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ABSTRACT 
Free-form buildings tend to be expensive. By optimizing the production process, economical and well-
performing concrete structures and elements can be manufactured. In this paper, an innovative method is 
presented that allows producing highly accurate double curved-elements without the need for milling two 
expensive mould surfaces per single element. The flexible mould is fully reusable and the benefits of 
applying self-compacting concrete are utilised. The flexible mould process work as follows: Thin concrete 
panels are cast in a horizontally positioned flexible mould, using a self-levelling concrete. After a certain 
initial hardening, the mould is deformed and the concrete is allowed to harden further. The knowledge about 
rheological characteristics is essential during casting and to find the suitable moment for the mould to be 
deformed. The behaviour of the concrete in the plastic stage is important: A) to allow the concrete to follow 
the deformation of the flexible mould, B) to counteract its movement under a slope and C) to prevent 
cracking in an early phase. After the flexible mould has reached its final position, the concrete develops its 
strength and can be demoulded in a short production-cycle; aesthetically attractive elements of different and 
complex geometries can be produced with the same reusable mould.  

The flexible mould process was studied with an experimental program on the influence of the mould 
material, shaping mechanism, element thickness, mix design and rheological characteristics. High strength 
self-compacting concrete was applied with different aggregate sizes for the production of the elements. In 
initial experiments, no reinforcement was added in the panels. In later tests, elements were reinforced with 
textiles that were able to follow the deformation of the mould. 
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INTRODUCTION 
This paper discusses a very recent innovative technology that is in the focus of architects, inspiring and 
enabling them to realize new and complex shapes: the flexible mould system. Although architecture with 
curved geometry, found for example in domes, vaults and shell structures, has been appreciated  throughout 
the centuries because of their inspiring and appealing shapes and structural benefits,  in the last decades of 
the previous century they have become more and more rare. It seems that double-curved structures in 
concrete, as for example seen in the famous shells built by Torroja, Isler and Nervi, slowly became 
economically unfeasible [1], partly as a result of the increased labour and formwork costs, related to the 
complex shape, and partly because of the upcoming trend to precast concrete structures. Interestingly 
enough, three parallel developments have recently refreshed the interest for complex and double-curved 
geometry again: 1) recent CAD paradigms offer powerful modelling tools for parametric and complex-
shaped 3D-modelling, 2) rapidly improving computational power of engineering tools enable the structural 
analysis of such structures, 3) these technological boosts enable and inspire architects and structural 
designers to apply these shapes in real buildings and structures, to realize shapes that are beautiful and 
functional at the same time [2]. One problem, however, is not solved for buildings and structures in concrete: 
how to reduce the formwork costs, that have remained extremely high as a result of the complex shapes with 
limited repetition? 



   

Figure 1-  Left: an example of timber formwork for double-curved bridge parts for the Verlengde Waalbrug 
Nijmegen, The Netherlands (Architectenbureau Zwarts & Jansma, formwork by Verhoeven Timmerfabriek), 
Right: concrete cladding detail of Louis Vuitton Fondation pour la Création, Paris (Frank Gehry Architects) 

Concrete has always been a material that was very suitable for this type of architecture, but in the last decade 
it has even become ‘cool’ again. Two recent examples of (formwork for) buildings and bridges in concrete 
can be found in Figure 1. The shown structures use the state of the art regarding present formwork 
technology: Timber, steel, or plastics to construct the formwork are applied, in many cases CNC-milled. For 
many free-form structures, the available budget is above average: it is accepted that for the more complex 
and appealing shape, a certain price needs to be paid. Free-form design simply results in complex shapes 
with very limited repetitive elements, as can be easily observed analysing  Figure 1. Although modern 
technology such as CNC-milling and perhaps in the near future also 3D-printing may offer accurate solutions 
with limited labour costs, these technologies are relatively slow for large projects, are material- and time-
consuming and thus expensive as well. The potential market is growing: free-form architecture is without 
doubt upcoming. Present formwork technology however, unfortunately, is not yet equipped for this large 
variation in forms. In this paper an innovative new formwork method will be presented: the flexible mould. It 
was developed from idea to feasible and operating method during the PhD research of the first author at 
Delft University of Technology, supported by both practical and theoretical work of the other authors. 

