

Delft University of Technology

On the Evaluation of Deep Learning-Based Side-Channel Analysis

Wu, Lichao; Perin, Guilherme; Picek, Stjepan

DOI
10.1007/978-3-030-99766-3_3
Publication date
2022
Document Version
Final published version
Published in
Constructive Side-Channel Analysis and Secure Design - 13th International Workshop, COSADE 2022,
Proceedings

Citation (APA)
Wu, L., Perin, G., & Picek, S. (2022). On the Evaluation of Deep Learning-Based Side-Channel Analysis. In
J. Balasch, & C. O’Flynn (Eds.), Constructive Side-Channel Analysis and Secure Design - 13th International
Workshop, COSADE 2022, Proceedings (pp. 49-71). (Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 13211 LNCS).
Springer. https://doi.org/10.1007/978-3-030-99766-3_3
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-030-99766-3_3
https://doi.org/10.1007/978-3-030-99766-3_3

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

On the Evaluation of Deep
Learning-Based Side-Channel Analysis

Lichao Wu1, Guilherme Perin1, and Stjepan Picek1,2(B)

1 Delft University of Technology, Delft, The Netherlands
2 Radboud University, Nijmegen, The Netherlands

stjepan@computer.org

Abstract. Deep learning-based side-channel analysis is rapidly posi-
tioning itself as a de-facto standard for the most powerful profiling side-
channel analysis.The results from the last few years show that deep learn-
ing techniques can efficiently break targets that are even protected with
countermeasures. While there are constant improvements in making the
deep learning-based attacks more powerful, little is done on evaluating
the attacks’ performance. Indeed, how the evaluation process is done
today is not different from what was done more than a decade ago from
the perspective of evaluation metrics.

This paper considers how to evaluate deep learning-based side-channel
analysis and whether the commonly used approaches give the best
results. To that end, we consider different summary statistics and the
influence of algorithmic randomness on the stability of profiling mod-
els. Our results show that besides commonly used metrics like guessing
entropy, one should also show the standard deviation results to assess the
attack performance properly. Even more importantly, using the arith-
metic mean for guessing entropy does not yield the best results, and
instead, a median value should be used.

Keywords: Side-channel Analysis · Deep Learning · Guessing
Entropy · Median

1 Introduction

Side-channel analysis (SCA) encompasses techniques aiming at exploiting weak-
nesses of algorithms’ implementations [11]. One standard division of SCA is into
direct attacks and profiling attacks. Profiling attacks (two-stage attacks) are more
powerful but require a stronger attacker who can access a copy of a device to be
attacked. The attacker uses that copy to build a model of a device to be used to
attack another similar (identical) device. In the last few years, the most explored
profiling attacks have been based on machine learning (especially deep learning).
Such attacks are very powerful as they can break targets protected with counter-
measures [3,6] but are also somewhat “easier” to deploy as they do not necessarily
require pre-processing/feature engineering stages [9,15]. Still, many open ques-
tions are usually connected with how to find machine learning architectures that
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Balasch and C. O’Flynn (Eds.): COSADE 2022, LNCS 13211, pp. 49–71, 2022.
https://doi.org/10.1007/978-3-030-99766-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99766-3_3&domain=pdf
https://doi.org/10.1007/978-3-030-99766-3_3

50 L. Wu et al.

perform well [27,30]. Unfortunately, this is just one side of the problem. A perspec-
tive that cannot be neglected is how to assess the performance of such a profiling
model. While the state-of-the-art in deep learning SCA progressed tremendously
in the last few years, no results consider how to evaluate the performance of such
attacks and if commonly used techniques are the most appropriate ones.

It is common to use metrics like key rank, success rate, and guessing entropy
to evaluate the attack performance in SCA [1,6,27,30]. While the first metric
requires one experiment run, the latter two are run multiple times to counteract
the effect of dataset/measurements selection. For direct attacks or simpler profil-
ing attacks like the template attack, this repetition is sufficient as the algorithms
are deterministic, so running them multiple times gives the same results (if the
measurements and selected features do not change). On the other hand, deep
learning techniques (i.e., artificial neural networks) have multiple sources of ran-
domness (due to the initialization, regularization, and optimization procedure),
making those algorithms stochastic. The randomly initialized weights and biases
with selected initialization methods make the models perform differently before
training, which may lead to performance variation after training as well. Regu-
larization techniques like dropout randomly ’switch-off’ some neurons, leading to
unpredictable model behaviors. Optimization algorithms, such as stochastic gra-
dient descent (SGD) and Limited-memory Broyden-Fletcher-Goldfarb-Shanno
algorithm (L-BFGS), can lead to significant performance variation as well due
to their different working principles. Thus, it is intuitive to expect different
results when training deep learning models (and including the above-mentioned
random sources multiple times), making the evaluation of the attack perfor-
mance not straightforward. This problem becomes even more challenging when
considering the differences among various neural network architectures.

To the best of our knowledge, there are not many works assessing the evalua-
tion performance of side-channel attacks. For instance, Martin et al. investigated
how to estimate key rank distribution for SCA [12]. Whitnall and Oswald consid-
ered robust profiling setting [26], which can also be connected with the stability
of a profiling model, as intuitively, a more robust profiling model provides more
stability. Picek et al. considered the robustness through the expectation estima-
tion problem and provided theoretical foundations to assess the robustness of
deep learning-based SCA [20]. The authors concluded that deep learning algo-
rithms are robust, but they did not consider improving the evaluation process.

This paper investigates how to evaluate the attack performance of deep
learning-based SCA. Our main contributions are:

– We investigate the influence of algorithmic randomness on the attack perfor-
mance. More precisely, we use the standard deviation to showcase that run-
ning experiments multiple times can result in a significantly different assess-
ment of the attack performance. This difference in the attack performance is
confirmed for scenarios that use 1) different random models, and 2) the same
profiling model and train it independently several times (where the random-
ness comes from the algorithmic settings).

On the Evaluation of Deep Learning-Based Side-Channel Analysis 51

– We investigate the most appropriate summary statistic for evaluating the
attack performance. We consider the arithmetic mean, geometric mean, and
median and show that the median works the best (fastest convergence). Our
results indicate that deep learning-based SCA often results in skewed distri-
butions of the attack performance, so the arithmetic mean is not appropriate
statistics, which is relevant as it is commonly used in the SCA domain.

– We investigate how a different number of independent experiments (key rank
evaluations) in the attack phase influences attack performance. Our results
show that this value does not significantly influence the results, so much
smaller values can be safely used.

