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Abstract
A preconditioner is proposed for Laplace exterior boundary value problems on multi-
screens. To achieve this, the quotient-space boundary element method and operator
preconditioning are combined. For a fairly general subclass of multi-screens, it is
shown that this approach paves the way for block diagonal Calderón precondition-
ers which achieve a spectral condition number that grows only logarithmically with
decreasing mesh size, just as in the case of simple screens. Since the resulting scheme
contains many more degrees of freedom than strictly required, strategies are presented
to remove almost all redundancy without significant loss of effectiveness of the pre-
conditioner. The performance of this method is verified by providing representative
numerical results. Further numerical experiments suggest that these results can be
extended to a much wider class of multi-screens that cover essentially all geometries
encountered in practice, leading to a significantly reduced simulation cost.

Keywords Preconditioning · Complex screens · Galerkin boundary element method ·
Quotient-space boundary element method

Mathematics Subject Classification 22E46 · 53C35 · 57S20

1 Introduction

We are interested in the behaviour of potentials near multi-screens, which are geome-
tries composed of essentially two-dimensional piecewise smooth surfaces joined
together, as shown in Fig. 1. Hence, we consider the following Dirichlet and Neu-
mann Laplace boundary value problems (BVPs) in the exterior of the multi-screen
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Fig. 1 Two examples of
multi-screen geometries

Γ ⊂ R
3,

−ΔU = 0 in R
3 \ Γ , U = gD or

∂U

∂n
= fN on Γ , (1)

plus the decay condition U (x) = O(‖x−1‖) as ‖x‖ → ∞, where ‖x‖ designates
the Euclidean norm of a point x in R

3, O(·) the Landau symbol, and gD and fN are
suitable boundary data.

Our goal is to solve these exterior BVPs efficiently by means of Galerkin boundary
element methods (BEM) [29] and Calderón preconditioning [7, 31]. For this, we recast
the BVPs as variational first-kind boundary integral equations (BIEs) for densities on
the surface of the multi-screen.

For simple screens this approach is well established [29, Section 3.5.3]. Here, we
call a simple screen an orientable, piecewise smooth two-dimensional manifold with
boundary embedded inR

3. For these geometries, the arising variational first-kindBIEs
are known to be coercive [16, 17, 32] in Sobolev spaces of jumps of suitable field traces,

in ˜H− 1
2 (Γ ) and ˜H+ 1

2 (Γ ), respectively [27, Ch. 3]. For these trace spaces, conforming
boundary element spaces are easily available, and they lead toGalerkin approximations
and Calderón preconditioning whose numerical analysis is well-understood [23, 24,
28].

In contrast, the notion of jumps becomes problematic in multi-screens, since they
are not globally orientable. For this reason, the tools from simple screens cannot be
used straightforwardly on multi-screens. Many alternatives have been proposed to
tackle this problem [5, 11–14, 35]. It is worth pointing out that at the time of writing, a
rigorous analysis of these approaches in suitable trace spaces is not available. Further-
more, these approaches lead to ill-conditioned linear systems, yet are not amenable to
preconditioning.

Fortunately, recent work by Claeys and Hiptmair offers the mathematical frame-
work to overcome these difficulties [9]. The key idea is to see trace spaces from
the perspective of quotient-spaces and to work with multi-valued traces. This new
paradigm not only allows for a rigorous analysis, but it also paves the way for con-
forming Galerkin discretisation by means of quotient-space BEM, as proposed in [8].
Indeed, instead of trying to approximate jumps directly, the new approach relies on the
Galerkin discretisation of multi-trace boundary element spaces. With this approach,
the related BIEs give rise to Galerkin matrices with large null spaces comprised of
single-trace functions. Since the right-hand-sides of the linear systems of equations
are consistent, Krylov subspace iterative solvers like CG still converge to the right
solution. We summarise these ideas and results in Sect. 2.
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Now that the most fundamental issues have been solved, we are in the position to
investigate how to improve the computational performance of quotient-space BEM
for multi-screens. Indeed, one should note that the arising linear systems are ill-
conditioned and that the number of conjugate gradient (CG) iteration counts increases
withmesh refinement. Hence, a natural next step—and themain focus of this paper—is
to devise preconditioners for multi-screen problems. In Sect. 4, we propose a sim-
ple preconditioning strategy based on opposite-order preconditioning, also known
as Calderón preconditioning on closed surfaces. Moreover, we present the tools to
understand the new preconditioner in the context of operator preconditioning. Numer-
ical experiments confirm that this approach reduces considerably the number of CG
iterations required to solve the system.

It is worth mentioning that an advantage of the quotient-space BEM approach is
that minimal geometrical information is required. However, the disadvantage is that
one pays with unnecessary computations due to the “doubling of degrees of freedom”
underlying the discretisation of multi-valued traces. As an alternative, we dedicate
Sect. 5 to discuss reduced quotient-space representations that require slightly more
geometrical information, but lower computational effort while still rendering efficient
Calderón preconditioning. Furthermore, we use the tools derived in Sect. 4 to provide
some insight about the requirements that such reductions need to fulfil.

Last but not least, we should mention that another approach to preconditioning
multi-screens has become available during the revision of this article [2]. We believe
this confirms the problem at hand is relevant and that, as usual in mathematics, there
are different ways of tackling a problem.

2 Quotient-space perspective

We briefly summarise the new perspective introduced in [9, Section 4-6] and the
quotient-space construction of boundary element (BE) spaces from [8]. Throughout
this paper we focus on three dimensions, but it is worth mentioning that the method
and analysis also carries over to 2d.

2.1 Geometry

We begin by recalling the rigorous characterisation of multi-screens as given in [9,
Sect. 2].

For this, the first concept we need to introduce is that of a Lipschitz (simple) screen
in the sense of Buffa-Christiansen:

Definition 1 (Lipschitz Screen [9, Definition 2.1]) A Lipschitz screen is a subset
Γ ⊂ R

3 such that

• its closureΓ is a compact Lipschitz two-dimensional sub-manifoldwith boundary,
• Writing ∂Γ for the the boundary of Γ , we have that Γ = Γ \∂Γ ,
• there exists a finite covering C of Γ with cubes such that for each cube C ∈ C,
denoting by a the length of its sides, the following holds:
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� If C contains a point in ∂Γ , there is an origin and an orthonormal basis of
R
3 in which the cube C can be identified with (0, a)3 and there are uniformly

Lipschitz continuous functions ψ : R → R, and φ : R
2 → R, with values in

(0, a) such that:

Γ ∩ C = {(x, y, z) ∈ C : y < ψ(x), z = φ(x, y)}, (2a)

∂Γ ∩ C = {(x, y, z) ∈ C : y = ψ(x), z = φ(x, y)}. (2b)

�Otherwise,Γ is the graph above (0, a)2 of an uniformlyLipschitz continuous
function φ : R

2 → R, with values in (0, a).

Definition 2 (Lipschitz Partition [9, Definition 2.2]) A Lipschitz partition of R
3 is

a finite collection of Lipschitz open sets
(

Ω j
)

j=0...n such that R
3 = ∪n

j=0Ω j and
Ω j ∩ Ωk = ∅, if j 
= k.

Definition 3 (Multi-screen [9, Definition 2.3]) A multi-screen is a subset Γ ⊂ R
3

such that there exists a Lipschitz partition of R
3 denoted

(

Ω j
)

j=0...n satisfying Γ ⊂
∪n

j=0∂Ω j and such that for each j = 0 . . . n, we have that the interior of Γ j :=
Γ ∩ ∂Ω j is a Lipschitz screen.

From a numerical point of view, it will be convenient to classify multi-screens into
three categories. For this, we first need to introduce the notion of irregular points on
the boundary, as in [10].

Definition 4 (Irregular points [10, Sect. 6.1]) Let us consider ∂Γ := Γ \int(Γ ) and
introduce the set of regular points of the boundary PR(∂Γ ) defined as

PR(∂Γ ) ={x ∈ ∂Γ such that Bx ∩ Γ = Bx ∩ S for some ball Bx

centred at x and some simple Lipschitz screen S}.

We define the set of irregular points of the boundary as

PI (∂Γ ) = ∂Γ \ PR(∂Γ ).

With this, we can classify our multi-screens as follows:

• TypeA: Γ is amulti-screen such that there exists an underlying Lipschitz partition
(Ω j ) j=0...n of R

3 with the property that ∂Γ j ⊆ ∂Γ with Γ j as in Definition 3.
• Type B: Γ is a multi-screen that has irregular points and that is not of type A.
• Type C: Γ is a multi-screen without irregular points and that is not of type A.