THE INNOVATIVE FLEXIBLE MOULD PRINCIPLE 
The idea to reduce formwork costs is both simple and innovative: reuse the formwork many times by 
modifying the shape of the formwork after each casting. A mechanism that supports such a formwork can be 
controlled manually or CNC-steered, in order to produce elements with a wide range of curvatures. The 
mould edges can also be arranged to variable positions on the mould surface. The concrete is cast, though, 
when the mould is still in a horizontally levelled position. After casting, the concrete first is given rest some 
time for initial binding and stiffening, in order to counteract the flow of concrete out of the mould. The 
principle is explained in Figure 2 on the next page. Although in other industries, such as for example 
automotive and aerospace, the idea of a reconfigurable mould has already been adopted and realized in 
practice, mainly for rapid-prototyping applications [3], until now it was not applied in full-scale projects in 
the building industry, at least not to the authors’ knowledge. Different research groups around the world are 
currently investigating the possibility to realize such a formwork system [4, 5, 6, 7], which illustrates the 
research need for this technology and that the necessity for this development is felt and shared widely. Each 
research group, though, is choosing a different approach, some focussing on a high-tech CNC-controlled 
mould surface [4, 5], others try to apply other materials than only concrete [5, 6], and again others using a 
mix of foam-milling technology and vacuum techniques [7]. In the next sections the authors of the present 
article will discuss their work on 1) a simple but robust and reliable technology that can be readily applied in 
a ‘rough’ mass-production concrete factory environment , 2) the concrete rheology and technology necessary 
for controlling the process and 3) the possibilities to reinforce panels that are deformed after casting.  



 

Figure 2 - The flexible mould process explained: Flexible materials are  used for the mould, that is 
supported by a subsystem controlling the desired final shape (step 1). The mould is filled with self‐
compacting concrete (SCC) (step 2); fibres or textiles can be used as reinforcement. During a short period of 
structural build‐up, the yield strength of concrete increases (step 3). Then the mould is carefully deformed 
into its final shape (step 4). Concrete hardens in the deformed mould (step 5) and finally the curved element 
is demoulded (step 6). 

FORMWORK MECHANISM 
Deforming a flat surface into a double-curved surface is fundamentally impossible, unless large strains in the 
plane of the mould are allowed through the use of a very elastic mould and support layer [8, 9, 10]. The use 
of such an elastic layer, however, inherently results in the contradiction that the discrete grid of vertically 
adjustable actuators, becomes visible in the resulting produced concrete panel. So on the one hand flexibility 
is required, on the other hand the mould has to be sufficiently stiff. In [9] and [10], the authors Janssen and 
Schipper did describe various experiments with both plates and strips as supporting layer, concluding that a 
mould system of perpendicular strips in combination with a flexible silicone foam and mould would be 
suitable for thin concrete panels. 

 
Figure 3 – left: Original test setup; right: improved prototype developed by Eigenraam  

Still, various parameters remained difficult to control, among which the abovementioned contradiction of 
flexibility and stiffness. In recent research, Eigenraam [10] improved the concept mould system with a 
number of findings that allowed more flexibility, but yet offer a better control and accuracy.  
Figure 3 (left half) shows a prototype (600x600 mm2) of this formwork surface, that offers a large degree of 
freedom in curvature. A patent is currently pending that describes the findings that made this control and 
accuracy possible. Deformation of the surface causes displacements in three-dimensional space. Not taking 
these displacements into account would result in deviation from the intended shape. The height of the 
support can be compensated for these effects. In-plane shear deformation of the mould surface plays an 
essential role in deforming a surface by which the Gaussian curvature changes [21]. Therefore the prototype  