We conduct an extensive experimental evaluation including three datasets, two
leakage models, and different types of neural networks (multilayer perceptrons
and convolutional neural networks) to confirm our observations.

2 Machine Learning-Based Side-Channel Analysis

We concentrate on supervised machine learning and the multi-class classification
task (with c classes), as commonly done in related works (see Sect. 3). Supervised
machine (deep) learning classification represents the task of learning a function
f that maps an input to the discrete output (f : X → Y)) based on examples
of input-output pairs. The function f is parameterized by n parameters learned
in the profiling model: θ ∈ R

n.
Hyperparameters are the variables determining the network structure (e.g.,

the number of neurons and layers) and the variables determining how the network
is trained (e.g., learning rate). The parameters are the coefficients chosen through
learning (e.g., weights).

Training. In the training phase, the goal is that the algorithm learns the param-
eters θ minimizing the empirical risk represented by a loss function on a training
dataset of size N .

Validation. When training a profiling model, it should generalize well to pre-
viously unseen data, i.e., the profiling model shows stability. To this end, it is
common to use cross-validation techniques. Cross-validation is a statistical val-
idation technique used to assess the performance of a machine learning model.
Two commonly employed cross-validation techniques in the machine learning-
based SCA are 1) validation and 2) k-fold cross-validation.

With the validation technique, we divide the dataset into training (size N),
validation (size V), and test dataset (size Q) and use the validation dataset to
assess the performance of a model trained on the training dataset. Finally, we use
the best-obtained model to attack the test dataset. This technique is commonly
used with deep learning-based SCA (due to computational simplicity) [22,28,30].

In the k-fold cross-validation, a dataset is divided into k parts. Then, a model
is built on k − 1 folds and evaluated on the k-th fold. This process is repeated
until each fold serves as the k-th fold (every combination of k − 1 folds serves to

52 L. Wu et al.

train the model). This technique is commonly used with computationally simpler
machine learning techniques [20].

Test. In the test phase, the goal is to predict classes (or probabilities that a
specific class would be predicted) y based on the previously unseen traces x (the
number of traces equals Q), and the trained model f .

Evaluating the Attack Performance. The outcome of predicting with a model f
on the attack set is a two-dimensional matrix P with dimensions equal to Q× c.
The cumulative sum S(k) for any key byte candidate k is a valid SCA distin-
guisher, where it is common to use the maximum log-likelihood distinguisher
S(k) =

∑Q
i=1 log(pi,y). The value pi,y denotes the probability that for a key

k and a specific input, we obtain the class y (derived from the key and input
through a cryptographic function and a leakage model).

It is common to estimate the effort to obtain the correct key k∗ with metrics
like success rate (SR) and guessing entropy (GE) [25].

With Q traces in the attack phase, an attack outputs a key guessing vector
g = [g1, g2, . . . , g|K|] in decreasing order of probability where g1 denotes the
most likely and g|K| the least likely key candidate. Then, guessing entropy is
the average position of the correct key in g1. The success rate of order o is the
average empirical probability that the correct key k∗ is located within the first
o elements of the key guessing vector g.

Sources of Randomness in Deep Learning-Based SCA. When considering deep
learning, several common sources of randomness will influence the obtained
results. Informally, the random sources are connected with the dataset (dataset
randomness) and the machine learning algorithm (algorithmic randomness).
Dataset randomness is caused by the random selection of the traces included
in the training/attack dataset. Averaging multiple results is a common way to
reduce the effect of any specific traces. While the choice of traces can significantly
influence the results, we consider it out of scope for this paper, as it influences
any side-channel attack and not only the deep learning ones. For more results
about attack performance when selecting different traces, see [29].

In terms of algorithmic randomness, we can obtain different results even if
training/evaluating a neural network on the same set of traces (for experiments,
see Sect. 5.2, Fig. 1). Indeed, the setting of the random seeds introduces ran-
domness to the machine learning algorithm, where the common sources are:

– Initialization of weights and biases. Initialization of weights provides the
first model that is then improved with the backpropagation algorithm. If
the weights are chosen poorly (e.g., all the weights are the same value), the
training process will not be efficient. The initialization of weight analysis in
the context of SCA is done in [8].

1 Averaging is commonly done over 100 independent experiments (attacks) to obtain
statistically significant results.

On the Evaluation of Deep Learning-Based Side-Channel Analysis 53

– Regularization techniques, such as dropout. Regularization represents tech-
niques used to reduce the error by fitting a function f appropriately on the
training set. Regularization is used to prevent overfitting (when the model
does not generalize to previously unseen data). Dropout is a regularization
technique where during the training, some layer outputs are randomly ignored
(“dropped out”). Dropout is used to approximate training many neural net-
works with different architectures in parallel.

– Optimization techniques used to minimize the loss function. Optimizers
change the parameters (e.g., weights) of machine learning algorithms (e.g.,
neural networks) to reduce the loss. They can also change the hyperparam-
eters like learning rate. The analysis of various optimization algorithms and
their behavior in SCA is done in [14].

3 Related Works

The variety of techniques and choices one could take when using machine learning
(even more deep learning) brought the need for much more detailed analyses,
resulting in an abundance of results and papers. Indeed, since 2016, more than
120 papers have examined deep learning and SCA [21].

The first profiling SCA techniques like template attack [4] or stochastic mod-
els [23] have no tunable hyperparameters2, making the analysis simpler and
deterministic. Then, running the experiments multiple times results in the same
solutions, provided that the same measurements are used. However, the data
randomness is introduced by traces and feature selection and will affect the final
attack performance. Note that the feature selection/engineering step is also a
common one for simpler machine learning techniques3.

Afterward, machine learning techniques like support vector machines [19],
random forest [7], or Naive Bayes [5,17] started to attract more attention in
the SCA community as the results were in general favorable compared to the
template attack. Those techniques have different hyperparameters (except Naive
Bayes, which has no hyperparameters) one needs to tune to reach their full
potential. Still, the evaluation of the attack performance did not account for the
algorithmic sources of randomness, and the SCA community continued to report
the results in the same fashion as for the template attack (e.g., the average key
rank for a specific number of attack traces).

Finally, in the last few years, we notice a general direction of using deep
learning for profiling SCA. The first significant step was done by Maghrebi et
al. as they showed that convolutional neural networks (CNNs) could efficiently
break different targets [10]. Additionally, they showed that deep learning works
well with raw traces, removing (or, at least reducing) the need for various feature
selection techniques [16]. Cagli et al. demonstrated that deep learning could also
break implementations protected with jitter countermeasures and introduced
2 Besides the selection of features (points of interest).
3 Even deep learning techniques are commonly used with a pre-selected window of

features.

