL3, MPPED1 and SCIMP from Table 4 we show the number of repeats on each allele and the regional

SNPs as provided by snpXplorer. Similar plots for all entries from Table 4 can be found in Supplementary Figure 3.
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Table 5. An overview of the contracted VNTRs near genes, listing for each VNTRs the gene, their location on the reference

genome (Location GRCh38), repeated motif & motif size, the FDR corrected Wilcoxon rank sum test p-value, the odds ratio

(OR), number of cases above the outlier boundary (Cases), number of controls (Controls) below the outlier boundary and if the

VNTR has been reported before by Linthorst et al. [44].

Gene Location GRCh38 Repeated motif Corrected OR Cases Controls Status

C2CD3 11: 74117086 - 74117240 AATATATATATATG (14) 0.04 2.0 35 22 known

DNM2 19: 10758432 - 10758496 CCCTCCCTCCTTCCTT (16) 9.7e-4 17.3 14 1 known

PCCA 13: 100451910 - 100451985 CCTCTCCCTCTCTCT (15) 1.7e-4 11.8 19 2 known

RASA3 13: 114010765 - 114010784 CCCTCCCTCCTTCCTT (19) 3.1e-5 inf 16 0 novel

SEMA4D 9: 89462958 - 89462976 AGCGAGCGAGGGGAGGGG (18) 1.8e-3 10.0 19 4 known

(a) Contracted VNTR in the DNM2 gene.

(b) Contracted VNTR in the RASA3 gene.

Fig. 6: Two of the contracted VNTRs.

motif, with 9 cases and 1 control above the outlier boundary (uncorrected

Fisher’s p=0.0047. FDR corrected p=0.6, OR=11). ALK has been reported

as a crucial protein in the tau-dependent neural degradation, as ALK

causes abnormal accumulation of phosphorylated tau in neurons. The

brains of AD patients showed significantly elevated ALK levels. Even

more so, the pharmocological inhibition of ALK activity reversed the

tau accumulation and memory impairment in transgenic mice [54]. Alk

Fig. 7: Detected VNTR in the ALK gene showing a massive expansion,

with c = 1.5 as the outlier boundary constant.

inhibition in Drosophila has been shown to extend lifespan and described

as a target for longevity [72].

Furthermore, we selected the most promising expanded VNTRs based

on their annotation (selecting those within genes) and a visual check

of their scatterplots. These thirteen VNTRs are summarised in Table 4.

Eight of the thirteen VNTRs (those in ARHGEF10, EVC2, LINC02050,

LOC101928764, MPPED1, PID1, SCIMP and TRANK1) have previously

been reported by Linthorst et al. (2020) [44], who used long-read

sequencing to detect genome-wide structural variations (SVs), including

tandem repeats and VNTRs. We consider the five VNTRs that have not

been reported by [44] as novel: this concerns the VNTRs in ADAMTSL3,

CLDN14, DIP2C, GRM8 and LOC101928269. This suggests both that

our pipeline works well at detecting VNTRs and that we are able to detect

novel ones.

The majority of the genes in which we detected VNTRs have either

been linked to AD, linked to a disease sharing a genetic similarity with

AD or are active in the central nervous system.

ADAMTSL3 has been described as a candidate locus for schizophrenia

[14], which shows a link to AD [39], and colorectal cancers [40]. The

protein encoded by ADAMTSL3 is a glycoprotein and is suspected to play

a role in cell-cell interactions [6]. The overarching ADAM and ADAMTS

proteins are believed to play a role in various pathologies, including AD,

and have been mentioned as promising drug targets [6]. The VNTR in

ADAMTSL3 has a 20bp motif and shows an expansion with the same

number of repeats on both alleles (Figure 5a), where 13 AD cases and

0 controls fall above the outlier boundary (FDR-corrected p = 0.01, OR

= inf). snpXplorer shows suggestive association signals with AD for this
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genomic region (Figure 5b), with rs34321903 being the most significant

(p = 6.9e-5). Furthermore, the leading SNP in the region (rs34321903) is

an intergenic SNP for which consequences at gene and protein level are

unknown, thus making this VNTR a very promising one.

MPPED1 is listed as one of the regionally enriched genes in the brain

cortex [15]. Furthermore, it has been included in the expression analysis

of the transcriptional signatures of tau and amyloid neuropathologies [7].

