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Summary

This research considers the offline training stage of the Reduced Order Models
(ROM), that has been getting attention recently on the endeavor to come up with
efficient solutions for the highly complex numerical models. In this work, a simply
supported beam problem has been considered, for which a reduced basis creation
has been investigated. Reduced basis creation is in utmost importance for the ac-
curacy and reliability of the ROM. Main focus is on the efficient parameter sampling
strategies to enrich the reduced basis, which brings forth computational burden.
To decrease this burden, a statistical tool Gaussian Processes Regression (GPR)
based Bayesian Optimization (BO) is utilized. These tools are used to create a sur-
rogate function of error indicator that is used to select additional training points for
ROM.

Results of this work show that randomness in the proposed procedure influences
parameter sampling but does not have an impact on the overall accuracy. Finally,
this work suggests further work on creation of a stopping criteria and finding a
method of storing previous information and combining it with current information
regarding training points without losing information. With the help of proposed
further research topics, this work intends to be used as a foundation for efficient
reduced basis construction.
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Introduction

T his work aims to create a framework for efficient and optimal reduced order basis
construction in offline stage for accurate computational behaviour prediction in
online stage. This is achieved by utilizing external libraries for Bayesian Optimization
(BO), for the work that has been recently presented to construct reduced order basis
in Knut Tjensvoll’s thesis[2].

1.1. Background

Increasing computational power enabled the very demanding numerical mathe-
matical numerical material models to be used as prediction tools has gained ex-
traordinary growth in last decade [3]. Many recent applications in computational
mechanics applications started to rely on these models [4].With increasing amount
of computational demand, a need for decreasing that computational burden started
to get more attention. Model Order Reduction (MOR) is one of the techniques that
is used to decrease the computational demand of complex numerical models. This
method replaces the high-fidelity Full Order Model (FOM) with a reasonably accu-
rate Reduced Order Model (ROM). This is achieved by constraining the full order
solution space to a lower dimensional space [4]. It should be noted that in the
context of this work, full order solution space corresponds to nodal displacements
and the lower dimensional space correspond to global displacement modes. Thus,
the computational burden of the model in hand channels into finding the appropri-
ate lower order solution space by thoroughly collecting the high-fidelity solutions
and acquiring a reduced order basis by means of a data compression technique
called Proper Orthogonal Decomposition (POD). This method is employed before
the reduced order analysis, and called offline training stage and ensures full order
solution space to be represented in terms of global modes.



2 1. Introduction

In the work presented by Rocha et al. (2020) [1], the importance of sufficient
training has been demonstrated on a simply supported beam problem as shown
in Figure 1.1. In this demonstration, load has been shifted 5% of the total span
and the resulting error in the inelastic regime was observed as 50% lower than the
actual solution.

historylepspeal
+1.00e-01

Full

+7.500-02

+5.00e-02

+2.50e-02

Reduced

+0.00e+00

Figure 1.1: Importance of the Training Phase[1].

In the recently presented work of Tjensvoll (2019) [2], two methods, namely Surro-
gate Parameter Space (adopted from Goury [5]) and Gaussian Process Regression
(GPR), have been proposed for sampling the parameter space to create a sufficient
reduced order basis for the same simply supported beam problem. This work will
focus on training the same simply supported beam problem presented, by using
external GPR libraries.

1.2. Aim of the Research

The purpose of this research is to optimally develop the reduced order basis for
the ROM to perform accurately. This work will utilize the information gathered from
Tjensvoll (2019) [2] to come up with an efficient procedure to construct the basis for
ROM, which could be utilized to decrease computational burden of multi-scale model
implemented by Rocha [1]. The main focus will be on the GPR sampling procedure,
which will be done through usage of BO operation with the help of GPR libraries of
“scikit-learn” written in Python, while trying to overcome the shortcomings of the
prior method presented by Tjensvoll (2019).

1.3. Outline

This research report is constructed as follows;

e Chapter 2 will introduce the background information that is crucial for the
understanding of implementation, which are MOR and BO with GPR.



1.3. Outline 3

e Chapter 3 will focus on integration and implementation of presented informa-
tion in Chapter 2.

o Chapter 4 the results of implementation will be presented and discussed.

e Chapter 5 conclusions of this research will be made with the recommendations
for future research work.