54 L. Wu et al.

the concept of data augmentation in the profiling SCA [3]. Picek et al. evaluated
several machine learning metrics and showed a discrepancy between those and
the side-channel metrics [18]. The authors showed that the metrics problems also
happen for deep learning techniques. Kim et al. designed a deep learning archi-
tecture capable of achieving excellent results on several datasets and regularized
input with Gaussian noise to further improve the attack performance [6].

Benadjila et al. provided the first more detailed investigation into the impor-
tance of hyperparameter tuning [1]. Zaid et al. proposed the first methodology
to select hyperparameters related to the size (number of learnable parameters,
i.e., weights and biases) of layers in CNNs [30]. Wouters et al. [27] improved
upon the work from Zaid et al. [30] where they showed how to reach simi-
lar attack performance with significantly smaller neural network architectures.
Perin et al. investigated deep learning model generalization and showed that out-
put class probabilities represent a strong SCA metric [13]. Wu et al. introduced
Bayesian optimization for hyperparameter tuning [28]. With this approach, the
authors managed to find small neural network architectures that perform well
(surpassing the architectures’ performance obtained by the previous methodolo-
gies). Rijsdijk et al. used reinforcement learning to find small convolutional neu-
ral networks surpassing the previous state-of-the-art results [22]. Unfortunately,
these works showed the importance of hyperparameter tuning but did not con-
sider the influence of algorithmic randomness. What is more, the ever-increasing
number of hyperparameters to test resulted in a simpler (faster) validation pro-
cess but also a larger variance in the results. Li et al. investigated the influence
of randomness caused by the weight initialization for multilayer perceptron and
convolutional neural network architectures and showed that, depending on the
choice of the weight initialization method, SCA attack performance could vary
significantly [8]. Perin and Picek explored the impact of the optimizer choice for
deep learning-based SCA [14]. Their results indicated that some commonly used
optimizers could easily overfit, requiring more effort during the training process.

4 Summary Statistics

Once we obtained the information about key rank from z independent exper-
iments over space S, we need to find the most appropriate estimator for the
expected value of S. A common way to do this is to use the arithmetic mean,
where the arithmetic mean of z examples equals x = 1

z

∑z
i=1 xi. While a com-

mon way to calculate guessing entropy, arithmetic mean has a drawback as it is
dominated by numbers on a larger scale. This happens due to a simple additive
relationship between numbers where scales do not play a role.

An alternative to arithmetic mean that takes into account the proportions is
the geometric mean x̌ = (

∏z
i=1 xi)

1
z .

We can also consider the middle value of the dataset, which is called median
x̃ =

x z
2
+x z

2 +1

2 . The median is less affected by outliers and skewed data than the
arithmetic mean.

On the Evaluation of Deep Learning-Based Side-Channel Analysis 55

The standard deviation is a measure of the amount of variation or dis-
persion of a set of values σx =

√
1
z

∑z
i=1(xi − x)2. In the SCA context, a large

standard deviation means that the adversary will have a high probability to be
“lucky” (or “unlucky”) in the choice of traces or hyperparameters.

5 Experimental Evaluation

5.1 Settings

We investigate two scenarios in our experiments: random profiling models and
state-of-the-art profiling models from related works. We experiment with multi-
layer perceptron (MLP) and convolutional neural networks (CNNs) in the Ham-
ming weight (HW) and Identity (ID) leakage models. Finally, we consider the
ASCAD fixed key (ASCAD F), ASCAD random keys (ASCAD R)4, and CHES
2018 Capture-The-Flag (CHES CTF) datasets)5. For both ASCAD versions, we
attack key byte 3 (the first masked key byte) and use 50 000 traces for profiling
and 5 000 traces for the attack. For CHES CTF, we use 45 000 traces with 2 200
features each for profiling and 5 000 traces for the attack, and we attack the
first key byte. We opted for these settings to make our experiments aligned with
related works. Additionally, it is common to attack only one key byte as it is
expected that the attack difficulty should be similar for the other key bytes, see,
e.g., [22,27,30].

The machine learning model was implemented in python version 3.6, using
TensorFlow library version 2.0. The model training algorithms were run on a
cluster of Nvidia GTX 1080 and GTX 2080 graphics processing units (GPUs),
managed by Slurm workload manager version 19.05.4. The number of random
profiling models is set to 100 for all experiments. We set the maximum sizes (in
terms of the number of training parameters) for architectures for the random
model generation to the ones from the ASCAD paper [1], which we denote as
’MLP best’ and ’CNN best’. Since more recent state-of-the-art models are even
smaller, we can assume we do not need bigger models for the dataset under
investigation. The detailed model implementations are listed in Table 1. Aligned
with the settings provided by the ASCAD paper [1], we use RMSProb as the
optimizer with a learning rate of 1e–5. The number of training epochs is set to
75. To generate the random models from the baseline models (MLP best and
CNN best), for CNN models, we randomized the kernel size of the convolution
layer and the number of neurons in the dense layer. The latter one is also ran-
domized for MLP models. Specifically, the range is from the half of the original
parameter to the original parameter. For instance, the kernel values of the first
convolution layer in the CNN model range from 32 to 64. For MLP, the range of
the neurons is from 100 to 200. We use diverse architectures to provide general
conclusions, but they should still perform relatively well (break the target) since
they are based on well-performing architectures that we do not change radically.
4 https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA AES v1.
5 http://aisylabdatasets.ewi.tudelft.nl/ches ctf.h5.

https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1
http://aisylabdatasets.ewi.tudelft.nl/ches_ctf.h5

56 L. Wu et al.

Table 1. Baseline MLP and CNN architectures used in the experiments.

