<]
TUDelft

Delft University of Technology

Mirror
A Computation-offloading Framework for Sophisticated Mobile Games

Jiang, M.H.; Visser, O.W.; Prasetya, |.S.W.B.; losup, A.

DOI
10.1109/WoWMoM.2017.7974351

Publication date
2017

Document Version
Final published version

Published in
18th IEEE International Symposium on a World of Eireless, Mobile and Multimedia Networks, WoWMoM
2017

Citation (APA)

Jiang, M. H., Visser, O. W., Prasetya, |. S. W. B., & losup, A. (2017). Mirror: A Computation-offloading
Framework for Sophisticated Mobile Games. In 18th IEEE International Symposium on a World of Eireless,
Mobile and Multimedia Networks, WoWMoM 2017 (pp. 1-3). IEEE.
https://doi.org/10.1109/WoWMoM.2017.7974351

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1109/WoWMoM.2017.7974351
https://doi.org/10.1109/WoWMoM.2017.7974351

Mirror: A Computation-offloading Framework for
Sophisticated Mobile Games

M.H. Jiang**, O.W. Visser?, I.S.W.B. Prasetya*, A. Iosup?
*Utrecht University, the Netherlands
IDelft University of Technology, the Netherlands

Abstract—The low performance and power limitations of
mobile devices severely limit the complexity and the duration
of playing sessions of mobile games. This article examines the
possibility of using computation-offloading to mitigate these
problems while keeping the game playable. We design Mirror, a
framework for offloading computation targeted at the demanding
performance requirements of sophisticated mobile games. The
key conceptual contributions of Mirror are design decisions that
allow for dynamic fine-grained client-side offloading decisions,
and a protocol for real-time asynchronous offloading for bound-
ing network delays. We implement a prototype of Mirror and test
it by performing offloading for the game OpenTTD. The results
are promising, showing that Mirror can increase the performance
and decrease the power consumption of games while keeping the
gameplay fairly smooth.

I. INTRODUCTION

Mobile devices, such as smart phones and tablets, have lim-
ited computational capacity and power supply. These factors
severely limit the complexity and scale of mobile games that
can be reasonably run on mobile platforms. A potential way
to mitigate these problems is through computation-offloading,
that is, letting remote machines do the resource-intensive parts
of game logic and sending the results to the mobile client. This
can potentially free up local resources on the mobile client and
possibly save some of its valuable battery power [1], but also
threatens to cancel out any benefits by introducing latency in
game updates that make the game too slow to enjoy.

Very few offloading frameworks have been created with
games in mind [2]. A few frameworks that have been tested
with games have only done it for very simple games [3]-[6].
In this work we propose Mirror, a framework for computation-
offloading targeting sophisticated mobile games that achieves
a desirable trade-off between computational performance in-
crease and game playability.

The main contributions of this work are as follows. First,
we design a new computation-offloading framework called
the Mirror. Second, we propose a new program-partitioning
scheme that allows for dynamic fine-grained client-side of-
floading decisions Third and last, extensive experiments are
conducted with the framework, resulting in a thorough ex-
amination of the different effects, both positive and negative,
of offloading on a game. The results from these experiments
show that the framework significantly increases the game’s
performance while providing a fairly smooth gaming experi-
ence. The results also show that the framework allows for a
trade-off between performance and power consumption.
978-1-5386-2723-5/17/$31.00 ©2017 IEEE

II. THE MIRROR FRAMEWORK

We design in this section the Mirror framework for
computation-offloading targeting sophisticated mobile games.
Key to our design is a mobile game using the Mirror frame-
work must implement a Mirror Client and a Mirror Server;
the two will interact to offload computation.

A. Overview of the Mirror framework

Using the Mirror framework requires the developers to
attach the framework to their game by implementing several
interfaces. These interfaces allow the framework to control
the overall flow of the game like starting, stopping and
pausing, or are used for program partitioning (Section II-B).
The implementation of the Mirror Client and Mirror Server
should be identical with the only difference of setting a flag
for whether to run the game in Mirror client mode or server
mode. Additionally, the game must be implemented in such a
way that given an initial game state, all subsequent states are
deterministic and are separated by a pre-determined delta-time,
which we will call a fick.

An offloading session starts with the client and the server
connecting and agreeing on a game starting point using a save
game. The client can simulate the whole game on the local
device, but it can also communicate with the server which
parts it wants to offload by subscribing to the results of calls
to a certain function. The server will simulate the game ahead
of the client to obtain and send the results of the offloaded
functions that the client needs ahead of time, so when the
client itself arrives at the particular tick at which that specific
call occurred, it will already have the result of the call and can
apply it directly to its own game state. This way the client does
not need to pause the game and wait for a full network round
trip time to offload every single call to a function it wants to
offload.

