
Sequential Monte Carlo method
for training Neural Networks on

non-stationary time series
by

Jasper E. Hoogendoorn
to obtain the degree of Master of Science in Applied Mathematics with the
specialization Financial Engineering at the Delft University of Technology,

to be defended publicly on Friday July 5, 2019 at 11:00 AM.

June 28, 2019

Student number: 4253051
Project duration: October 1, 2018 – June 28, 2019
Thesis committee: Prof. dr. ir. C. W. Oosterlee, TU Delft, CWI

Dr. ir. J. Bierkens, TU Delft
Drs. L. Tegels, KPMG
Dr. A. Borovykh, CWI

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/




Abstract

In this thesis, we study the sequential Monte Carlo method for training neu-
ral networks in the context of time series forecasting. Sequential Monte Carlo can
be particularly useful in problems in which the data is sequential, noisy and non-
stationary. We compare this algorithm against a gradient-based method known as
stochastic gradient descent (SGD), a commonly used method for training neural
networks. The performance of SGD on forecasting non-stationary, noisy time se-
ries can be poor due to the possibility of overfitting on the data. The sequential
Monte Carlo method may offer a solution for the problems that arise in forecasting
non-stationary time series with SGD neural networks. At the same time, neural
networks trained with SGD give deterministic predictions, and there is a need for
quantification of the uncertainty in the prediction. Sequential Monte Carlo sequen-
tially samples the weights of the neural network, providing a posterior distribution
on the weights and thus the outcome. In this work, the sequential Monte Carlo algo-
rithm is tested and analyzed, with different parameter settings, on four time series
to give an overview of the behavior. Furthermore, we apply the SMC algorithm on a
convolutional neural network known as WaveNet. We show that the SMC algorithm
is very well-suited for forecasting non-stationary time series, and can significantly
outperform the gradient-based SGD method. Additionally, we show that for specific
time series the SMC algorithm on a convolutional neural network outperforms the
SMC algorithm on a fully-connected neural network.

Keywords— Sequential Monte Carlo, neural network, deep learning, non-stationary time
series, forecasting, Bayesian neural network, convolutional neural network
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1 1 INTRODUCTION

1 Introduction
Machine Learning (ML) has gained significant popularity in recent years with it being
applied to solve a vast amount of different problems. One particularly popular machine
learning algorithm is called a Neural Network (NN). These neural networks were inspired
by the workings of the human brain, with interconnected neurons performing certain com-
putations. The ability of modern computers to be able to train very deep neural nets has
resulted in significant achievements in various applications. These nets are able to find
specific patterns in a way that is similar to or even exceeds human performance. Spec-
tacular breakthroughs have been achieved in the field, such as the ability to outperform
professional players in the board game alphaGo Silver et al. [2016] or AI that learns to
play videogames Mnih et al. [2013]. At the same time, many industries employ ML algo-
rithms in their daily practices, e.g., image recognition used by Instagram and Facebook or
reinforcement learning used by companies deploying self-driving cars. While these results
are promising, recent work also indicates that machine learning algorithms do not yet
achieve human performance; in particular, there is the vulnerability of the networks to
specific adversarial examples Goodfellow et al. [2014] or changes in the underlying data
distribution. Nevertheless, these methods provide new ways of modeling data which can
be superior to existing methods. However, the development of algorithms which are stable
and robust is still an active topic of research.

1.1 Uncertainty in neural networks

According to the National Institute of Standards and Technology (NIST), no measurement
is complete without an accompanying statement of the associated amount of uncertainty.
The same could be said about the uncertainty in model predictions or outcomes for the
future. Uncertainty is critical to risk assessment and decision making. At the same time,
people see neural networks and machine learning methods as black box algorithms where
one does not know the internal processes that are used in obtaining the parameters of
the method. These two issues can be a problem when adopting these algorithms in fields
where risk measures and decisions are important. Organizations make decisions every
day based on reports containing quantitative measurement data and predictive models.
If model or prediction results are not accurate the decision risk increases. Giving a wrong
diagnose using a machine learning model, for example, could result in wrong treatment
and thus potentially harming a patient.

Obtaining the uncertainty of neural networks is becoming increasingly important nowa-
days due to the rising number of their applications. The predictions of neural networks
are deterministic in the sense that the outputs are point estimates and do, in general, not
include a measure of uncertainty. The work of Ghahramani [2001] shows that having a
measure of uncertainty is crucial in modern neural networks as, when trained with the
standard gradient descent algorithms, these networks output quantities which do not have
an error bound and thus the predictions from the neural network could be used with false
confidence. Such observations contributed to the recent increase of interest in Bayesian
neural networks (BNN). These networks are trained in a probabilistic manner such that a
measure of uncertainty can be computed by using the obtained posterior distribution over
the outcome. Bayesian neural networks are not new and have been studied extensively in
e.g., MacKay [1992] and Neal [1992]. Using Bayesian inference methods for large neural
networks is complicated due to computational time. The modern neural networks archi-
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tectures used in e.g., image recognition typically contain millions of parameters, resulting
in the standard Bayesian methods to be computationally infeasible. Novel ways of ob-
taining posterior distributions in such deep neural networks have been proposed, the two
main methods being variational inference (e.g., Graves [2011]) and Monte Carlo methods
(e.g., Freitas et al. [2000]). Variational inference is based on an analytic approximation
to the posterior distribution, while Monte Carlo methods are based on obtaining samples
from the posterior and can be computationally expensive.

1.2 Non-stationary and sequential data for neural networks

Neural networks are typically trained with gradient descent algorithms, such as stochastic
gradient descent (SGD), where, given a particular dataset, the network is optimized to find
the weights that minimize the discrepancy between the dataset and the network outputs.
Such algorithms are good in finding patterns, but these patterns should, in general, be
stationary. Stationary data implies that the data has constant statistical properties over
time, such as constant mean, homoscedasticity, and autocorrelation independent of time.
Under such stationarity conditions, the predictive performance of the neural network on
the training dataset should be close to the performance on the test dataset. However,
the data used to train a neural network does not necessarily have to be stationary; in
particular, the test data does not need to have the same statistical properties as the
training data. In this setting, the predictive strength of the model decreases. This is
particularly relevant in time series forecasting, where it is common that the time series
is non-stationary. Furthermore, time series can have a low signal-to-noise ratio. These
properties complicate the prediction problem. In particular, the standard algorithms used
for training networks on i.i.d. data might not perform well, and it is of the essence to
understand the limitations of the standard algorithms and to develop new algorithms for
training neural networks on these non-i.i.d., sequential datasets.

Considering non-stationary time series, where the data is sequential, it is not straight
forward to understand which data points should be used for the training set. Due to the
non-stationarity of the data certain properties might change over time. Furthermore, the
neural network might not capture the new patterns due to the limited amount of new data
points. Also, it may be problematic to decide when a pattern has changed considering the
sequentially arrived time steps. This so-called change point detection is an active field of
research, which helps to quantify a potential change in the pattern. If a change point is
detected, the neural network needs to be re-trained manually for the specific data points.
Recent techniques like recurrent neural networks (RNN) have been shown to solve several
of these problems, and have been successfully applied in time series forecasting settings.
However, these networks are known to be difficult to train.

1.3 Research goals and outline of thesis

To overcome the possible problems described above, in Freitas et al. [2000], an alternative
method for training neural networks was proposed, based on a sequential Monte Carlo
(SMC) algorithm. This method can be useful for training a neural network on non-
stationary and sequential data due to the sequential nature of the algorithm. The method
is well-suited for problems consisting of non-linearity and non-Gaussian signals. The
sequential Monte Carlo method does not require any assumptions on the data, making it
a very flexible method. Furthermore, the SMC algorithm outputs a posterior distribution
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over the outcome and the underlying weights. This posterior distribution can be used as a
measure of uncertainty, which is very useful, as stated above, in practical implementations.
At the same time this method, in theory, is better suited to find a global optimum for
the network than the gradient-based method as with such methods neural networks can
get stuck in local optima. The downside of the SMC method is the increased computing
time compared to these standard gradient descent algorithms. In particular, for the large
networks used in applications such as in image recognition, the Monte Carlo methods
are not feasible anymore. At the same time, in such image recognition tasks, the data
is typically i.i.d., so that the SMC algorithm might not have significant added value for
these problems. On the contrary, for time series forecasting typically relatively small
neural networks are used, which makes the SMC algorithm well-suited for such networks.
Furthermore, due to the sequential and non-stationary nature of the data, the SMC
algorithm might be much better suited for training the network than the typical gradient
methods.

The main scope of this thesis is to gain insight into the benefits and downsides of
the SMC algorithm when applied to time series forecasting with deep neural networks.
Monte Carlo methods, and in particular the SMC method, in combination with a neural
network, has not been researched extensively. The recent emphasis has been on variational
inference methods for obtaining the posterior distribution of the network outputs, due to
the computational efficiency of this method on larger neural networks. For these reasons,
it interesting to extend the work of Freitas et al. [2000], and to understand the benefits of
training neural networks in the context of time series forecasting with the SMC algorithm
compared to the widely used SGD method. We thoroughly test the SMC algorithm for
neural networks on different time series and compare it to the SGD training method. We
will study the effects of the various hyperparameters of SMC on its performance, and
propose and test possible improvements to the SMC algorithm. We furthermore extend
the SMC algorithm from Freitas et al. [2000] for fully-connected neural networks to a
convolutional network structure and gain insight into the performance on such a network.
Furthermore, we use the obtained posterior distribution over the weight and outcomes to
see how these distributions behave for neural networks and if these give a proper measure
of uncertainty.

The rest of this thesis is structured as follows: we start in Chapter 2 with a general
explanation into neural networks and discuss the standard training algorithm, namely
stochastic gradient descent. As the sequential Monte Carlo method is commonly used for
state-space models, we show how a neural network translates to a state-space model and
discuss how the sequential Monte Carlo method is derived for these models in Chapter
3. After the basic framework for neural networks and sequential Monte Carlo, several
improvements for the algorithm on neural networks are explained in Chapter 4. In Chapter
5, the numerical results are presented for different time series.
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2 The Basics of Neural Networks
In this section, neural networks are explained following Nielsen [2015]. After covering
the basics, we explained the backpropagation algorithm used to train most of the neural
networks.

2.1 Fully-connected neural network

We explain here how a fully-connected neural network (FNN) works, covering the structure
of an FNN and the training method that is used most commonly for these types of neural
networks.

2.1.1 Perceptron network

The simplest form of a neural network is known as a perceptron. A perceptron has binary
inputs xn D .x1; : : : ; xn/ and the output is also binary i.e., zero or one. This output is
dependent on a set of so called weights wn D .w1; : : : ; wn/. Figure 1 shows an example of
a perceptron unit.

Figure 1: Example of one perceptron network

The combination of weights and inputs will determine the output of this perceptron neuron
in the following way

output D

(
0, if

P
i wixi � threshold

1, if
P
i wixi > threshold

(1)

The weights measure how "important" the input is. The threshold defines when the
output is zero or one, i.e., how high do we want the product of inputs and weights to be
to "activate" the perceptron. This means that varying the weights, but also the threshold,
can result in different models.

2.1.2 Deep fully-connected neural network

An extension of the basic perceptron algorithm is done by adding multiple layers of
perceptrons. In the literature, this is known as a multilayer perceptron (MLP) and often
FNN and MLP are used interchangeably. In Figure 2, an example is given. The inputs are
given by an input layer, which can be seen as a vector of inputs xn, where every element
is connected to all the neurons in the next layer, hence the name fully-connected neural
network. These next layers are called hidden layers, of which there can be one or more.
With multiple layers of perceptrons we can rewrite Eq. (1) in a standard set of equations
seen in the literature of neural networks. For a neural network with L layers and nl
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Figure 2: Multilayer Network

neurons per layer l D 1; : : : ; L, we have the following equation:

alj D

(
0, if

P
k w

l
jk
al�1
k
C blj � 0

1, if
P
k w

l
jk
al�1
k
C blj > 0

: (2)

Here, we have j D 1; : : : ; nl for the neurons in layer l and k D 1; : : : ; nl�1 for the neurons
in layer l � 1. Furthermore, we have blj D �threshold, which is called the bias and alj is
the activation value of a neuron.

One needs to find the values of wl
jk

and blj so that when the input is passed through the
network, the output of the network matches as closely as possible the given output. In
other words, the parameters wl

jk
and blj need to be "learned" by minimizing some kind

of discrepancy function between given outputs and the networks’ outputs. We use w and
b, to denote all the different weights and biases respectively.
In essence, the way a neural network learns is to understand how a change in the weights
and biases changes the output. In mathematical terms, we are interested in the influence
of �w on �output. To obtain good performance, a small change in the weights should
give a proportional change in the output. The output of a neuron is influenced by the
activation function �.�/. One commonly used activation function is the sigmoid function,
also known as the logistic function,

�.a/ D
1

1C e�a
:

With an activation function, the equation Eq. (2) for the activation values results in the
following equations:

alj D
X
k

wljkz
l�1
k C blj ;

zlj D �.a
l
j / :

(3)

Here, zlj is the output of a neuron and calculating zlj is called forward propagation as the
information flows forward through the FNN. Using the sigmoid function as the activation
function the neuron has a value near zero for low values of alj and a value near one for
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high values of alj , similar to the perceptron. The smoothness of the sigmoid function
results in the ability to differentiate the output of the neuron with respect to the network
parameters w and b, so one can evaluate how changes in the weights or biases change the
output.

2.1.3 Training a neural network

A neural network is trained using training data, where .xi ; yi/ for i D 1; : : : ; K is the sam-
ple set. In general .xi ; yi/ � D, whereD is the data distribution which is unknown. .xi ; yi/
consists of inputs x with the corresponding outputs y, and can be multi-dimensional de-
noted as .xi ; yi/. The inputs, xi , of the training data are used as input to the neural
network, and using the weights and biases this results in a certain predicted output Oyi .
The performance of the network is measured using a cost function (the term loss function
is also used). There exists a large number of possible cost functions, and each has its
own advantages and uses. The cost function defines a loss surface for all the possible
values of the weights w and biases b, as the cost is calculated by measuring a type of
distance between yi and Oyi.xi ;w; b/. For deep neural networks, this loss surface typically
consists of multiple local minima, and a global minimum might exist where the cost is
the lowest. For this global minimum, this specific set of weights and biases, minimize the
loss function and thus result in the network fitting the training data best. The idea of
training a network is to find this minimum or at least a sufficiently good local minimum.
The cost function that is considered here is the sum-of-squares error function

C.w; b/ D
1

2

KX
iD1

jjyi � Oyi.xi ;w; b/jj2 : (4)

Most optimization techniques start with an initial vector for the weights, w0, and biases,
b0, and iteratively move through the loss surface by taking small steps in the direction of
the negative gradients of the loss function. Generally speaking, for iterations t D 1; :::; T ,

wtC1 D wt C�wt ;

btC1 D bt C�bt :
(5)

With a change of �wt the error function changes with

�C � �wtTrC.w/ :

Here, rC.w/ is called the gradient and gives the direction in which �C changes the
most. Particularly, when rC.w/ D 0 the error does not change anymore in any of the
directions. These points are called stationary points and can be classified as minima,
maxima or saddle points. The training of a neural network consists of finding the weights
w and biases b that result in the smallest error C.w; b/.

To find this smallest error, a primary method is called gradient descent. Here we use
Eq. (5) and update it each iteration with information of the gradient. In mathematical
terms

wtC1 D wt � �rC.wt/ :

The same equation holds for bt and the learning parameter � is introduced which denotes
how fast the algorithm learns. The error equations depend on the training set .xi ; yi/.
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The gradient rC for the whole data set can be calculated by calculating the gradients of
each data point rCi . We then get the gradient by

rC D
1

K

KX
iD1

rCi :

Calculating the gradient for one data point at a time is called on-line training. The train-
ing methods where the data set is split up in different batches are called batch methods.
For batch methods the gradient is calculated over the loss function applied to a small
subset of the data in each iteration t .
Considering the on-line training case, we have the following update equation:

wtC1 D wt � �rCi.wt/ :

The gradient is thus computed per data sample. We have equations propagating through
the network Eq. (3) and the gradient of the cost function Eq. (4). We need to evaluate
the gradient which means finding

rCi D

�
@Ci

@wj1
; : : : ;

@Ci

@wjnl

�
;

for one layer, which for a certain weight wl
jk

gives

@Ci

@wl
jk

D
@Ci

@alj

@alj

@wl
jk

; (6)

using the chain rule given that Ci depends on alj , which itself depends on the weights
wl
jk
. In the literature, errors are defined as

ılj �
@Ci

@alj
:

Considering Eq. (3) the other term can be written as

@alj

@wl
jk

D zl�1k :

and for the bias we have
@alj

@blj
D 1 ;

which only leaves ılj . Now we can rewrite Eq. (6) as

@Ci

@wl
jk

D ılj z
l�1
k ;

and for the bias we have
@Ci

@blj
D ılj : (7)
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The consequence of applying the chain rule is that we need to evaluate the ı’s for the
hidden units and output. The error vector of the output unit is straight forward

ıLj D
@C

@aLj
D
@C

@zLj

@zLj

@aLj
:

With zLj D f .aLj /, and the derivative of the cost function Eq. (4) we simplify the the
above equation for

ıLj D �
0.aLj /.yi � Oyi.xi ;w; b// :

For the hidden layers the chain rule is used again

ıl�1k �
@Ci

@al�1
k

D

X
j

@Ci

@alj

@alj

@al�1
k

:

Here, we sum over all the neurons in the lth layer. With � 0.z/ denoting the derivative of
the activation function, this can be rewritten to

ıl�1k D � 0.al�1k /
X
j

wljkı
l
j : (8)

As we have
@alj

@al�1
k

D � 0.al�1j /wljk :

The formula Eq. (8) is called back propagation as the errors are propagated backwards
through the network. This covers the algorithm behind the gradient descent method.