Test models Convolution Pooling Dense layer Activation

(filter number, size) (size, stride)

MLP best - - 200*5 ReLU

CNN best Conv (64, 128, 256, 512, 512) avg(2,2)*5 4 096*2 ReLU

In terms of attacks with the state-of-the-art models, we used the MLP models
obtained through the Bayesian Optimization [28]. The CNN models we used are
developed with the reinforcement learning approach [22]. The details about the
architectures are listed in Tables 2 and 3. All of the training hyperparameters are
aligned with the original papers [22,28]. Specifically, CNNs use He uniform as the
kernel initializer, and the corresponding learning rate is handled by OneCycleLR
policy [24] with the maximum learning rate (LR) of 5e–3. For MLPs, Glorot
uniform is used as the kernel initializer. Both MLPs and CNNs apply categorical
crossentropy as the loss function and mini-batch as the optimization method.
While there are other state-of-the-art models we could use (e.g., from [27,30]),
we opted for these as the related works did not run experiments for the HW
leakage model but only the ID leakage model. We used the selected state-of-the-
art models as the authors provided the code for their architectures, making the
risk of wrongly interpreting and implementing an architecture impossible. The
training effort of each model (i.e., the number of epochs) is set based on the
related works [1,22,28]. Specifically, MLP best and CNN best are trained with
75 epochs, while the other models are trained with 50 epochs.

Table 2. MLP architectures used in the experiments [28].

Test models Dense layer Activation Learning rate

ASCAD FHW 1 024, 1 024, 760, 8, 704, 1 016, 560 ReLU 1e–5

ASCAD FID 480,480 ELU 5e–3

ASCAD RHW 448, 448, 512, 168 ELU 5e–4

ASCAD RID 664, 664, 624, 816, 624 ELU 5e–4

CHES CTFHW 192, 192, 616, 248, 440 ELU 1e–3

In all the experiments, we conduct the following steps to obtain the results:

1. To evaluate the general performance of different averaging methods and train-
ing settings, we perform multiple independent training phases for state-of-the-
art and random models. Based on the preliminary experiments, 20 indepen-
dent models (thus, independent training phases of a model) are sufficient to
assess the performance of the state-of-the-art models, while to evaluate the
performance variation of random architectures, we increase the number of the
tested models to 100.

On the Evaluation of Deep Learning-Based Side-Channel Analysis 57

Table 3. CNN architectures used in the experiments [22].

Test models Convolution Pooling Dense layer Activation

(filter number, size) (size, stride)

ASCAD FHW Conv(16,100) avg(25,25) 15+4+4 selu

ASCAD FID Conv(128,25) avg(25,25) 20+15 selu

ASCAD RHW Conv(4, 50) avg(25, 25) 30+30+30 selu

ASCAD RID Conv(128, 3) avg(75, 75) 30+2 selu

CHES CTFHW Conv(4, 100) avg(4, 4) 15+10+10 selu

2. For each independent training, we calculate summary statistics (arithmetic
mean, geometric mean, and median) for the evaluation metrics (GE, SR) over
a number of attacks. Note that an attack represents an individual key rank
experiment. For instance, having 100 attacks means running 100 key rank
evaluations and providing summary statistics using the evaluation metrics.

3. The arithmetic average and standard deviation of the attack performance
metric are plotted. Since the attack performance is averaged over profiling
models, the influence of algorithmic randomness is present but not dataset
randomness (in that case, we should show standard deviation over different
selections of the attack traces).

4. As all of the models effectively retrieve the key or converge to close to zero
guessing entropy, we use TGE0 (i.e., the number of attack traces to reach
GE of zero) to evaluate the attack result. Note that this is still GE metric,
but now, with an adjusted number of traces required for a successful attack
instead of the fixed number of traces.

5. To conclude which summary statistics is the best, we consider two aspects:
the metric that converges to the best value (e.g., GE of 0) and the metric
that converges the fastest (with the minimum number of attack traces) to
the best value. Since for most experiments provided here, we obtain the best
possible value (GE of 0), the main objective is to reach the GE of 0 with the
lowest number of attack traces.

Naturally, one could argue that the best metric is the one that gives the
worst results as it approximates the worst-case security evaluation. However,
we believe this somewhat negates the idea of using the most powerful attack
approach, which is a common setup for deep learning-based SCA.

We also investigated the success rate but observed that it commonly does not
change regardless of the averaging methods and thus offers limited information.
Therefore, we omit these results and only present the success rate results that
contain more information. We postulate this happens as success rate considers
only the most likely key guess (first-order success rate). At the same time, guess-
ing entropy uses the information from the whole key guessing vector. Thus, if the
attack is more difficult, i.e., the probability differences among the best guesses
are less pronounced, it will affect the guessing entropy metric more. For success

58 L. Wu et al.

rate, algorithmic randomness is less likely to cause such significant differences in
the profiling models so that the most likely guess will change. To conclude, the
success rate metric can help avoid the influence of outliers, but that comes with
a price of less information about the attack performance.

In the next section, most of the results are plotted with the number of attacks
on x-axis (for GE calculation) and TGE0 on y-axis. The solid lines represent the
average of the TGE0 metric (i.e., arithmetic mean, geometric mean, or median of
several independent key rank experiments), while the dashed lines of the same
color indicate the upper and lower bound of the standard deviation (± σ). The
spaces between of upper and lower bound are filled with the corresponding but
lighter color.

5.2 Results

A Demonstration of Algorithmic Randomness Influence. We showcase the effects
of algorithmic randomness in Fig. 1 for the ASCAD fixed key dataset. We select
two models from a random hyperparameter tuning: one performs well (GE con-
verges to zero), and the other performs poorly (GE does not converge). For
every value of the solid line, we train 100 random models, and for each of those
random models, we run the number of attacks as denoted on the x-axis. The
influence of the random weight initialization on the poor-performing model is
greater than on the well-performing model over 100 independent training exper-
iments. This behavior indicates that a better model suffers less from the random
weight initialization, but there will still be differences in performance (recall,
finding a model with optimal weights is difficult, and there is no methodology
allowing that in the general case). The influence of the dropout layer is limited
in this example (cf. Fig. 1a), but still, we can observe slight differences caused
by dropout randomization. Finally, two optimization techniques, SGD and L-
BFGS, are tested with the same (well-performing) models. In both cases, the
attack performance varies more significantly than the original mini-batch opti-
mization method, confirming the impact of the optimizer’s randomness on the
attack performance. Interestingly, L-BFGS does not reach GE of zero, making a
model that performed well into a model that performs poorly.

Since most deep learning-based SCAs use random search to find good hyper-
parameters, from Fig. 1, we can expect (radically) different evaluation results
based on the used architectures. While there are already results showing that
these sources of randomness introduce instability in deep learning-based SCA
(as discussed in Sect. 3), there is no discussion on how to resolve such issues or
at least report the results in a more meaningful way. On the other hand, the
algorithm randomness is also beneficial as it gives the model a better chance to
converge when training networks. For example, stochastic gradient descent uses
randomness to give the model the best chance to jump out of local minima and
converge to the global minimum for a convex loss function. Correspondingly,
algorithm randomness should cause better model convergence and lower stan-
dard deviation under the correct settings. This assumes that the training and
test data have similar distributions, and optimal hyperparameters are chosen.