A SNP in MPPED1 has been associated to autism in GWAS [45], and

autism has been shown to share genetic similarities with AD [30, 63, 47].

The VNTR in MPPED1 has a 19bp motif and shows various expansions

on both alleles (Figure 5c), with 18 cases and 1 control above the outlier

boundary (FDR corrected p=0.002, OR=22.3). For this region, snpXplorer

shows various SNPs (Figure 5d) with the most significant SNP having a

significance of p = 4.6e-4, making this VNTR another very promising one.

SCIMP has been implicated as a risk gene for AD, showing significant

association [31]. The VNTR in SCIMP has a repeated motif of 14bp and

shows an expansion on the longest allele (Figure 5e), where 8 AD cases

and 1 control fall above the outlier boundary at 12 repeats (uncorrected

p=9.5e-3, OR=9.7). This VNTR is relatively close to (distance of 1.4Kb)

the leading SNP in the region, rs7225151 (p = 9.3e-13), which has been

found to be genome-wide significant in a GWAS [51].

The VNTR in TRANK1 has an 18bp motif, with 29 cases and 11

controls above the outlier boundary (FDR corrected p=0.09, OR=3.3). A

decreased expression of the TRANK1 gene influences many genes related

to neural development and differentiation [33]. Thus far TRANK1 has Gene

Ontology (GO) annotations to protein binding and ATP binding [1, 3] and

has been linked to bipolar disorder and schizophrenia [33]. Schizophrenia,

in turn, is associated with an elevated risk for developing AD [39]. Even

more so, TRANK1 has been mentioned as a novel genomic region of interest

for rare variants of AD [52]. In our dataset this genetic variation is above

the common threshold of 1%, instead of rare.

The VNTR in GRM8 has an 20bp motif, with 166 cases and 143

controls above the outlier boundary (FDR corrected p=0.09, OR=1.6).

GRM8 has been linked to autism [24, 43] and multiple sclerosis [71].

Recently, an upregulation of GRM8 has been shown to protect against

neural inflammation [71]. Neuroinflammation contributes greatly to the

pathogenesis of AD [25]. Furthermore, Aβ plaques, another hallmark of

AD, have been associated with the downregulation of Grm8 and a drug

has been reported to prevent this Aβ-associated downregulation of Grm8

in AD mouse models [55].

The protein encoded by the DIP2C gene (reported VNTR: 12 bp motif,

FDR corrected p=0.06, OR=4.3) has an influence on transcription factor

binding and is expressed in the nervous system [1, 3]. A SNP in DIP2C has

been linked to overall cognitive ability and to psychosis in AD [26]. SNPs

in ARHGEF10 (VNTR: 20 bp motif, uncorrected p=1.9e-2, OR=8.5) has

been associated with neurofibrillary tangles[62], and came up in a study

showing genetic overlap between Amyotrophic lateral sclerosis (ALS) and

fronto-temporal dementia (FTD) [36]. There is evidence to link ALS and

FTD to AD [70]. Finally, PID1 (VNTR: 17 bp motif, uncorrected p=1.9e-

2, OR=8.5) mRNA is lower in brains of AD patients [34, 17, 19], EVC2

(VNTR: 20 bp motif, uncorrected p=8.6e-3, OR=inf) has been reported as

a rare variant for early-onset familial AD [27].

Three of the thirteen expanded VNTRs occur in non-coding RNA

(ncRNA) genes (LINC02050, LOC101928269, LOC107984737). There

is substantial evidence implicating ncRNA in the regulation of the main

hallmarks of AD pathology, such as Aβ, tau and inflammation [42, 48, 64].

Although these specific ncRNA expansions/variations have not been linked

to AD yet, further investigation could be valuable.

4.2 Contracted VNTRs

We detected approximately 15x more contractions than expansions. This

could be due to a technical effect, for example that one VNTR is divided

over multiple variant catalog entries. This could lead to some entries

showing an expansion and some a contraction, which could cancel each

other out upon merging these entries. Alternatively, there is a biological

implication that the number of contractions increases exponentially as the

repeat length increases [61]. Interestingly, contractions can occur, just like

expansions, due to repair slippage [59].

One of the detected contracted VNTRs falls within the DNM2 gene,

where 14 cases and 1 control fall below the outlier boundary (16 bp motif,

FDR corrected p = 9.7e-4, OR = 17.3). We carefully checked the variant

catalog for neighbouring entries with a similar motif, which were not

present, to avoid reporting a technical effect. Mutations in DNM2 cause

Charcot-Marie-Tooth disease and a rare form of myopathy [65, 16, 22].