 

Figure 4 - A conceptual production-line (patent pending) for double-curved precast concrete panels:  
(1) each empty flexible mould is cleaned and oiled (2) controlled digitally, the pins supporting the flexible 
formwork are set to the proper height for each panel (3) the mould edges are fixed (4) the panel is cast (5) 
the panel is deformed into the shape prepared in step 2 and 3 (6) each panel needs hardening time (7) after 
which the panels are demoulded and (8) packaged (patent pending) 

in Figure 3 has implemented several findings to facilitate the required shear deformation and thereby creates 
a flexible and more accurate mould surface. Although others researchers [5, 6, 7] as said have also developed 
formwork systems with similar capabilities, the system shown in 
Figure 3 (left), to the belief of the authors, is simpler, more affordable in a production line for large 
quantities of panels and more robust in the environment of a concrete plant (see Figure 4). Although the 
basics are relatively simple, the system could as well be combined with a high-tech CNC apparatus for 
height control, the Pinbed Wizard, recently completed as a working prototype by Vollers [11]. In  Figure 4 
this is illustrated in the  station at step 2, where the automated pin height preset is executed by a CNC-device. 
The advantage of the combination of the high-tech Pinbed Wizard with a number of low-tech flexible 
moulds is the increased production capacity: each panel will typically need a hardening period of 12 to 24 
hours, depending on the cycle-time of the factory and the concrete mixture design. Since for the realization 
of any building of serious scale generally hundreds or thousands (!) of panels need to be produced,  it will be 
necessary to use like 5 to 10 separate moulds for the production time to remain within a reasonable limit. 

FROM SELF-COMPACTING FLUID TO PLASTIC SOLID 
In this section the criteria for the concrete mixture characteristics and the control during deformation will be 
discussed. The initial fluidity of concrete initially facilitates its transportation to the mould and its casting 
into the finally desired shape. During the succeeding process of stabilisation and hardening, the fluid 
gradually transforms into a solid in a number of minutes, hours or days. The speed at which this 
transformation process develops can be controlled by many factors: cement dosage and type, temperature, 
aggregate types and sieve distribution, additives such as plasticizers or retarders.  
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During the ‘dormant period’, that is  in the first one or two hours after adding water to the cement, the 
hardening process has yet started, at least not significantly [12]. Roussel [13] initially also considered it 
reasonable that there exists a period for a “couple of thousands seconds” in which irreversible effects of 
hydration are not yet dominating, a period in which colloidal or thixotropic behaviour is dominant. However, 
in a recent publication on the thixotropic behaviour of cement pastes [14], Roussel et al. showed that in 
thixotropic mixtures early hydration (CSH-nucleation) starting directly after mixing certainly is responsible 
for a far larger part of the thixotropic behaviour than colloidal effects. These CSH-bridges can still be broken 
relatively easy, and will rebuild at rest as long as sufficient reactive material is available, which explains the 
thixotropic behaviour that is observed at macro scale. Exactly this material behaviour is utilized during the 
deformation of the flexible mould. 

The flexible mould method is characterized by the deformation of the mould at a specified moment (see 
Figure 2). Deformation will take place early in the transition stage from fluid to solid phase, since otherwise 
cracking might occur, a non-desirable effect. Janssen [9] depicted this transition in Figure 5:  

 

 

 

 

 

 

Figure 5 - First model by Janssen [9] 