2.1.4 Stochastic gradient descent method

The most standard method for training a neural network is known as stochastic gradient
descent. Unlike the on-line learning algorithm where the gradient is calculated over a
single data sample, in SGD at each iteration a random set of data points xj is selected,
the number of these points known as the batch size. The gradient is then computed over
over these random points. The gradient of a batch is calculated as follows:

rC D
1

m

mX
jD1

rCj ;

where m is the number of data points in the batch. We remark that the gradient over
such a batch of data can be seen as a noisy estimate of the full gradient, i.e. the gradient
computed over the full dataset. One epoch is defined as the number of iterations needed
for the whole data set to be used. Learning in batches can significantly improve the
learning speed compared to full gradient descent, and thus result in faster convergence
of the weights in the neural network. This SGD method is used as a training method
in many state-of-the-art FNN’s. Taking m D 1 translates this to the on-line learning
method.
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2.1.5 Overfitting

The overall performance measure of the model is in terms of the average of the errors on
the training and test data sets. The Root Mean Squared Error (RMSE) defined in Eq. (9)
is one of these measures that is widely used in assessing the performance of the trained
neural network, i.e.,

RMSE D

sPK
iD1.Oyi � yi/2

K
: (9)

A problem that arises with neural networks is overfitting the data. In this setting, the
training error is significantly lower than the test error. The aim of training a neural
network is to obtain good generalization, i.e., make sure that the training error does
not differ significantly from the test error. In particular, when increasing the number of
layers and neurons of the neural network and making the number of weights and thus
variables to be tuned arbitrarily large, overfitting can become a significant problem. In
Hornik et al. [1989] it was shown that a sufficiently wide neural network could arbitrarily
well fit any function at hand; this is known as the universal approximation theorem.
Several techniques have been proposed to reduce the problem of overfitting, such as the
regularization of the cost function, i.e., constraining the weight values. One could view
this problem as a variance-bias trade-off, where under-fitting the data means low variance,
but a high bias. An easy way to see if a model is overfitting can be as follows:

RMSE over the training set << RMSE over the test set �! overfitting

2.2 Convolutional neural network

In the last section, we discussed a fully-connected neural network. A different type of
neural network is so-called a convolutional neural network (CNN). These networks were
shown to be particularly powerful for image recognition Krizhevsky et al. [2012]. In this
thesis, we will apply the SMC algorithm on a specific type of CNN suitable for time
series called the Wavenet as first introduced in van den Oord et al. [2016]. To understand
the structure of CNN, the basics of the convolutional neural network is discussed where
Borovykh [2018] is followed in explaining the basic operations in CNN’s.

2.2.1 Structure of a convolutional neural network

Within FNNs, the neurons are fully connected, and every connection has its own weight.
The major differences between an FNN and a CNN are the usage of shared weights and
local connectivity. Shared weights mean that multiple neurons have the same weights,
and local connectivity means that a neuron is only connected to a specific sub-region of
the input. These features of CNN’s result in fewer weights to be trained. Since one of
the major disadvantages of using Monte Carlo methods for neural networks is the large
number of weights that need to be trained, having fewer weights makes CNN’s potentially
more suitable for the SMC algorithm as it is computationally less expensive. Figure 3
shows how an FNN is similar to a CNN.
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Figure 3: Transformation of neural network to convolutional neural network.

Instead of the forward propagation by matrix multiplication seen in Eq. (3) a convolutional
operation is performed to calculate the activations in the next layer. A convolution is
defined as follows, and denoted by an asterisk �:

.h � g/.t/ D

Z 1
�1

h.�/g.t � �/d� :

Convolutions are commutative which means .h � g/ D .g � h/. In the literature, CNN’s
are mostly 2D or 3D, but for time series, we only use a 1D approach, which means we
have a discrete one-dimensional convolution. The convolution may be truncated to where
the convolution has values different from zero, else one uses so-called zero padding, which
puts zeros on the place where both samples are nonexistent. Given h has N values and g
has M values we obtain:

.h � g/ D

M�1X
�D0

h.�/g.t � �/ D

M�1X
�D0

h�gt�� ;

where the output dimension is N �MC1 when no zero padding is used, so t D 0; : : : ; N �
M . Translating this to neural networks, we have,

alj D

1X
rD�1

wlrz
l�1
j�r C b

l
j ;

zlj D �.a
l
j / :

Here, the infinite sum can also be truncated to where the convolution is not zero. Fur-
thermore, r is the indicator for the weight in the 1D convolution of filter size �, where
for a 1D case we have the weights wlr D .w

l
1; : : : ; w

l
�/ in layer l D 1; : : : ; L. The number

of neurons in the next layer depends on this filter size �. There can be multiple channels
that each can represent different time series of the same length. This thesis considers only
one channel, although this can be extended to more, as in Borovykh [2018]. The number
of neurons in each layer can be found by nl D nl�1 � � C 1.
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2.2.2 WaveNet

Most traditional CNN’s use structures as seen in Figure 3. However, in sequential fore-
casting tasks a specific structure for the CNN, the WaveNet van den Oord et al. [2016],
has been particularly successful due to its ability to take into account longer histories of
the input. WaveNet was initially introduced for modeling speech. WaveNet has fewer
weights that need to be trained, which means it may be a more efficient structure to
apply SMC on. Figure 4 shows how the weights propagate through the network. The
input layer consists of the time series which is used for a 1D convolution of size two. The
filter size � D 2 means the receptive field, i.e., how many neurons of the previous layer
each output node sees, is two, and that there are two trainable weights per layer.

Figure 4: Architecture of WaveNet convolutional neural network.

2.2.3 Training for convolutional networks

The gradient step in the SMC algorithm for CNN’s is slightly different from the gradient
step in FNN’s with SMC. We show here the backpropagation that is used for modeling
time series with a CNN in a one-dimensional setting. We have the following equations
for calculating the propagating errors ılj in the CNN case, using the same notations as in
Section 2.1.3,

ıl�1k �
@C

@al�1
k

D

X
j

@C

@alj

@alj

@al�1
k

D

X
j

ılj
@.
P1
rD�1w

l
r�.a

l�1
j�r/C b

l
j /

@al�1
k

D

X
j

ıljw
l
r�
0.al�1k / ,with k D j � r as all other terms are zero

D

X
j

ıljw
l
j�k�

0.al�1k / ,with r D j � k

D ılj � w
l
�r�

0.al�1k / (10)
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Here, wl�r means a 180 degree rotation of the weight matrix, which in the 1D case is
a vector. The backpropagation equation, Eq. (10), for CNN looks similar to Eq. (8) in
the FNN case, only it has a convolution operation where the weights are rotated. The
according changes for the biases are the same as in Eq. (7), but for the weights, we again
need a convolution. Using Eq. (6) this leads to:

@C

@wlr
D

X
j

ılj
@.
P1
r 0D�1w

l
r 0�.a

l�1
j�r 0/C b

l
j /

@wlr

D

X
j

ılj�.a
l�1
j�r/ ,as we have zero for r 0 ¤ r

D ıl�j � z
l�1
k :

Where �j again stands for a rotation of 180 degrees on the error matrix.
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3 Bayesian methods
This section gives an in-depth explanation of Bayesian inference. Firstly, the basics of
Bayesian inference and problems that arise are discussed. Secondly, variational inference
and sequential Monte Carlo are explained, and we provide the general framework for the
SMC algorithm so that we can translate this to a neural network setting.

3.1 Bayesian inference

Bayesian inference is based on a prior and a likelihood, and the obtained posterior is a
probability over the possible outcomes. Frequentists often reside on maximum likelihood
estimation, which gives the most probable value of the parameter of interest. Bayesian
inference provides a distribution over this parameter; in other words, this gives an uncer-
tainty of the parameter. This can be useful in a setting in which data is scarce or when
overfitting the data can be a problem. Another feature of Bayesian inference is that one
can add a "prior" belief to the model with the argument that one often has an intuition
about the problem at hand. Especially when data is limited, this can provide intuitively
better estimates of parameters. The estimate of the parameter is computed as a posterior
distribution that is given by Bayes’ rule:

p.xjy/ D
p.x/p.yjx/

p.y/
: (11)

Here, p.x/ is the prior, p.yjx/ the likelihood and p.y/ the normalizing constant. The nor-
malizing constant is calculated by integrating over the parameters of the joint probability
p.y; x/. These give the posterior distribution p.xjy/ where the parameter of interest can
be obtained through the posterior mean or the mode. Here, x indicates the parameter
and y denotes the available data. In certain problems and with "uninformative" priors
the frequentist and the Bayesian method may give the same outcome.

3.2 Problems with Bayesian inference

While Bayesian inference gives a distribution on the parameters of interest, this comes at
a cost. The normalizing constant is often a hard to compute integral, meaning that often
there is no closed form solution and this integral is in some cases high dimensional. In
particular for neural networks the normalizing constant can be of high-dimension, making
the full posterior intractable. The posterior can be approximated with numerical methods,
but this is limited by the computing power available. Another problem for Bayesian
inference is the choice of the prior as this can change the outcome of the posterior. In our
setting, where we use Bayesian inference in a sequential manner, the influence of the prior
will disappear after an increasing number of data points are used. Also, MacKay [1995]
noted that the prior could introduce some regularization effect in the form of Occam’s
razor, where the prior regularizes the model in a way that it automatically tends to
a simpler model, as by Occam’s razor this should be favored over more complex ones.
This is beneficial to the overfitting problem that neural networks have as more complex
networks tend to overfit, therefore increasing the robustness, and predictive abilities for
neural networks.
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3.3 Different methods for Bayesian analysis

To derive the posterior distribution, one can use two different approaches. One approach
is based on the class of Markov Chain Monte Carlo methods (MCMC), of which the SMC
method is a subcategory. The other approach is called variational inference (VI). The
difference between the two mainly relates to the bias-variance trade-off and computational
complexity. The variational methods have a larger bias since a parametric density is used
to approximate the underlying real density. This means that the sample variance is zero
as one can sample directly from this density. For the MCMC methods, it is the other way
around, the bias tends to be close to zero, and sometimes even equal to zero. The variance,
however, is dependent on sample size and the underlying method used, which is related to
the second difference: the computational time. Acceptable sample variances may require
significant amounts of computation time. Variational methods are more efficient as the
variance is not dependent on the sample size. Another significant advantage in using VI
is that as a known parametric density is used, gradients can be computed. This leads to
a back propagation algorithm similar to the gradient descent algorithm used for neural
networks. This makes VI significantly faster than MCMC methods, and this advantage
increases as the networks become bigger. The disadvantage arises when handling complex
models that have distributions that do not fall into a parametric class of distributions
from which the approximating distribution is chosen or have multi-modality, such as deep
neural networks. Hybrid models possess the advantages of both methods. Recently, Gu
et al. [2015] looked at SMC methods with a proposal density that was weighted with
a Kullback-Leibler (KL) divergence. Future algorithms could implement a wake-sleep
procedure, as seen in Hinton et al. [1995], which may improve results even further. In
this thesis, we focus on the basic SMC method for Bayesian inference on the weights of
neural networks.

3.4 Variational inference in Bayesian neural networks

This section explains the idea behind using variational inference for Bayesian neural net-
works. Algorithms based on variational inference are used in most recent papers on BNN’s.
As the algorithms are based on a complex method, a better understanding is provided in
this section.

3.4.1 Variational inference

The basis of this method is to use a class of parametric distributions, that is "close" to the
distribution of interest �.x/. To be more precise, we want to find a parametric distribution
Nq�.x/, where � denotes the parameters of Nq�.x/. � is optimized such that Nq�.x/ is close
to �.x/. In our setting �.x/ is the posterior distribution p.xjy/ in a Bayesian inference
problem.

A measure to quantify this distance is the Kullback-Leibler divergence measures how close
the distribution Nq�.x/ is to �.x/. A small value indicates a better approximation of �.x/.
The KL-divergence is defined as follows given two distributions P and Q

KL.P jjQ/ D EP
�
log

�
P

Q

��
:
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In our setting we aim to approximate the posterior distribution in a Bayesian framework
so that,

KL. Nq�.x/jjp.xjy// D E Nq� .x/
�
log

�
Nq�.x/

p.xjy/

��
:

Using Bayes’ rule, Eq. (11), we can substitute for p.xjy/ obtaining

KL. Nq�.x/jjp.xjy// D E Nq� .x/
�
log

�
Nq�.x/p.y/

p.yjx/p.x/

��
:

We then can derive the following equation

KL. Nq�.x/jjp.xjy// D E Nq� .x/
�
log

�
Nq�.x/

p.yjx/p.x/

�
C logp.y/

�
D E Nq� .x/

�
log

�
Nq�.x/

p.yjx/p.x/

��
C E Nq� .x/.logp.y//

D logp.y/C E Nq� .x/
�
log

�
Nq�.x/

p.yjx/p.x/

��
:

The last step follows as p.y/ is independent of Nq�.x/. We aim to minimize the KL
divergence as a function of � . Since logp.y/ does not depend on � , only the last term at
the right-hand side needs to be minimized:

E Nq� .x/
�
log

�
Nq�.x/

p.yjx/p.x/

��
D EqŒlog Nq�.x/ � .logp.yjx/C logp.x//�

:

This is equivalent to maximizing the negation of this formula,

L WD E Nq� .x/ Œ� log Nq�.x/C logp.yjx/C logp.x/�

WD E Nq� .x/
�
logp.yjx/C log

�
p.x/

Nq�.x/

��
:

L is called the variational lower bound. This is computable as we can choose and calculate
the densities in the expression. Note that,

L D EqŒlogp.yjx/�C E Nq� .x/
�
log

p.x/

Nq�.x/

�
D E Nq� .x/

�
log

p.xjy/p.y/

p.x/
C log

p.x/

Nq�.x/

�
D logp.y/ �KL. Nq�.x/jjp.xjy// , as p.yjx/ D

p.xjy/p.y/

p.x/
: (12)

In other words,
logp.y/ D LCKL. Nq�.x/jjp.xjy// :

As we know that KL. Nq�.x/jjp.xjy// � 0, we have that the log marginal likelihood
logp.y/ � L. This makes L a lower bound of the log marginal likelihood, also known
as the evidence lower bound (ELBO). In other words, a good approximation is given by
maximizing Eq. (12). It is important to note that the KL divergence is not a symmetric
distance, i.e., it matters if we have �.x/jj Nq�.x/ or Nq�.x/jj�.x/. Therefore there are two
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ways of measuring the "distance" between two functions and these methods are called
forward (zero-avoiding) and reverse KL (zero forcing). To shed some light on these terms,
we first consider forward KL. With forward KL the KL is large if Nq�.x/ is small where
�.x/ is large. On the other hand, when we consider reverse KL, we want to fit Nq�.x/ such
that �.x/ is not small where Nq�.x/ is large. Figure 5, will give a visual explanation.