In the context of AD, DNM2 has been described as a susceptibility gene

for late-onset AD (LOAD) in non-carriers of the APOE4 allele [2] and at

least one SNP has been associated with LOAD [35]. Aβ seems to decrease

the expression of DNM2 [37]. The products of DNM2 have an effect on

myelination and microtubules [16, 22, 29, 65]. Both demyelination and

unstable microtubules are characteristics of AD [32, 53]. Although this

gene came up as significant based on its contraction, in Figure 6a we also

noticed a few cases showing an expansion. These are indeed all LOAD

cases, which is in line with DNM2 being described as a susceptibility gene

for LOAD.

Until now only one confirmed pathogenic contraction has been

reported, related to facioscapulohumeral muscular dystrophy; this

contraction occurs in a subtelomeric region resulting in relative

demethylation, which is thought to activate an (unknown) gene with

negative effects on muscular development that might otherwise be silent

[10, 68, 69]. In the context of the cinetobacter baumannii bacterium,

contractions have been described to have an impact on the expression,

structure and activity of cellular proteins [58]. Furthermore, an association

was found between individuals who have fewer repeats in the FMR1

CGG repeat and various deleterious effects, including decreased cognitive

functioning [46]. This supports the idea that there is a tight range of repeats

which allow for optimal cognitive functioning, and that a low number of

repeats as well as a high number of repeats could have pathological effects.

Therefore, we speculate that our detected contractions could have a similar

deregulatory effect as the expansions.

4.3 Limitations

VNTRs can be quite complex: the motif is often variable, there can be

insertions between copies and even repeats within repeats. In this study,

we only detect the ’clean’ repeats, i.e. repeats that have adjacent copies

of the same motif. This limitation is mainly due to the way EHdn and EH

work, as they barely allow for differences in motif, and even less so for

indels between copies. EH does allow for the encoding of more complex

repeats, however the structures need to be precisely captured with a regular

expression and provided in the variant catalog. The challenging part is

determining the structure of a VNTR, as they are often unstable, leading

to many possible variations. Furthermore, in the output of EHdn we noticed

repeats with the same or a very similar pattern (differing by 1 or 2 bp) in

nearby or even overlapping regions. These are probably part of the same

repeat, yet are outputted as separate repeats. In this study, we treat these

as separate VNTRs, even though merging similar nearby repeats might be

more biologically appropriate.

Both EHdn and EH detect motifs up until 20bp, imposing a limitation

on the size of VNTRs that can be detected. For example, we were not be

able to detect the ABCA7 VNTR with a motif of 25bp [9]. This limitation

of detectable motif size can be attributed to the constraints imposed by
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read length. For example, with a motif of 20bp and a read length of 100,

a maximum of 5 repeats could fit within a read. In other words, the longer

a motif, the less confident any estimate can be, simply because only a few

copies can fit within a short read.

In our current pipeline, we exclude the VNTRs that are absent from the

reference genome. These VNTRs have the potential to be pathogenic too.

However, we need a basis in the reference in order to use EH, meaning that

these VNTRs (detected by EHdn) would require a whole different pipeline

to estimate their repeat sizes.

When filtering candidate VNTRs we aim to select the most promising

candidates for the rest of our analysis. We can not be certain that this did

not exclude candidate VNTRs which might turn out to have an association

with AD

Finally, the sensitivity to the outlier constant is an indication that this

method of VNTR detection is suboptimal. Furthermore it shows there are

many more VNTRs to be discovered using this pipeline and even this

dataset.

5 Future work

First and foremost, the detected VNTRs should be validated using either

long-read sequencing or in vitro methods. Furthermore, they should be

validated using a larger cohort.

One of the major biases in the estimates of repeat size is due to VNTRs

being spread out over multiple entries. The current pipeline and utilised

tools (EHdn, EH) allow for little variation within and between repeats.

One way to reduce these effects would be to add a merging step in the

downstream analysis, merging nearby entries with similar repeated motifs

as they are likely part of the same VNTR.

During downstream analysis, and specifically in the outlier analysis,

we noticed that the choice of the outlier boundary constant determined

which VNTRs were detected, leaving many VNTRs within the current

dataset, undetected. This indicates that detecting outliers with a boundary

derived from the interquartile range is suboptimal and the pipeline would

benefit from a more flexible nonparametric method for outlier detection.