Figure 2 provides examples of multi-screens in these three different classifications.
In particular, Fig. 2c depicts a Möbius strip, which will not be discussed in this paper
because its analysis is more cumbersome and it does not arise in applications. Indeed
typical geometries that are approximated bymulti-screens in applications are antennas,
tail fins in aircrafts, and heat sinks. Since all of these correspond to multi-screens of
Type A and Type B, we restrict ourselves to these two types.
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Fig. 2 Multi-screens can be classified according to the location of their irregular points

2.2 Trace spaces

For amulti-screenΓ ⊂ R
3 we consider the following chains of nested Sobolev spaces1

H1
0,Γ (R3) ⊂ H1(R3) ⊂ H1(R3\Γ ), (3a)

H0,Γ (div, R
3) ⊂ H(div, R

3) ⊂ H(div, R
3 \ Γ ), (3b)

where the subscript X0,Γ indicates a space obtained as the closure in X of smooth
functions/vectorfields compactly supported in R

3 \ Γ . All inclusions in (3) should
be read as “is a closed subspace of”, which describe the associated quotient-spaces
Hilbert spaces. With this, we can define the multi-trace spaces [9, Sect. 5]

H
+ 1

2 (Γ ) := H1(R3\Γ )/H1
0,Γ (R3), (4a)

H
− 1

2 (Γ ) := H(div, R
3\Γ )/H0,Γ (div, R

3), (4b)

and the single-trace spaces [9, Sect. 6.1]

H+ 1
2 ([Γ ]) := H1(R3)/H1

0,Γ (R3), (5a)

H− 1
2 ([Γ ]) := H(div, R

3)/H0,Γ (div, R
3). (5b)

Remark 1 Wenote that H1(R3\Γ ) andH(div, R
3\Γ ) are spaces of functions attaining

different values on both sides ofΓ . This implies that functions in themulti-trace spaces

H
+ 1

2 (Γ ) and H
− 1

2 (Γ ) are multi-valued on Γ . In other words, they can take different
values on both sides of Γ .

Since the spaces H+ 1
2 ([Γ ]) and H− 1

2 ([Γ ]) are closed subspaces of H
+ 1

2 (Γ ) and

H
− 1

2 (Γ ), respectively [9, Proposition 6.2], we can also introduce the jump spaces [9,
Sect. 6.2] as

˜H+ 1
2 ([Γ ]) := H

+ 1
2 (Γ )/H+ 1

2 ([Γ ]), (6a)

1 We remind the reader that H(div, Ω) := {v ∈ L2(Ω)3 : div v ∈ L2(Ω)3} for Ω = R
3 or Ω = R

3\Γ ,
and refer to [19, Sect. 1.1] for definitions of the relevant Sobolev spaces.
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˜H− 1
2 ([Γ ]) := H

− 1
2 (Γ )/H− 1

2 ([Γ ]). (6b)

Remark 2 It is worth mentioning that single-trace spaces are a generalisation of the

spaces H± 1
2 (Γ ) on simple screens. Indeed, definition (5) follows from the character-

isation of trace spaces as the quotient between the domain of the Dirichlet and normal
traces, and their kernels.

Then, multi-trace spaces are the counterpart of single-trace spaces when starting
from the multi-valued spaces H1(R3\Γ ) and H(div, R

3\Γ ).

Finally, if one defines jump operators [·] : H
± 1

2 (Γ ) → ˜H± 1
2 ([Γ ]) as in [9,

Def. 6.5], one gets that their kernels are the single-trace spaces. This motivates the
characterisation of jump-spaces as the quotients (6).

Next, we consider the canonical surjections

πD : H1(R3\Γ ) → H
+ 1

2 (Γ ) and πN : H(div, R
3\Γ ) → H

− 1
2 (Γ ), (7)

and, with H1(Δ, R
3\Γ ) = {u ∈ H1(R3\Γ ),Δu ∈ L2(R3)}, we define the relevant

trace operators

Dirichlet trace: γD : H1(R3 \ Γ ) → H
+ 1

2 (Γ ), γD := πD,

Neumann trace: γN : H1(Δ, R
3 \ Γ ) → H

− 1
2 (Γ ), γN := πN ◦ grad.

Moreover, we remark that they map onto H+ 1
2 ([Γ ]) and H− 1

2 ([Γ ]) when restricted
to H1(R3) and H1(Δ, R

3), respectively.2

As noted in [9, Sect. 5.1], Green’s Formula in R
3 does not hold for elements of

H1(R3 \ Γ ) and H(div, R
3\Γ ). As these spaces underlie the definitions of H

+ 1
2 (Γ )

and H
− 1

2 (Γ ), that implies we cannot use the usual L2-duality pairing.

As a remedy, we introduce a bilinear pairing on H
+ 1

2 (Γ ) × H
− 1

2 (Γ ):


 u, p �:=
∫

[Γ ]
up dσ :=

∫

Rd\Γ
p · ∇u + udiv(p) dx, (8)

with arbitrary representatives u ∈ H1(R3\Γ ) and p ∈ H(div, R
3\Γ ) [9, Sect. 5.1].3

Note that this pairing induces the following isometric dualities [9, Prop. 5.1 and
Sect. 6.2]

H
− 1

2 (Γ ) ∼=
(

H
+ 1

2 (Γ )
)′

, ˜H− 1
2 ([Γ ]) ∼=

(

H+ 1
2 ([Γ ])

)′
, ˜H+ 1

2 ([Γ ]) ∼=
(

H− 1
2 ([Γ ])

)′
.

2 Indeed, this definition of Neumann trace generalises the fact that for a Lipschitz domain Ω ⊂ R
3, the

normal derivative of v ∈ H1(Δ, Ω) can be computed in H− 1
2 (Ω) by projecting ∇v ∈ H(div, Ω) to the

normal vector field n of ∂Ω .
3 Expressions

∫

[Γ ] . . . dσ should not be read as integrals with respect to the Lebesgue measure on [Γ ].
This is simply notation introduced in [9] and that we kept for later convenience.
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Furthermore, the bilinear pairing (8) offers a characterisation of single-trace spaces
through self-polarity:

Proposition 1 ([9, Proposition 6.3]) For u ∈ H
+ 1

2 (Γ ) and p ∈ H
− 1

2 (Γ ) the following
equivalences hold true:

u ∈ H+ 1
2 ([Γ ]) ⇐⇒ 
 u, q � = 0 ∀q ∈ H− 1

2 ([Γ ]),
p ∈ H− 1

2 ([Γ ]) ⇐⇒ 
 v, p � = 0 ∀v ∈ H+ 1
2 ([Γ ]).

Remark 3 These polarity properties may seem surprising starting from the quotient
space definition of the multi-trace spaces. However, thinking of the interpretation of
the pairing (8) as an L2-type pairing on an inflated multi-screen, they make sense:

u ∈ H+ 1
2 ([Γ ]) is even when crossing Γ and p ∈ H− 1

2 ([Γ ]) is odd when crossing Γ

(because the normal changes direction). The result is that contributions from opposite
sides of Γ cancel.

2.3 Weakly singular and hypersingular BIEs

Let G(z) := 1

4π‖z‖ be the fundamental solution of the Laplace equation in R
3. For

x /∈ Γ , let Gx(y) := χx(y)G(x− y) with χx : R
3 → R a smooth cut-off function that

is 1 in a neighborhood of Γ and 0 in a neighborhood of x as in [9, Sect. 8]. This allows
the definition of the single and double layer potentials by

SL φ(x) :=
 γDGx , φ �, DL v(x) := − 
 γNGx , v � . (9)

The weakly singular and hypersingular boundary integral operator (BIO) are the con-

tinuous operators V0 := γD ◦ SL : H
− 1

2 (Γ ) → H
+ 1

2 (Γ ), W0 := γN ◦ DL :
H

+ 1
2 (Γ ) → H

− 1
2 (Γ ). For sufficiently smooth arguments, the corresponding bilinear

forms admit weakly singular representations given by [8, Sect. 3]


 V0φ,ψ �=
∫

[Γ ]

∫

[Γ ]
G(y− x)φ(y)ψ(x)dσ(y)dσ(x), (10)


 W0v, p �=
∫

[Γ ]

∫

[Γ ]
G(y− x)curlΓ v(y) · curlΓ p(x)dσ(y)dσ(x), (11)

In order to solve the Dirichlet Laplace BVP, we solve the following variational BIE:

Given gD ∈ H+ 1
2 ([Γ ]), find φ ∈ H

− 1
2 (Γ ) such that


 V0φ,ψ �=
 gD, ψ � ∀ψ ∈ H
− 1

2 (Γ ). (12)
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To solve the Neumann Laplace BVP, we solve the variational BIE: Given fN ∈
H− 1

2 ([Γ ]), find u ∈ H
+ 1

2 (Γ ) such that


 W0v, p �=
 fN , p � ∀p ∈ H
+ 1

2 (Γ ). (13)

We conclude this section by recalling some properties of these BIEs: First, as a
consequence of the polarity from Proposition 1, we get that

Lemma 1 ([8, Lemma 3.2]) The nullspaces of V0 and W0 agree with H− 1
2 ([Γ ]) and

H+ 1
2 ([Γ ]), respectively.

In analogy to the situation on simple screens, we have

Proposition 2 The operators V0 : ˜H− 1
2 ([Γ ]) → H+ 1

2 ([Γ ]) and W0 : ˜H+ 1
2 ([Γ ]) →

H− 1
2 ([Γ ]) are elliptic, i.e.


 V0q, q � ≥ αV‖q‖2
˜H− 1

2 ([Γ ])
∀q ∈ ˜H− 1

2 ([Γ ]), (14)


 W0v, v � ≥ αW‖v‖2
˜H+ 1

2 ([Γ ])
∀v ∈ ˜H+ 1

2 ([Γ ]), (15)

with αV, αW > 0 depending only on Γ .