(a)

(b)

Figure 5: (a) Forward KL (b) Reverse KL

In variational Bayes for neural networks, the algorithms are based on reverse KL. This
means that when the posterior is multimodal, which is often the case with neural networks,
one gets false negatives when fitting a unimodal Nq�.x/.
We now needs to determine the form of Nq�.x/. One way is to use a mean-field approxima-
tion, which has its origins in physics. It is based on the assumption that there are multiple
the hidden variables which are mutually independent, giving Nq�.x/ D Nq�.x/, which can be
factorized as

Nq�.x/ D
NY
iD1

Nq�.xi/ :

A disadvantage is that this does not capture the correlation between hidden variables.
On the other hand, this means that one can optimize the density per factor i.e., a local
approximation for each variable.
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3.4.2 Coordinate ascent variational inference

An algorithm that can be used to optimize the density per factor is called Coordinate
Ascent Variational Inference (CAVI), first seen in Bishop [2007]. This is closely related
to the stochastic variational inference that Hoffman et al. [2013] developed and is again
similar to the gradient descent algorithm used for neural network training. In deriving
the algorithm, we follow Murphy [2012].
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Using the factorized form for Nq�.x/, we have the ELBO:

L D E Nq� .x/
�
log

p.xjy/p.y/

p.x/
C log

p.x/

Nq�.x/

�
;

D E Nq� .x/Œlogp.x; y/ � log Nq�.x/� :

Factoring out a particular Nq�.xi/,
defining x�i WD fx1; : : : ; xi�1; xiC1; : : : ; xng and q�.x�i/ WD

Q
i¤j Nq�.xi/ we obtain:

L D E Nq� .x/Œlogp.x; y/ � log Nq�.x/�

D

Z
xi

Nq�.xi/

Z
x�i
Nq�.x�i/Œlogp.x; y/ � log Nq�.x/�dx

D

Z
xi

Nq�.xi/

Z
x�i
Nq�.x�i/ logp.x; y/dx �

Z
xi

Nq�.xi/

Z
x�i
Nq�.x�i/ log Nq�.x/dx

D

Z
xi

Nq�.xi/

Z
x�i
Nq�.x�i/ logp.x; y/dx �

Z
xi

Nq�.xi/

Z
x�i
Nq�.x�i/

NX
iD1

log Nq�.xi/dx

D

Z
xi

Nq�.xi/E Nq� .x�i/Œlogp.x; y/�dxi

�

Z
xi

Nq�.xi/ log Nq�.xi/
Z

x�i
Nq�.x�i/dx

�

Z
xi

Nq�.xi/dxi

Z
x�i
Nq�.x�i/

X
j¤i

log Nq�.x�i/dx�i

D

Z
xi

Nq�.xi/E Nq� .x�i/Œlogp.x; y/�dxi

�

Z
xi

Nq�.xi/ log Nq�.xi/dxi

� E Nq� .x�i /

24X
j¤i

log Nq�.x�i/

35
D

Z
xi

Nq�.xi/
�
E Nq� .x�i/Œlogp.x; y/� � log Nq�.xi/

�
dxi

� E Nq� .x�i /

24X
j¤i

log Nq�.x�i/

35 : (13)

Here we used the following expression:

E Nq� .x�i /Œ�� WD
Z

x�i
Nq�.x�i/.�/dx�i ;

which is the expectation over all the variables aside from q�.xi/.
Note that

R
x�i
Nq�.x�i/dx�i D 1. Furthermore, the second term in Eq. (13) is a constant

and does not depend on qi . In order to maximize the ELBO Eq. (13), we apply the
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Lagrangian technique giving

L WD L �
NX
iD1

�i

�Z
xi

Nq�.xi/dxi � 1

�
D 0 :

We need to optimize this with respect to hidden variable qi D Nq�.xi/, so we get the
following taking the functional derivative with respect to qi , and equal it to zero:

ıL
ıqi
D

@

@qi
Œqi ŒE Nq� .x�i/Œlogp.x; y/� � log qi � � �iqi �

D E Nq� .x�i/Œlogp.x; y/� � log qi � �i � 1 :

Now we can get an expression for qi , as follows,

log qi D E Nq� .x�i/Œlogp.x; y/�C C

qi D
eE Nq� .x�i/Œlogp.x;y/�

Zi
; (14)

where Zi is a normalising constant that can be derived (as qi is a known density), and is
necessary to make it a density. It is often neglected in finding the qi ’s.

Now that we have all the equations in place, we can explain the algorithm that will give
us the qi ’s. Note, that Nq�.xi/ can be translated as the density of one of the weights in
a neural network, such that each qi is a weights density in the network. The goal was
to maximize L such that we derive a Nq�.x/ which minimizes the KL divergence for the
true posterior p.xjy/. The equations are derived as the mean field approximation, which
means that the Nq�.x/ is split up in parts Nq�.xi/ that are interdependent when they are
minimized. To compute qi , we need to know the values of the other q�i ’s, because of
the numerator in Eq. (14) which contains the other factors. An iterative algorithm to get
Nq�.x/ is given as follows:

1. As with most iterative algorithms we begin with random initializations for the pa-
rameters � of Nq�.x/.

2. For each Nq�.xi/, minimize the KL divergence with Eq. (14) by updating Nq�.xi/,
keeping the other Nq�.x�i/ constant. Using algebra and writing out Eq. (14) one can
see the update steps for the different parameters x.

3. Repeat step 2 until a certain convergence criterion is met.

The disadvantage of this algorithm is that the update steps need to be derived each
time algebraically for each different problem, which makes it cumbersome and prone to
human error. There are recent developments which give a general algorithm for multiple
problems, like Mnih and Gregor [2014]. This is a variational update algorithm based on
gradients with respect to the different parameters.
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3.5 Sequential Monte Carlo algorithm

Sequential Monte Carlo algorithms, also known as particle filters (Gordon et al. [1993]),
became increasingly popular as computational power increased. For time series with
time steps k D 1; : : : ; n, we are interested in the posterior distribution to be computed
recursively, and in particular one is interested in the marginal posterior density p.xnjyn/,
also called filtering density, where xn is the parameter of interest at time n and yn D
.y1; : : : ; yn/ are the observations. The posterior distribution of the unknown quantities
can be computed with the prior, likelihood, and Bayes’ theorem Eq. (11). When the
filtering distribution is found, one can make point estimates with the help of the posterior
mean or mode. This is also known as the Bayesian filtering problem or optimal filtering
problem. One of the biggest advantages of SMC is that it has no linearity or Gaussianity
assumptions, which makes the method very flexible and makes it particularly relevant for
non-stationary time series.

3.5.1 General framework for sequential Monte Carlo

We start by setting up a general framework according to Bernardo et al. [2007], which
we use in deriving the sequential Monte Carlo method. The SMC method is in a class
of Monte Carlo algorithms that sequentially sample from a target probability density.
Denote by f�ngn2T, where T D f1; : : : ; Kg, a sequence of probability measures on the
n-dimensional measurable space .En; En/. En is the set of values that xn D fxngn2T can
take and En is the � -algebra of this set. xn is the sequence of variables that are unknown
and need to be found. Each �n has a density that is known up to a normalising constant:

�n.xn/ D

n.xn/
Zn

; (15)

where 
n W En �! RC is known pointwise, and Zn D
R

n.xn/dxn the normalising constant

that can be unknown. In this framework k D 1; : : : ; n is used as a time index. The se-
quential Monte Carlo algorithm uses samples from the distributions f�ngn2T and estimate
their normalising constants fZngn2T in a sequential way.

3.5.2 Basic Monte Carlo method

Prior to defining the SMC algorithm, we give an explanation of a basic Monte Carlo
method. When approximating a probability density �n.xn/ for a fixed n, one samples N
independent random variables from this density function: Xin � �n.xn/. The Monte Carlo
approximation is then given by

b�n.xn/ D 1

N

NX
iD1

ıXin.xn/ :

Here, ıx0.x/ is the Dirac delta function centered at x0. Any marginal �n.xk/ can now be
computed using

b�n.xk/ D 1

N

NX
iD1

ıXi
k
.xk/ :

The expectation of any test function �n W En �! R is given by

In.�n/ WD

Z
�n.xn/�n.xn/dxn :
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This can be estimated in the following way:

OIn.�n/ WD

Z
�n.xn/b�n.xn/dxn D

1

N

NX
iD1

�n.Xin/ :

This Monte Carlo estimate is unbiased and its variance is given by

VARŒ OIn.�n/� D
1

N

� Z
�2n.xn/�n.xn/dxn � I 2n .�n/

�
:

Due to the 1=N term, the variance will decrease with O.1=N /. The problem with this
method is that �n.xn/ can be a complex high-dimensional probability density and sam-
pling from this density can be unfeasible. This density is in many real-world problems
non-standard, only known up to a proportionality constant and multivariate, as seen in
Eq. (15). This makes the above method unsuitable for these kinds of problems.

3.5.3 Importance Sampling

To overcome this problem, one can use a method called Importance Sampling (IS). Impor-
tance sampling introduces a so-called importance density qn.xn/, also known as proposal
density in the literature. This importance density has the following property:

�n.xn/ > 0 H) qn.xn/ > 0 :

In other words, the support of the importance distribution qn.xn/must include the support
of the target distribution �n.xn/. Importance sampling can also be used when the density
�n.xn/ is known, to reduce the variance of the estimate. Alternatively, it can be applied
to problems in which this density is not available. In this setting, �n.xn/ is known up to
a normalising constant as 
n.xn/, seen in Eq. (15).
Given an importance density qn.xn/, we have the following identity for a test function �n

In.�n/ D

Z
�n.xn/�n.xn/dxn

D

Z
�n.xn/


n.xn/R

n.xn/dxn

dxn

D

Z
�n.xn/

Nwn.xn/qn.xn/R
Nwn.xn/qn.xn/dxn

dxn :

Here, Nwn.xn/ is called unnormalised importance weight and is defined as

Nwn.xn/ D

n.xn/
qn.xn/

: (16)

The target density can now be approximated as

b�n.xn/ D NX
iD1

W i
n ıXin.xn/ ;

where

W i
n D

Nwn.Xin/PN
jD1 Nwn.X

j
n/
; (17)
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are called the normalized weights and the normalizing constant Zn can be approximated
with bZn D 1

N

NX
iD1

Nwn.Xin/ :

Here, the independent samples Xin � qn.xn/, also called particles, are sampled from the
known proposal density qn.xn/. The Monte Carlo approximation for the expectation of
In.�n/ is calculated by

I ISn .�n/ D
1

N

NX
iD1

�.Xin/
Nwn.Xin/

1
N

PN
iD1 Nwn.Xin/

D

NX
iD1

W i
n�n.X

i
n/ : (18)

This means we only need to calculate the normalized importance weights and sample from
qn.xn/ to get the estimate of the function �n.

3.5.4 Sequential Importance Sampling

The Sequential Importance Sampling (SIS) method has a fixed computational complexity,
which is not the case for IS derived above, that has is an increasing computational cost for
an increasing number of observations and thus densities �n.xn/. SIS uses an importance
distribution which is sequential for all the time steps, which means qn.xn/ is defined
recursively based on qn�1.xn�1/. The recursive framework is defined using a Markov
kernel, also known as transition kernel, Kn W En�1 �! P.En/. P.En/ is the class of
probability measures on En. In other terms, this gives: X.i/n � Kn

�
x.i/n�1; �

�
such that

qn.xn/ D qn�1.xn�1/Kn.xn�1; xn/ D
Z
qn�1.xn�1/Kn.xn�1; xn/dxn�1 :

This general representation of SMC with a Markov kernel is more precisely stated as a
conditional probability by Doucet and Johansen [2009]. They used the general derivation
above, from Bernardo et al. [2007], and give a more comprehensible framework for SIS:

qn.xn/ D qn�1.xn�1/qn.xnjxn�1/

D q1.x1/

nY
kD2

qk.xkjxk�1/ :

In other words, every time step k D 1; : : : ; n we sample X i
k
� qk.xkjxik�1/, after initially

sampling X i
1 � q1.x1/. Here, xi

k�1
indicates that each sample X i

k
depends on its earlier

sample X i
k�1

. This way the unnormalized importance weights Eq. (16) can be calculated
recursively:

Nwn.xn/ D

n.xn/
qn.xn/

D

n�1.xn�1/
qn�1.xn�1/


n.xn/

n�1.xn�1/qn.xnjxn�1/

D Nwn�1.xn�1/ � ˛n.xn/ : (19)

Here, ˛n denotes the incremental importance weights.

˛n.xn/ D

n.xn/


n�1.xn�1/qn.xnjxn�1/
:
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Eq. (19) gives us a recursive formula for the weights, starting with time step 1:

Nwn.xn/ D Nw1.x1/
nY
kD2

˛k.xk/ ;

We can now calculate the normalized importance weights as seen in Eq. (17).

In this setting, we have to specify the importance density. This is a difficulty for sequential
Monte Carlo methods. The goal is to choose the importance density such that it minimizes
the variance of the weights and this would be achieved by choosing

qn.xnjxn�1/ D �n.xnjxn�1/ ;

because then the variance of Nwn.xn/ conditional on xn�1 equals zero. Unfortunately,
sampling from �n.xnjxn�1/ is not possible as this density is unknown and is the reason
for deriving these methods in the first place. This is why we need to approximate this
proposal density as close as possible to the true density �n.xnjxn�1/.

3.5.5 Resampling

A disadvantage of IS and thus SIS is degeneracy of the weight vector, as shown in Doucet
and Johansen [2009]. This is caused by the variance of the estimates that increases
exponentially with n. After a few iterations, the variance of the importance weights is
extremely large. This means that one of the particles gets all of the weight, and the rest
goes to zero. Resampling is a method that can solve this problem and together with SIS
forms the SMC method.

The term resampling comes from the fact that we sample from a distribution that
was itself sampled. To be precise, with SIS we have an approximation of �n.xn/ given byb�n.xn/. This approximation is based on weighted samples from the importance density
qn.xn/. To improve the approximation, we sample from this SIS approximated sample by
selecting particle Xin with probability W i

n . This is then repeated N times to get a full
sample. N i

n copies of each particle in the sample set are created and are given a new
importance weight of 1=N . For the resample approximation N�n we now have:

N�n.xn/ D
NX
iD1

N i
n

N
ıxin.xn/ :

This results in an unbiased approximation of b�n.xn/ since
EŒN i

njW
1
n ; : : : ; W

N
n � D NW

i
n :

Essentially, the weights and the variance of the weights are reset. The problem of the
variance increasing exponentially is now eliminated, while the estimate is still unbiased.
Doucet and Johansen [2009] states that when estimating In.�n/ an estimate with lower
variance is obtained with O�n than that would be obtained with N�n, as resampling removes
the particles with low weight and multiplies the particles with higher weights. This comes
at the cost of additional variance in the estimate. If the importance weights of the particles
do not have high variance, meaning that the samples have not degenerated, a resampling
step may not be needed. Therefore there should be a threshold that indicates if the
variance is high or not to decide if the particles need to be resampled. In the literature,
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this additional threshold is assessed with the Effective Sample Size (ESS). There are
multiple types of formulas for the ESS. One that is most used is

ESS D

 
NX
iD1

.W i
n /
2

!�1
:

The ESS takes values between 1 and N , and resampling takes place when the ESS is
below a defined threshold.

The specific method of resampling influences the variance of the number of copies for
each particle. There are multiple methods that all try to optimize this variance while
preserving the fact that this estimator is unbiased. The most used ones are described
below

Systematic resampling Sample U1 � U Œ0; 1=N � and with Ui D U1 C
i�1
N

for
i D 2; : : : ; N . The number of copies N i

n are now chosen as

N i
n D

ˇ̌̌n
Ui W

i�1X
kD1

W k
n � Ui �

iX
kD1

W k
n

oˇ̌̌
:

This method outperforms other methods shown by Hol et al. [2006], which is why this
method will be used as resampling method in our SMC algorithm. Stratified resampling
is another method, done the same way as systematic resampling only then U1 will be
sampled each iteration of i .

Residual Resampling Set eN i
n D bNW

i
nc, whereafter one samples additional copies

NN i
n from a multinomial distribution with parameters

�
M; .W

1

n; : : : ; W
N

n /
�
. Here, W

i

n /

W i
n �N

�1eN i
n and M D N �

P
i
eN i
n. Then the copies count N i

n D
eN i
nCN

i

n. This method
ensures that each weight (that has a high enough importance weight) has copies in the
next iteration.

Multinomial Resampling This method just samples N 1
n ; : : : ; N

N
n from the multi-

nomial distribution with parameters
�
N; .W 1

n ; : : : ; W
N
n /
�
. In other words, every sample

will be copied with the probability of its normalized weight. Hol et al. [2006] showed that
this was the most computationally complex method and had the largest variance, which
is why other methods are preferred.
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4 Sequential Monte Carlo for neural networks
The goal of this thesis is to sequentially train an FNN as new data in a time series becomes
available. One can see such a neural network as a dynamical model, as it produces a
sequence of outputs over time. We assume that the underlying process for creating this
sequence evolves in time, and we will consider a discrete time setting here. The reason
we want the neural network to be represented as a state space problem is that SMC
methods can solve these kinds of problems. As we want to use SMC to train the weights
of the neural network, it is necessary to precisely formulate this as a state space problem
so we can use all relevant literature on SMC. Understanding the literature can help in
expanding certain available algorithms for SMC already in use for these problems. Using
the concepts introduced in Chapters 2 and 3, we can eventually formulate the algorithm
of Freitas et al. [2000].

4.1 General state space models

In this thesis, SMC is used for the solution of the optimal filtering problem. To define this
problem, first, we need to understand general state space models. Then, we can see the
general structure on which SMC is used and translate this to its application to a neural
network.

4.1.1 General state space model

General state space models are also known as hidden Markov models (HMM). The for-
mulation can be used for optimal filtering, control theory, and parameter estimation. In
this section, we define a general state space model according to Kantas [2009].