The current pipeline is not suitable for detecting VNTRs without a basis

in the reference genome due to the need for a variant catalog specifying

coordinates on the reference. To analyse these VNTRs, a completely

different method would be needed to estimate the number of repeats. There

have been pathogenic VNTRs reported without a basis in the reference

genome [11], making this direction one worth investigating.

Extending the downstream analysis by linking phenotypes to

genotypes could be a valuable addition. For example, a regression analysis

with e.g. the number of repeats within a VNTR and age at onset of AD

could differentiate between variants specific to either early-onset AD or

late-onset AD. As diseases are often caused by combinations of variants

[60], another idea would be to encode the set of VNTRs as a binary vector

for each sample, annotating whether that VNTR is expanded within that

specific sample. These vectors could be clustered to find subgroups of

VNTRs that co-occur, defining subgroups of AD patients.

6 Conclusion

We set out to tackle the challenging task of detecting VNTRs using paired-

end short read data. We created a pipeline that performs a genome-wide

search (i.e. no predefined set of repeats needed) for VNTRs exceeding read

length. We utilised this pipeline to identify various promising VNTRs,

proving the potential of this pipeline and illustrating the abundance of

VNTRs associated with AD.
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Appendices
A Variant catalog creation algorithm

We create a variant catalog to run ExpansionHunter (EH) based on the

output from ExpansionHunter Denovo (EHdn). EHdn reports for each

repeat a position: chr:start-end and a motif. These coordinates can be off

by ±500bp, so we use 500 as our margin. For each repeat:

1. Extract sequence from the reference genome from (start - margin, end

+ margin)

2. For the repeated motif:

a. Identify positions with stretches of perfect copies of this motif

b. Extend these stretches when:

- The next motif differs by 1 base (Levenshtein distance ≤ 1)

- AND the motif after that is a perfect copy of the repeating motif

3. For the reverse complement of the motif (revmotif), same loop

4. Select the motif or the revmotif, depending on which has the longest

stretch of repeats

a. If they have the same size longest stretch, retain both

5. For the selected motif(s), select the position(s) that have the longest

stretch of repeat

a. If there are multiple longest stretches, retain all of these

6. For each of the retained longest stretches

a. Calculate the chromosome coordinates

b. Create a variant catalog entry using the updated coordinates and

corresponding motif

EH performs some quality control. One of these quality measures is

the number of ’N’s in the sequence of the reference genome. An ’N’ means

that this nucleotide could not be determined precisely. EH extracts repeats

from a region around the repeat, by default this is a region of 1Kb on each

side of the repeat. If there are more than 5 Ns in this region, EH gives

an error. Therefore we exclude repeats from the variant catalog where the

region in the reference sequence has more than 5Ns.

Due to the nature of this catalog creation and because EH requires

coordinates on the reference genome, repeats that have no basis in the

reference get filtered out.

The motif is expressed as a regular expression. In our cases, this would

be in the form of (CAG)*, meaning that the tandem repeat consists of zero

or more repeats of the CAG motif. We only encode simple repeats, in the

sense that we only encode 1 motif that is repeated. EH’s sequence graph

algorithm allows for the encoding of more complex repeats. For example,

(CAG)*CAACAG(CCG)* would encode two tandem repeats with motifs

CAG and CCG, separated by a CAACAG sequence.

B ExpansionHunter Denovo

First, it scans each individual genome for tandem repeats that exceed

read length. It does so by detecting in-repeat reads (IRRs) and anchored

in-repeat reads. The IRRs consist purely of the repeating sequence, the

anchored IRRs have one side mapped to the flanking sequence (the

anchored part). EHdn considers a minimum mapping quality (MAPQ)

for the anchored IRRs and a maximum MAPQ for IRRs as input variables.

Default values were used, which are: minimum MAPQ for anchored reads

= 40, max MAPQ for IRRs = 50. For each repeating structure, the number

of anchored and IRRs and their locations are noted in the STR profile of

that genome.