Proof The proof is similar to that of [9, Prop. 8.7] but setting ψ to be the single layer
potential for the Laplacian and using the fact that Δψ = 0 and that |ψ |H1(R3\Γ ) is
equivalent to ‖ψ‖H1(Δ,R3\Γ ) [29, Thm. 2.10.10]. ��

The previous results combined with continuity of the operators give us

Proposition 3 ([9, Prop. 8.9]) The operators V0 : ˜H− 1
2 ([Γ ]) → H+ 1

2 ([Γ ]) and

W0 : ˜H+ 1
2 ([Γ ]) → H− 1

2 ([Γ ]) are isomorphisms.
Additionally, these operators remain well-defined on the multi-trace spaces

H
− 1

2 (Γ ) and H
+ 1

2 (Γ ), respectively. However, Lemma 1 implies that they have non-
trivial nullspaces when considered on multi-trace spaces. Although this excludes
uniqueness of solutions for (12) and (13), Proposition 1 still provides existence, since

gD ∈ H+ 1
2 ([Γ ]) and fN ∈ H− 1

2 ([Γ ]) guarantees consistency of the right-hand side
linear forms: they vanish on the single-trace spaces.

3 Operator preconditioning on quotient-space BEM

In order to explain what changes in the quotient-space BEM setting, we recall the
essential ingredients of operator preconditioning as presented in [22]: Let X, Y be
Banach spaces, and consider the finite-dimensional subspaces Xh ⊂ X and Yh ⊂ Y

with dimensions N := dimXh and M := dimYh , and bases (ϕi )
N
i=1 and (φi )

M
i=1,
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respectively. Further, let a ∈ L(X × X, R), b ∈ L(Y × Y, R) and m ∈ L(X × Y, R)

be continuous bilinear forms satisfying discrete inf-sup conditions:

sup
vh∈Xh

|a(uh, vh)|
‖vh‖X ≥ αA‖uh‖X, ∀uh ∈ Xh, (16)

sup
wh∈Yh

|b(qh, wh)|
‖wh‖Y ≥ αB‖qh‖Y, ∀qh ∈ Yh, (17)

sup
wh∈Yh

|m(vh, wh)|
‖wh‖Y ≥ αM‖vh‖X, ∀vh ∈ Xh . (18)

If N = M , then [22, Theorem 2.1] implies that the associated Galerkin matrices
Ah := (

a(ϕi , ϕ j )
)N
i, j=1 , Bh := (

b(φi , φ j )
)N
i, j=1 , Mh := (

m(ϕi , φ j )
)N
i, j=1 , satisfy

κsp(M
−1
h BhM

−T
h Ah) ≤ ‖a‖‖b‖‖m‖2

αAαBαM
2 , (19)

where κsp designates the spectral condition number and ‖·‖ denotes the corresponding
operator norms.

From (19), the idea is that if we are solving (12), the Galerkin matrix of V0 would
play the role of Ah and we would need to find a suitable bilinear form b such that the
spectral condition number is as small as possible if we precondition the resulting linear
system with Ph = M−1

h BhM
−T
h . Analogously, if we are solving (13), the Galerkin

matrix of W0 would play the role of Ah and we would need a different choice of b.
Hence, the first question is: which Galerkin matrix one should consider? In other

words, what discretisation should we choose? The answer following quotient-space
BEM is to discretise the multi-trace spaces. However, due to Lemma 1, the bilinear
forms of V0 and W0 will not satisfy its inf-sup condition on their discrete multi-trace
space. We therefore have to extend (19) to use operator preconditioning for (12) and
(13).

As usual, bounding the spectral condition number entails bounding the largest
eigenvalue λmax := λmax(M

−1
h BhM

−T
h Ah) from above and the smallest λmin :=

λmin(M
−1
h BhM

−T
h Ah) from below. However, when using quotient-space BEM, we

have to consider the spectral condition number away from the kernel of Ah , i.e.,
κ̃sp(M

−1
h BhM

−T
h Ah) = λmax/λ̃min, where λ̃min is the smallest non-zero eigenvalue

ofM−1
h BhM

−T
h Ah , since this quantity determines the convergence of CG on singular

systems [20, 26]. In order to write these bounds, we need to introduce some notation
first.

Let Ah : Xh → X
′
h , Bh : Yh → Y

′
h and Mh : Xh → Y

′
h be the bounded linear

operators associated to the bilinear forms a, b and m, respectively.
For λmax we proceed in the classical way and arrive to

λmax ≤ ‖M−1
h ‖2‖Bh‖‖Ah‖ = α−2

M ‖Bh‖‖Ah‖. (20)

123
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For ˜λmin we have to take a slightly different approach since we need to restrict
Ah to the space where its corresponding bilinear form a satisfies a discrete inf-sup
condition. Moreover, we have to establish when the discrete inf-sup condition will
bound the smallest eigenvalue. We study this in the next Lemma.

Lemma 2 (Discrete inf-sup constant in the quotient space norm) Let X be a Hilbert
space. Letabea continuous bilinear formonX×X. Let X ⊆ Xbeboth the left and right
nullspace of a. Let Xh be a finite dimensional subspace of X and Ah : Xh → X

′
h the

bounded linear operator associated to a. We assume that Xh is nullspace conforming
to a in the sense that Xh := ker Ah = ker A′

h is a linear subspace of X ∩ Xh ⊆ X.
If a satisfies a discrete inf-sup condition in Xh/X × Xh/X with constant αa > 0

and if the norms on X/X and Xh/Xh are equivalent, i.e. there exists ceq > 0, such
that for all uh ∈ Xh

‖uh‖X/X ≤ ‖uh‖X/Xh ≤ ceq‖uh‖X/X , (21)

then

sup
vh∈Xh\{0}

a(uh, vh)
‖vh‖X ≥ αa

ceq
‖uh‖X/X . (22)

Proof We have, with X⊥
h = {uh ∈ Xh,∀vh ∈ Xh, (uh, vh)X = 0},

sup
vh∈Xh\{0}

a(uh, vh)
‖vh‖X ≥ sup

ṽh∈X⊥
h \{0}

a(uh, ṽh)
‖ṽh‖X . (23)

For ṽh ∈ X⊥
h , we have ‖ṽh‖X = ‖ṽh‖X/Xh (e.g. [6, Eq. (4)]), and so

sup
ṽh∈X⊥

h \{0}

a(uh, ṽh)
‖ṽh‖X = sup

ṽh∈Xh/Xh\{0}
a(uh, ṽh)
‖ṽh‖X/Xh

, (24)

where we have identified X⊥
h and Xh/Xh . Finally, by the norm equivalence (21) and

the discrete inf-sup condition, we have that

sup
vh∈Xh\{0}

a(uh, vh)
‖vh‖X ≥ c−1

eq sup
ṽh∈Xh/Xh\{0}

a(uh, ṽh)
‖ṽh‖X/X

≥ αa

ceq
‖uh‖X/X . (25)

��
Note that inequality (21) holds in our application by virtue of Lemma 7.
Using Lemma 2 and the properties of the related bilinear forms, we can bound˜λmin

as follows

˜λmin≥ inf
uh∈Xh/Xh\{0}

‖M−1
h BhM

−∗
h Ahuh‖X

‖uh‖X ≥ α2
M−1αB

αA

ceq
≥ αBαA

‖M‖2ceq . (26)
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Finally, we combine (20) and (26) and get

κ̃sp(M−1BhM−TAh) ≤ ceq‖B‖‖A‖‖M‖2
αBαAα2

M

. (27)

Remark 4 For the discrete quotient norm to be bounded from below by the continuous
quotient norm, it suffices that Xh ⊆ X ∩ Xh ; equality is not required. This opens
the door to reduction schemes for the multi-trace space variational formulation. A
reduction scheme is a choice X

◦
h ⊂ Xh ⊂ X with corresponding discrete left/right

nullspace X◦
h such that (i) X

◦
h ⊂ X and (ii) X

◦
h/X

◦
h = Xh/Xh . Such a choice leads, on

the one hand, to approximations in the jump space of equal quality, and, on the other
hand, does not preclude the construction of efficient operator preconditioners. We will
discuss this again in Sect. 5.

4 Calderón preconditioning for multi-screens

As already mentioned in the introduction, the linear systems arising from the dis-
cretisation of (12) and (13) using Quotient-space BEM are ill-conditioned, which
causes that the number of CG iteration counts increases with mesh refinement. One
should note that this is not a particularity of Quotient-space BEM. Indeed, we usu-
ally encounter this difficulty when using low-order BEM discretisation of first-kind
integral equations on simple screens and closed surfaces. In those cases, one typically
remedies the problem by using so-called Calderón preconditioning, which combines
Calderón identities with operator preconditioning to build a convenient and effective
preconditioner [7, 22, 31].

In this paper, we will extend this approach and devise Calderón preconditioners for
the problem at hand. For the sake of presentation, we will discuss the details for the
case of the Hypersingular operator W0 and note that one can proceed analogously to
precondition the weakly singular operator V0.