Literature review

T his research brings together two different topics, computational mechanics and
machine learning. In this chapter, a brief background information will be pro-
vided for both of the topics, that is necessary to follow this research. All the detailed
information can be traced back from the given references.

2.1. Model Order Reduction

In simpler terms model order reduction refers to the pursue of constructing a simpler
model from the complex model in hand, where a simpler model is named ROM
and the complex model named FOM. In this research endeavour, focus is mainly
on projection based reduced order models as in the case of work published by
Hernandez et al. (2017) [6]. In this work, unlike the published framework of Rocha
et al. (2020) [1] only first reduction stage POD is used. This enables the collected
snapshots, which are the full order model solutions for nodal displacement, to be
compressed and projected to the reduced basis, which are the global modes of
deformation.

2.1.1. Reduced Order Modeling

The following formulations are meant to depict a road map behind the concept, thus
kept as compact as possible for the sake of brevity and can be followed thoroughly
from [1] and [6].

Full Order Problem

Utilizing the Finite Element Method (FEM), a numerical approximation (weak form)
of equilibrium of a volume Q of the given problem with Dirichlet T;, and Neumann

5
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I'+ boundary conditions can be expressed as:

r=fT—f*w=0 (2.1)

where, fT is the external force vector and f®(u) is the internal force vector de-
pending on the nodal displacement field, that is coming from the conventional FEM
formulations. The difference between internal and external force vectors has been
defined as residual, r. For the f%(u) calculation, numerical integration has been
utilized. Since material response involves inelastic response an iterative solution
procedure has been utilized to solve Equation 2.1 and the equilibrium is stated to
be reached after the following expression has been satisfied:

r
% < tolerance (2.2)
where 1 is the scale factor computed from external and internal force vectors.

Dimensionality Reduction

As stated earlier the result of FEM is nodal displacements at every so-called time
step (load displacement steps). These displacements are referred to as snapshots.
Due to the fact that snapshots are correlated with each other, dimensionality reduc-
tion is possible and practical. The linear relationship between the snapshots brings
forth the unnecessary information storage in the collection of snapshots. One of
the most convenient and applied procedure for excessive information elimination
from huge data sets is Proper Orthogonal Decomposition (POD) [7].

After collection of full order snapshots in the snapshot matrix X, Singular Value
Decomposition (SVD) could be performed on this matrix. It should be noted that
SVD is in the broad sense finding the eigenvalues of a non-square matrix , since in
the case of a square matrix this procedure results in eigenvalues and eigenvectors.
Decomposition of a matrix by SVD is shown in Equation 2.3:

X =Sy’ (2.3)

where S representing singular values sorted from highest to lowest, ® representing
reduced basis matrix that stores the aforementioned modes of displacement, and
V named right singular matrix. It should be noted that singular values give out
information regarding the energy content of the corresponding mode [8]. This is
utilized to get rid of the aforementioned redundant information in the snapshot
matrix. Thus, if full order equilibrium problem is of size N, after POD we can
just store the n < N modes in reduced basis. Note that, from now on reduced
order basis will be represented by ® € RV*", which means the low energy modes
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will not be stored. Then, displacement field reduced space could be expressed as
follows:

u=>ada (2.4)

where a is a set of latent variables. Thus, the full order equilibrium equation could
be projected to reduced space as follows, by assuring orthogonality between r and
@ (Galerkin projection):

d'r=0 (2.5)

After, imposing Equation 2.4 to 2.1, the residual defined in Equation 2.1 could be
represented as:

r=fl—fYda)=0 (2.6)

Remembering the main idea behind adaptively training ROM, which is minimizing
the maximum projection error with a least squares like approach, ROM is fed with
information where the a measure of projection error is maximum [5]. In this work
that measure of error (error indicator), noting the fact that r is a function of ®, is
defined as:

MR

R =
N, +1

2.7)

where N, is the number of time steps in the nonlinear solution procedure and r(t;)
is the residual in the it" time step.