On the Evaluation of Deep Learning-Based Side-Channel Analysis 59

(a) TGE0: Random initialization
of weights and biases of a
well-performing model.

(b) GE: Random initialization of
weights and biases of a
bad-performing model.

(c) TGE0: Regularization
techniques (dropout on
well-performing model.)

(d) GE: Optimization techniques
(SGD, L-BFGS on

well-performing model.)

Fig. 1. A demonstration of the algorithm randomness for the Hamming weight (HW)
leakage model and the arithmetic mean as summary statistics.

Since those two constraints are not easy to fulfill [2,30], algorithmic randomness
can (and will) also have a negative influence on the attack performance.

Results for the ASCAD F Dataset. The results for random models are shown in
Fig. 2. All the results indicate relatively stable behavior: when attacking with 100
random models, the median is a statistic indicating the best attack performance
while the worst is the arithmetic mean. Interestingly, we can observe that the
upper deviation value for the median gives similar results as the lower deviation
value for the arithmetic mean, indicating that the median is a significantly bet-
ter evaluation statistic. The differences in the number of attack traces are also
significant: from around 700 to 2 000 attack traces. We analyzed the key rank
histogram for all attacks, and outliers (failed attacks) have a significant influence
on the arithmetic mean (and to a smaller extent, geometric mean), as they con-
sider all attack results. On the other hand, the median mean is equivalent to the
attack performance of a medium-performing model, thus can reliably represent
the attack performance. To demonstrate this, Fig. 3 shows the GE histogram of
100 trained models with the smallest and largest averaging performance differ-
ences (see Figs. 2b and 2d). Clearly, GE calculated with the arithmetic mean
tends to have larger values.

60 L. Wu et al.

(a) Random MLP with the HW
leakage model.

(b) Random MLP with the ID
leakage model.

(c) Random CNN with the HW
leakage model.

(d) Random CNN with the ID
leakage model.

Fig. 2. TGE0: attack on ASCAD F with random MLP and CNN models.

(a) Random MLP with the ID
leakage model.

(b) Random CNN with the ID
leakage model.

Fig. 3. Histograms of guessing entropy.

The behavior for a different number of attacks remains stable with no dif-
ferences when using more than 40 attacks. This result indicates that instead
of averaging 100 times as commonly done in the literature [13,22], the dataset
randomness can be sufficiently countered with less computation effort. Notice
how the arithmetic mean can lead to comparable or even better attack perfor-
mance than its counterparts with a small number of attacks. We hypothesize this
happens due to the random shuffling of attack traces and insufficient number of

On the Evaluation of Deep Learning-Based Side-Channel Analysis 61

experiments to assess the average behavior properly. Indeed, with more attacks
being performed, the increasing number of outliers introduced by data random-
ness can degrade the attack performance, resulting in less favorable results for
the arithmetic mean. With a larger number of attacks, the standard deviation
results are comparable regardless of the number of attacks, again confirming
that outliers are the main contributors to the reduced attack performance for
the arithmetic mean and geometric mean. From a different perspective, this indi-
cates that random models perform well for this dataset and that more elaborate
tuning mechanisms are not needed [28]. MLP for the ID leakage model shows
the best results and smallest standard deviation. We postulate that this happens
as the model’s capacity is well aligned with the characteristic of the dataset, so
most of the experiments end up with a rather similar attack performance.

We also show averaged success rate results in Fig. 4. Arithmetic mean shares
the same tendency with the geometric mean, so the lines are overlapping. The
rest of the results are omitted as the success rate results are the same for the
three averaging methods. Compared with TGE0, the success rate metric is less
sensitive to the variation of the averaging methods since it uses information
about the best guess only. We see a drop for both geometric and arithmetic
mean with more attack results averaged, while the median remains stable. This
behavior indicates that the influence of outliers when considering more attacks
becomes more significant, as it skews the distribution.

(a) Random MLP with the HW
leakage model.

(b) Random CNN with the ID
leakage model.

Fig. 4. Success Rate: attack on ASCAD F with random MLP and CNN models.

Next, we investigate the performance of four state-of-the-art models. The
results are shown in Fig. 5. The green dashed line represents the attack per-
formance reported in the original papers [22,28]. For MLP, the median gives
the best results, while the arithmetic mean indicates significantly worse behav-
ior (around twice as many traces required to reach GE of zero). Aligned with
previous experiments, the increased number of attacks (i.e., larger than 50) has
a limited effect on the performance of each averaging method. In terms of the
attack performance of each model, the results reported in related works are bet-
ter than the averaged performance from multiple models, meaning that obtaining

62 L. Wu et al.

the results on the level of those reported in related works requires a significant
number of experiments (until the appropriate weights of a model are found).
Large standard deviation values confirm this as many of the found models do
not even approach the reported performance. Therefore, we argue that averaging
with multiple models initialized with random weights should be mandatory to
report their performance reliably.

(a) State-of-the-art MLP with
the HW leakage model.

(b) State-of-the-art MLP with
the ID leakage model.

(c) State-of-the-art CNN with
the HW leakage model.

(d) State-of-the-art CNN with
the ID leakage model.

Fig. 5. TGE0: attack on state-of-the-art MLP and CNN models with the ASCAD F
dataset.

The median performs the best for CNN results, aligned with the previous
results. The number of attacks shows only a marginal influence, and the devi-
ation is large for the HW leakage model while small for the ID leakage model.
We hypothesize this happens as with fewer classes scenario (as it is for the
HW leakage model), the profiling model has more capacity (recall that these
optimized models are already quite small from the perspective of the number
of trainable parameters) and more choice to end up with different performing
architectures. The model capacity seems better aligned with the task for the ID
leakage model, so most of the experiments end up with similar attack perfor-
mance. Interestingly, we can reach an even better performance than reported
in related works. We believe this happens as we (in essence) show results for
ensembles of classifiers (recall, we train a single architecture but with different
parameters), which is reported to work better than a single classifier [13].

On the Evaluation of Deep Learning-Based Side-Channel Analysis 63

In general, there is a significant deviation even when using a single optimized
model, indicating that reporting the attack performance for a single setup can be
misleading. On the other hand, our results suggest that the standard deviation
correlates with the model’s fitness to the dataset. For example, in Fig. 5b, the
models had high standard deviation, and the performance was significantly worse
than the literature’s performance in the green curve. Meanwhile, when looking at
Fig. 5d, the standard deviation was very small, and the performance was better
than the performance presented in the literature.