Definition 1 Let fXngn�0 be a Markov chain with initial density � defined on .X ; EX ;P/
and fYngn�0 on .Y; EY ;P/ and M and G denote, respectively, a Markov transition kernel
from .X ; EX / to .X ; EX / and a transition kernel from .X ; EX / to .Y; EY/. The bivariate
process f.Xn; Yn/gn�0 is called a Hidden Markov Model (HMM) with state xn and obser-
vation yn, if for any sets BX 2 EX and BY 2 EY , we have for any n

P.Xn 2 BX jXn�1 D xn�1;Yn�1 D yn�1/ D P.Xn 2 BX jXn�1 D xn�1/

D

Z
BX

M.xn�1; dxn/ ;

P.Yn 2 BY jXn�1 D xn�1;Yn�1 D yn�1/ D P.Yn 2 BY jXn D xn/

D

Z
BY

G.xn; dyn/ :

Next, we consider a less general definition, the case of a fully dominated HMM:

Definition 2 Let there exist a dominating probability measure � on .Y; EY/ such that for
all x 2 X , G.x; �/ is absolutely continuous with respect to �, i.e., G.x; �/ � �.�/, with
the transition density function being g.�jx/ D dG.x;�/

d�
. Also, let there exist a dominating

probability measure � on .X ; EX / such that for all x 2 X , �.�/ and M.x; �/ are absolutely
continuous with respect to �, i.e., �.�/ � �.�/ and M.x; �/ � �.�/, with the transition
density function being f .�jx/ D dM.x;�/

d�
. The hidden Markov Model f.Xn; Yn/gn�0 is then

called fully dominated and the joint Markov transition kernelM.x0; x/G.x; y/ is dominated
by the product measure �˝ � and admits the transition density f .xjx0/g.yjx/.
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An HMM is used in a large range of problems that require the estimation of unobserved,
time-varying states of Markov chains using a sequence of noisy observations. This includes
non-linear and non-Gaussian time series models, taking k D 1; : : : ; n:

xkC1 D ‰.xk; dk/ ;

yk D ˆ.xk; vk/ :

Here, dk and vk are independent sequences of random variables and the functions ‰ and
ˆ are non-linear, defining the evolution of the state and observations. This model is called
a general state space model. Most of the literature considers models where X is finite,
which translates to a finite time horizon. However, the way in which the problem is stated
also allows for an infinite time horizon, which is in the scope of this thesis. In this case,
we call the above-stated set of equations a state space model.

4.1.2 General state space for parameter estimation

Let fXngn�0 and fYngn�0 be X and Y valued stochastic processes defined on a measurable
space .�;F/ and suppose that � 2 ‚ is the parameter vector, where ‚ is an open
subset of Rn. Here, � denotes a static parameter, e.g., the dynamic noise variance. This
parameter can be either known or unknown depending on the problem. In this framework,
we assume � to be known. A state space model uses the unobserved state fXngn�0 as
a Markov process of initial density X0 � � and Markov transition density f�.x0jx/. As
the process fXngn�0 is hidden we get indirect information using the observations fYngn�0.
The state space model assumes the observations fYngn�0 to be conditionally independent
given the state fXngn�0, and its behavior is modeled by a conditional marginal density
g�.yjx/. With k D 1; : : : ; n, the model is summarised as

XkjXk�1 D xk�1 � f�.�jxk�1/ ;

YkjXk D xk � g�.�jxk/ :
(20)

4.1.3 SMC for Optimal filtering

In Chapters 2 and 3, we formulated the tools on which we can build the optimal filtering
problem. The goal is to find the hidden states of the state space model. Having Eq. (20)
as our state space model we define,

fXngn�0 D f�ngn�0 ; (21)

which gives us a sequence of unknown densities. This can be the same sequence that
is described in Eq. (15). This distribution is a complete solution of the state inference
problem as it summarises all that is known about the hidden states given the observations.
Translating this to a Bayesian setting, optimal filtering denotes the hidden state sequence
Eq. (21) as posterior densities fp.xnjyn/gn�0; which gives �n.xn/ D p.xnjyn/. In many
applications, we are interested in estimating these posteriors recursively in time, especially
the marginal of this density p.xnjyn/. This marginal is called the filtering density, hence
the name optimal filtering. Compared to SMC methods for optimal filtering, general
MCMC methods tend to be computationally too expensive, as they re-assess the whole
data set every iteration. This especially holds for large n. Referring to Eq. (15) as the

density, we have 
n.xn/ D p.xn; yn/ for optimal filtering or written in terms of the state
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space functions:


n.xn/ D �.x1/g.y1jx1/

(
nY
kD2

f .xkjxk�1/g.ykjxk/

)
: (22)

Where �, f and g are defined in Section 4.1.1. We cannot sample from the state posterior

p.xnjyn/ directly, so a suitable importance density needs to be chosen. The key for choos-
ing this density is to use as much information as possible while keeping computational
costs low. The importance density must be as close to the real distribution as possible in
order to minimize the variance of the importance weights (Doucet and Johansen [2009],
Doucet et al. [2000]). Using 
n.xn/ in Eq. (22), and Eq. (15) we get:

�n.xnjxn�1/ D p.xnjyn; xn�1/

D
g.ynjxn/f .xnjxn�1/

p.ynjxn�1/
:

This means we should use the optimal importance density of the form

qn.xnjxn�1/ D p.xnjyn; xn�1/ ;

first seen in Zaritskii et al. [1975]. For the incremental importance weight this gives us

˛n.xn/ D ˛n.xn�1; xn/ D
g.ynjxn/f .xnjxn�1/

p.xnjyn; xn�1/

D p.ynjxn�1/ :

The importance density shown here has a few drawbacks as it requires samples from
p.xnjyn; xn�1/ and evaluation of p.ynjxn�1/, which has no analytic form in the non-linear
and non-Gaussian case. Furthermore, if we use an recursive importance density for the
posterior p.xnjyn/ of the form

qn.xnjyn/ D q1.x1jy1/
nY
kD2

qi.xkjxk�1; yk/ ;

Doucet et al. [2000] states that the unconditional variance of the importance weights
increases over time. This is why often the importance density in state space models is
chosen in a more simple form, i.e.,

qn.xnjxn�1/ D f .xnjxn�1/ : (23)

This gives an incremental weight

˛n.xn/ D g.ynjxn/ : (24)

The equations Eq. (23) and Eq. (24) will be used in the SMC algorithm for neural networks
as state space model and is also used in the bootstrap filter by Gordon et al. [1993]. Doucet
et al. [2000] states that the importance density Eq. (23) is often inefficient in simulations
as the state space is explored without any knowledge of the observations and is especially
sensitive for outliers. Nevertheless, this importance density is often used in literature
because it is easy to implement.
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4.2 Neural Network in state space representation

The work of de Freitas et al. [1998] was the first paper where a state space representation
of a neural network was proposed to capture its evolution in time. The evolution was
presented in the following way, having time steps k D 1; : : : ; n:

wkC1 D wk C dk ;
yk D Oyk.wk; xk/C vk :

(25)

The bold notation is used, as these variables may be in vector form. For convenience,
we assume that wkC1 also denotes the biases of the neural network. Furthermore, we
have .yk 2 Ro/ as the output measurements, .xk 2 Rd / as the input measurements and
.wk 2 Rm/ for the weights of the neural network. The non-linear function, denoted with
Oy.�/, is the mapping of a neural network itself. We assume some measurement noise
vk, which is one of the free parameters in the SMC algorithm for neural networks. The
weights propagate through time being only dependent on the previous state and some noise
component dk, which is used to define the transition function. These noise components
may be different from a normal Gaussian distribution.

Using this formulation of the problem the evolution of the weights can be described by
a hidden Markov process, with an initial probability �.w1/ and a transition probability
f .xkjxk�1/ D p.wkjwk�1/. Here we also assume that the observations are conditionally
independent given the states. This formulates the neural network in the general state
space framework from Section 4.1.1, which means we are now equipped to use SMC for
analyzing the (hidden) states which are the weights of the NN. The SMC method that is
used is called optimal filtering and is described in Chapter 4.1.3.

4.3 Sequential Monte Carlo method for Neural networks

We can formulate this problem as a Bayesian neural network as we are interested in
the posterior distribution of the weights of the neural network p.WkjYk/, where Wk D
fw1; : : : ;wkg and Yk D fy1; : : : ; ykg. Here, k denotes the time steps. We are interested in
the marginal density p.wkjYk/, the filtering density. In the literature, a prediction and
update step is used to determine the marginal density. For the prediction step we have
the following equation:

p.wkjYk�1/ D
Z
p.wkjwk�1/p.wk�1jYk�1/dwk�1 : (26)

and the transition density, also presented in the general state space model chapter, is de-
scribed by f .xjxk�1/ D p.wkjwk�1/. This transition density is modeled by Eq. (25), using
the noise dk. The solution for the filtering density is given by combining the prediction
step Eq. (26) and Bayes’ rule to get the update step:

p.wkjYk/ D
p.ykjwk/p.wkjYk�1/

p.ykjYk�1/
(27)

The normalizing constant in Eq. (27) can lead to computational challenges regarding
high-dimensional integration especially when the number of parameters are high, which
is the case for neural networks. As Chapter 3 highlights, this can be solved with the SMC
method, which approximates the posterior distribution of interest.
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4.3.1 Calculating the posterior distribution of the weights

We take the transition density as the proposal density as seen in Eq. (23),

f .xkjxk�1/ D p.wkjwk�1/ :

This means that the incremental weights are proportional to the likelihood as in Eq. (24),

p.ykjwk/ / exp�
1

2

�
.yk � Oyk.wk; xk//TR�1.yk � Oyk.wk; xk//

�
: (28)

The noise dk is assumed to be Gaussian dk � N .0;Q/. In other words, each time step the
weights at time step kC 1 are the weights at time step k with added noise with variance
Q. Furthermore, the observation noise vk is also assumed to be Gaussian vk � N .0; R/,
where R is the variance of the observations. To make the one step ahead predictions, we
use Eq. (18). In other words, the predictions are a weighted average of the predictions by
the neural network for the different weight samples.

This gives us the tools to formulate the pseudo code seen in Algorithm 1 and the code
used for the numerical tests can be found in Appendix A.

4.3.2 The SMC algorithm for a convolutional neural network

The WaveNet structure is already able to efficiently model time series with the SGD
method. One of the advantages of the SMC algorithm for an FNN is that FNN’s are not
able to efficiently train sequential time series and the SMC algorithm makes this possible.
This advantage is lost for WaveNet because it already trains sequentially. Nevertheless,
the SMC algorithm may improve time series modeling with WaveNet, as it may be able
to capture changing patterns by adjusting the weights in the network. As explained in
Chapter 2, a convolutional neural network is similar to a fully-connected neural network,
so that the equations above can also be applied on convolutional neural networks. The
only difference is that the architecture of the network depends on the number of previous
time steps that are taken into account.The filter size � then accounts for the number
of total layers. For example, a CNN that depends on the last five time steps has three
hidden layers for � D 2, but only one hidden layer when � D 3.
Considering the initialization of the weights, the number of weights for a convolutional
neural network is the same for each layer and is equal to the filter size. This means that
the number of weights plus the bias is

#parameters D � � .L � 1/C .
X
l

nl C 1/:

The dimensions of the weights matrices are all the same, where with multiple channels
(other time series), the filters become multi-dimensional. The noise on the weights is the
same as for fully-connected neural networks. The script for the SMC algorithm for CNN
is given in Appendix C.
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Algorithm 1: SMC for neural networks
Data: Dataset D D .x; y/
Parameter: number of layers l D 1; : : : ; L

noise of weights: Q
noise of data: R
Threshold: T
number of samples: N

Output: Neural network one step ahead predictions

for k D 0 do
for i D 1; : : : ; N do

Draw weights wi0 for each layer from prior: �l.w0/
Evaluate importance ratio’s

Nwi0 D p.y0jw
i
0/

Normalize importance ratio’s

W i
0 D

Nwi0PN
jD1 Nw

j
0

for k > 0 do
for i D 1; : : : ; N do
Owi
kC1
D wi

k
C dk F where dk is a sample from p.dk/ � N .0;Q/

Evaluate importance ratio’s:

NwikC1 D Nw
i
kp.ykC1jw

i
kC1/

Normalize importance ratio’s:

W i
kC1 D

Nwi
kC1PN

jD1 Nw
j

kC1

if Neff � Treshold then
wi
kC1
D Owi

kC1

else
Resample new index j from discrete set f Owi

kC1
; W i

kC1
g

wi
kC1
D Owj

kC1

Nwi
kC1
D 1=N
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4.4 Improvements for the SMC algorithm on neural networks

In this section, we describe several ways to improve the basic SMC algorithm and the
neural network. In the literature, multiple options are proposed.

4.4.1 ReLU as activation function

The current state-of-the art neural networks use Rectfied Linear Units (ReLUs) as acti-
vation function. The ReLU activation function is as follows:

�.a/ D max f0; ag :

Krizhevsky et al. [2012] showed that ReLUs converge faster than a hyperbolic tangent
or sigmoid activation function. At the same time, the calculations to be done in back-
propagation are faster with a ReLU activation function. Also, the SMC algorithm may
lose important information of earlier points if the weights did not converge fast enough,
resulting in a resampling as the sample space became too sparse. This happens more with
sigmoid activation functions because they can become saturated and learn even slower. A
saturated neuron means that the derivative, � 0.z/, of the activation function, is near zero.
For the sigmoid activation function, this is the case when jzj >> 0. The ReLU activation
functions make neurons less likely to be saturated and therefore we expect that the SMC
algorithm on ReLU networks will be able to converge faster while keeping the relevant
information.

4.4.2 Adding gradient descent into the algorithm

Another possible improvement is to add a gradient descent step into the SMC algorithm
Freitas et al. [2000]. Adding a gradient descent step makes the algorithm more efficient
since the prior can include the information of the current data point yk. The backpropa-
gation algorithm explained in Chapter 2.1.3, on which the gradient descent is based, uses
the cost function, which in our case is the likelihood Eq. (28). This likelihood gives the
gradients based on the data point yk. The more information is provided to the prior,
the more accurate the weights sampled from this prior will become. The gradient step
is used after the prediction step of the SMC algorithm, where the predicted weights are
propagated from the previous weights with the noise dk � N.0;Q/. This gradient step is
a normal backpropagation step, but instead of using batch learning, it only trains on-line,
which means the weights get updated each time step. When adding the gradient descent
step in the SMC algorithm, a learning parameter � has to be defined. This parameter
influences the step that is taken in the direction the gradients give. A small learning
parameter means that a small step is taken into the direction of the gradient. This means
slow convergence. On the other hand, if a large learning parameter is taken, the neural
network may become unstable as the step taken into the direction of the gradient is too
big, which means no convergence takes place. The gradients have to be calculated for each
individual weight sample Owi

k
and bias Obi

k
. The calculation of the gradient can be done

using the backpropagation from Section 2.1.3. The algorithm including the gradient step
is defined in Algorithm 2. The code for the SMC with gradient step and ReLU activation
function can be found in Appendix B.
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Algorithm 2: SMC for neural networks with gradient step
Data: Dataset D D .x; y/
Parameter: number of layers l D 1; : : : ; L

noise of weights: Q
noise of data: R
Threshold: T
number of samples: N

Output: Neural network one step ahead predictions

for k D 0 do
for i D 1; : : : ; N do

Draw weights wi0 for each layer from prior: �l.w0/
Evaluate importance ratio’s

Nwi0 D p.y0jw
i
0/

Normalize importance ratio’s

W i
0 D

Nwi0PN
jD1 Nw

j
0

for k > 0 do
for i D 1; : : : ; N do
Owi
kC1
D wi

k
C dk F dk is a sample from p.dk/ � N .0;Q/

Update each Owi
kC1

with corresponding gradient step
Evaluate importance ratio’s:

NwikC1 D Nw
i
kp.ykC1jw

i
kC1/

Normalize importance ratio’s:

W i
kC1 D

Nwi
kC1PN

jD1 Nw
j

kC1

if Neff � Treshold then
wi
kC1
D Owi

kC1

else
Resample new index j from discrete set f Owi

kC1
; W i

kC1
g

wi
kC1
D Owj

kC1

Nwi
kC1
D 1=N
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4.4.3 Initializing weights with He initialization

The initialization of the weights can be very important for the convergence of the neural
network. The initialization can improve performance significantly and has been shown
already in early papers like LeCun et al. [1998]. Glorot and Bengio [2010] found the
"Xavier" method, which was made and derived specifically for symmetric activations in
the neurons, like sigmoid and hyperbolic tangent activations. When using ReLU as the
activation function in deep neural networks, He et al. [2015] found the most efficient way
of initializing the values of the weights.

The He initialization is defined as follows,

w � N .0;

s
2

nl
/;

where nl here is the number of neurons in the layer a specific weight is in. At the same
time, the biases are initialized as zeros. In the numerical results, we study whether He
initialization can improve the SMC algorithm.
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5 Numerical results
In this section, the results of testing the SMC algorithm on different time series are
presented. The time series used are a composite function similar to the one used in
Freitas et al. [2000], a sine with noise, the daily stock returns of the S&P 500, and global
mean temperatures. The main goal of this thesis is to gain insight into when the SMC
method on an FNN outperforms the standard way of training networks with the SGD
algorithm. By testing the performance of SMC and SGD on a wide variety of time series
we hope to gain insight into the added value of SMC. Furthermore, we thoroughly study
the influence of the hyperparameters of SMC on the network performance. We then study
the effects of the improvements on SMC as proposed in Section 4.4, and in particular apply
the SMC algorithm on a novel network structure, the CNN.
The SMC algorithm has several hyperparameters which are summarized in Table 1:

Parameter Definition
N # of samples per time step
Q The noise of the transition function
R The width of the likelihood
T The threshold for the ESS
N�l Variance on the initialization of weights in layer l
nl # of neurons in layer l

Table 1: Parameters for SMC algorithm

5.1 Defining the time series

Throughout the numerical results, we use four different time series, which we here describe
in detail. We have k D 1; : : : ; K to indicate the time steps.