The thixotropic strength is assumed to develop linearly in the first hours, as illustrated in the left graph in 
Figure 5, and in agreement with [14]. The manufacturing process with the flexible mould method can, from a 
mechanical point of view, be seen as an imposed deformation. As a result of the deformation, parts of the 
concrete are bent and others rotated compared to their initially horizontal position. The displacements are in 
the same order as or even larger than the thickness of the concrete layer, and rotations may get as high as 45º 
to the horizontal direction. In order for the concrete not to flow out of the mould, a minimum shear yield 

strength is necessary to allow a specific angle  of the mould surface. In Figure 5 this is depicted on the left 

vertical axis with allowable. The graph illustrates that, for an angle 1, the mould cannot be deformed earlier 
than t1. This t1 is considered as the lower boundary for the moment of deformation. Deformation is possible 
as a result of the limited strength of the CSH-bonds. However, these bonds will, at a certain moment, have 
grown so strong that plastic deformation of the concrete is no longer possible. This is depicted by the curved 
dash-line in the right graph and the moment t2 in Figure 5. The right axis expresses the ‘deformability’ of the 
concrete, which reduces gradually during hardening. Waiting too long with the deformation, would cause 
cracking of the concrete. This is defined as the upper boundary. The time between lower and upper boundary 
is the time available for deformation period. In order to understand and control this transition from fluid to 
solid and determine the upper and lower boundary t1 and t2,  a series of deformation tests were carried out.  
 
DEFORMATION TESTS 
In order to simultaneously vary parameters, a set of four identical moulds was prepared (see Figure 3, right). 
Four elements were cast simultaneously with concrete from the same batch and deformed consequently at 
different moments in time and/or with different curvatures. The time required to fill four moulds after mixing 
was about 20 minutes, followed by a resting period until deformation of 10-40 minutes (moment of 
deformation 30-60 min after casting). After initial testing, good results concerning workability during 



casting, obtained yield strength and plastic behaviour at the moment of deformation were obtained with the 
following two mixtures (see Table 1). 
  

Table 1 - two mixtures were tested with the flexible mould: a course and fine mixture 

ingredients [kg / m3] mixture 1 (coarse) mixture 2 (fine) 

Cement CEM I 52,5 R 400 570 
Fly ash 160 100 
Betoflow D, Omya - 100 
Superplasticizer Premia 196, Chryso 3.92 4.56 
Water 172 225 
Sand 0.125 - 1 mm - 1294 
Sand 0.125 - 4 mm 1046 - 
Gravel 4 – 8 mm 563 - 
Characteristics in the hardened state [MPa] [MPa] 
Compressive strength (cube; 1/7/28 days) 45.2/64.8/79.7 48.4/58.3/90.4 
Splitting tensile  strength (cube; 1/7/28 days) 3.5/4.0/5.5 3.5/4.0/5.2 
Flexural strength (prism; 1/7/28 days) 
 

6.0/9.5/10.5 
(batch #15) 

7.1/7.3/10.6 
(batch #18) 

Slump (flow) development at t = 0:03/0:29/0:43/1:03 h:min 0:06/0:24/0:42/1:05 h:min 
Slump flow /  slump  715/190/160/20 mm 865/650/620/50 mm 

 

Cubes (150150150 mm3) and prisms were tested (4040160 mm3) to determine the strength. More than 50 
elements (d=25 or 50 mm) were cast with single or double curvatures (double-curved in two directions, i.e. a 
dome shape). The radii were in the range of 1.5-2.5 m. The concrete elements had a rectangular projection 

area of 400800 mm2. Many elements were successfully cast, deformed and demoulded. In some cases the 
mould was deformed too early (with concrete still being too fluid). Several tests (slump flow, flow time T50 
and/or slump) were carried out to determine the workability at different moments after mixing. In order to 
determine the right moment of deformation in relation to the workability of the mixture, slump tests were 
executed on the same batch at different moments. 