Results for the ASCAD R Dataset. Recall that the profiling traces for this
dataset contain random keys while the attack set contains a fixed but unknown
key. This setting is closer to the real attack scenario as it increases the difficulty
of retrieving the correct key from the attack set. Figure 6 presents the attack
results for 100 random models. Compared with ASCAD F, we see performance
degradation, especially when attacking in the ID leakage model. For instance,
when attacking with random MLP for the ID leakage model, 74% of the models
failed to converge GE to zero within 5 000 attack traces. Still, even in the worst
attack cases, the median reliably represents the attack result and requires the
smallest number of attack traces to obtain the correct key. Aligned with the pre-
vious results, there is a limited influence of the number of attacks, while standard
deviation is large for all cases except one (MLP with the ID leakage model). This
result indicates that several randomly selected models perform poorly and need
to be optimized.

Aligned with the previous experiment, in Fig. 7, we observe a drop in suc-
cess rate for the arithmetic and geometric means when the number of attacks
increases, indicating the influence of outliers. The median reaches the highest
success rate of all tested averaging methods in all scenarios. We also observe a
slight increase in SR for the ID leakage model with the increase in the number of
attacks, suggesting significant differences among specific attacks and requiring
more experiments to stabilize them. We omit other results for SR as they are
similar to the presented ones.

Moving to the results for the state-of-the-art models (Fig. 8), the attack
performance is significantly improved compared to the previous result on random
models. This means that using random models will not suffice to reach the top
attack performance due to a more difficult dataset. Again, the median performs
the best, consistently indicating the superiority of this averaging method. When
comparing our results with the one reported in the original papers [22,28] (green
dashed line), we again see a slight mismatch between them. Specifically, the
reported results for CNN with the HW leakage model act as an outlier in Fig. 8c,
again emphasizing the influence of the random weight initialization and the need
to provide averaged results over a number of profiling models.

The number of attacks has a small influence, but there is no reason to use
more than 50 attacks in the experiments. We see a very large standard deviation
for the CNN architecture and the ID leakage model, indicating that the profiling
model is not stable, so multiple experiments should be done to assess the attack
performance properly. Finally, for CNNs, there is the synergistic effect of using

64 L. Wu et al.

(a) Random MLP with the HW
leakage model.

(b) Random MLP with the ID
leakage model.

(c) Random CNN with the HW
leakage model.

(d) Random CNN with the ID
leakage model.

Fig. 6. TGE0: attack on ASCAD R with random MLP and CNN models.

(a) Random MLP with the HW
leakage model.

(b) Random CNN with the ID
leakage model.

Fig. 7. Success Rate: attack on ASCAD R with random MLP and CNN models.

multiple profiling models as we effectively develop an ensemble. An interesting
perspective is that we can improve state-of-the-art architectures’ results by mak-
ing ensembles of the same architectures with different trainable parameters. We
consider this relevant as it allows easy constructions of ensembles based on the
available architectures from the literature.

Results for the CHES CTF Dataset. Note that CHES CTF with the ID leakage
model results in attack failure according to [22,28], so we consider only the HW

On the Evaluation of Deep Learning-Based Side-Channel Analysis 65

(a) State-of-the-art MLP with
the HW leakage model.

(b) State-of-the-art MLP with
the ID leakage model.

(c) State-of-the-art CNN with
the HW leakage model.

(d) State-of-the-art CNN with
the ID leakage model.

Fig. 8. TGE0: attack on state-of-the-art MLP and CNN models with the ASCAD R
dataset.

leakage model. The results from random model attacks are shown in Fig. 9.
The performance of the median and the geometric mean is similar, and both of
them outperform the arithmetic mean that is commonly used by researchers and
evaluators. The random CNNs show unsuccessful attacks, which means that the
random selection of profiling architectures is not appropriate for this dataset.
The number of attacks does not show a difference if using more than 40 attacks,
and the deviation for MLP is large, as many profiling models do not succeed in
breaking the target.

When attacking with state-of-the-art profiling models, the attack efficiency
is dramatically improved. As shown in Fig. 10, for both MLP and CNN, the
median performs better than the geometric and arithmetic means. Therefore,
we can conclude that the median should be the preferred way of calculating
GE. Comparing our results and [22,28] (green dashed line), the latter performs
significantly better. As mentioned before, since 20-model averaging compensates
for the effect of the random weight initialization, we believe that our results
reflect the real performance compared to the results reported in related works.
A large deviation value additionally confirms those observations. Aligned with
all previous cases, we do not see a significant impact of the number of attacks.

66 L. Wu et al.

(a) Random MLP with the HW
leakage model.

(b) Random CNN with the HW
leakage model (most of the
attacks failed to converge).

Fig. 9. TGE0: attack on CHES CTF with random MLP and CNN models.

(a) State-of-the-art MLP with
the HW leakage model.

(b) State-of-the-art CNN with
the HW leakage model.

Fig. 10. TGE0: attack on state-of-the-art MLP and CNN models with the CHES CTF
dataset.

5.3 Discussion

Based on the experimental results, we provide several general observations:

1. Deep learning-based SCA can show different attack results due to algorithmic
randomness and skewed distribution of attack results. This, in turn, makes the
proper attack assessment potentially difficult, requiring the usage of summary
statistics when reporting the attack performance. Naturally, if the number
of models that do not converge is significantly larger than the number of
converging models, even the median will indicate poor attack performance.
Still, we do not consider this a problem as in such cases, the attack is difficult,
and the attack performance is generally poor.

2. Arithmetic mean should not be used as the average attack performance esti-
mate as it suffers from a skewed distribution. Our experiments show that
the median is the best choice since it is not affected by outliers and thus
represents a resistant measure of a center.

On the Evaluation of Deep Learning-Based Side-Channel Analysis 67

3. Large number of independent experiments to average the attack performance
does not increase the stability of results, indicating this as a simple option
to speed up the evaluation process. According to our results, the averaged
results from already 40 attacks are stable and representative in all cases.

4. Large standard deviation with random models is expected as we use (radi-
cally) different profiling models. For state-of-the-art models, a large standard
deviation indicates the low stability of the model. Thus, the performance of
such models could be questionable when facing challenges from the real-world
such as devices’ portability [2].