The framework automatically ensures that the server is
simulating sufficiently far ahead of the client for results of
function calls to arrive at the client in time. It does this by
periodically measuring the single trip time of the network
connection between the machines and calculating how many
in-game ticks would elapse during that time. This number is
the minimum number of ticks that the server should be ahead
of the client. Both the client and the server constantly notify
each other of their current tick. If the client notices its own
tick is too close to the server’s, it will temporarily pause its
own game to wait for the server.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 10,2021 at 09:46:34 UTC from IEEE Xplore. Restrictions apply.

The framework does not allow the server to be too far ahead
of the client either, because when synchronizing user input,
the framework needs to execute the action associated with the
input synchronously on both machines. This means that the
action must be scheduled in the future of both the client and
the server. Allowing the server to simulate infinitely far ahead
of the client would cause the action to be infinitely delayed
too. So similarly to the client, if the server notices it is too far
ahead of the client, it will also pause its own game.

B. Program Partitioning

The Mirror framework uses a combination of offline and
online program partitioning by making use of the existing
class-based structure of games to define game objects. It does
so through the offloadable entity (OE) interface. For each type
of game object that the developers want to offload, the class of
the object needs to implement the OE interface. By doing so,
the behavior of the object is separated into a non-offloadable
part and a set of offloadable parts. For each of the offloadable
parts, a function must be defined to package and send the result
of a call to that part, and a function to handle and process such
a result.

At run-time, each instance of a class that has implemented
the OE interface can be offloaded individually from all the
others. Such an instance is called an offloadable instance (OI).
When the client wants to offload an instance, it subscribes to
the results of all future calls to the offloadable parts of the
instance. If the client decides to offload or stop offloading
an instance, it will communicate this decision with the server
using the ID of that instance and stop or start running the
offloadable parts of that instance itself.

Each time the server finishes a call to an offloadable part of
an OI, it will send an event message (EM) to the client with
the ID of the instance, the ID of the function call, the result of
the call, and the in-game time at which the call occurred. Upon
receiving an EM, the client processes the message by passing
the EM and calling the corresponding processing function of
the OI associated with the message.

III. EXPERIMENTAL SETUP

We have implemented Mirror and applied it to Open
Transport Tycoon Deluxe (OpenTTD), a popular and active
open-source re-implementation of the real-time strategy game
Transport Tycoon Deluxe (1994). OpenTTD provides many
new extensions over the original, and allows more players
and more objects to be simultaneously in the game, which
makes OpenTTD much more computation-intensive than the
1994-original and a good real-world sophisticated game to
experiment with.

Our implementation offloads 2 fypes of objects of
OpenTTD. First, all types of road vehicles can be offloaded.
The offloadable parts consist of the path-planning and the
collision-detection functions. Second, the AI of non-player
controlled companies can be offloaded. In terms of offloading
granularity, the computation associated with road vehicles is

computation are fine-grained, whereas the Al is much more
computation-intensive and thus coarse-grained.

We conduct experiments with OpenTTD and the Mirror
framework using 3 different mobile devices and 4 different
server devices. As mobile devices, we use a Galaxy Nexus,
a Nexus 6 and a Nexus 7. As server-devices, we use a
Samsung Q330 laptop, an Amazon EC2.nano and an Amazon
EC2.normal server located in Frankfurt, and the DAS4 com-
modity cluster of the Delft University of Technology. These
client and server devices were chosen to experiment with
different real-life specifications and situations.

As workload, we have created 6 save games, to act as the
game starting points in the experiments. Each save game was
created by running a single game of OpenTTD with Al players
starting from a single map and periodically saving the game
as it progresses. This results in each save game having more
entities in the game than the one before it and therefore also
have a higher computational load.

A simulation run consists of using a certain client-device,
connecting it with one of the server machines through a
university Wi-Fi connection, and starting the game at one of
the save games. Each combination was run 3 times with each
run lasting around 4 minutes. An additional set of simulations
without offloading were also performed to act as the baseline
for comparison. These baseline tests were performed for every
combination of client device and save game and were also
performed 3 times for each combination with a running time
of 4 minutes each.

A special type of setup that was only available for the
Galaxy Nexus device was used to measure the effect of
offloading on the power consumption on the client-side. The
equipment used to do the actual power measuring was the
Power Monitor by Monsoon Solutions Inc. [7], which is a
high-frequency, high-accuracy device that is also intrusive
(it requires soldering on the mobile hardware). The power
consumption experiments were done by connecting the Galaxy
Nexus with the Amazon EC2.nano server and testing all
save games with and without offloading. Each parameter
combination for this last setup was only run once for 4 minutes
each.

IV. RESULTS

We present in this section only representative results: graphs
use only the data from the experiments using the Galaxy Nexus
client device connecting with the Amazon EC2.normal server
machine only. The number of Ols in each save game is used
an an indicator of the computational load of each save game.

A. Performance and Playability

The number of game simulation ticks per second (TPS) the
client can perform is used to measure the performance of the
game; higher values are better. Figure 1 shows the TPS results
with and without offloading. From our experience, OpenTTD
is fairly playable as long as the TPS stays above 20. If the
game runs even slower than 20 TPS, the user-interface (UI)
becomes too unresponsive to comfortably play. This limit is

Authorized licensed use limited to: TU Delft Library. Downloaded on February 10,2021 at 09:46:34 UTC from IEEE Xplore. Restrictions apply.