5.1.1 Time series 1: Composite function

We define the composite function as:

yk.x1.k/; x2.k// D 4 sin .x1.k/ � 2/C 2x22.k/C 5 cos .0:02k/C 5C v : (29)

Here, v � N .0; 0:1/ is Gaussian noise with a zero mean and variance of 0:1. The input
.x1.k/; x2.k// is simulated from a Gaussian distribution N .0; 1/. We generate K D 400

time steps of yk.x1.k/; x2.k//. As input for the neural network, we use x1.k/ and x2.k/
to model yk.x1.k/; x2.k//, which gives us n1 D 2 input neurons.

5.1.2 Time series 2: The sine function with noise

We define the sine function with noise as:

yk D sin 0:02k C v ;

Here, v � N .0; 1/ is Gaussian noise with a zero mean and variance of 1. We generate
K D 400 time steps of yk. As input for the neural network we use the five previous
time steps yk�5 D .yk�5; yk�4; yk�3; yk�2; yk�1/ to model yk, which gives us n1 D 5 input
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neurons. This also means we forecast only K D 395 time steps, starting from y6. This
time series gives insight into how the algorithm performs with noise. The optimal RMSE
would be equal to the noise variance so that a larger RMSE means that the neural network
is overfitting.

5.1.3 Time series 3: The daily returns of S&P 500

Financial data is known to be non-stationary and with a low signal-to-noise ratio. As
mentioned before, SMC may be well-capable of handling these properties, which is why
this is an interesting real-world time series to test SMC on. We use the daily returns QRk
of the daily adjusted closing price QPk. The date we start the time series is 01-01-2016 and
take K D 400 daily adjusted closing prices, where the daily returns are calculated with
adjusted closing price QPk as follows:

QRk D
QPk � QPk�1
QPk�1

:

As input for the neural network we use the four previous returns
yk�4 D . QRk�4; QRk�3; QRk�2; QRk�1/ to model yk D QRk, which gives n1 D 4. This means we
forecast K D 396 time steps and start with forecasting y5 D QR5.

5.1.4 Time series 4: The global mean temperature data

For the last time series, we use the yearly global mean temperature data QTk from the
GISS NASA website. The data start from the year 1880 till 2018, which means we
have K D 138. Here we use again the five previous global temperature means yk�5 D
. QTk�5; QTk�4; QTk�3; QTk�2; QTk�1/ to model yk D QTk, which gives n1 D 5. This means we start
forecasting y6 D QT6, and forecast a total of K D 133 time steps. This time series has a
clear trend, similar to the artificial noisy sine function, but the presence of noisy outliers
can make the forecasting task more challenging. This time series is used to compare the
performance of the SMC algorithm on a CNN.

5.2 The SMC algorithm on FNN

5.2.1 SMC compared to SGD

In this section, we compare the SMC algorithm, as seen in Algorithm 1, with the SGD
method on FNN’s using different network architectures. The different architectures are
denoted as structure in the Tables below, and give the number of neurons each layer,
starting with the input layer. When we add more neurons and layers, we express this
as the neural network getting more complex. To quantify the performance, we use two
measures: the RMSE and MASE. We compute the RMSE as follows:

RMSE D

sPK
kD1. Oyk � yk/

2

K
;

and for the MASE we have:

MASE D
1

K

TX
kD1

 
j Oyk � ykj

1
K�1

PK
kD2 jyk�1 � ykj

!
; (30)
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where the denominator is the mean absolute error for the naïve prediction. The naïve
prediction takes the last seen time step as one step ahead prediction. Therefore this
measure gives a relative value, where values smaller than one indicate that the model is
outperforming a naïve prediction. The parameters we choose each time for the different
tests are the ones that in initial tests gave the best performance. To measure the consis-

tency of the algorithms, we run the SMC algorithm 50 times and the SGD for 10 runs
and calculate the standard deviation between the runs. Furthermore, SMC is a sequential
algorithm, and SGD is not. To obtain a fair comparison, SGD is trained with the first
350 data points, whereafter the last 50 one step ahead predictions are predicted with the
set of weights SGD obtained after the training phase of 10.000 epochs. SMC gives one
step ahead predictions after every time step, but the algorithm has a small convergence
period after initializing the weights finding the correct weight samples. The last 50 one
step ahead predictions of the SMC algorithm are used to compare to the last 50 one step
ahead predictions of the SGD. We study the performance on different FNN architectures,
in order to fully understand the SMC and SGD performance.

The composite function The parameters values we used are as follows: Q D 0:1,
R D 1, N D 200, T D N=3 and N�l D Œ5; 2; 1; 1� for respectively n2 D Œ5; 10; 20� and when
adding n3 D 20.

In Table 2 we compare the SMC algorithm to the SGD on FNN’s with different archi-
tectures. SGD appears to be performing worse than SMC when the structure gets more
complex. In other words, this indicates that SGD starts to overfit with more trainable
parameters, a problem that is well-known to arise in SGD. Furthermore, for all the archi-
tectures SMC has a similar or better RMSE than SGD. At the same time, the variance
of the SMC algorithm decreases as a more complex architecture is used. These results
indicate that the SMC method is better at forecasting non-stationary time series than
SGD given these architectures.

Structure SMC RMSE SGD RMSE SMC MASE SGD MASE
Œ2; 5; 1� 2:36˙ 0:37 2:30˙ 0:055 0:49˙ 0:076 0:45˙ 0:012

Œ2; 10; 1� 1:90˙ 0:34 2:17˙ 0:015 0:38˙ 0:067 0:43˙ 0:003

Œ2; 20; 1� 1:80˙ 0:31 2:20˙ 0:019 0:35˙ 0:055 0:43˙ 0:004

Œ2; 20; 20; 1� 1:93˙ 0:29 2:55˙ 0:057 0:37˙ 0:056 0:50˙ 0:014

Table 2: Test values for the composite function trained with SMC and SGD We make the
architectures more complex each time resulting in better results until we add the second
hidden layer. The SMC has better results for almost all the structures for both RMSE and
MASE.

The sine function with noise The parameters used for SMC are R D 1, N D 200,
T D N=3, and Q 2 f0:1; 0:05; 0:025; 0:01g changes respectively for each more complex
architecture, as initial tests showed that more complex architectures need a lower Q-value
to converge. Furthermore, N�2 D 4 for the hidden layer and N�L D 0:5 for the output layer.
When adding the second hidden layer N�3 D 4 is used for this layer again.

In Table 3, we see that SGD is overfitting when the network size increases, which we
expected. The overfitting is indicated by the RMSE which is larger than the noise v D
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N .0; 1/. SMC is better at avoiding overfitting on the data compared with SGD for the last
two architectures. In this data set previous points are the input for the neural networks,
opposite to the first data set where the input was the generated x1.k/ and x2.k/ for
simulating the data set. Using previous time steps as input makes it prone to a naïve
prediction, where the last seen data point becomes too important. This is why the MASE
is essential here as this gives the relative error to the naïve prediction, see Eq. (30). A
MASE smaller than one indicates that the neural network finds a better pattern in the
previous points than solely giving the last point a significant weight.

Structure SMC RMSE SGD RMSE SMC MASE SGD MASE
Œ5; 5; 1� 1:08˙ 0:077 1:043˙ 0:031 0:80˙ 0:064 0:78˙ 0:036

Œ5; 10; 1� 1:09˙ 0:067 1:09˙ 0:038 0:81˙ 0:059 0:83˙ 0:034

Œ5; 20; 1� 1:09˙ 0:076 1:29˙ 0:091 0:81˙ 0:055 0:95˙ 0:073

Œ5; 20; 20; 1� 1:18˙ 0:150 1:69˙ 0:143 0:86˙ 0:112 1:22˙ 0:134

Table 3: Test values for the sine with noise with trained with SMC and SGD The architec-
ture gets more complex each time resulting in overfitting for SGD, while SMC is keeping
a similar RMSE and MASE in the first three architectures

The daily returns of the S&P 500 The parameters are as follows: N D 200,
R D 0:02, T D N=2. The Q 2 f0:01; 0:005; 0:001; 0:001g changes for each structure
respectively. For initialization, we have: N�2 D 1 and N�L D 0:25 is used for respectively
the hidden layer and the output layer. When the second hidden layer is added we use
N�3 D 1 for this layer.

In Table 4 it is shown that the more complex the network gets, the better the RMSE of
SMC is, while the opposite is true for SGD. The bad performance of SGD is related to
the algorithm overfitting on the train data and it not being able to work with the highly
non-stationary and noisy stock data. For the less complex architecture, it seems that SMC
cannot correctly capture the patterns in the data needed to give a good one step ahead
prediction. Nevertheless, the SMC algorithm, on the largest architecture, gives the best
performance in terms of RMSE and MASE. This verifies our initial claim that the SMC
algorithm is a suitable technique for neural network training to model with non-stationary
time series as it avoids overfitting and can capture non-stationary patterns.

Structure SMC RMSE SGD RMSE SMC MASE SGD MASE
Œ4; 5; 1� 0:00670˙ 2:6e�4 0:00598˙ 4:3e�4 0:91˙ 0:05 0:78˙ 0:08

Œ4; 10; 1� 0:00649˙ 4:4e�4 0:00606˙ 5:3e�4 0:89˙ 0:07 0:79˙ 0:10

Œ4; 20; 1� 0:00596˙ 4:8e�4 0:00640˙ 8:8e�4 0:82˙ 0:08 0:86˙ 0:17

Œ4; 20; 20; 1� 0:00571˙ 2:9e�4 0:00648˙ 8:7e�4 0:76˙ 0:06 0:88˙ 0:17

Table 4: Test values for the daily returns of the S&P 500 trained with SMC and SGD
starting from 01-01-2016 and using 400 adjusted closing prices, resulting in a modeling of
396 daily returns, as we use 4 previous returns as input.

For the global mean temperature we observed the same good performance of SMC com-
pared to SGD, as for the other three time series, which is why we omit these results.
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5.2.2 Sensitivity of the SMC algorithm to the parameters

In this section, we study how the SMC algorithm behaves for different parameter settings.
This gives an overview of how to set the parameter values when using the SMC algorithm
in practice. In particular, we present here the results on the composite function, as for
the other time series we saw similar sensitivity of the SMC algorithm for the parameters,
and we, therefore, omit these tables.

We generate K D 200 time steps with Eq. (29) and use the RMSE over all the 200 points.
Furthermore, we used the architecture of the network that had the smallest RMSE in
Table 2, which consists of one hidden layer of 20 neurons.

N 25 50 100 200 400 800 1600
mean RMSE 3.38 3.22 3.05 3.06 3.00 2.98 2.97
SD RMSE 0.33 0.27 0.35 0.28 0.26 0.33 0.28

Table 5: Results for the sensitivity of hyperparameter N , showing the mean RMSE values
for 50 simulations changing the parameter N for the SMC algorithm. Here we changed
the parameter N, keeping the other parameters fixed

In Table 5, one can see that after more than 100 generated samples each time step, the
RMSE does not improve significantly. The authors of Crisan and Doucet [2000] showed
that as the number of samples at initialization goes to infinity, one can obtain convergence
in time with the SMC algorithm. This means we expected a decrease in the RMSE as we
increase the sample size. The rate of decrease slows down the more samples we generate,
which is expected for Monte Carlo methods. One possible explanation could be that
the architecture of the neural network used here is not complex enough to capture the
structure of the time series, meaning that this is the best error the neural network of this
complexity can give.

T N N/2 N/3 N/5 N/10 N/20
mean RMSE 3.21 3.1 3.06 3.00 2.97 2.95
SD RMSE 0.27 0.33 0.28 0.26 0.25 0.25

Table 6: Results for the sensitivity of hyperparameter T , showing the mean RMSE values
for 50 simulations changing the parameter T of the SMC algorithm. Here we changed
the parameter T, keeping the other parameters fixed. When T D N every iteration a
resampling takes place. In Chapter 3, it was explained that with resampling the algorithm
makes a reset. With lower T the amount of resampling decreases.

In Table 6 it shows that when decreasing the amount of resampling the RMSE improves.
The composite function benefits from not resetting the samples every iteration. This
means that the properties of the historical data points are essential to take into account
when making one step ahead predictions using SMC.

In Table 7, one can see that when the parameter R becomes too large, the algorithm is
not able to make good predictions. This is most likely because SMC is not discriminating
enough between the samples, as we have a wide likelihood because the measurement noise
v is assumed to be high. The large R also gives samples that are not capturing the
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R 1 1.5 2 4 8 16
mean RMSE 3.06 3.03 3.08 3.04 3.29 3.83
SD RMSE 0.31 0.26 0.28 0.27 0.19 0.21

Table 7: Results for the sensitivity of hyperparameter R, showing the mean RMSE values
for 50 simulations changing the parameter R of the SMC algorithm. Here we changed
the parameter R, keeping the other parameters fixed. The parameter R influences the
width of the likelihood. A large R, means a larger likelihood for more points and thus less
discriminaton between the different weight samples.

underlying properties of the data set a more substantial likelihood. This larger likelihood
gives large normalized importance weights for these poor samples, and the prediction of
the neural network depends on these normalized weights. As poor weight samples are
given a higher probability, the predictions are too distorted by these samples.

Q 0.05 0.1 0.25 0.5 1 2
mean RMSE 3.69 3.46 3.05 3.06 3.85 5.46
SD RMSE 0.15 0.17 0.24 0.28 0.65 1.16

Table 8: Results for the sensitivity of hyperparameter Q, showing the mean RMSE values
for 50 simulations changing the parameter Q of the SMC algorithm. Here we changed the
parameter Q, keeping the other parameters fixed. A larger Q means that a larger weights
space is being considered. A small Q may lead to insufficient variety in the weight samples
and not being able to find the optimal weights. On the other hand, a too large Q leads to
distortion of possible optimal weight samples.

In Table 8 we can see how SMC behaves for different values of Q. For Q D 0:05, the
RMSE is quite large, and this may be because the properties of the time series change
faster than the transition function, based on dk � N.0;Q/, can capture this change.
In other words, the weight samples need to change fast, but a small Q only explores a
small amount of the weight space each iteration. The larger Q-values give even worse
results. This is because when the variance of the transition function becomes too big, the
weights are changing too fast and are not able to converge to a specific value, causing the
algorithm to become unstable.
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5.2.3 Posterior distributions

In this section, we study the posterior distributions that the SMC algorithm generates
over both the weights and the outcome. We again consider the SMC algorithm on the
composite function. We expect to see some multi-modality in the posterior distribution
of the weights as neural networks are known to have this multi-modality.

Posterior distribution of the weights The SMC method provides a posterior dis-
tribution over the weights. This posterior can be used to obtain insight into the weight
distribution. In this section, we visualize these distributions. We show the posterior dis-
tribution of the weights for the composite function tested in Table 2. A 3D plot is made
to visualize the movement of the distribution better.
In Figure 6 the distributions of the weight, wL13, between the third neuron in the hidden
layer and the output layer neuron is shown. The posterior distribution oscillates over
time, similar to the cosine function that is in the composite function. In some time steps,
the distribution is more peaked than others. This may indicate more confidence in the
value of the weight. Some multi-modality can be seen as well, especially at time step
380. Both these modes may have a similar likelihood when interacting with the other
weights of the neural network, giving both modes a similar probability in the posterior
distribution of the weight.

Figure 6: Posterior distribution of weight wL13, with N D 5000, for the composite function
in the first test
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Distribution on the outcome Here, we show the distribution on the outcome. The
plotted distributions give a view of where the different outcome values lie. As the al-
gorithm uses the normalized importance weights to give a weighted average of these
outcomes, the predictions are not equal to the posterior mean. Figure 7 shows the pre-
dicted and true values with the distribution of the outcome. We observe that initially,
the predicted values are not well-aligned with the true values, however, as the algorithm
continues, the predicted distribution on the outcome contains the true values more often.
This means that this distribution could be an indication of the uncertainty the neural
network has.

Figure 7: Posterior distribution on the outcome, with N D 500, for the composite function
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5.2.4 FNN with ReLU activation function

In Section 4.4, we introduced possible improvements for the SMC algorithm on neural
networks, and in this section, we test if using ReLU activation functions improve the
performance of the SMC algorithm on FNN’s.

The composite function In this section, we replicate the tests done for Table 2 to see
how the ReLU activation compares to the sigmoid as activation function when training
with the SMC algorithm. Here the RMSE over the whole data set is included. The values
of the parameters used are almost the same as the tests for Table 2, except that we set
N�l D 0:5, for all layers and use Q D 0:05 for the one hidden layer network and Q D 0:025
for the network with two hidden layers.

Structure SMC RMSE50 SMC RMSE all SMC MASE50
Œ2; 5; 1� 1:62˙ 0:42 2:579˙ 0:0:426 0:32˙ 0:0876

Œ2; 10; 1� 1:33˙ 0:34 2:151˙ 0:344 0:252˙ 0:0526

Œ2; 20; 1� 1:207˙ 0:189 2:271˙ 0:208 0:233˙ 0:0376

Œ2; 20; 20; 1� 1:467˙ 0:338 2:038˙ 0:24 0:276˙ 0:057

Table 9: Test values for the composite function with ReLU activation functions. Here
instead of using sigmoid activation functions in the neural network, ReLU activation
function are used. RMSE50 denotes the RMSE over the last 50 points as done in the
previous tests. RMSE all denotes the RMSE over the whole data set of 400 time steps.
The MASE50 is the MASE over the last 50 points.