5. In many research works, the attack performance is presented for an optimized
model (regardless of the technique to achieve it) with specific hyperparame-
ters. However, even for a fixed model, we emphasize the necessity of reporting
the averaged performance over a number of profiling models with different
weight initialization so that the actual attack performance can be reliably
estimated.

6. It is possible to build strong attacks by using ensembles where we use different
profiling models (as done in related works) and by using a single model trained
a number of times (thus, having different trainable parameters).

We note that the median is well-known to be the preferable metric if a dataset
contains outliers or the underlying distribution is skewed. Thus, it could be stated
that the results are not surprising. While we agree, we emphasize that related
works do not commonly consider or report the media or standard deviation
results. Additionally, since the results show that algorithmic randomness plays a
significant role, extending the discussion outside of metrics and including appro-
priate representations is possible. For instance, instead of showing line plots as
commonly done in the SCA community, a better option could be to use boxplots.
A boxplot provides the minimum, the maximum, the sample median, and the
first and third quartiles, allowing better representation for spread and skewness.
At the same time, with boxplots, it would be less straightforward to provide
results for many values on the x-axis. As a demonstration, we attack ASCAD F
with the HW and ID leakage models 20 times and compare the boxplot of three
averaging methods with different numbers of attack traces. As shown in Fig. 11,
median averaging performs the best compared to other averaging methods. For
Fig. 11b, the results that are not visible indicate the attack reached GE of 0,
and there is no variance.

68 L. Wu et al.

(a) State-of-the-art CNN with
the HW leakage model.

(b) State-of-the-art CNN with
the ID leakage model.

Fig. 11. Guessing entropy in a boxplot representation: attack on state-of-the-art CNN
models with the ASCAD F dataset.

6 Conclusions and Future Work

This paper investigates the difficulty of assessing the attack performance for
deep learning-based side-channel analysis. By doing so, we also provide a way to
assess if selected random hyperparameters are well-selected (i.e., they result in
models where GE converges). We experimentally show that the most appropriate
summary statistics for evaluating deep learning-based SCA is the median and
not the arithmetic mean as commonly used. We show that the number of attacks
(independent experiments) plays only a marginal role where it is enough to use
a small number of attacks (e.g., around 40 independent attacks) to assess the
attack performance properly. Naturally, this holds under the assumption that the
ranges for random search are optimized. Next, we demonstrate that algorithmic
randomness has a significant effect on the results, and to properly assess them,
it is necessary to show averaged results and not only a single one (as commonly
done). Thus, while it is common to run multiple experiments to account the data
randomness (e.g., averaging with guessing entropy), algorithmic randomness also
plays an important role (possibly, even being more important), and the results
should be reported in such a way to account for it, e.g., using the median over
a number of independent training phases.

This paper dealt only with algorithmic randomness. It would be relevant
to consider dataset randomness and use more summary statistics. For instance,
while reporting average results over multiple experiments is common, no other
summary statistics are reported. We consider reporting standard deviation a
good option. Indeed, when comparing several deep learning algorithms, one can
often see rather similar results. Nevertheless, the question is how stable those
results are and if such additional information can help us judge what algorithm
performs better. Finally, comparing the results for line plots (as commonly used)
and boxplots when depicting the GE results would be interesting.

Acknowledgements. This work was supported in part by the Netherlands Organi-
zation for Scientific Research NWO project DISTANT (CS.019) and project PROACT

On the Evaluation of Deep Learning-Based Side-Channel Analysis 69

(NWA.1215.18.014). The authors thank our anonymous reviewers and our shepherd,
Michael Pehl, for their valuable comments and suggestions.

References

1. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Deep learning for
side-channel analysis and introduction to ASCAD database. J. Cryptograph.
Eng. 10(2), 163–188 (2020). 10.1007/s13389-019-00220-8, https://doi.org/10.1007/
s13389-019-00220-8

2. Bhasin, S., Chattopadhyay, A., Heuser, A., Jap, D., Picek, S., Shrivastwa, R.R.:
Mind the portability: a warriors guide through realistic profiled side-channel anal-
ysis. In: 27th Annual Network and Distributed System Security Symposium,
NDSS 2020, San Diego, California, USA, 23–26 February 2020. The Internet Soci-
ety (2020). https://www.ndss-symposium.org/ndss-paper/mind-the-portability-
a-warriors-guide-through-realistic-profiled-side-channel-analysis/

3. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.)
CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-66787-4 3

4. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

5. Heuser, A., Picek, S., Guilley, S., Mentens, N.: Side-channel analysis of lightweight
ciphers: does lightweight equal easy? In: Hancke, G.P., Markantonakis, K. (eds.)
Radio Frequency Identification and IoT Security - 12th International Workshop,
RFIDSec 2016, Hong Kong, China, November 30–December 2, 2016, Revised
Selected Papers, LNCS, vol. 10155, pp. 91–104. Springer, Berlin (2016). https://
doi.org/10.1007/978-3-319-62024-4 7

6. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. unleashing
the power of convolutional neural networks for profiled side-channel analysis. In:
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019, 148–179 (2019)

7. Lerman, L., Medeiros, S.F., Bontempi, G., Markowitch, O.: A machine learning
approach against a masked AES. In: CARDIS, LNCS, Springer, Berlin (2015).
https://doi.org/10.1007/s13389-014-0089-3

8. Li, H., Krček, M., Perin, G.: A comparison of weight initializers in deep learning-
based side-channel analysis. In: Zhou, I., et al. (eds.) Applied Cryptography and
Network Security Workshops, pp. 126–143. Springer International Publishing,
Cham (2020)

9. Lu, X., Zhang, C., Cao, P., Gu, D., Lu, H.: Pay attention to raw traces: a deep learn-
ing architecture for end-to-end profiling attacks. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2021(3), 235–274 (2021). 10.46586/tches.v2021.i3.235-274, https://
tches.iacr.org/index.php/TCHES/article/view/8974

10. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.)
SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-49445-6 1

11. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer, Boston (December 2006). https://doi.org/10.1007/978-
0-387-38162-6I, SBN 0-387-30857-1, http://www.dpabook.org/

https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/s13389-019-00220-8
https://www.ndss-symposium.org/ndss-paper/mind-the-portability-a-warriors-guide-through-realistic-profiled-side-channel-analysis/
https://www.ndss-symposium.org/ndss-paper/mind-the-portability-a-warriors-guide-through-realistic-profiled-side-channel-analysis/
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/978-3-319-62024-4_7
https://doi.org/10.1007/978-3-319-62024-4_7
https://doi.org/10.1007/s13389-014-0089-3
https://tches.iacr.org/index.php/TCHES/article/view/8974
https://tches.iacr.org/index.php/TCHES/article/view/8974
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-0-387-38162-6I
https://doi.org/10.1007/978-0-387-38162-6I
http://www.dpabook.org/