4.1 Discretisation

When considering the Neumann problem (13), we want to find solutions v in
˜H+ 1

2 ([Γ ]). The idea of Quotient-space BEM is to discretise the multi-trace space

H
+ 1

2 (Γ ) instead.
As mentioned in Remark 1, multi-trace spaces can take different values on both

sides of Γ . One way to grasp this is to imagine an “infinitesimally inflated” screen,
as illustrated in Fig. 3 for a 2D multi-screen. With this, one can intuitively understand
the trace spaces introduced in Sect. 2.2 as follows:

• H
+ 1

2 (Γ ) can be seen as a standard Dirichlet trace space on the surface of the

“inflated screen”. Similarly, H
− 1

2 (Γ ) can be viewed as the standard Neumann
trace space on the surface of the “inflated screen”.
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Fig. 3 “Inflating” a 2D
multi-screen

Fig. 4 Illustration of virtual mesh for 2D multi-screen (please note that here the thickness of the virtual
meshes is non-zero only to simplify the picture.)

• The single-trace space H+ 1
2 ([Γ ]) simply consists of single-valued functions onΓ .

One can follow the same intuition for H− 1
2 ([Γ ]), however, its right interpretation

as a single-valued normal component requires that one fixes a local normal n on
Γ .

It is worth noting that this depiction via the “inflated screen” is only meant to help
the reader to visualise the related spaces. Furthermore, every time we resort to this
intuition, the thickness of the “inflated screen” is indeed zero.

Following this intuition, a simple way to implement the multi-trace space in an
already existing BEM code, is via a triangular virtual surface mesh of Γ , as defined
in [8, Sect. 4.1]. In essence, this virtual mesh is built from a triangulation T0 of Γ .
Then, for every triangle K ∈ T0 one creates two copies K+ and K− with the same
geometry but to be regarded as different entities. The reader may imagine K+ and K−
as the two faces of K . In addition, one defines nK as the unit normal vector of K , and
labels the copies such that nK points from K− to K+. In this way, K+ is endowedwith
nK and −nK is assigned to K−. Finally, the union of these oriented triangles forms
the set underlying what we call the virtual surface mesh of Γ . Figure 4 illustrates this
idea for a 2D multi-screen (where triangles are replaced by segments of the mesh).
We refer to [8, Sect. 4.1] for further details.

Let Th be a triangular virtual surface mesh of Γ , with target element size h, and
let Ťh be its dual as realised on the barycentric refinement [4]. The BE spaces above
could be chosen as [30, Sect. 2.2]

• Xh(Γ ) = S1,0(Th): piecewise linear “continuous” functions on Th ,
• Yh(Γ ) = S0,−1(Ťh): piecewise constant functions on Ťh ,

123



BIT Numerical Mathematics (2024) 64 :34 Page 13 of 34 34

yet we will need a different choice for our preconditioner to work, as we will discuss
in the next section.

4.2 Implementation

Note that by construction of the virtual mesh, which can be understood as a triangu-
lation of a closed surface (see Fig. 4c), the space S1,0(Th) has one degree of freedom
at the vertices in Th ∩ ∂Γ . Since solutions for the hypersingular equation (13) belong

to ˜H+ 1
2 ([Γ ]), we know they will be zero on ∂Γ [8]. Indeed, because functions in

˜H+ 1
2 ([Γ ]) are only determined up to contributions in H+ 1

2 ([Γ ]), degrees of free-
dom on ∂Γ (which by construction are in H+ 1

2 ([Γ ])) can be safely deleted. Hence,

instead of working with S1,0(Th), we consider S1,0
0 (Th) ⊂ H

+ 1
2 (Γ ): piecewise linear

“continuous” functions on the inflated screen that are zero on ∂Γ , as shown in Fig. 4d.
When dealingwithmulti-screens of typeA, this will have the computational advan-

tage of allowing us to decouple the BE spaces on each side of the triangular virtual
surface mesh Th , as depicted in Figs. 4d and 5.

Let us illustrate how we implemented these BE spaces on a multi-screen Γ that is
the union of three simple screens Mi , i = 1, 2, 3 meeting at a junction:

1. We define the inflated multi-screen [Γ ] as
[Γ ] = ∪3

l=1Il (28)

with Il = Ml ∪Ml+1. The normal on Il is chosen outward. Each simple screen
Mi appears once as the front and once as the back of the multi-screen (see Fig. 5).

2. For i = 1, 2, 3, we create the triangular surface mesh Mi,h of Mi with target
element size h, and such that the meshes Mi,h for i = 1, 2, 3 match up along
the junction. The simple screens Il inherit this mesh. In other words, we have
Il,h = Ml,h

⋃

Ml+1,h, l = 1, 2, 3.
3. The discrete primalmulti-trace spaceXh(Γ ) is built as the product of these spaces,

i.e.

Xh(Γ ) = S1,0
0 (Th) =

⊗3

l=1
S1,0
0 (Il,h). (29)

4. Construct the dual BE spaces on the simple screens Il following the cue from
[4]. For this, let Ǐl,h denote the dual barycentric mesh to Il,h , built as in [25,

Definition 2]. Then we introduce the space S0,−1(Ǐl,h) ⊂ H
− 1

2 (Il) of piecewise
constant functions supported by the dual cells of Ǐl,h that correspond to nodes not
on the boundary ofIl . In particularwe have that dim S0,−1(Ǐl,h) = dim S1,0

0 (Il,h).
5. The discrete dual multi-trace space Yh(Γ ) is built as the product of these dual

spaces, i.e.

Yh(Γ ) = S0,−1(Ťh) =
⊗3

l=1
S0,−1(Ǐl,h). (30)

By construction, we have that N := dim(Yh(Γ )) = dim(Xh(Γ )).
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Fig. 5 Back-front (decoupled) conforming mesh on the multi-screen

Remark 5 The description of discrete multi-trace spaces (29) and (30) is not valid for
multi-screens of Types B and C.

4.3 Block diagonal Calderón preconditioner

Based on Calderón preconditioning for closed surfaces and its applicability to simple
screens, one could think of preconditioning the hypersingular operator W0 with the
weakly singular operator V0. However, it is clear from Lemma 1 that V0 will not do
the job.

As an alternative, we propose to use Calderón preconditioning blockwise, under
the considerations of the previous sections. Let Xh(Γ ) = span{ϕk}Nk=1 and consider
the Galerkin matrix for the hypersingular operator, i.e.,

Wh[i, j] =
 W0ϕ j , ϕi �, i, j = 1, . . . , N . (31)

Then, we will build a preconditioner forWh based on the block matrix

BV
h :=

⎛

⎝

V̌h,1 0 0
0 V̌h,2 0
0 0 V̌h,3

⎞

⎠ , (32)

where V̌h,l [i, j] = 〈V0ψ̌ j , ψ̌i 〉Il with ψ̌i , ψ̌ j in the standard basis of S0,−1(Ǐl,h) for
l = 1, 2, 3, and 〈·, ·〉Il denotes the usual L2-duality pairing over Il .

The motivation to consider this BV
h is that the choice of discrete spaces from (29)

and (30) allows us to decouple what is happening on the dual space of each simple
screen Il . Furthermore, they would agree with the standard discretisation of the jump
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Fig. 6 Example of two Lipschitz partitions for Γ being a 2D multi-screen with a triple junction

spaces on simple screens. More concretely, we have that S1,0
0 (Il,h) ⊂ ˜H

1
2 (Il) and

S0,−1(Ǐl,h) ⊂ ˜H− 1
2 (Il).

In order to analyse the impact of this preconditioner in the number of PCG iteration
counts, we aim to bound the resulting condition number. For this, we first need to
make some assumptions.

Let us begin by noticing that the Lipschitz partition
(

Ω j
)

j=0...n such that Γ ⊂
∪m

j=0∂Ω j is not unique. We illustrate this for a two-dimensional multi-screen Γ with
a triple junction in Fig. 6. Nevertheless, for the multi-screens considered in this paper,
one can always find a Lipschitz partition such that the Lebesgue measure meas(Γ ∩
∂Ωi ) > 0 for all i = 0, . . . ,m. In other words, we can always assume we have the
configuration corresponding to Fig. 6b. For simplicity of the proofs, this is the type of
Lipschitz partitions that we will consider. This and the particular order of the domains
is stated in the following:

Assumption 1 Let
(

Ω j
)

j=0...n be a Lipschitz partition in R
3. We assume Γ to be a

multi-screen such that Γ ⊂ ∪m
j=0∂Ω j and meas(Γ ∩ ∂Ωi ) > 0 for all i = 0, . . . ,m.

Moreover, and without loss of generality, we assume that Γ and the Lipschitz partition
(

Ω j
)

j=0...n are such that Ω0 is the only unbounded domain.