Table 9 shows that using a ReLU activation function for the neural network significantly
improves the RMSE and MASE compared to the results in 2. Again the most complex
network is overfitting the data more, resulting in a larger RMSE than the less complex
networks with n2 D 10 and n3 D 20. The improvement can be explained by the faster
convergence of the ReLU activation function, as explained in Chapter 4.4.1.

The daily returns of S&P500 Here, we introduce the hit rate as an additional perfor-
mance measure, specifically designed for assessing the forecasts of one step ahead returns.
The hit rate, QH , indicates how well the neural network predicts the direction of the stock.
In other words, the hit rate shows how well the neural network captures the underlying
patterns. The hit rate is calculated as follows:

QH D
1

K

KX
kD1

Hk ;

where Hk is defined as:

Hk D

(
1; if sign ..ykC1 � yk/. OykC1 � Oyk// > 0
0; otherwise

The parameters used for testing are the same as in the tests for Table 4. The difference
is we use N�l D 0:3 for all layers and Q D 0:0005.
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Structure RMSE50 MASE50 HIT
Œ4; 5; 1� 0:00529˙ 0:000303 0:674˙ 0:0549 0:479˙ 0:0698

Œ4; 10; 1� 0:00543˙ 0:000391 0:707˙ 0:0725 0:4664˙ 0:0652

Œ4; 20; 1� 0:00571˙ 0:000598 0:763˙ 0:0955 0:4668˙ 0:0565

Œ4; 20; 20; 1� 0:00552˙ 0:000401 0:723˙ 0:0705 0:468˙ 0:0684

Table 10: Test values for the S&P 500 daily returns with ReLU activation functions.
Here instead of using sigmoid activation functions in the neural network, ReLU activation
functions are used. RMSE50 the RMSE over the last 50 points as done in the previous
tests. MASE50 denotes the MASE over the last 50 points. HIT denotes the hit rate over
the last 50 points of the data set. The 4 previous returns are used for the input neurons

In Table 10 the ReLU again gives a significant improvement for the test measures com-
pared to the sigmoid activation functions in Table 4, showing a higher RMSE for all
architectures. We observe however that unlike with the sigmoid, the RMSE actually
gets worse as the architecture becomes more complex. Also, the hit rate becomes lower
as the architecture gets more complex, meaning that the neural network is not finding
the patterns in the data, or cannot capture specific changes in the patterns fast enough.
Nevertheless, the performance of the ReLU activation is better than that of the sigmoid.

For the sine function with noise, we got near-optimal performance for the basic SMC
algorithm, and the same performance was observed when training an FNN with ReLU
activation functions for the sine with noise. Also, for the global mean temperatures these
observations where made. This is why we omit these results here.
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5.3 Gradient descent step

In this section, SMC is tested with the gradient descent step added to the general SMC
algorithm, as seen in Algorithm 2. The gradient step is tested for both sigmoid and ReLU
activations for the neural network to see if the gradient descent step is more efficient for
one of these activations.

Composite function For the test in Table 11 the learning parameter � D 0:01 is
chosen. Furthermore, the same parameters are used as in the tests for Table 9 to make a
fair comparison.

Structure SMC RMSE50 SMC RMSE all SMC MASE50
Œ2; 5; 1� 1:267˙ 0:385 2:829˙ 0:221 0:235˙ 0:0689

Œ2; 10; 1� 1:046˙ 0:275 2:435˙ 0:215 0:185˙ 0:0553

Œ2; 20; 1� 0:998˙ 0:184 2:141˙ 0:199 0:175˙ 0:0337

Œ2; 20; 20; 1� 1:040˙ 0:234 1:902˙ 0:266 0:193˙ 0:0386

Table 11: Test values for the composite function with gradient step and ReLU activation
functions. Here, a gradient step is added to the SMC algorithm and ReLU activation
functions are used. RMSE50 denotes the RMSE over the last 50 points as done in the
previous tests and MASE50 the MASE over the last 50 points. RMSE all denotes the
RMSE over the whole data set of 400 time steps.

Table 11 shows that the RMSE for the whole data set steadily decreases as the network
structure becomes more complex, indicating faster convergence. Adding the gradient
descent step gives significantly better results than only changing the activation function
to ReLU. It seems that for the architecture with two hidden layers the gradient step
provides significantly faster convergence, as it is now comparable to the less complex
architectures for the RMSE50.

For the sigmoid activation functions, we take the same parameters as for the initial test
of Table 2, and use � D 0:01 as learning parameter. This way, we can see the influence of
the gradient step for the sigmoid activation.

Structure SMC RMSE50 SMC RMSE all SMC MASE
Œ2; 5; 1� 2:229˙ 0:374 3:075˙ 0:418 0:464˙ 0:0826

Œ2; 10; 1� 1:847˙ 0:318 2:735˙ 0:264 0:376˙ 0:0656

Œ2; 20; 1� 1:679˙ 0:344 2:644˙ 0:184 0:328˙ 0:0664

Œ2; 20; 20; 1� 1:865˙ 0:300 2:642˙ 0:167 0:360˙ 0:0632

Table 12: Test values for the composite function with gradient step and sigmoid activation
functions. RMSE50 denotes the RMSE over the last 50 points as done in the previous
tests and MASE50 the MASE over the last 50 points. RMSE all denotes the RMSE over
all 400 one step ahead predictions.

Table 12 shows a decrease in RMSE for all architectures compared to Table 2. Compared
to the ReLU activation function with the gradient step in Table 11, the gradient step
improves the RMSE significantly less when using the sigmoid function. The reason may
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be that the gradient step benefits more from the faster convergence of ReLU, and has
issues with saturated neurons that arise with sigmoid activation functions, as explained
in Section 4.4.1. It concludes that changing the activation function from sigmoid to ReLU
significantly improves SMC training for neural networks with and without a gradient step.

Structure RMSE50 HIT MASE50
Œ4; 5; 1� 0:00525˙ 0:00026 0:4664˙ 0:0664 0:6477˙ 0:0435

Œ4; 10; 1� 0:005829˙ 0:002013 0:4648˙ 0:0488 0:74˙ 0:029

Œ4; 20; 1� 0:005955˙ 0:001310 0:4712˙ 0:0600 0:770˙ 0:218

Œ4; 20; 20; 1� 0:005569˙ 0:000446 0:4852˙ 0:0647 0:710˙ 0:075

Table 13: Test values for the daily returns of the S&P500 with gradient step and ReLU
activation functions. RMSE50 denotes the RMSE over the last 50 points as done in the
previous tests. MASE50 denotes the MASE for the last 50 points. HIT is the hit ratio
over all the time steps.

Financial data The parameters used are the same as for in Table 10, only changing
Q D 0:00025 and taking � D 0:00001. It is observed, in Table 13, that adding the
gradient makes the RMSE worse for the last three architectures, compared to Table 10.
The hit ratio seems to be increasing as the network becomes more complex, which would
make it better for practical uses than without the gradient step. However, it is interesting
to see that the RMSE is higher than without a gradient step, seen in Table 10, meaning
the gradient step here potentially leads to more overfitting of the data. The gradient
step evaluates the observation yk, and we use previous time steps as input for the neural
network. This means for the prediction OykC1 this is the last seen time step. It could
be that with taking previous time steps as input, the gradient step directs the neural
network too much to this observation yk, for example giving the last seen time step a too
high weight, indicated by the slightly higher MASE50 than seen in Table 10, which badly
influences the prediction for time step k C 1 as it tends toward a naïve prediction.

For the sine with noise, we saw similar behavior as for the S&P 500 time series. This
indicates that the gradient step is, in some cases, not beneficial when the inputs are
previous time steps.

Structure SMC RMSE50 SMC RMSE all SMC MASE
Œ5; 5; 1� 0:135˙ 0:0387 0:314˙ 0:00905 1:0386˙ 0:115

Œ5; 10; 1� 0:135˙ 0:0369 0:314˙ 0:00871 1:040˙ 0:107

Œ5; 20; 1� 0:135˙ 0:0364 0:316˙ 0:0105 1:0285˙ 0:106

Œ5; 20; 20; 1� 0:136˙ 0:0374 0:314˙ 0:00891 1:0465˙ 0:123

Table 14: Test values for the temperature data set with gradient step and ReLU activation
functions. RMSE50 denotes the RMSE over the last 50 points as done in the previous
tests. RMSE all denotes the RMSE over the whole data set of 134 temperature time steps.
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Global mean temperature data Here we used parameters: Q 2 f0:1; 0:05; 0:025; 0:01g,
R D 0:3, N D 200, � D 0:001, T D N=2 and N�l D 0:3 for all layers. Surprisingly, Ta-
ble 14 shows that all architecture have similar performance on the temperature data set.
There are 133 time steps, which is not that much, but the algorithm can still model this
non-stationary time series. Although, it is outperformed by a naïve prediction, indicated
by the MASE50 value above one. These values will be used to compare the results in the
next section on CNN.

5.3.1 Using automatically scaled initialization

Now we test if He initialization, discussed in Section 4.4.3, improves the performance
even further for the SMC algorithm with gradient descent. This allows us to reduce the
number of parameters that need to be chosen manually. We test the composite function
with K D 600 generated time steps and use the SMC algorithm with gradient step and
ReLU activation functions on the architecture with two hidden layers. Furthermore, we
use same parameters as for the tests seen in Table 11, only then we used Q D 0:01. We
use the moving average of the RMSE and standard deviation of the distribution on the
outcome, with a window of 100 time steps.

Figure 8 shows that with a He initialization we get a significantly better initialization.
The RMSE over the first 100 time steps is approximately 7:5 for He initialization, against
32:5 for the manual initialization in three runs. This is an improvement in two ways. As
now, we also have less hyperparameters to choose, which is beneficial for the robustness
of the SMC algorithm in general.

The problem with the He initialization is that for certain time series it results in a
too high initial weight variance and then the He initialization performs worse. For the
composite function, the He initialization helped the initial convergence significantly, but
for other data sets, this was not the case. The initialization method should depend on
the structure of the time series. In any case, we can conclude that proper initialization is
essential for a good initial set of weight samples in the SMC algorithm.

Figure 8: Three simulations for He initialization and manual initialization. For the manual
initialization we have N�l D 0:3 for all layers. The architecture used is Œ2; 20; 20; 1�
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5.4 SMC on convolutional neural networks

In this section we present the results of the SMC algorithm on the convolutional network
structure. The SMC algorithm has not been tested before on this kind of network, and our
results are the first to do so. Table 15 shows that the RMSE and MASE are approximately
equal, or better, compared to the SMC algorithm for a fully-connected neural network.
The number of previous time steps is equal to the experiments with SMC applied the
FNN, to keep the information that the networks train on the same. Furthermore, we used
the same parameters as for the tests done in Section 5.3 for the specific time series, where
for the sine function with noise we chose � D 0:0001. Only the Q was different, which we
changed to Q 2 f0:02; 0:002; 0:1g for respectively time series 2,3 and 4.

Data set RMSE50 MASE HIT
Temperature 0:118˙ 0:00418 0:955˙ 0:028 -

Sine with noise 1:049˙ 0:0675 0:735˙ 0:0457 -
Stock returns 0:005654˙ 0:00118 0:738˙ 0:148 0:4908˙ 0:072

Table 15: Test values for three different time series using the SMC algorithm on a CNN.
RMSE50 denotes the RMSE over the last 50 points as done in the previous tests. MASE
here is on the last 50 points as well. HIT here is the hit ratio and is only applicable for
the stock returns.

For the temperature data and the sine with noise, the CNN performs significantly better.
For the stock returns, it performs approximately equal. The structure of WaveNet can
capture the dependence of previous time steps to the current time step better than an
FNN. The specific structure of WaveNet is beneficial when modeling the time series in
an autoregressive way with previous time steps as input. These results are promising,
especially as the number of previous points was matched with the tests for FNN. It could
be that more previous time steps as input improve the results even more.
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5.5 Uncertainty with the SMC algorithm

We discussed the importance of having a measure of uncertainty in a model and that one
of the benefits of the SMC algorithm was that the output was given by samples from this
posterior. In this section, we look at the distribution on the outcome and the spread of this
distribution as measured by the standard deviation. The distribution of the outcome is
what eventually determines the prediction and it captures the uncertainty of the network.
Theoretically, a small spread in the distribution should mean that the algorithm is more
confident about the value of the weight. A high spread means the opposite and means
that the algorithm is not sure about the value of the weight.

For this section we used the composite function to generate K D 12:000 time steps, which
we model with the SMC algorithm seen in Algorithm 2. The network architecture used
consists of two layers of 20 hidden neurons, and the same parameters used in Section 5.3
for the composite function. Only here we used Q D 0:01 and Q D 0:005, to see the
difference in long term behavior. Furthermore, we use moving averages for the absolute
errors and standard deviations of the distribution on the outcome, for each time step. For
the moving averages, a window of 300 time steps is used.

Figure 9: Three simulations of the moving average of the error and standard deviation of
the outcome distribution for the composite function data set for parameter Q D 0:01

We see that after a certain number of iterations, the error converges to slightly above
0.5 in Figure 9, while this is below 0.5 for the smaller Q-value in Figure 10. For a high
Q-value, the algorithm showed less consistency between runs. However, a higher Q-value
lets the algorithm converge faster, but may hit a plateau in terms of decreasing error.
Whereas a lower Q converges less fast but can get a smaller error over time and is more
stable. At the same time, we see that with a low Q the algorithm moves away slower from
a wrong initialization. What the value of Q should be, is different for each time series,
and should be carefully selected.

For the spread of the distribution on the outcome, we saw similar behavior. The
standard deviation converged to a specific region, and this happened faster for the larger
Q-value. We calculated the correlation between the spread on the outcome and the
absolute error, and the correlation was positive and around a value of 0.35 depending on
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Figure 10: Three simulations of the moving average of the error and standard deviation
of the outcome distribution for the composite function data set for parameter Q D 0:005

the run. This means that higher spreads on the outcome tend to result in higher errors,
as we expect to see.

Unfortunately, when we did the same tests for the sine function with noise, and the
daily returns, the theoretical behavior that a lower error has higher confidence did not
hold for these time series, indicated by a correlation around zero for these time series.
Understanding this is something that we leave for future investigation.
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5.6 Capturing change points with the SMC algorithm

In this section, we simulate a change in the noise to see how the algorithm reacts to
this. We use the sine function with noise to see if the SMC algorithm can capture this
change, and can keep predicting well. We use the standard deviation of the distribution
on the outcome, to indicate if the uncertainty becomes smaller when the noise is lower.
We talked about that SGD is not able to capture sudden changes in the data, and that it
is useful to detect when these changes present themselves. We generate 4000 time steps,
where at time step 2000, the noise changes from a high noise, N .0; 1:5/, to low noise,
N .0; 0:3/. We use a moving average with a window of 200 time steps, for the absolute
error and standard deviation.

Figure 11: Three simulations of the moving average of the error and standard deviation of
the outcome distribution for the sine function with noise, changing the noise at k D 2000

In Figure 11 we see that initially the spread drops when the noise is changed. Indicating
more confidence in the prediction, which is expected as the noise becomes lower. The
initial drop in the spread can be used as change point detection as it decreases fast.
However, after this drop, only one of the runs stays around these lower values. The
other runs increase over time, and one of the runs seems to become unstable. The SMC
algorithm is not able to consistently show a decrease in uncertainty when the noise is
smaller. On the other hand, the SMC algorithm does have a smaller error for two of the
runs when the noise becomes smaller. This proves that the SMC can adapt to changing
patterns of the data providing consistent performance for most of the runs, but is unable
to consistently capture this lower uncertainty in the spread of the distribution.

The same behavior was observed for the other time series, giving an error that decreased
or increased relative to high or low noise, but not able to consistently capture this change
in terms of uncertainty in the distribution of the outcome. Understanding how SMC can
be used for this change-point detection is something that is also left for future work.
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6 Conclusion and discussion
The main goal of this thesis was to understand whether using the SMC algorithm to
train an FNN can outperform the standard SGD training method when applied to a non-
stationary time series forecasting task. In this thesis, we showed by extensive numerical
tests on a diverse set of time series that the SMC can indeed provide a significant benefit
over the SGD method, showing the SMC algorithm for neural networks can be a powerful
method for forecasting non-stationary time series. Up to the best of our knowledge, this
is one of the first works extensively testing the SMC method for neural networks. We
gained further insight into the effects of the hyperparameters of SMC on the performance,
showing that in particular the parameters governing the trade-off the algorithm makes
between exploring the state-space more and providing faster convergence, can impact the
performance and convergence of the model.

Furthermore, we proposed several improvements on the standard SMC algorithm by
incorporating novelties from the neural network research, such as using a more robust ini-
tialization strategy, using a different activation function known as the ReLU or including
a gradient step in the SMC algorithm. These adaptations were able to improve the results
for the different time series even further. The SMC algorithm with the ReLU activation
significantly outperformed the SGD method. After incorporating the gradient step in the
SMC algorithm, we saw even further improvement, although this was not the case for
all time series. When using an autoregressive type of input, taking previous time steps,
the SMC algorithm seemed to benefit less of the gradient step. Moreover, we used the
SMC algorithm on a novel architecture applied to time series forecasting known as the
WaveNet, a particular kind of convolutional neural network. The SMC algorithm applied
to the WaveNet structure performed approximately equal or better for the time series,
and an added benefit of this structure is that it has significantly fewer weights compared
to the FNN. WaveNet, in combination with the SMC algorithm, was shown to be better
for autoregressive modeling of time series, compared to the SMC algorithm on FNN’s.