It should be noted that the error indicator does not represent the real (exact) error.
Exact error at nodes can be obtained by,

€ =|lu-dal| (2.8)

2.2. Bayesian Optimization (BO)

BO have two main components namely surrogate model creation, which is in this
work sachieved by GPR, and acquisition functions, which are used to select the the
next point to be evaluated. In this section both of these components will be brifly
explained. To find more in depth infromation, reader is recommended to refer to
[9] and [10].
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2.2.1. Gaussian Process Regression (GPR)

An assembly of random variables for which any finite number of have Gaussian
Distribution represents a Gaussian Process and could be defined completely by its
mean and covaraince function (kernel) as follows [9]:

f@)~GP(m(x), k(x,x") (2.9)

where x is input vector. In simpler terms, when in function space setting, Gaussian
Process is a distribution over functions with the given mean and covariance. In
general, the mean of most of the Gaussian Processes can be safely defined as 0,
but kernels need a more detailed look. It should be noted that from now on the
mean will be considered as zero for all the GPR related subjects.

Kernels

In Gaussian Processes kernels define the similarity between two adjacent points,
meaning points that are in the vicinity of each other posses information regard-
ing each other . The most widely used kernel is the Squared Exponential kernel,
expresed as [11]:

x—x'
kSE(x,x’) = 0'%6)(}?( - 7) (210)

where o is the signal variance and represents the average distance of the function
away from its mean which scales the kernel and ! is length scale that determines
the smoothness of the function. These free parameters are called hyperparameters
and influence the behaviour of kernel enourmously [9].

Despite of its attractive properties, some argue that the strong smoothness of this
kernel is not representative of many physical processes [9]. The Matérn kernel is
one of the kernels that is being utilized to circumvent that bottleneck. It is expressed
as:

(2.11)

217V (\2v(x — x) VK V2v(x — x")
) ()

ky(x,x) = aﬁ[

where, v and [ are positive parameters and K, is a modified Basel function. The
difference between the two given kernels could be observed in Figure 2.1.

As it can be seen from Figure 2.1, as v increases the Matérn kernel becomes similar
to Squared Exponential kernel and in theory when v — oo it exactly becomes the
SE kernel. Moreover, the increase in [ is results in a more smoother function to be
observed for SE kernel. For more information about kernels and their combinations
Chapter 4 of [9] and Chapter 2 of [11] are detailed sources.
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20 —— Matern(v=0.5,I=1.0,0r=1.0)
Matern(v=1.5,1=1.0,0r= 1.0) 20
—— Matern(v=100.5,1=1.0,0¢=1.0)
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-1.00 -0.75 -0.50 -0.25 000 025 050 075 100 -1.00 -0.75 -050 -0.25 000 025 050 075 100
X

Figure 2.1: Brief comparison of kernels with changing parameters.

Prediction

The functions in Figure 2.1 are sampled randomly from a prior in which no under-
lying knowledge lies. Noting that f is training outputs and f, is test outputs, the
prior of the joint distribution can be expressed as follows:

K(x,x) K(x,x.)

p(f,f*)~N<0' K(x.,x) K(x,,x.)

) (2.12)
where K (x,x) is the matrix of covariances evaluated for all pairs of training points.

To impose the prior knowledge to and get a posterior distribution over the functions
it should be conditioned to contain only functions that pass through the observed
points. Thus, the posterior predictive distribution can be expressed as,

p(f.|%., %, F)~N (K (x., x)K (x,x) " f, K(x.,x.)—K (x., )K (x,x) " K (x,x.))) (2.13)

In a more realistic scenerio, the observed data can include some noise which can be
expressed as e~ (0, 52), which leads to the addition of ¢2 to the diagonal of the
K (x,x) matrix [9]. An illustration of functions from conditioned data could be ob-
served in Figure 2.2, where 3 sample functions have been drawn and possibilities of
functions with 95% confidence are plotted from the given data without noise.

It should be noted that from this point on only the GPR representation on the right
end side of Figure 2.2 plot will be utilized, in which mean(m) is represented with
boldest blue and standard deviations a(70% confidence), 26(95% confidence) are
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represented with light blue and lighter blue fills.

3-Samples (After Conditioning) GP Regression Compilation
15
100 -- Sample-1 ~ —— Surrogate-Function-mean
Sample-2 N\ * Sample Points
P \
0751 ---- Sample-3 PN 10
050 w
05 _—
025
\ I 0.0
\ I
> 0.00 \\\ "’/ >
\ /!
\ /' -0.5
—025{ | \ b
\ \ 7
Voob i
-0.50 AU / -1.0 —
\ d /
\ \ /
-0.75 AR Y o
N -15
-1.00

-1.00 -0.75 -0.50 -0.25 0.00 025 050 075 100 -1.00 -0.75 -0.50 -0.25 0.00 025 050 075 100
X X

Figure 2.2: Sampling After Conditioning.