Next, let us recall the notation Γi = Γ ∩ ∂Ωi for i = 0, . . . ,m. With this, we
state one more assumption that we will need in order to show the required condition
number bound:

Assumption 2 Let Γ be a multi-screen as in Assumption 1. We assume that for each
j = 0, ..,m, the family of meshes {Γ jh}h∈H, h > 0 of Γ j :

• agree at the junction(s);
• are uniformly shape-regular, and locally quasi-uniform;
• satisfy the following local mesh condition: For each triangle τl ∈ Γ jh , we define
the index set J (l) := {k ∈ {1, · · · , M} : τl ∩ supp(ϕk) 
= 0}, where M :=
dim(S1,0

0 (Γ jh)). Moreover, for each basis function ϕk ∈ S1,0
0 (Γ jh), local quasi-
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uniformity gives us an associated mesh size ĥk that satisfies

1

cQ
≤ ĥk

hl
≤ cQ, ∀ l such that τl ∩ supp(ϕk) 
= 0, k = 1, . . . , M,

where hl is the mesh size of τl . Then, we require that

57

7
−

√

∑

k1∈J (l)

ĥk1
∑

k2∈J (l)

ĥ−1
k2

≥ c j0 > 0 ∀τl ∈ Γ jh, (33)

with a global constant c j0 > 0.

Remark 6 The local mesh condition (33) was first introduced in [30, Chapter 2.1]. It
is considered mild because it is fulfilled by a broad set of meshes used in applications,
including geometrically graded meshes, algebraically 2-graded meshes and families
of meshes generated by adaptive red-green algorithms [18].

Remark 7 It is worth noticing that the local mesh condition (33) also guarantees that
the L2(Γ )-duality product between Xh(Γ ) and Yh(Γ ) as chosen in (29) and (30) is
stable [30]. Hence, by choosing m to be 
 ·, · �, our implementation leads to a
Galerkin matrixMh that is bounded and invertible.

Under these considerations, we will show the following bound for the resulting
condition number:

Theorem 1 LetWh be theGalerkinmatrix defined in (31), andMh theGalerkinmatrix
of the duality pairing for Xh(Γ ) × Yh(Γ ) as chosen above.

Assume that there exists an operator R+h : H
+ 1

2 (Γ ) → Xh(Γ ) such that

• R+h is a h-uniformly bounded projection

• R+h (H+ 1
2 ([Γ ])) ⊆ Xh(Γ ).

Then, under the mesh conditions from Assumption 2, we have

κ̃sp(M
−1
h BV

hM
−T
h Wh) ≤ (1+ | log h|)2 ‖R

+
h ‖α2

M‖W0‖‖V0‖
‖M‖2αBαa

, (34)

where κ̃sp denotes the spectral condition number away from the kernel, ‖ · ‖ the
operator norms and α(·) the corresponding inf-sup constants.

The proof will be given at the end of this Section, after we have presented some
required preliminary results.

Remark 8 We refer the reader to [1, Theorem 2.1] for a construction of the operator
R+h for the case stated in Theorem 1. It is worth mentioning that here we still state it
as a requirement to make it explicit that this is a key piece in our theory. Although we
believe one can follow the cue from [1] to also build the projection operator required for
V0, the reader should be cautioned that story becomes considerably more complicated
when considering Maxwell equations.

123



BIT Numerical Mathematics (2024) 64 :34 Page 17 of 34 34

Remark 9 The existence of the operator R+h required by Theorem 1 is proven in [1]
for meshes that agree on the front and back of the structure. In practice this does not
pose a major limitation because in a typical usage scenario the simple screens Γ j are
built by fusing together two or more unique meshes for the interfaces ∂Ωi ∪ ∂Ω j (see
Sect. 4.2). The interface meshes are used both as front and back and thus necessarily
agree.

4.3.1 Auxiliary Lemmas

In this section we prove some auxiliary results that hold for the multi-screens under
consideration. We remark that for this we follow the cue from [9, Sect. 5.2] and use
the properties of the associated volume-based spaces.
Lemma 3 Let Γ be a multi-screen as in Assumption 1. Then, there exist continuous
embeddings

H
+ 1

2 (Γ ) ↪→ H
1
2 (Γ0) × · · · × H

1
2 (Γm),

H
− 1

2 (Γ ) ↪→ H− 1
2 (Γ0) × · · · × H− 1

2 (Γm).

Proof We recall that H
+ 1

2 (Γ ) = H1(R3\Γ )/H1
0,Γ (R3) and note that H1(R3\Γ ) ⊂

H1(R3\∪m
j=0∂Ω j ). This induces the injection

H
+ 1

2 (Γ ) = H1(R3\Γ )/H1
0,Γ (R3) ↪→ H1(R3\∪m

j=0∂Ω j )/H
1
0,Γ (R3).

Additionally, we have the natural identification

H1(R3\∪m
j=0∂Ω j ) ∼= H1(Ω0) × . . . H1(Ωm),

that associates u ∈ H1(R3\∪m
j=0∂Ω j )with (u|Ω0 , . . . , u|Ωm ). From this natural iden-

tification, we get the isomorphism

H1(R3\∪m
j=0∂Ω j )/H

1
0,Γ (R3)∼=[H1(Ω0)/H

1
0,Γ (Ω0)]×. . .×[H1(Ωm)/H1

0,Γ (Ωm)]
∼= H

1
2 (Γ0) × · · · × H

1
2 (Γm).

Therefore, we have the injection

H
+ 1

2 (Γ ) ↪→ H
1
2 (Γ0) × · · · × H

1
2 (Γm).

H
− 1

2 (Γ ) ↪→ H− 1
2 (Γ0) × · · · × H− 1

2 (Γm) follows analogously. ��
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Lemma 4 Let Γ be a multi-screen as in Assumption 1. Then, for w ∈ H
+ 1

2 (Γ ) and

ϕ ∈ H
− 1

2 (Γ ) such that ϕ|Γ j ∈ ˜H− 1
2 (Γ j )∀ j = 0, . . . ,m, we have that


 w, ϕ �=
m

∑

l=0

〈w|Γl , ϕ|Γl 〉Sl , (35)

Proof Let us consider w ∈ H
+ 1

2 (Γ ) and ϕ ∈ H
− 1

2 (Γ ). By definition


 w, ϕ �=
∫

[Γ ]
wϕ dσ =

∫

R3\Γ
p · ∇U +Udiv(p) dx,

for U ∈ H1(R3 \ Γ ) and p ∈ H(div, R
3\Γ ) such that πD(U ) = w and πN (p) = ϕ.

For j = 0, . . . ,m, we setUj = U|Ω j andp j = p|Ω j , and letn j denote the outwards
unit normal vector to Ω j . Then, by linearity of the integrals and Green’s formula, we
get

∫

R3\Γ
p · ∇U +Udiv(p) dx =

m
∑

j=0

∫

Ω j

p j · ∇Uj +Ujdiv(p j ) dx,

=
m

∑

j=0

∫

∂Ω j

(Uj )|∂Ω jn j · (p j )|∂Ω j dσ. (36)

Now, let us point out that for any j = 0, . . . ,m we know that functions in
H1(R3\Γ ) and p ∈ H(div, R

3\Γ ) do not jump across ∂Ω j \ Γ . This allow us to
simplify (36) further as

m
∑

j=0

∫

∂Ω j

(Uj )|∂Ω jn j · (p j )|∂Ω j dσ =
∫

Γ

m
∑

j=0

v jμ j dσ, (37)

where v j = (Uj )|Γ and μ j = n j · (p j )|Γ .
Next, we note that

μ j = n j · (p j )|∂Ω j = πN (p|Ω j ) = (πN (p))|Γ j = ϕ|Γ j ∈ ˜H− 1
2 (Γ j ),

v j = (Uj )|∂Ω j = πD(U|Ω j ) = (πD(U ))|Γ j = w|Γ j ∈ H
1
2 (Γ j ).

This implies that on the right hand side of (37), we are allowed to split the integral
over Γ into the sum of the integrals over Γ j for j = 0, . . . ,m. Furthermore, we can

write it in terms of the H
1
2 (Γ j ) × ˜H− 1

2 (Γ j )-duality pairings, i.e.

∫

Γ

m
∑

j=0

v jμ j dσ =
m

∑

j=0

∫

Γ j

v jμ j dσ =
m

∑

j=0

〈v j , μ j 〉Γ j .
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Finally, using again that μ j = ϕ|Γ j and v j = w|Γ j , we conclude that


 w, ϕ �Γ =
m

∑

j=0

〈w|Γ j , ϕ|Γ j 〉Γ j .

��

The next ingredient we need is an inverse inequality on H
+ 1

2 (Γ ). Before we can
derive it, we recall an inverse inequality on standard trace spaces. Let us consider the
simple screens Γ j for j = 0, . . . ,m and let S0,−1(Γ jh) be the space of piecewise
constants on the mesh Γ jh of Γ j .

Lemma 5 ([21, Lemma 2.8], [34, Sect. 5], [33, Chap. 4]) For j = 0, . . . ,m, the
following inverse inequality holds:

‖ϕh‖
˜H− 1

2 (Γ j )
≤ c2(1+ | log h|)‖ϕh‖

H− 1
2 (Γ j )

, (38)

for all ϕh ∈ S0,−1(Γ jh) ⊂ ˜H− 1
2 (Γ j ), with mesh size h ≤ 1 and c2 > 0 independent

of h.