The SMC algorithm performance depends on the hyperparameters chosen, and choos-
ing these hyperparameters optimally can be time-consuming. A possible improvement
could be to incorporate some form of automatic parameter tuning into the SMC algo-
rithm instead of manually finding the right parameters. Using a grid search to find
optimal parameters would be beneficial as the values of the parameters differ for each
data set. Alternatively, as noted in Bergstra and Bengio [2012], a random grid search
could be even better. The authors of Snoek et al. [2012] provide a Bayesian optimization
scheme for the tuning of these parameters, and it may be possible to incorporate this
optimization in the SMC algorithm itself as this technique is sequential as well.

In terms of further improvements on the SMC algorithm, we saw that a larger Q-value
is useful for fast convergence, but can hit a plateau in terms of error. The authors of
Sbarufatti et al. [2017] used an adaptive Q that started with higher values and gradually
decreased in value. This way, it has initial fast convergence and can reduce the error
further due to the lower Q-value improving convergence, as seen in the results of Section
5.5. This method might again be dependent on the underlying time series. It could
then be better to adaptively change Q according to the error and the variance in the
data. The authors of Freitas et al. [2000] used an extended Kalman filter (EKF) to
make this possible. The EKF method to calculate the gradients is computationally more
expensive, so depending on the practical use it would not be able to give a full and
smooth posterior distribution on the weights, and therefore on the outcome, because it is
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not able to handle many samples as computation times are slow for this method. If the
computational efficiency could be improved, then this could be a good improvement for
the SMC algorithm, while keeping a full and smooth posterior.

As the SMC algorithm is used broadly in practice for navigation, robotics and solving
state-space problems, a lot of literature is written about specific problems and how to
improve these. One of these is the auxiliary particle filter Carpenter et al. [1999]. Accord-
ing to de Freitas [2003], this auxiliary particle filter performs better when the likelihood
is high in the tail of the prior. On the contrary, the basic SMC behaves better when
the prior coincides with the likelihood. Given this fact, it may be useful to incorporate
both in an algorithm and use them adaptively. Additionally, because an EKF gradient
step is less effective at finding a full posterior, some smoothing algorithms could be of
use. Smoothing in the resampling step, or between the few points that are propagated
may give better results and better posteriors. The authors of Doucet and Johansen [2009]
describes different techniques for smoothing in the SMC algorithm.

To conclude, in this work we showed that the SMC algorithm could be a powerful alter-
native to SGD for forecasting time series. One of the main disadvantages, and reason for
SMC not being used widely, is the high computational time. However, with the recent
increase in computing power, the computational disadvantage of Monte Carlo methods
become less of an issue. Furthermore, the need for a posterior distribution on the outcome
to have a measure of uncertainty is increasingly urgent as well. Again emphasizing the
need for Bayesian neural networks, of which the SMC algorithm is an example, making
it a very useful and relevant method. Nevertheless, the SMC algorithm still has a lot of
room for further study and improvement, some of which we proposed in this section.



Appendices
A Python code for SMC algorithm

Listing 1: SMC algorithm
"""
Algorithm fo r performing SMC t r a i n i n g on a neura l network f o r time s e r i e s .
The output i s a one�s t ep ahead p r e d i c t i on f o r data t ha t i s f ed s e q u e n t i a l l y

to the a l gor i thm .
You can import t h i s python f i l e in another f i l e , and then f i l l in the

parameters :
s i z e s ( s t r u c t u r e o f neura l network ) , N(# monte ca r l o we igh t samples ) ,

s igma_init ia l_w ( i n i t i a l sigma ’ s o f we i gh t s ) ,
s igma_ini t ia l_b ( i n i t i a l sigma ’ s o f b i a s e s ) . As seen in the __init__

statement t h i s c r e a t e s an ins tance o f
a neura l net wi th t h e s e parameters . Then with the SMC funct ion , one can

ob ta in one s t ep
ahead p r e d i c t i o n s on data . NOTE: The i n i t i a l sigma ’ s f o r the we i gh t s are

g iven in an array t ha t shou ld have the same
l en g t h as the l e n g t h o f the s i z e s v e c t o r .

"""
import numpy as np
import time
import sys
from tqdm import tqdm
from mul t i p ro c e s s i ng import Pool
from j o b l i b import Para l l e l , de layed
import mul t i p ro c e s s i ng

from numpy . random import random

class SMC_algorithm( object ) :

def __init__( s e l f , s i z e s , N, layer_sigmas_w , layer_sigmas_b , p o s t e r i o r=
False , epoch=False , weights=None , b i a s e s=None ) :
s e l f . s i z e s=s i z e s
s e l f . output_dim=s i z e s [�1]
s e l f . num_layers = len ( s i z e s )�1
s e l f . L0=np . z e r o s ( (N, 1 ) )
s e l f . L=np . z e r o s ( (N, 1 ) )
s e l f . s igma_init ial_w=layer_sigmas_w
s e l f . s igma_init ia l_b=layer_sigmas_b
s e l f . forward_output=np . z e ro s ( (N, s i z e s [ �1 ] ) )
s e l f .N=N
s e l f . p o s t e r i o r=po s t e r i o r
s e l f . epoch=epoch
i f s e l f . epoch :

s e l f . B iasStore=b i a s e s
s e l f . WeightsStore=weights

else :
s e l f . B iasStore =[ ]
s e l f . WeightsStore =[ ]
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def store_weights ( s e l f ,w) :
s e l f . WeightsStore . append (w)

def s tore_bias ( s e l f , b ) :
s e l f . B iasStore . append (b)

def i n i t i a l_we i gh t s ( s e l f ,N) :
"""
Creat ing the i n i t i a l we igh t samples .
"""
i f s e l f . num_layers == len ( s e l f . s igma_init ia l_b ) and not s e l f . epoch :

for i in range (0 ,N) :
b i a s e s = [ l �np . random . randn (y , 1) for y , l in zip ( s e l f .

s i z e s [ 1 : ] , s e l f . s igma_init ia l_b ) ]
weights = [ l �np . random . randn (y , x )

for x , y , l in zip ( s e l f . s i z e s [ : �1 ] ,
s e l f . s i z e s [ 1 : ] , s e l f . s igma_init ial_w )
]

s e l f . s tore_weights ( weights )
s e l f . s to re_bias ( b i a s e s )

# pr in t s e l f . WeightsStore
s e l f . WeightsStore=np . array ( s e l f . WeightsStore )
s e l f . B iasStore=np . array ( s e l f . B iasStore )

e l i f s e l f . epoch :
s e l f . WeightsStore=s e l f . WeightsStore
s e l f . B iasStore=s e l f . B iasStore

else :
print ’ERROR: ␣ i n i t i a l ␣weights ␣ sigma␣ vec to r ␣ s i z e ␣ i s ␣not␣ equal ␣ to

␣number␣ o f ␣ l a y e r s ’

return s e l f . WeightsStore , s e l f . B iasStore

def f e ed forward ( s e l f ,w, b , u) :
"""
Feedforward a l gor i thm fo r N d i f f e r e n t samples , f o r a r b i t r a r y s i z e

and l a y e r s o f neura l networks .
"""
u=u [ np . newaxis ]

for i in range (0 , s e l f .N) :
l=0
while l < s e l f . num_layers�1:

i f l ==0:
a = np . dot (u ,w[ i ] [ l ] . T)+b [ i ] [ l ] . T
a=sigmoid ( a )
l+=1

i f l < s e l f . num_layers�1:
a = np . dot ( a ,w[ i ] [ l ] . T)+b [ i ] [ l ] . T
a = sigmoid ( a )
l+=1

s e l f . forward_output [ i ]=np . dot ( a , w[ i ] [ l ] . T)+b [ i ] [ l ] . T

return s e l f . forward_output
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def update_weights ( s e l f ,w, b ,Q) :
"""
Updating the weights , meaning g i v i n g them a noi se wi th sigma Q.
"""

for i in range (0 , s e l f .N) :

for l in range (0 , s e l f . num_layers ) :

s e l f . B iasStore [ i ] [ l ] = np . array (b [ i ] [ l ] + np . random . normal
(0 ,Q, b [ i ] [ l ] . shape ) )

s e l f . WeightsStore [ i ] [ l ] = np . array (w[ i ] [ l ] + np . random .
normal (0 ,Q,w[ i ] [ l ] . shape ) )

return s e l f . WeightsStore , s e l f . B iasStore

def SMC( s e l f , data , r ea l ,Q, R, thresho ld , indweight=None ) :
"""
This func t i on g i v e s a one s t ep ahead p r e d i c t i on . The f i r s t e lement

i s 0 as one cannot g i v e a p r e d i c t i on f o r
the f i r s t data po in t . So the error shou ld s t a r t wi th the second

element o f the p r e d i c t i on array compared wi th
the second data po in t o f the r e a l v e c t o r .
"""
K=len ( r e a l )
print s e l f . s i z e s
resample_index=np . z e ro s ( (K, 1 ) )
i f s e l f . p o s t e r i o r :

p o s t e r i o r=np . z e ro s ( ( s e l f .N, 1 ) )
pos t e r i o r_t imes tep=np . z e ro s ( (K, s e l f .N, 1 ) )

outcome_poster ior=np . z e ro s ( (K+1, s e l f .N, s e l f . output_dim ) )
predict ion_next_datapoint=np . z e r o s ( (K+1 ,1) )
i ter=0
for k in tqdm( range (0 ,K) ) :

i f k==0:
w, b = s e l f . i n i t i a l_we i gh t s ( s e l f .N) # i n i t i a l i z e Weights
output_model=np . array ( s e l f . f e ed forward (w, b , data [ k ] ) ) #

ge t output from every we igh t sample i
p r ed i c t i on=np . array ( s e l f . f e ed forward (w, b , data [ k+1]) )# ge t

output from every we igh t sample , wi th input o f next data
po in t .

L0=s e l f . L ike l i hood ( r e a l [ k ] , output_model ,R) # ge t l i k e l i h o o d
o f every we igh t sample i

q=L0
q_norm=normal ize ( q )
outcome_poster ior [ k+1]=p r ed i c t i o n
predict ion_next_datapoint [ k+1]=np . nansum(q_norm�p r ed i c t i on )
i f s e l f . p o s t e r i o r :

for p in range (0 , s e l f .N) :
we ight l aye r=np . array (w[ p ] [ �1 ] )
we ight l aye r=np . array ( we ight l aye r [ 0 ] )
p o s t e r i o r [ p]=we ight l aye r [ indweight ]

pos t e r i o r_t imes tep [ k]= po s t e r i o r
else :

w, b=s e l f . update_weights ( s e l f . WeightsStore , s e l f . BiasStore ,Q)
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output_model=np . array ( s e l f . f e ed forward (w, b , data [ k ] ) ) # ge t
output from every we igh t sample i

i f s e l f . p o s t e r i o r :
for p in range (0 , s e l f .N) :

we ight l aye r=np . array (w[ p ] [ �1 ] )
we ight l aye r=np . array ( we ight l aye r [ �1 ] )
p o s t e r i o r [ p]=we ight l aye r [ indweight ]

pos t e r i o r_t imes tep [ k]= po s t e r i o r
L=s e l f . L ike l i hood ( r e a l [ k ] , output_model ,R) # ge t l i k e l i h o o d

o f every we igh t sample i
q=q�L
q_norm=normal ize ( q )
p r ed i c t i on=np . array ( s e l f . f e ed forward (w, b , data [ k+1]) )
predict ion_next_datapoint [ k+1]=np . nansum(q_norm�p r ed i c t i on )
outcome_poster ior [ k+1]=p r ed i c t i o n
Nef f=s e l f . Ne f f (q_norm)
i f Neff<thre sho ld :

resample_index [ k]=1
i ter += 1
w, b , q=s e l f . resampl ing (w, b , q_norm , q )
q_norm=q

print ’Number␣ o f ␣ resamples ’ , i ter+1

return predict ion_next_datapoint , poster io r_t imestep ,
outcome_posterior , w, b , resample_index

def resampl ing ( s e l f ,w, b , q_norm , q ) :
"""
Resampling o f the we igh t samples based on sy s t ema t i c resampl ing
"""
N = len (q_norm)
p o s i t i o n s = ( random ( ) + np . arange (N) ) / N
indx = np . z e r o s (N, ’ i ’ )
cumulative_sum = np . cumsum(q_norm)
i , j = 0 , 0
while i < N:

i f po s i t i o n s [ i ] < cumulative_sum [ j ] :
indx [ i ] = j
i += 1

else :
j += 1

for i , j in zip ( range (0 , s e l f .N) , indx ) :
for l in range (0 , s e l f . num_layers ) :

w[ i ] [ l ]= np . array (w[ j ] [ l ] )
b [ i ] [ l ]= np . array (b [ j ] [ l ] )

for l in range (0 , s e l f .N) :
q [ l ] = 1 . / s e l f .N

return s e l f . WeightsStore , s e l f . BiasStore , q

def Nef f ( s e l f , q_norm) :
"""
Ca l cu l a t i n g the e f f e c t i v e sample s i z e o f the q_norm
"""
x = 1 . / np .sum(np . power (q_norm , 2 ) )
return x
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def Like l ihood ( s e l f , output , a , R) :
"""
Ca l cu l a t i n g the l i k e l i h o o d o f the outcome .
"""
for i in range (0 , s e l f .N�1) :

s e l f . L [ i ]=np . sq r t (1/(2�np . p i�R��2) )�np . exp (�0.5 � ( ( output�a [ i
] ) . dot (2� ( 1 . /R��2) ) . dot ( output�a [ i ] ) ) )

return s e l f . L

def r e l u ( z ) :
return z � ( z > 0)

def l eaky_re lu ( z , e p s i l o n =0.1) :
return np .maximum( ep s i l o n�z , z )

def s igmoid ( z ) :
"""The sigmoid func t i on . """

return 1 .0/(1 .0+np . exp(�z . astype ( f loat ) ) )

def sigmoid_prime ( z ) :
""" Der i va t i v e o f the sigmoid func t i on . """
return s igmoid ( z )�(1� s igmoid ( z ) )

def normal ize ( probs ) :
"""Normaliz ing the input , such t ha t the sum equa l s one"""
prob_factor = 1 / sum( probs )
return np . array ( [ prob_factor � p for p in probs ] )



B Python code for SMC algorithm with gradient step
and ReLU activation function

Listing 2: SMC algorithm
"""
Algorithm fo r performing SMC t r a i n i n g wi th g rad i en t s t ep on a neura l

network wi th ReLU fo r time s e r i e s .
The output i s a one�s t ep ahead p r e d i c t i on f o r data t ha t i s f ed s e q u e n t i a l l y

to the a l gor i thm .
You can import t h i s python f i l e in another f i l e , and then f i l l in the

parameters :
s i z e s ( s t r u c t u r e o f neura l network ) , N(# monte ca r l o we igh t samples ) ,

s igma_init ia l_w ( i n i t i a l sigma ’ s o f we i gh t s ) ,
s igma_ini t ia l_b ( i n i t i a l sigma ’ s o f b i a s e s ) . As seen in the __init__

statement t h i s c r e a t e s an ins tance o f
a neura l net wi th t h e s e parameters . Then with the SMC funct ion , one can

ob ta in one s t ep
ahead p r e d i c t i o n s on data . NOTE: The i n i t i a l sigma ’ s f o r the we i gh t s are

g iven in an array t ha t shou ld have the same
l en g t h as the l e n g t h o f the s i z e s v e c t o r .