35 - -
Without offloading —e—

With offloading —»—
30 | Acceptable TPS ——

° 25t
3 tPlayablé]
E 20}
[
o 15 }
2
O
= 10}
5 5
0

0 2000 4000

Offloadable Instances

6000

Fig. 1: The performance results in ticks per second. Each sample is the average
over three runs.

consistent with previous findings about the impact of game
latency on user experience, for real-time strategy games [8].

The Galaxy Nexus is a fairly old device and the results
show that it cannot manage to run OpenTTD at the maximum
TPS even at very low computational loads without offloading.
The performance of the game rapidly drops below the playable
level as the computational loads increase. The results show that
turning offloading on significantly increases the performance
of the game and is able to nearly double the number of ticks
that the client can do at higher computational loads. This
shows that, from a pure performance perspective, the Mirror
framework is able to beneficially offload very fine-grained
functions and is also able to scale well with the computational
load of the program.

Section II-A explained that the client may sometimes need
to pause its own game to wait for the server. This can cause a
decrease in the game’s smoothness and playability. From our
experiments, we have observed that these situations are rare,
and if they occur, are so short that the user might not even
notice. Another aspect explained in that section is user input
delay. In our experiments, we have observed delays ranging
from 90 to 300 milliseconds, which is too high for most genres
of games, but acceptable for playing real-time strategy games
like OpenTTD [9].

B. Power Consumption

Figure 2 shows the power consumption on the mobile
device with and without offloading. The results show a clear
trade-off the game developer and the player of the game can
make between performance and power consumption. Using
offloading on a device that (by far) cannot run the game at
the maximum speed will result in a significant performance
increase, but also in power consumption. If the device can
run the game at or near the maximum speed, offloading can
slightly decrease the power consumption of the game. If the
player is satisfied with a certain performance of the game
without offloading, the game should allow the player to limit
its simulation speed to save power with offloading.

3000 Without offloading --®--
With offloading —-®-—

S 2700 With offloading and TPS limit —&—
E
5 2400 ,/'/'/._ TR -
a /.l"/ B
g 2100 o et L EEEEEEEEEE L ARREEEEEEE .
%] R
5 : A A
S 1800 y o’ — A
’5 '
2 1500 | o
o

1200

0 2000 4000 6000

Offloadable Instances

Fig. 2: The power consumption results in milliwatts. Each parameter combi-
nation was only run once.

V. CONCLUSION AND FUTURE WORK

This article presented the Mirror Framework, a new
computation-offloading framework for sophisticated mobile
games. Mirror works asynchronously, which is necessary in
enabling a game to run smoothly. The results show that
computation-offloading can be beneficially used to increase the
performance of sophisticated mobile games while keeping it
playable. However, as trade-off it becomes necessary to delay
user inputs. With the current design, the delay can be too
long for high speed action games, but is still acceptable for
many other game genres, including real-time strategy games.
The results also show that offloading may either decrease or
increase the power consumption of the mobile device, depend-
ing on the performance of the device without offloading, and
on how the game developer or player appreciate the trade-off
between performance and power consumption.

REFERENCES

[1] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of computation
offloading for mobile systems,” Mobile Networks and Applications,
vol. 18, no. 1, pp. 129-140, 2013.

[2] A.-C. Olteanu and N. Tapus, “Offloading for mobile devices: A survey,”
UPB Scientific Bulletin, 2014.

[3] Z. Li, C. Wang, and R. Xu, “Computation offloading to save energy on
handheld devices: a partition scheme,” in Proceedings of the 2001 int.
conf. on Compilers, architecture, and synthesis for embedded systems.
ACM, 2001, pp. 238-246.

[4] H.-h. Chu, H. Song, C. Wong, S. Kurakake, and M. Katagiri, “Roam,
a seamless application framework,” Journal of Systems and Software,
vol. 69, no. 3, pp. 209-226, 2004.

[5] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, “Cuckoo: a computation
offloading framework for smartphones,” in Int. Conf. on Mobile Comput-
ing, Applications, and Services. Springer, 2010, pp. 59-79.

[6] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: making smartphones last longer with
code offload,” in Proceedings of the 8th int. conf. on Mobile systems,
applications, and services. ACM, 2010, pp. 49-62.

[7] Monsoon Power Inc, “Power Monitor, www.msoon.com.”

[8] M. Claypool, “The effect of latency on user performance in real-time
strategy games,” Computer Networks, vol. 49, no. 1, pp. 52-70, 2005.
[Online]. Available: http://dx.doi.org/10.1016/j.comnet.2005.04.008

[9] N. Sheldon, E. Girard, S. Borg, M. Claypool, and E. Agu, “The effect of
latency on user performance in Warcraft II,” in Proceedings of the 2nd
workshop on Network and system support for games. ACM, 2003, pp.
3-14.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 10,2021 at 09:46:34 UTC from IEEE Xplore. Restrictions apply.