Remark 10 Lemma 5 also holds for all ϕh ∈ S0,−1(Γ̌ jh) ⊂ ˜H− 1
2 (Γ j ). In order to see

this, one should note that: (i) all steps in the proof are valid for barycentric refine-
ments; (ii) elements of S0,−1(Γ̌ jh) are linear combinations of piecewise constants on
the barycentric refinement; (iii) our mesh assumptions guarantee that the number of
neighbours is uniformly bounded with respect to the mesh size h. Hence, the coeffi-
cients of the linear combination can be absorbed by the constant c2, which remains
independent of h.

LetS1,0(Γ jh) be the space of piecewise linear functions on the primalmesh ofΓ j , as

defined in [4]. We introduce the generalised L2-projection Q̃ j
h : L2(Γ j ) → S1,0(Γ jh)

as

〈Q̃ j
hu, φh〉Γ j = 〈u, φh〉Γ j , ∀φh ∈ S0,−1(Γ̌ jh). (39)

Then, from [23, Theorem 4.3], we know that under Assumption 2, we have

‖Q̃ j
hu‖H 1

2 (Γ j )
≤ cQ j‖u‖

H
1
2 (Γ j )

, ∀u ∈ H
1
2 (Γ j ). (40)

Moreover, [30, Thm. 2.1 and 2.2] shows that Assumption 2 implies the discrete
inf-sup condition of the duality pairing of multi-trace spaces.
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Next, note that Xh(Γ ) and Yh(Γ ) defined in Sect. 4.2 generalize to4

Xh(Γ ) =
m

⊗

j=0

S1,0
0 (Γ jh), and Yh(Γ ) =

m
⊗

j=0

S0,−1(Γ̌ jh). (41)

Lemma 6 (Inverse inequality in H
− 1

2 (Γ )) Let Γ be a multi-screen as in Assumption 1

and consider finite dimensional spaces Xh(Γ ) ⊂ H
+ 1

2 (Γ ) and Yh(Γ ) ⊂ H
− 1

2 (Γ )

defined in (41) and such that Assumption 2 is satisfied. Then, we have that for all
ϕh ∈ Yh(Γ )

‖ϕh‖
H

− 1
2 (Γ )

≤ CP (1+ | log h|)
⎛

⎝

m
∑

j=0

‖ϕh‖2
H− 1

2 (Γ j )

⎞

⎠

1/2

, (42)

with mesh size h ≤ 1, and CP > 0 independent of h.

Proof By definition of dual norm and Lemma 4, we get

‖ϕh‖
H

− 1
2 (Γ )

= sup

v∈H+ 1
2 (Γ )\{0}

| 
 v, ϕh � |
‖v‖

H
+ 1
2 (Γ )

= sup

v∈H+ 1
2 (Γ )\{0}

|∑m
j=0〈v j , ϕh j 〉Γ j |
‖v‖

H
+ 1
2 (Γ )

,

(43)

where we have set v j = v|Γ j and ϕh j = (ϕh)|Γ j . Then, let us consider the index set J
of all the indices 0 ≤ k ≤ m such that vk 
= 0. Thus, we have that

|∑m
j=0〈v j , ϕh j 〉Γ j |
‖v‖

H
+ 1
2 (Γ )

= |∑ j∈J 〈v j , ϕh j 〉Γ j |
‖v‖

H
+ 1
2 (Γ )

. (44)

Next, we derive two inequalities that will help us proceed. First, using the embed-
ding from Lemma 3 and then Young’s inequality m-times, we obtain

‖v‖2
H

+ 1
2 (Γ )

≥
∑

j∈J
‖v j‖2

H
1
2 (Γ j )

≥ 1

|J |

⎛

⎝

∑

j∈J
‖v j‖

H
1
2 (Γ j )

⎞

⎠

2

(45)

where |J | is the size of the index setJ . Second, we remark that for a sum
∑m∗

i=1 ai with

all coefficients ai > 0 and m∗ ∈ N, we have that
1

∑m∗
i=1 ai

≤ 1

ak
for all k = 1, . . .m∗.

4 Here we follow the numbering given by the underlying Lipschitz partition, while in Sect. 4.2 we let the
user number Il differently. This is harmless because one can always find a Lipschitz partition such that
there is a one-to-one correspondence between Il and Γ j .
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Hence,

m∗
∑m∗

i=1 ai
≤

m∗
∑

k=1

1

ak
(46)

Plugging these in (43) gives

‖ϕh‖
H

− 1
2 (Γ )

(44)= sup

v∈H+ 1
2 (Γ )\{0}

|∑ j∈J 〈v j , ϕh j 〉Γ j |
‖v‖

H
+ 1
2 (Γ )

(45)≤ |J |1/2 sup

v∈H+ 1
2 (Γ )\{0}

|∑ j∈J 〈v j , ϕh j 〉Γ j |
∑

k∈J ‖vk‖
H

1
2 (Sk )

(46)≤ 1

|J |1/2 sup

v∈H+ 1
2 (Γ )\{0}

|
∑

j∈J

〈v j , ϕh j 〉Γ j

‖v j‖
H

1
2 (Γ j )

|

≤ 1

|J |1/2
∑

j∈J
sup

w j∈H
1
2 (Γ j )\{0}

|〈w j , ϕh j 〉Γ j |
‖w j‖

H
1
2 (Γ j )

= 1

|J |1/2
m

∑

j=0

sup

w j∈H
1
2 (Γ j )\{0}

|〈w j , ϕh j 〉Γ j |
‖w j‖

H
1
2 (Γ j )

. (47)

Then, using Q̃ j
h from (39) and its continuity (40), we get

‖ϕh‖
H

− 1
2 (Γ )

≤ 1

|J |1/2
m

∑

j=0

cQ j sup

w j∈H
1
2 (Γ j )\{0}

|〈Q̃ j
hw j , ϕh j 〉Γ j |

‖Q̃ j
hw j‖

H
1
2 (Γ j )

≤ 1

|J |1/2
m

∑

j=0

cQ j sup
wh j∈S0,1(Γ jh)\{0}

|〈wh j , ϕh j 〉Γ j |
‖wh j‖

H
1
2 (Γ j )

. (48)

Applying Cauchy-Schwarz and (38), we obtain

‖ϕh‖
H

− 1
2 (Γ )

≤ 1

|J |1/2
m

∑

j=0

cQ j‖ϕh j‖
˜H− 1

2 (Γ j )

≤ c3(1+ | log h|)
m

∑

j=0

‖ϕh j‖
H− 1

2 (Γ j )
, (49)
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with c3 := c2 max(cQ j )

|J |1/2 . For convenience, we work the estimate further

‖ϕh‖2
H

− 1
2 (Γ )

≤ c3
2(1+ | log h|)2

⎛

⎝

m
∑

j=0

‖ϕh j‖
H− 1

2 (Γ j )

⎞

⎠

2

(45)≤ |J |c32(1+ | log h|)2
m

∑

j=0

‖ϕh j‖2
H− 1

2 (Γ j )
, (50)

which gives (42) with CP = c2 max(cQ j ).
��

Finally, recall that

‖u‖
˜H+ 1

2 ([Γ ]) = inf
x∈H+ 1

2 ([Γ ])
‖u + x‖

H
+ 1
2 (Γ )

,

and that S1,0(Th) is the space spanned by piecewise linear “continuous” functions on
(the virtual mesh) Th . We define the norm

‖u‖
˜H+ 1

2 ([Γ ]),D := inf
xh∈H+ 1

2 ([Γ ])∩S1,0(Th)
‖u + xh‖

H
+ 1
2 (Γ )

, (51)

and study its relation with the continuous jump norm.

Lemma 7 Assume that there exists an operator R+h : H
+ 1

2 (Γ ) → S1,0(Th) such that

(i) R+h is a h-uniformly bounded projection,

(ii) R+h (H+ 1
2 ([Γ ])) ⊆ H+ 1

2 ([Γ ]) ∩ S1,0(Th).

Then there exist constants ce,Ce > 0 independent of h and such that

ce‖uh‖
˜H+ 1

2 ([Γ ])≤‖uh‖
˜H+ 1

2 ([Γ ]),D≤Ce‖uh‖
˜H+ 1

2 ([Γ ]), ∀uh ∈ ˜H+ 1
2 ([Γ ])∩S1,0(Th).

Proof By definition, for uh ∈ ˜H+ 1
2 ([Γ ]) ∩ S1,0(Th), we have that

‖uh‖
˜H+ 1

2 ([Γ ]) ≤ ‖uh‖
˜H+ 1

2 ([Γ ]),D (52)

Choose uh = R+h u where u ∈ ˜H+ 1
2 ([Γ ]) ⊂ H

+ 1
2 (Γ ). Then we get

‖uh‖
˜H+ 1

2 ([Γ ]),D = inf
xh∈H+ 1

2 ([Γ ])∩S1,0(Th)
‖uh + xh‖

H
+ 1
2 (Γ )

.
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Note that, by surjectivity of R+h and property (ii), there exists an x ∈ H+ 1
2 ([Γ ]) such

that xh = R+h x . This allows us to write

‖uh‖
˜H+ 1

2 ([Γ ]),D = inf
x∈H+ 1

2 ([Γ ])
‖R+h (u + x)‖

H
+ 1
2 (Γ )

.