During the conditioning hyperparameters of the kernel has to be optimized for the
provided data set. This is done by maximizing the log-marginal likelihoood (LML)
function, expressed as:

1 1 n
logp(flx) = —EfTK_lf - Elog|K| - Eloan (2.14)

2.2.2. Acquisition Functions

As it can be seen from Figure 2.2 that GPs are able to offer an estimate of un-
certainty over the estimated function. This can be utilized to balance between
exploration and exploitation in the optimization procedure. Acquisition functions
are the mechanicsm that implement this trade-off. Main purpose of the acquisition
function is to guide searching procedure to the optimum of the surrugate function
[10]. In this context exploration means directing search towards unknown regions
of the surrogate function whereas exploitation means directing the search for the
maximum chance to improve the current solution.

Probability of Improvement (PI)

PIis one of the first acquisition functions to be proposed and can expressed as:
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(2.15)

f(&x) —m(x) —s‘>

PI) =p(f(x) < f(xH) +¢) = q’( o(x)

where ®(+) is the normal cumulative function, m(x) and o(x) are the mean and
the standard deviation of the surrogate function, f(x*) is the best observation
so far and finally ¢ is the term that is used to mitigate the exploitive nature of
this acquisition function [10]. It should be noted that lower values of ¢ elevate
exploitation.

Expected Improvement (EI)

Because of the inability of PI to incorporate the potential magnitude of improve-
ment, the following acquisition function has been proposed, which is expressed
as:

NEFED) =mx) -HP(2) +o(0)d(2), f o(x)>0
El(x) = {0’ i o) =0 (2.16)
where,
faxh)-me)-¢§ .
7= { o(x) » M0 >0 (2.17)
0, if o(x)=0;

with the only extra term needed to be introduced being ¢(-) as the probability den-
sity function of the normal distribution [10]. EI automatically balances exploitation
and exploration, however when tuning exploitation and exploration by hand we
need & term.

Figures 2.3 and 2.4 illustrate how the optimum of a surrogate function is found by
statistical tools with EI as acquisition function. As it can be observed after 2 itera-
tions (7 observations) optimum of the objective function is confidently represented
with the surrogate function as well.
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Implementation of BO for
ROM Training

T he main objective of this research is to find a way to efficiently construct a reli-
able reduced basis for the simply supported beam problem shown in Figure 3.1.
To achieve this objective main road map includes finding reliable starting points and
stopping criteria for BO. Moreover, a trustworthy way to add the new training point
information to the reduced basis is necessary, but not in the reach of this research.
This research is constrained with the first two namely finding reliable starting points
in parameter space and finding a reliable stopping criteria for the optimization pro-
cedure.

It should be noted that the reason for selecting a small parameter space is to
avoid increased computation time due to SVD computation, since in this research
truncated SVD is not utilized due to the possibility of observing high values of error
indicator near supports as mentioned in [2]. Another reason is to be able to check
the exact error (€(w)) in a reasonable amount of time without GPR which is again
implemented in the same research. Finally it should be noted that error indicator
(R(w)) need not to be calculated everywhere, since GPR will be utilized to get a
surrogate version of it . However, for academic purposes it will be computed and
shown in Chapter 4.

13
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u=4.0 u="6.0

- U

Figure 3.1: Simply supported beam problem (length=10 mm) with the constrained
parameter space.

The MOR framework utilized in this implementation presented by Rocha et al. [3]
and is written in C++ language using Jem/Jive toolbox. Moreover, the GPR tools
of scikit-learn library developed in Python is utilized to develop the BO algorithms
needed for surrogate function optimization.

The general framework for the overall training procedure is as follows:

Algorithm 1: Training Procedure

Prescribe Initial Training Points

while £(u = 4.0 — 6.0) > tolerance do
Find max(R(u = 4.0 — 6.0)) with BO
Update the Reduced Basis(®) with max(R(u = 4.0 — 6.0))
Run ROM for the Updated Reduced Basis(®ypdated)
Calculate E(u = 4.0 — 6.0)

end

Error Calculations have been conducted utilizing Python and the whole training
procedure has been automatized using bash scripting language.