After identifying these IRRs for each individual genome, the

normalised IRR counts can be compared between samples. There are

two modes of comparison: case control analysis and outlier analysis. The

case control analysis checks if the IRR count distributions differ, so this

analysis mode is suitable to detect repeats that are expanded in a significant

proportion of the cases. This calculates the wilcoxon rank sum score based

on the distribution of read counts for cases vs controls. These scores are

then reported, along with the copied motif, its approximate region on the

reference and the read counts for each sample. Although it is not explicitly

stated, there seems to be a filtering on the prevalence amongst cases for

each repeat. (This is based on that it reports fewer repeats than the outlier

analysis, but does report p-values ranging from 0 - 1.)

The outlier analysis checks for large deviations in the IRR count. Just

a single case with a large expansion is sufficient to be reported, so this

analysis mode is suitable for detecting rare expansions. It takes 95% of the

distribution of read counts (based on controls only? or cases and controls?).

Each repeat for which at least one case deviates from the mean by at least

1 standard deviation is reported.

C ExpansionHunter

Duplicated from Literature Survey. The authors of ExpansionHunter

distinguish three types of reads that you can encounter: spanning reads

(encompassing the whole repeating region), flanking reads (one side of

the read is outside the repeating region), and in-repeat reads (IRRs) [? ].

When estimating an expansion of repeats that are longer than the read

length, the reads will consist fully of the repeating motif. In this case we

want to identify IRRs to estimate the size of the expansion. To identify

IRRs one must first establish if the read fully consists of a repeating motif.

To do so, it will be matched to the perfect repeating sequence. To find the

closest match, the sequence can be shifted (repeating CAG can also lead to

repeats of AGC or GCA) and reversed (the complementary GTC, TCG or

CGT). When there is a match, some sort of alignment score is calculated

to assess if it is an IRR. This score is called ‘Weighted Purity’ (WP), which

assigns:

1 for a matching basepair,

0.5 for a low-quality mismatch,

-1 for a high- quality mismatch.

Low- and high-quality refer to the read quality. If the read is less certain, a

mismatch is less meaningful. These scores are summed for the bases, and

then normalized by dividing it by read length. This way, the WP score will

range from -1 to 1. Reads with a WP ≥ 0.9 are considered IRRs.

These IRRs can map to different locations in the genome, since certain

repeats occur more often. Especially when an STR is relatively short on

the reference genome and expanded in the donor genome, the IRR might

not map back to the target location. The off-target regions are therefore

defined as regions where IRRs might be mistakenly mapped to. It is useful

to identify these regions as only those regions have to be taken into account

when searching for relevant IRRs, instead of searching the whole genome.

IRR reads are not only selected by having a high WP score (WP ≥ 0.9),

but their mapping quality score (MAPQ = 0) is taken into account as well.

A low value implies it can map to multiple regions, so due to this ambiguity

the mapping quality is considered low. In our case, this ambiguous mapping

means a higher probability for an IRR, as these reads have a high similarity

to the repeating region and can be mapped to multiple regions. This method

works best for motifs that are sufficiently long and underrepresented in the

rest of the genome, ensuring there will be only a few alternative locations

where the reads can be mapped to [? ].

When IRRs are closer than 500bp to each other, their mapping positions

will be merged. The resulting locations, if present in ≥ 50% of the
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samples, are considered the off-target regions where IRRs can be mapped

to.

We assume that observing a read at a certain base or position follows

a Bernoulli distribution, with success probability π.

π =
read depth

read length
(2)

Given this assumption, the reads starting at each position in a certain region

form a Bernoulli process. Therefore the number of reads starting in this

region follows a binomial distribution.

With r being the read length, one of the terminal bases of an IRR has

to start at least N −r bases away from flanking regions of the repeat. This

leads to the following distribution for observing i of such reads:

P (i, N − r) =
(N − r

i

)

πi (1− π)N−r−i (3)

with r being the read length and N the repeat size. Since r is known, i

can be estimated with the number of IRRs (found in the previous step) and

π can be calculated according to Equation 2, then the value of N (repeat

size) can be estimated. This estimation is done with a parametric bootstrap.

To identify the spanning reads, first a subselection is made including only

those reads that are aligned within 1kb of the target region. These reads are

then checked for the presence of the repeating motif. If this is present, the

flanking regions from the reads are aligned to the flanking regions on the

reference genome. This read also gets a WP score, and should be ≥ 0.9

for both repeating and flanking parts of the sequence to be considered

spanning. The more similar a flanking region is to the repeating motif,

the more flanking sequence is required to identify the end of repeating and

begin of flanking region. This is formalized in requirements on mismatches

in flanking regions.