Since R+h is continuous, we further obtain

‖uh‖
˜H+ 1

2 ([Γ ]),D ≤ ‖R+h ‖ inf
x∈H+ 1

2 ([Γ ])
‖u + x‖

H
+ 1
2 (Γ )

= ‖R+h ‖‖uh‖
˜H+ 1

2 ([Γ ]) (53)

for all uh ∈ ˜H+ 1
2 ([Γ ]) ∩ S1,0(Th).

From this, we conclude that the two norms are equivalent. Moreover, the fact that
R+h is h-uniformly bounded guarantees that the related constants are h-independent.

��

4.3.2 Proof of Theorem 1

We are now in the position to show the ellipticity of our preconditioner and then prove
Theorem 1.

Proposition 4 Let BhV : Yh(Γ ) → (Yh(Γ ))′ be the linear operator corresponding
to BV

h defined in (58). For the discrete spaces defined in this section, we have that for
all h∈ R it holds that


 BVhuh, uh � ≥ αBV (1+ | log h|)−2‖uh‖2
H

− 1
2 (Γ )

(54)

for all uh ∈ H
− 1

2 (Γ ), and with αBV > 0 independent of h.

Proof By definition of BV
h we have that


 BVhuh, uh �=
∑

l

〈V0uh, uh〉Il (55)

Let us write uhl := uh|Il . Recall that V0 is elliptic on each Il and hence

〈V0uhl , uhl〉Il ≥ c̃l‖uhl‖2
˜H− 1

2 (Il )
≥ c̃l‖uhl‖2

H− 1
2 (Il )

is satisfied for all h, and with c̃l > 0 independent of h. Therefore, setting c∗ = min c̃l ,
we get


 BVhuh, uh � ≥
∑

l

c̃l‖uhl‖2
H− 1

2 (Il )
≥ c∗

∑

l

‖uhl‖2
H− 1

2 (Il )
. (56)

123



34 Page 24 of 34 BIT Numerical Mathematics (2024) 64 :34

Finally, using the inverse inequality from Lemma 6, we obtain the desired result

with αBV := c∗
C̃2
N

. ��

Proof of Theorem 1 Given the ellipticity constants fromPropositions 2 and 4, our bilin-
ear forms satisfy their inf-sup constants. From Lemma 7, norm equivalence holds with
‖uh‖X/Xh ≤ ‖R+h ‖‖uh‖X/X for all uh in Xh . This together with Lemma 2 gives that
the result follows from the bound derived in Sect. 3. ��

5 Calderón preconditioning on reduced quotient-space BEM

The above analysis has been carried out for the case where the BE space is chosen
to approximate the entire multi-trace space. Since the solution is determined in the
jump space, it can be worth while to investigate whether (combinations of) basis func-
tions can be deleted and whether the resulting method remains amenable to operator
preconditioning schemes.

In this sectionwewill introduce severalways inwhich the number of basis functions
can be reduced, what mileage can be expected from the resulting methods, and we
discuss what the ramifications are for implementations in code of these methods.

The most straightforward approach to building a well-defined BEM formulation on
multi-screens is to introduce a BE space for the multi-trace space that is contained in
the product space. Two key ingredients for the success of this approach are that

• the discrete left/right nullspace Xh(Γ ) equals H+ 1
2 ([Γ ]) ∩ Xh(Γ ); and that

• the quotient Xh(Γ )/Xh(Γ ) approximates ˜H+ 1
2 ([Γ ]).

However, because we are interested in finding an approximate solution in the quotient

space ˜H+ 1
2 ([Γ ]), we are free to consider BE spaces Xh(Γ )◦ that do not approx-

imate all of H
+ 1

2 (Γ ) as long as the corresponding discrete nullspace Xh(Γ )◦ =
H+ 1

2 ([Γ ]) ∩ Xh(Γ )◦ is still a subset of H+ 1
2 ([Γ ]) ∩ Xh(Γ ) and the quotient spaces

Xh(Γ )◦/Xh(Γ )◦ and Xh(Γ )/Xh(Γ ) are equal. Similar choices can be made to select
a reduced dual BE space Yh(Γ )◦ ⊆ Yh(Γ ). The quality of the resulting operator
preconditioning depends on the stability of the restriction of the duality form to this
subspace.

How does this work in practice? In the case of nodal elements inS1,0
0 (Th), any given

basis function relates to a function in Xh(Γ ) by completing it with its counterpart(s) on
the opposite side(s) of the multi-screen. By removing one of the basis functions from
the standard nodal basis for Xh(Γ )◦, the dimension of the discrete nullspace Xh(Γ )◦
decreases by one. The dimension of the complement of Xh(Γ )◦ remains unchanged
and so necessarily Xh(Γ )◦/Xh(Γ )◦ = Xh(Γ )/Xh(Γ ). To put it in more physical
terminology: the reduced discrete multi-trace space Xh(Γ )◦ radiates the same fields
as the original one.

There are a number of reduction schemes that are fairly straightforward to imple-
ment. We will discuss three strategies that can be applied to a multi-screen Γ

comprising a single junction where an odd number m simple screens meet.
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(i) Partial reduction: In the partition [Γ ] = ∪m
i=1Ii , basis functions based on the terms

i = 3, 5, 7, ... can be discarded. This is extremely easy to implement and boils
down to using Xh(Γ )◦ = S1,0

0 (I1,h) × ⊗ m/2!
i=1 S1,0

0 (I2i,h) instead of Xh(Γ ) =
⊗m

i=1S
1,0
0 (Ii,h).

(ii) Single strip: The partial reduction described above in essence removes the back
from part of [Γ ]. This still leaves significant redundancy in Xh(Γ )◦. In our exam-
ple leaving outS1,0

0 (Ii,h) for i = 3, 5, 7, ... still leaves all the basis functions onΓ2
(excluding basis functions on the junction) that can be completed by basis functions
on the other side to yield functions in Xh(Γ ). As a result, we can further discard
basis functions in S1,0

0 (I1,h) that lie in the interior of Γ2. If the implementer has
access to node-triangle adjacency information this approach requiresminimal cod-
ing effort. The resulting BE space is Xh(Γ )◦ = S1,0

0 (I1,h)◦×⊗ m/2!
i=1 S1,0

0 (I2i,h),
where the ◦ superscript on the first factor denotes that this BE space is reduced by
leaving out redundant basis functions linked to nodes that are in I1,h ∩ Γ2 but not
on the junction.

(iii) Fixed overlap: Note that the efficiency of the resulting preconditioning method
depends on the lower bound for the duality form 
 ., . � on Xh(Γ )◦ × Yh(Γ )◦,
which may depend on the geometry and hence may indirectly depend on h when
using a single strip reduction. In those situations where this is undesirable, one
can opt to retain not only those basis functions in S1,0

0 (I1,h) that are positioned
on Γ1 or on the junction, but also those on Γ2 inside a strip within a fixed mesh
independent distance from the junction. Likely, this will require manipulations
to the code at the level of mesh generation. The resulting method will lead to
an increasing redundancy in basis functions as h tends to zero, but the user is
guaranteed that the preconditioner efficiency will not be limited by degradation of
the stability of the duality pairing.

We illustrate these three reduction strategies for m = 3 on Fig. 7. We also point out
that when m is even, all these reductions are also valid, but since one can always find
a partial reduction that provides a minimal representation of the quotient space, i.e.
Xh(Γ )◦ = ⊗m/2

i=1S
1,0
0 (I2i,h), the other two proposed strategies are not computation-

ally attractive.
Finally, it is worth mentioning that regardless the choice of reduction method and

the corresponding primal BE space Xh(Γ )◦, the construction of the dual BE space
Yh(Γ )◦ remains the same. The construction goes along the lines of what is described
in [4], starting from the reduced surfaces and corresponding meshes

Ii ∩
⋃

u∈Xh(Γ )◦
supp u (57)

This means in particular that for the Neumann problem, the dual space simply consists
of piecewise constants on the dual cells as detailed in [3].

Moreover, since the discrete stability of the duality pairing also implies the continu-
ity estimate (40) used in our proofs, we have that by ensuring this stability, all results
in Sect. 4 can be extended to the proposed reduced Quotient-space BEM and hence
we are still within the framework of Theorem 1. For this, it is crucial to identify the
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Fig. 7 Meshes illustrating full multi-trace discretisation and three reduction strategies used here

reduced primal space on I1,h with the (full) space on a truncated simple screen I◦
1,h ,

which are displayed in blue in Fig. 7c and d. So for example, one identifies S1,0
0 (I1,h)◦

with S1,0
0 (I◦

1,h).

6 Numerical results

6.1 Preconditioning the hypersingular operator (Neumann problem)

Consider the geometry in Fig. 7. The structure is submersed in an externally generated
potential uinc(x) = x1 + x3.