3.1. Bayesian Optimization (BO)

In this section, an explanation and verification of the BO procedure will be done
for different types of functions without noise, since the error indicator is directly
obtained in the ROM and does not involve noise. It should be noted that due to
the mentioned limitation of PI, EI will be utilized as acquisition function in this im-
plementation.
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The Expected Improvement Algorithm is conducted as follows:

Algorithm 2: Optimization Procedure

Prescribe Initial Sampling Points

while Stopping Criteria is not met do
Get the Surrogate Model for Error Indicator R
Search over parameter space for maximum EI and choose it as next point
Compute Stopping Criteria

end

3.1.1. Initial Sampling

In the reasearch of [2], the initial sampling points are randomly selected and when
looked in depth, it can be seen that some of the initial sampling points are really
close to each other. It is evident the that initial sampling points should have space
filling properties [12]. This is especially important if the evaluation of the sampled
points is computationally expensive. Thus, in this work a simple idea based on
the Latin hypercube sampling scheme will be utilized. The utilized scheme for this
reasearch on one dimension is dividing the parameter space to the required number
of equal domains and pick out random points from that subdomain. This procedure
ensures the paramter space to be filled similar to the proposed scheme of [2].

3.1.2. Stopping Criteria

In most works on BO, the problems considered are generallly solved with fixed
iteration numbers [13]. However, this method could be introducing unnecessary
computations or under computation both of which will not be desired in this case
of training procedure since the aim is to try to get the best training point with least
amount of computational power. Lorenz et al. [14] has proposed 2 stopping critera,
the first one being the Euclidean distance between consecutive point proposals and
the other one being the hybrid stopping criteria which utilizes PI information, whiile
EI was being utilized as acquisition function. In this research for, accuracy both
of the approaches introduced and tested in [14] will be combined and utilized as
stopping criteria in this work. Thus, when PI is below the prescribed limits and the
search is directed to a point which is away from the previous prescribed point by a
certain margin the optimum of objective function is considered to be found.






Results and Discussion

T his chapter will introduce the results and discussion regarding the implementa-
tion of ROM training procedure with Bayesian Optimization. It should be noted
that all the given model information has been introduced regarding the beam prob-
lem and the optimization procedure of a surrogate function, in Chapter 3. More-
over, the parameter space u = 4.0 — 6.0 has been represented on the x-axis of
the resulting plots and numbered from 0 — 20, where 0 corresponds to 4.0 and 20
corresponds to 6.0. Finally, it should be noted that the beam is only loaded at one
point at all times, and for the optimization procedure, the same PI and Euclidean
distance thresholds have been utilized as in presented cases of tests presented in
this chapter

4.1. Testing the BO Procedure

In this section proposed BO procedure will be tested on two different types of
functions. It should be noted that for the test all smooth functions have been
utilized. This is the reason for SE kernel to be utilized with length scale bounds for
the log-marginal likelihood maximization being 0.01 and 1 respectively. Moreover,
for the stopping criteria the Probability of Improvement limit has been fixed at 0.01

th
and the Euclidean Distance limit is% of the parameter space. Furthermore, it

should be noted again that the acquisition function utilized is EI, but PI is utilized
as a stopping criteria and in both of them é = 0.1 has been utilized to enable the
BO to work in explorative behavior.

17
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Figure 4.1: Objective-1 f(x) = —sin(3x) — x? + x in [—1, 4] interval, with two local
maxima

4.1.1. Smooth Function with two Close Local Maxima:

The objective function has been selected as f(x) = —sin(3x) — x% + x in [—1,4]
interval, due to the two close local maxima as shown in Figure 4.1. Moreover, the
space filling initial points can be observed from the same figure as well.

The Specified Bayesian Optimization procedure is able to come up with the global
maximum with 8.87 « 10~8 error in just 4 iterations which means only 8 points have
been evaluated in this function. Results after every iteration can be followed from
Figures 4.2,4.3,4.4 and 4.5.
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Figure 4.2: Surrogate Function for  Figure 4.3: Surrogate Function for
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Figure 4.4. Surrogate Function for  Figure 4.5: Surrogate Function for
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4.1.2. Multiple Local Maxima with one Distinctive Global Max-
imum

To examine the reliability of the procedure it has been tested with the f(x) =
sinc(x) function, which involves multiple local maxima and one distinctive global
maxima. The f unction in the interval of [-5, 5] with initial sampling points can be
observed in Figure 4.6.