In various articles, the relation between slump flow and yield strength is described. Roussel & Coussot [15] 
compared experimental results obtained with slump cones and viscometers on the one hand and numerical 
simulations and analytical models on the other hand. Under specified circumstances the following relation 

between yield stress 0 and slump flow spread R  for slump cones with volume V proved reliable for self-
compacting mixtures: 

߬଴ ൌ
ଶଶହ∙ఘ∙௚∙௏మ

ଵଶ଼∙గ∙ோఱ
                    (1) 

Similar empirical formulas can be found for stiffer concretes, now for relations between slump S and yield 

stress 0 , although a larger divergence is found between both linear formulas, depending, among others, on 
the aggregate volume and the viscometers used for calibration [16, 17]: 

߬଴ ൌ
ఘ

଴.ଵ଻଺
ሺ0.255 െ ܵሻ                       (2) 

 ߬଴ ൌ
ఘ

଴.ଷସ଻
ሺ0.300 െ ܵሻ ൅ 212                 (3) 

The elements produced with batches 1 to- 18 in the research all had a length of  L=0.80 m, a height h ≤ 0.05 
m and a radius of R ≥ 1.50 m. In an earlier publication [18] it was concluded for this geometry that the 

critical yield strength, necessary for the concrete in order to stay in the mould, was in the range of 94 Pa ≤ 0 
≤ 314 Pa. It is interesting to see now from the test results the time the mixtures needed to reach this yield 
strength, in order to determine the lower boundary t1 defined earlier. The yield strengths were calculated with 
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Figure 9 – Left: Production of the textile-reinforced elements according to the manual lay-up ‘lasagna’ 
method; right: 4-point bending test on 50 mm thick textile-reinforced concrete element. 

through internal slip between the filaments within the yarns, only 20 to 25% of the 1700 MPa could be 
effectively be utilized, but that this percentage was independent of the fibre percentage. 
3) Four-point bending showed similar results as the tensile tests: after a long strain hardening trajectory in 
which the full cracking pattern was completed, generally one crack opened further until failure (as can be 
seen in Figure 9). As a result of the different way of loading the textiles, the effectiveness of the fibres was 
higher than what was found in the uni-axial tensile tests, circa 35%. Apart from tests, also numerical models 
in Ansys and Maple were developed to estimate the effectiveness on stress distributing over the panels. The 
use of textiles as reinforcement proved to be a practical way to locally or generally increase the tensile and 
bending strengths of the panels, thus allowing for applications where brittle behaviour needs to be prevented. 
 
CONCLUSIONS 
Surveying the results of the various parts of the research on the flexible mould method, the following 
conclusions can be drawn: 

 The innovative method offers a rational and accurate alternative for expensive mould techniques such as 
CNC-milling; the fact that a single and open mould is used simplifies the process; the process can be 
embedded in a manufacturing line to scale it up to industrial size; 

 By choosing and measuring the right rheological properties of the concrete, the process of deformation 
after casting can be controlled. A lower boundary needs to be observed for the right yield strength to 
prevent concrete from flowing, the upper boundary guarantees sufficient plastic behaviour to allow 
deformation without cracking; 

 The accuracy of the flexible subsystem is important and needs considerable attention. The system 
developed by Eigenraam showed good results and is filed for being patented; 

 The use of textiles as studied by Kok offers a valuable addition to the ductile behaviour of the elements. 
This behaviour can be correctly predicted and was tested for various amounts of textiles. 

As a finalizing remark, it must be said that, surprisingly, the first attention from industry is coming from the 
upcoming economy India, a country where shell structures are still built regularly. In countries such as India,  
China etc. where the building industry has a great market today, engineers are faced with problems with 
respect to quality control, precision and speed of execution. There are numerous projects which involve the 
requirement of double-curved facades and shell roof structures. Precast concrete is most often ignored as a 
façade option for complex geometries, only because architects are not confident of the quality which they 
anticipate, and they resort to alternative claddings materials. The flexible mould system would offer great 
benefits in obtaining high quality facades, roofs and precast shuttering for buildings and infrastructure with 
complex geometry. The process, being relative low-tech, could be transferred  easily even across various 
regions of these countries where generally very high tech systems are not considered as viable solutions. 
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