70 L. Wu et al.

12. Martin, D.P., Mather, L., Oswald, E., Stam, M.: Characterisation and estimation of
the key rank distribution in the context of side channel evaluations. In: Cheon, J.H.,
Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 548–572. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 20

13. Perin, G., Chmielewski, L., Picek, S.: Strength in numbers: Improving gen-
eralization with ensembles in machine learning-based profiled side-channel
analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(4), 337–364
(2020). https://doi.org/10.13154/tches.v2020.i4.337-364, https://tches.iacr.org/
index.php/TCHES/article/view/8686

14. Perin, G., Picek, S.: On the influence of optimizers in deep learning-based side-
channel analysis. In: Dunkelman, O., Jacobson, Jr., M.J., O’Flynn, C. (eds.) SAC
2020. LNCS, vol. 12804, pp. 615–636. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-81652-0 24

15. Perin, G., Wu, L., Picek, S.: Exploring feature selection scenarios for deep learning-
based side-channel analysis. Cryptology ePrint Archive, Report 2021/1414 (2021).
https://ia.cr/2021/1414

16. Picek, S., Heuser, A., Jovic, A., Batina, L.: A systematic evaluation of profiling
through focused feature selection. IEEE Trans. Very Large Scale Integr. (VLSI)
Syst. 27(12), 2802–2815 (2019)

17. Picek, S., Heuser, A., Guilley, S.: Template attack versus bayes classifier. J. Cryp-
togr. Eng. 7(4), 343–351 (2017). https://doi.org/10.1007/s13389-017-0172-7

18. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of
class imbalance and conflicting metrics with machine learning for side-channel
evaluations. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(1), 209–237
(2018). https://doi.org/10.13154/tches.v2019.i1.209-237, https://tches.iacr.org/
index.php/TCHES/article/view/7339

19. Picek, S., et al.: Side-channel analysis and machine learning: a practical perspec-
tive. In: 2017 International Joint Conference on Neural Networks, IJCNN 2017,
Anchorage, AK, USA, 14–19 May 2017, pp. 4095–4102 (2017)

20. Picek, S., Heuser, A., Wu, L., Alippi, C., Regazzoni, F.: When theory meets
practice: a framework for robust profiled side-channel analysis. Cryptology ePrint
Archive, Report 2018/1123 (2018). https://eprint.iacr.org/2018/1123

21. Picek, S., Perin, G., Mariot, L., Wu, L., Batina, L.: Sok: Deep learning-based phys-
ical side-channel analysis. Cryptology ePrint Archive, Report 2021/1092 (2021).
https://ia.cr/2021/1092

22. Rijsdijk, J., Wu, L., Perin, G., Picek, S.: Reinforcement learning for hyperparam-
eter tuning in deep learning-based side-channel analysis. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2021(3), 677–707 (2021). https://doi.org/10.46586/tches.
v2021.i3.677-707, https://tches.iacr.org/index.php/TCHES/article/view/8989

23. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262 3

24. Smith, L.N.: Cyclical learning rates for training neural networks. In: 2017 IEEE
Winter Conference on Applications of Computer Vision (WACV), pp. 464–472.
IEEE (2017)

25. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 26

https://doi.org/10.1007/978-3-662-53887-6_20
https://doi.org/10.13154/tches.v2020.i4.337-364
https://tches.iacr.org/index.php/TCHES/article/view/8686
https://tches.iacr.org/index.php/TCHES/article/view/8686
https://doi.org/10.1007/978-3-030-81652-0_24
https://doi.org/10.1007/978-3-030-81652-0_24
https://ia.cr/2021/1414
https://doi.org/10.1007/s13389-017-0172-7
https://doi.org/10.13154/tches.v2019.i1.209-237
https://tches.iacr.org/index.php/TCHES/article/view/7339
https://tches.iacr.org/index.php/TCHES/article/view/7339
https://eprint.iacr.org/2018/1123
https://ia.cr/2021/1092
https://doi.org/10.46586/tches.v2021.i3.677-707
https://doi.org/10.46586/tches.v2021.i3.677-707
https://tches.iacr.org/index.php/TCHES/article/view/8989
https://doi.org/10.1007/11545262_3
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26

On the Evaluation of Deep Learning-Based Side-Channel Analysis 71

26. Whitnall, C., Oswald, E.: Robust profiling for DPA-style attacks. In: Güneysu, T.,
Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 3–21. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48324-4 1

27. Wouters, L., Arribas, V., Gierlichs, B., Preneel, B.: Revisiting a methodology for
efficient CNN architectures in profiling attacks. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2020(3), 147–168 (2020). https://doi.org/10.13154/tches.v2020.i3.
147-168, https://tches.iacr.org/index.php/TCHES/article/view/8586

28. Wu, L., Perin, G., Picek, S.: I choose you: automated hyperparameter tuning for
deep learning-based side-channel analysis. IACR Cryptol. ePrint Arch. 2020, 1293
(2020)

29. Wu, L., et al.: On the attack evaluation and the generalization ability in profiling
side-channel analysis. Cryptology ePrint Archive, Report 2020/899 (2020). https://
eprint.iacr.org/2020/899

30. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for efficient CNN
architectures in profiling attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2020(1), 1–36 (2019). https://doi.org/10.13154/tches.v2020.i1.1-36, https://tches.
iacr.org/index.php/TCHES/article/view/8391

https://doi.org/10.1007/978-3-662-48324-4_1
https://doi.org/10.13154/tches.v2020.i3.147-168
https://doi.org/10.13154/tches.v2020.i3.147-168
https://tches.iacr.org/index.php/TCHES/article/view/8586
https://eprint.iacr.org/2020/899
https://eprint.iacr.org/2020/899
https://doi.org/10.13154/tches.v2020.i1.1-36
https://tches.iacr.org/index.php/TCHES/article/view/8391
https://tches.iacr.org/index.php/TCHES/article/view/8391

	On the Evaluation of Deep Learning-Based Side-Channel Analysis
	1 Introduction
	2 Machine Learning-Based Side-Channel Analysis
	3 Related Works
	4 Summary Statistics
	5 Experimental Evaluation
	5.1 Settings
	5.2 Results
	5.3 Discussion

	6 Conclusions and Future Work
	References