10 \ e  First Sample Points
—— Objective Function:

Target
-

-4 -2 0 2 4
Parameter-Space

Figure 4.6: Objective-2 function f(x) = —sin(3x) — x? + x in [—1, 4] interval, with
two local maxima

The importance of the space filling initial sampling and explorative search can be
observed in this example. If there is no initial sample in the right arm of the global
maximum search it would have been difficult for surrogate function to search that
area. Again, with this test function optimization procedure is able to find the max-
imum within 4 iterations with an error of 1.16 = 107°. Results for all iterations can
be seen in Figures 4.7, 4.8, 4.9 and 4.10.
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4.1.3. Conclusion of Tests

Besides the given test results multiple runs have been done for the same functions,
because of the fact that initial samples are randomly selected from their respective
subdomains. As a result of these runs it has been deduced that:

¢ Although both test functions found the maximum values in 4 iterations, this is
not a general rule and for same function for different runs different iteration

numbers can be observed.

e Each run was able to find the maximum with reasonable error values and

number of iterations.

e There were some cases, but very rare, where unrepresentative versions of
the GPR results were obtained for only one iteration. It has been found
that reason behind this was hyperparameter tuning by log-marginal likelihood
maximization. It should be noted that this one iteration does not cause any
disturbance on the overall functioning of the optimization procedure.
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4.2. Automized Training

Before starting the automized training it is important to have an idea about exact
error and error indicator, which can be used as an educated foundation to start
training and choose a kernel that represents the points in parameters space better.
For this reason, R and € are found by just training the ROM at u = 5.0.

EES I - indic
0.0004

0.0003

0.0002

Exact Error
Error Indicator

0.0001

—— real
00000 - Treshold

00 25 50 75 100 125 150 175 200 00 25 50 75 100 125 150 175 200
Parameter Space Parameter Space

Figure 4.11: Exact Error (&) for Training Figure 4.12: Error Indicator (R) for
atu=5.0 Training at u = 5.0

As it can be seen from Figures 4.11 and 4.12, errors reach their max values at both
ends of parameter space due to the nature of bending problem.

It should be noted that the exact error threshold is chosen by assuming the ROM
is sufficiently accurate to represent the FOM on the training point. As it can be
seen from Figure 4.11, the threshold is selected such that ROM trained at u = 5.0
is accurate enough compared to the FOM.

From this point on only the surrogate representation of R will be utilized to find
the next training point and the procedure will end when the exact error goes under
the prescribed threshold of 0.000012. Due to the sharp dropping nature of R , the
Matérn kernel with constant v = 1.5 will be utilized in GPR without noise. Results of
surrogate R, to find the maximum and add to the training space, can be observed
in below figures.

As can be followed from Figures 4.13 to 4.22 , in the first iterations the proposed
procedure has successfully found the maximum of surrogate R. However, due to
the randomness involved in the procedure during initial sampling, in some of the
iterations the maximum is not found with the desired accuracy. The most clear
example of this can be observed in Figure 4.18, in which because of the sampling
in the far end of the parameter space the GPR gets over confident in that area and
does not search that specific area, but the global maximum lies in that region for
the given error indicator.
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Figure 4.21: Iteration-9 Figure 4.22: Iteration-10
(u = [5.0,4.0,6.0,5.9,5.8,4.8,5.1,5.7,4.7]) (u = [5.0,4.0,6.0,5.9,5.8,4.8,5.1,5.7,4.7,4.3])

Another important result that can be observed is the importance of the minimization
technique that has been utilized. In this reasearch all the optimizations (maximiza-
tions) have been conducted using “L-BFGS-B” method has been utilized. Although
very homogenous starting points has been given to the optimizer with enough
restarts, there were some cases where this procedure has not come up with the
global maximum. Best example of this could be observed in Figure 4.15, where
the real maximum has not been found in the acquisition function. This has some
potential consequences, if this type of small errors occur in an iteration leading to
bad decision making. However, in this case there is no observable effects of this
error.

Three drawbacks of the selected minimization technique is mentioned in [15] which
are expressed as:

* Not being rapidly convergent,

¢ Inability to give accurate results on ill conditioned problems and
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» No acceleration being possible with the information given the structure of the
problem to be minimized.