Linear systems are solved by the preconditioned conjugate gradient (PCG) method
with the relative tolerance set to 2.0e − 5. To build the preconditioners, application
of the inverse Gram matrix is required. This action is computed by running a second,
inner GMRES solver (the Gram matrices are between different BE spaces and thus
not self-adjoint) within the outer, primal solver. Numerical experiments have shown
that it is important to set the tolerance for this inner GMRES sufficiently low. In the
experiments presented here the tolerance is set to 2.0e − 12. Fortunately the Gram
matrices are well conditioned and application of their inverses through GMRES can
be computed in a small and linear number of operations, even for these very small
tolerances.
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Fig. 8 PCG iterations vs h for the Neumann problem at Γ as in Fig. 7

Another important aspect of implementing the preconditioning strategies presented
above is the use of high quality quadrature rules, especially for interactions between
geometric elements that are close together. Specifically, it is important that left and
right nullspaces of the discrete bilinear forms are invariant upon introduction of the
quadrature error. One can either choose to adopt highly accurate quadrature rules
or to use rules that are symmetric with respect to back-front mirroring across the
multi-screen. Here we have opted for the highly accurate and kernel independent
Sauter-Schwab rules described in [29, Chapter 5].

The obtained results are displayed in Fig. 8. For all reductions of Xh(Γ ) depicted
in Fig. 7, there is a clear improvement. After preconditioning there remains a slow
increase in the number of iterations, commensurate with the logarithmic grow in the
(34).

6.2 Preconditioning the weakly singular operator (Dirichlet problem)

We consider the same geometry, excitation and PCG tolerance used to study our pre-
conditioner for the Neumann problem. An important difference is that basis functions
for the Dirichlet problem are linked to triangles of the mesh, as opposed to vertices.
The support of the primal basis functions spans only a single triangle. The reduction of
the multi-trace space can be done up to the point where there is no overlap between the
simple screens that support the reduced finite element spaces. For ease of comparison,
we still refer to this reduction strategy as single strip.

To arrive at a non-singular preconditioner, the hypersingular operator is regularised
as in [31], resulting in a block diagonal preconditioner based on

BW
h :=

⎛

⎜

⎝

W̌r
h,1 0 0
0 W̌r

h,2 0
0 0 W̌r

h,3

⎞

⎟

⎠
, (58)
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Fig. 9 PCG iterations vs h for the Dirichlet problem at Γ as in Fig. 7

Fig. 10 Two possible coverings for [Γ ]. The most economic covering on the left precludes the definition of
BE spaces of direct product type (left). Allowing part of [Γ ] to be multiply covered resolves this problem
(right)

where W̌r
h,l [i, j] = 〈W0ψ̌ j , ψ̌i 〉Il + 〈ψ̌ j , 1l〉Il 〈1l , ψ̌i 〉Il with ψ̌i , ψ̌ j in the standard

basis of S1,0(Ǐl,h) for l = 1, 2, 3 and 1l the constant function on Il taking on the
value 1.

Essentially all conclusions drawn for the Neumann problem carry over to the study
of the numerical solution of the Dirichlet problem (Fig. 9): for all reduction strategies,
application of the block diagonal Calderón preconditioner leads to a much smaller
number of iterations.

6.3 Application tomulti-screens of Type B

For multi-screens of Type B, slight modifications to the choice of BE spaces are
required in order to arrive at a linear system requiring only few iterations for its
solution. It may seem most natural to write [Γ ] as the union of the simple screens
depicted on the left in Fig. 10. Unfortunately, this partitioning does not allow the
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Fig. 11 PCG iterations vs h for the Neumann problem for scattering by a geometry of type B

construction of a BE space Xh(Γ ) that can be written as the product of BE spaces
supported by the Ii . The issue is that the solution for the Neumann problem in general

will not be in
⊗

i
˜H

1
2 (Ii ) and, as a result, basis functions along the segment from

(0, 0, 0) to (0,−0.5, 0) cannot be discarded.
Allowing overlapping coverings of [Γ ] as depicted on the right of Fig. 10 solves

this problem. For l = 1, ..,m, let Īl denote either Il with overlap when needed, or
without overlap. We can use the BE space

⊗m
i=1S1,0(Īi,h), which in a sense is larger

than what we need but still leads to the correct quotient space.
We use this approach to solve the Neumann problem for the geometry in Fig. 10

and for the excitation uinc(x) = x1 + x3. Figure 11 shows that upon preconditioning
the number of iterations is much lower than what is required to solve the original linear
system when solving the Neumann problem.

Figure 12 shows the results for the Dirichlet problem. They are in line with those
from Fig. 9: the higher offset in the iteration count results in a cross-over point at
smaller values of h, but asymptotically the preconditioner leads to a more efficient
algorithm.

The numerical results presented in this section have been produced with the bound-
ary element package BEAST.jl.5 The scripts to reproduce them can be found in a
public Github repository.6

Note that this strategy, where we allow part of [Γ ] to be multiply covered, can also
be applied to enable the modelling of potential problems near Type C multi-screens
such as the Möbius strip.

5 https://github.com/krcools/BEAST.jl.
6 https://github.com/krcools/Junctions_KC_CUT.jl.

123

https://github.com/krcools/BEAST.jl.
https://github.com/krcools/Junctions_KC_CUT.jl.


34 Page 30 of 34 BIT Numerical Mathematics (2024) 64 :34

Fig. 12 PCG iterations vs h for the Dirichlet problem for scattering by a geometry of type B

6.4 Supplement: results for the Helmholtz equation

The above analysis does not hold verbatim for BIEs for the solution of Helmholtz
BVPs: the possibility of resonances downgrades ellipticity estimates for the BIOs to
mere Gårding inequalities and the number of required GMRES iterations is only
loosely connected to the spectral condition number. Notwithstanding the method
described in this paper performs quite well for low and moderate frequencies. In
this section a set of representative numerical results are presented.

Consider the geometry in Fig. 7. The structure is illuminated by an externally
generated wave uinc(x) = exp (iκx3), where κ is the wave number.

Results are displayed inTables 1, 2, 3 and 4. For each reduction scheme, the columns
’unprec’ refer to the solution without preconditioner and the columns ’prec’ to the
solution with preconditioner. In particular, Tables 1 and 3 summarise the GMRES
iteration count for the Neumann and Dirichlet problem, respectively, at κ = 1.0.
Results are consistent with those for the Laplace problem (κ = 0).

Tables 2 and 4 presents the GMRES iteration count for the Neumann and Dirichlet
problem, respectively, at κ = 10.0. Even though asymptotically preconditioning leads
to a more efficient method, benefits in practice show up at much smaller values for
h. For the Dirichlet problem in conjunction with the single strip reduction strategy,
cross-over was not recorded within the range for h explored here.

7 Conclusions

We have presented an effective Calderón-type preconditioner for potential problems
in the exterior of multi-screens that builds on quotient-space BEM and operator pre-
conditioning. Moreover, we have proved and confirmed numerically that it performs
as standard Calderón preconditioning does on simple screens.
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Table 1 GMRES iterations at κ = 1.0, Neumann problem

h Full Partial Overlap Strip

Unprec Prec Unprec Prec Unprec Prec Unprec Prec

0.1 8 5 10 7 14 11 9 9

0.05 10 6 13 8 21 11 12 10

0.025 15 6 18 9 29 11 16 11

0.0125 21 7 26 9 41 12 21 12

Table 2 GMRES iterations at κ = 10.0, Neumann problem

h Full Partial Overlap Strip

Unprec Prec Unprec Prec Unprec Prec Unprec Prec

0.1 14 8 19 10 26 17 15 12

0.05 17 8 23 10 36 17 18 13

0.025 22 8 28 10 48 17 23 14

0.0125 28 9 37 12 66 18 29 16

Table 3 GMRES iterations at κ = 1.0, Dirichlet problem

h Full Partial Overlap Strip

Unprec Prec Unprec Prec Unprec Prec Unprec Prec

0.1 17 120 19 18 17 17 17 21

0.05 21 15 24 19 23 19 21 23

0.025 27 16 30 20 29 20 27 26

0.0125 34 17 37 22 35 21 34 30

Table 4 GMRES iterations at κ = 10.0, Dirichlet problem

h Full Partial Overlap Strip

Unprec Prec Unprec Prec Unprec Prec Unprec Prec

0.1 27 35 31 41 29 42 27 39

0.05 33 37 36 44 35 44 33 43

0.025 40 39 44 45 42 46 40 46

0.0125 48 39 53 47 50 46 48 49

From a computational point of view, quotient-space BEM considering the full dis-
cretisation of multi-valued traces has the advantage of requiring minimal geometrical
information but the disadvantage of doubling the number of basis functions. As an
alternative, we proposed different strategies to work with reduced multi-trace dis-
cretisations that use less basis functions but require more adaptations when using a
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standard BEM code. We gave details regarding the additional data requirements in
the implementation of all these strategies, and used the developed framework to iden-
tify the requirements that reduced spaces need to meet in order to still have efficient
Calderón-type preconditioning.

Finally, we briefly presented a heuristic strategy to precondition multi-screens that
also appear in applications but that are not covered by our theory. Although in essence
our approach follows the same principles of our Calderón-type preconditioner for type
A multi-screens, rigorous analysis has been elusive and therefore has not been treated
in this article. Indeed, the key missing piece is an extension of Lemma 6 for this case.
Nevertheless, we offered numerical experiments to investigate its effectivity.

Current and future work also involves extending the analysis of this preconditioning
approach to Maxwell equations, where numerical results are promising [15], yet the
construction of the jump aware projection Rh is considerably more challenging.
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