Moreover, observing the wrong maxima can be caused by the fact that the acquisi-
tion function is not smooth for the given grid spacing as well.

Again as it can be observed from Figure 4.22 the focus of training has been focused
mostly on the ends due to the nature of the R distribution on parameter space,
with some training point selection coming near the middle of the parameter space.

The exact error progression for the given run is as shown in Figures 4.23 to 4.32.
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Figure 4.24: Iteration-2
(1 = [5.0,4.0])

Figure 4.23: Iteration-1
(1w =[5.0])

The most observable feature of the exact error propogasion through 10 iterations
is the fact that R and € are similar in the first iterations, where both of them get
their maximum at both ends of the parameter space. The right choice of the maxi-
mum of surrogate R in the first 2 consecutive iterations enables the £ to getinto a
reasonable scale for the selected parameter space, as it can be seen in Figure 4.25.
However, after this point the corroletion between R and £ decreases. It is again
evident that addition of another training point results in decreasing exact error in
the near neighbourhood of the training point. This result has been mentioned in
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Figure 4.25: Iteration-3
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Figure 4.27: Iteration-5
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the findings of [2] as well.

As it can be seen from Figure 4.32 after training with 10 points, the exact error goes
below the prescribed threshold, successfully, although there were some problems
with the BO procedure. This is a strong indication for the applicability of proposed
procedure.

Due to the random nature of the procedure, multiple runs have been conducted and
in all of them the exact error was able to be lowered below the prescribed threshold.
However, it should be noted that selected points and their selection order changed
between runs.



Conclusions and
Recommendations

T he main focus of this research was the implimention of a BO procedure utilizing
existing GPR libraries into the MOR technique procedure developed in [1] and
[2]. Implementation of this procedure has been used to sample the parameter
space efficiently to construct the reduced basis. The main reason for utilizing BO
for this procedure was to keep the evaluation of the ROM at minimum while having
a good idea about error indicator that exist in the whole parameter space. Upon
computational simulation, better understanding of the behavior of proposed method
and its implementation in the reduced basis construction has been developed. The
conclusions reached with this research are as follows:

o The randomness introduced in the proposed procedure affects the direction of
parameter sampling. This in turn, might give rise to increased computational
time or inefficient training point selection. However, the obtained accuracy
is not affected by this, since the training point decreases the exact error not
only at the point, but also in its near vicinity.

 Although, space filling initial sampling is utilized, due to the nature of the
error indicator in the given parameter space, it has been observed that the BO
accuracy is highly determined by the initial sampling points. Again, this does
not influence the outcome. However, more representative initial sampling of
the parameter space could be more efficient.

« Since the proposed truncation method in [2] has not been utilized, disruptions
in the error indicator was not observed, which makes this method applicable
to a wider range in this problem. However, increasing the size of the snapshot
matrix, makes it time consuming to perform SVD procedure, which makes it
impractical to be utilized in more dense parameter spaces.

27
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5. Conclusions and Recommendations

Compared to [2], different acquisition function and stopping criteria for BO
procedure have been utilized. It has been seen that the proposed methods
can be utilized in the same sense to get the desired reduced basis.

It has been observed that correlation between error indicator and the exact
error is changing as the training points for the reduced basis increases.

For implementation of this work to the Model Order Reduction Framework further
improvements are needed. These improvements and some other recommendations
are as follows:

Initial sampling dependency should be addressed and other types of space
filling random points selection techniques could be tested.

A stopping criteria should be implemented that does not involve the FOM
solutions that have been utilized in this research, since getting FOM solutions
is against the prime objective of MOR.

Different than the case of [2], a way to compress, store and combine the infor-
mation gathered from each step in an efficient way without loosing information
should be sought for general applicability of this automatized procedure to be
valid.

Different types of kernels or combinations of kernels could be tested for cap-
turing the relations between the data points of error indicator in the parameter
space more accurately.

The effect of initial sampling number to the efficiency could be sought.

For this research no information regarding the exact error has been utilized
other than for stopping criteria. Since FOM solutions are known from the
training points, this information could be utilized for the next training point
selection.

Since the parameter space have been selected small, a bigger parameter
space can be investigated for the same proposed framework.
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