"""
import numpy as np
import time
import sys
from tqdm import tqdm
from mul t i p ro c e s s i ng import Pool
from j o b l i b import Para l l e l , de layed
import mul t i p ro c e s s i ng

from numpy . random import random

class SMC_algorithm( object ) :

def __init__( s e l f , s i z e s , N, eta , layer_sigmas_w , layer_sigmas_b ,
p o s t e r i o r=False , epoch=False , weights=None , b i a s e s=None ) :
s e l f . s i z e s=s i z e s
s e l f . e ta=eta
s e l f . output_dim=s i z e s [�1]
s e l f . num_layers = len ( s i z e s )�1
s e l f . L0=np . z e r o s ( (N, 1 ) )
s e l f . L=np . z e r o s ( (N, 1 ) )
s e l f . s igma_init ial_w=layer_sigmas_w
s e l f . s igma_init ia l_b=layer_sigmas_b
s e l f . forward_output=np . z e ro s ( (N, s i z e s [ �1 ] ) )
s e l f .N=N
s e l f . p o s t e r i o r=po s t e r i o r
s e l f . epoch=epoch
i f s e l f . epoch :

s e l f . B iasStore=b i a s e s
s e l f . WeightsStore=weights

else :
s e l f . B iasStore =[ ]
s e l f . WeightsStore =[ ]
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def store_weights ( s e l f ,w) :
s e l f . WeightsStore . append (w)

def s tore_bias ( s e l f , b ) :
s e l f . B iasStore . append (b)

def i n i t i a l_we i gh t s ( s e l f ,N) :
"""
Creat ing the i n i t i a l we igh t samples .
"""
i f s e l f . num_layers == len ( s e l f . s igma_init ia l_b ) and not s e l f . epoch :

for i in range (0 ,N) :
b i a s e s = [ l �np . random . randn (y , 1) for y , l in zip ( s e l f .

s i z e s [ 1 : ] , s e l f . s igma_init ia l_b ) ]
weights = [ l �np . random . randn (y , x )

for x , y , l in zip ( s e l f . s i z e s [ : �1 ] ,
s e l f . s i z e s [ 1 : ] , s e l f . s igma_init ial_w )
]

s e l f . s tore_weights ( weights )
s e l f . s to re_bias ( b i a s e s )

# pr in t s e l f . WeightsStore
s e l f . WeightsStore=np . array ( s e l f . WeightsStore )
s e l f . B iasStore=np . array ( s e l f . B iasStore )

e l i f s e l f . epoch :
s e l f . WeightsStore=s e l f . WeightsStore
s e l f . B iasStore=s e l f . B iasStore

else :
print ’ERROR: ␣ i n i t i a l ␣weights ␣ sigma␣ vec to r ␣ s i z e ␣ i s ␣not␣ equal ␣ to

␣number␣ o f ␣ l a y e r s ’

return s e l f . WeightsStore , s e l f . B iasStore

def f e ed forward ( s e l f ,w, b , u) :
"""
Feedforward a l gor i thm fo r N d i f f e r e n t samples , f o r a r b i t r a r y s i z e

and l a y e r s o f neura l networks .
"""
u=u [ np . newaxis ]

for i in range (0 , s e l f .N) :
l=0

while l < s e l f . num_layers�1:
i f l ==0:

a = np . dot (u ,w[ i ] [ l ] . T)+b [ i ] [ l ] . T
a=r e l u ( a )
l+=1

i f l < s e l f . num_layers�1:
a = np . dot ( a ,w[ i ] [ l ] . T)+b [ i ] [ l ] . T
a = r e l u ( a )
l+=1

s e l f . forward_output [ i ]=np . dot ( a , w[ i ] [ l ] . T)+b [ i ] [ l ] . T
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return s e l f . forward_output

def update_weights ( s e l f ,w, b ,Q,R, x , y ) :
"""
Updating the weights , meaning g i v i n g them a noi se wi th sigma Q.
"""

for i in range (0 , s e l f .N) :
for l in range (0 , s e l f . num_layers ) :

s e l f . B iasStore [ i ] [ l ] = np . array (b [ i ] [ l ] + np . random . normal
(0 ,Q, b [ i ] [ l ] . shape ) )

s e l f . WeightsStore [ i ] [ l ] = np . array (w[ i ] [ l ] + np . random .
normal (0 ,Q,w[ i ] [ l ] . shape ) )

for i in range (0 , s e l f .N) :

b i a s=s e l f . B iasStore [ i ]
weight=s e l f . WeightsStore [ i ]

nabla_b = [ np . z e r o s (b . shape ) for b in b ia s ]
nabla_w = [ np . z e ro s (w. shape ) for w in weight ]

delta_nabla_b , delta_nabla_w = s e l f . backprop ( bias , weight , x , y
, R)

nabla_b = [ nb+dnb for nb , dnb in zip ( nabla_b , delta_nabla_b ) ]
nabla_w = [nw+dnw for nw, dnw in zip (nabla_w , delta_nabla_w ) ]

s e l f . WeightsStore [ i ] = [w� s e l f . e ta�nw
for w, nw in zip ( s e l f . WeightsStore [ i ] , nabla_w) ]

s e l f . B iasStore [ i ] = [ b� s e l f . e ta�nb
for b , nb in zip ( s e l f . B iasStore [ i ] , nabla_b ) ]

return s e l f . WeightsStore , s e l f . B iasStore

def backprop ( s e l f , b ias , weights , x , y , R) :
"""Return a t u p l e ‘ ‘ ( nabla_b , nabla_w) ‘ ‘ r e p r e s en t i n g the
g rad i en t f o r the co s t f unc t i on C_x. ‘ ‘ nabla_b ‘ ‘ and
‘ ‘ nabla_w ‘ ‘ are layer�by� l a y e r l i s t s o f numpy arrays , s im i l a r
to ‘ ‘ s e l f . b i a se s ‘ ‘ and ‘ ‘ s e l f . weights ‘ ‘ . """

nabla_b = [ np . z e r o s (b . shape ) for b in b ia s ]
nabla_w = [ np . z e ro s (w. shape ) for w in weights ]

a c t i v a t i o n = x [ np . newaxis ]
a c t i v a t i o n s = [ a c t i v a t i o n ] # l i s t to s t o r e a l l the a c t i v a t i on s ,

l a y e r by l a y e r
zs = [ ] # l i s t to s t o r e a l l the z vec tor s , l a y e r by l a y e r
for b , w in zip ( b i a s [ : �1 ] , we ights [ : �1 ] ) :

z = np . dot ( a c t i va t i on ,w.T)+b .T

zs . append ( z )
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a c t i v a t i o n = r e l u ( z )
a c t i v a t i o n s . append ( a c t i v a t i o n )

z = np . dot ( a c t i va t i on , weights [ �1 ] .T)+b [ �1 ] .T
zs . append ( z )
a c t i v a t i o n = z
a c t i v a t i o n s . append ( a c t i v a t i o n )

de l t a = cos t_der i va t i v e ( a c t i v a t i o n s [ �1 ] , y , R)
nabla_b [�1] = de l t a
nabla_w [�1] = np . dot ( de l ta , a c t i v a t i o n s [ �2 ] )
for l in range (2 , s e l f . num_layers+1) :

z = zs [� l ]
sp = relu_prime ( z )
de l t a = np . dot ( de l ta , weights [� l +1]) � sp
nabla_b[� l ] = de l t a .T
nabla_w[� l ] = np . dot ( de l t a .T, a c t i v a t i o n s [� l �1])

return ( nabla_b , nabla_w)

def SMC( s e l f , data , r ea l ,Q, R, thresho ld , indweight=None ) :
"""
This f unc t i on g i v e s a one s t ep ahead p r e d i c t i on . The f i r s t e lement

i s 0 as one cannot g i v e a p r e d i c t i on f o r
the f i r s t data po in t . So the error shou ld s t a r t wi th the second

element o f the p r e d i c t i on array compared wi th
the second data po in t o f the r e a l v e c t o r .
"""
K=len ( r e a l )
print s e l f . s i z e s
resample_index=np . z e ro s ( (K, 1 ) )
max_q=np . z e ro s ( (K, 1 ) )
i f s e l f . p o s t e r i o r :

p o s t e r i o r=np . z e ro s ( ( s e l f .N, 1 ) )
pos t e r i o r_t imes tep=np . z e ro s ( (K, s e l f .N, 1 ) )

outcome_poster ior=np . z e r o s ( (K+1, s e l f .N, s e l f . output_dim ) )
predict ion_next_datapoint=np . z e r o s ( (K+1 ,1) )
i ter=0
for k in tqdm( range (0 ,K) ) :

i f k==0:
w, b = s e l f . i n i t i a l_we i gh t s ( s e l f .N) # i n i t i a l i z e Weights

output_model=np . array ( s e l f . f e ed forward (w, b , data [ k ] ) ) #
ge t output from every we igh t sample i

p r ed i c t i on=np . array ( s e l f . f e ed forward (w, b , data [ k+1]) )# ge t
output from every we igh t sample , wi th input o f next data
po in t .

L0=s e l f . L ike l i hood ( r e a l [ k ] , output_model ,R) # ge t l i k e l i h o o d
o f every we igh t sample i

q=L0
q_norm=normal ize ( q )
max_q [ k]=np .max(q_norm)
outcome_poster ior [ k+1]=p r ed i c t i o n
predict ion_next_datapoint [ k+1]=np . nansum(q_norm�p r ed i c t i on )
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i f s e l f . p o s t e r i o r :
for p in range (0 , s e l f .N) :

we ight l aye r=np . array (w[ p ] [ �1 ] )
we ight l aye r=np . array ( we ight l aye r [ 0 ] )
p o s t e r i o r [ p]=we ight l aye r [ indweight ]

pos t e r i o r_t imes tep [ k]= po s t e r i o r
else :

w, b=s e l f . update_weights ( s e l f . WeightsStore , s e l f . BiasStore ,Q,
R, data [ k ] , r e a l [ k ] )

output_model=np . array ( s e l f . f e ed forward (w, b , data [ k ] ) )
i f s e l f . p o s t e r i o r :

for p in range (0 , s e l f .N) :
we ight l aye r=np . array (w[ p ] [ �1 ] )
we ight l aye r=np . array ( we ight l aye r [ �1 ] )
p o s t e r i o r [ p]=we ight l aye r [ indweight ]

pos t e r i o r_t imes tep [ k]= po s t e r i o r

L=s e l f . L ike l i hood ( r e a l [ k ] , output_model ,R) # ge t l i k e l i h o o d
o f every we igh t sample i

q=q�L
q_norm=normal ize ( q )
p r ed i c t i on=np . array ( s e l f . f e ed forward (w, b , data [ k+1]) )
predict ion_next_datapoint [ k+1]=np . nansum(q_norm�p r ed i c t i on )
outcome_poster ior [ k+1]=p r ed i c t i o n
Nef f=s e l f . Ne f f (q_norm)
max_q [ k]=np .max(q_norm)

i f Neff<thre sho ld or np .max( q )<1e�300:
resample_index [ k]=1
i ter += 1
w, b , q=s e l f . resampl ing (w, b , q_norm , q )
q_norm=q

print ’Number␣ o f ␣ resamples ’ , i ter+1
return predict ion_next_datapoint , poster io r_t imestep ,

outcome_posterior , w, b , resample_index ,max_q

def resampl ing ( s e l f ,w, b , q_norm , q ) :
"""
Resampling o f the we igh t samples based on CDF.
"""
N = len (q_norm)
# make N subd i v i s i on s , and choose p o s i t i o n s wi th a c on s i s t e n t

random o f f s e t
po s i t i o n s = ( random ( ) + np . arange (N) ) / N
indx = np . z e r o s (N, ’ i ’ )
cumulative_sum = np . cumsum(q_norm)
i , j = 0 , 0

while i < N:
i f po s i t i o n s [ i ] < cumulative_sum [ j ] :

indx [ i ] = j
i += 1

else :
j += 1
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for i , j in zip ( range (0 , s e l f .N) , indx ) :
for l in range (0 , s e l f . num_layers ) :

w[ i ] [ l ]= np . array (w[ j ] [ l ] )
b [ i ] [ l ]= np . array (b [ j ] [ l ] )

for l in range (0 , s e l f .N) :
q [ l ] = 1 . / s e l f .N

return s e l f . WeightsStore , s e l f . BiasStore , q

def Nef f ( s e l f , q_norm) :
"""
Ca l cu l a t i n g the e f f e c t i v e sample s i z e o f the q_norm
"""
x = 1 . / np .sum(np . power (q_norm , 2 ) )
return x

def Like l ihood ( s e l f , output , a , R) :
"""
Ca l cu l a t i n g the l i k e l i h o o d o f the outcome .
"""
for i in range (0 , s e l f .N) :

s e l f . L [ i ]=np . sq r t (1/(2�np . p i�R��2) )�np . exp (�0.5 � ( ( output�a [ i
] ) . dot (2� ( 1 . /R��2) ) . dot ( output�a [ i ] ) ) )

return s e l f . L

def r e l u ( z ) :
return z � ( z > 0)

def relu_prime ( z ) :
return ( z>0)

def l eaky_re lu ( z , e p s i l o n =0.1) :
return np .maximum( ep s i l o n�z , z )

def s igmoid ( z ) :
"""The sigmoid func t i on . """
return 1 .0/(1 .0+np . exp(�z . astype ( f loat ) ) )

def sigmoid_prime ( z ) :
""" Der i va t i v e o f the sigmoid func t i on . """
return s igmoid ( z )�(1� s igmoid ( z ) )

def normal ize ( probs ) :
"""Normaliz ing the input , such t ha t the sum equa l s one"""
# pr in t np .max( probs )
prob_factor = 1 / np .sum( probs )
return np . array ( [ prob_factor � p for p in probs ] )

def co s t_der i va t i v e ( output_act ivat ions , y , R) :
"""Return the vec t o r o f p a r t i a l d e r i v a t i v e s \ p a r t i a l C_x /
\ p a r t i a l a f o r the output a c t i v a t i o n s . """
return ( 1 . /R��2)�( output_act ivat ions�y ) �(np . exp (�0.5 � ( (

output_act ivat ions�y ) � ( 1 . / (R��2) ) ) �( output_act ivat ions�y ) ) )



C Python code for SMC algorithm with gradient step
and ReLU activation function for a CNN

Listing 3: SMC algorithm
"""
Algorithm fo r performing SMC t r a i n i n g on a convo l u t i ona l neura l network

c a l l e d WaveNet f o r time s e r i e s .
The output i s a one�s t ep ahead p r e d i c t i on f o r data t ha t i s f ed s e q u e n t i a l l y

to the a l gor i thm .
You can import t h i s python f i l e in another f i l e , and then f i l l in the

parameters :
s i z e s ( s t r u c t u r e o f neura l network ) , N(# monte ca r l o we igh t samples ) ,

s igma_init ia l_w ( i n i t i a l sigma ’ s o f we i gh t s ) ,
s igma_ini t ia l_b ( i n i t i a l sigma ’ s o f b i a s e s ) . As seen in the __init__

statement t h i s c r e a t e s an ins tance o f
a neura l net wi th t h e s e parameters . Then with the SMC funct ion , one can

ob ta in one s t ep
ahead p r e d i c t i o n s on data . NOTE: The i n i t i a l sigma ’ s f o r the we i gh t s are

g iven in an array t ha t shou ld have the same
l en g t h as the l e n g t h o f the s i z e s v e c t o r .

"""
import numpy as np
import time
import sys
from tqdm import tqdm
from mul t i p ro c e s s i ng import Pool
from j o b l i b import Para l l e l , de layed
import mul t i p ro c e s s i ng

from numpy . random import random

class SMC_algorithm( object ) :

def __init__( s e l f , previous_points , f i l t e r_ s i z e , N, eta , p o s t e r i o r=False ,
epoch=False , weights=None , b i a s e s=None ) :
s e l f . f i l t e r _ s i z e=f i l t e r _ s i z e
i f f i l t e r _ s i z e % 2 ==0:

s e l f . num_layers=prev ious_points /( f i l t e r_ s i z e �1)�1
print s e l f . num_layers
s e l f . s i z e s=l i s t ( reversed ( [ x for x in range (1 , prev ious_points+1,

f i l t e r_ s i z e �1) ] ) )
else :

s e l f . num_layers=int ( prev ious_points /( f i l t e r_ s i z e �1.) �(1/(
f i l t e r_ s i z e �1) ) )

print s e l f . num_layers
s e l f . s i z e s=l i s t ( reversed ( [ x for x in range (1 , prev ious_points+1,

f i l t e r_ s i z e �1) ] ) )
s e l f . output_dim=s e l f . s i z e s [�1]
s e l f . L0=np . z e r o s ( (N, 1 ) )
s e l f . L=np . z e r o s ( (N, 1 ) )
s e l f . e ta=eta
s e l f . forward_output=np . z e ro s ( (N, s e l f . s i z e s [ �1 ] ) )
s e l f .N=N
s e l f . p o s t e r i o r=po s t e r i o r
s e l f . epoch=epoch
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i f s e l f . epoch :
s e l f . B iasStore=b i a s e s
s e l f . WeightsStore=weights

else :
s e l f . B iasStore =[ ]
s e l f . WeightsStore =[ ]

def store_weights ( s e l f ,w) :
s e l f . WeightsStore . append (w)

def s tore_bias ( s e l f , b ) :
s e l f . B iasStore . append (b)

def i n i t i a l_we i gh t s ( s e l f ,N) :
"""
Creat ing the i n i t i a l we igh t samples .
"""
i f not s e l f . epoch :

sigmas =[1]� s e l f . num_layers
for i in range (0 , s e l f . num_layers ) :

s igmas [ i ]=np . s q r t ( 2 . / ( s e l f . s i z e s [ i +1]) )

for i in range (0 ,N) :
b i a s e s = [ l �np . random . randn (y , 1) for y , l in zip ( s e l f .

s i z e s [ 1 : ] , s igmas ) ]
weights = [ l �np . random . randn ( s e l f . f i l t e r_ s i z e , 1 )

for x , l in zip ( range (0 , s e l f . num_layers
) , s igmas ) ]

s e l f . s tore_weights ( weights )
s e l f . s to re_bias ( b i a s e s )

# pr in t s e l f . WeightsStore
# s e l f . WeightsStore=np . array ( s e l f . WeightsStore )
s e l f . B iasStore=np . array ( s e l f . B iasStore )

e l i f s e l f . epoch :
s e l f . WeightsStore=s e l f . WeightsStore
s e l f . B iasStore=s e l f . B iasStore

else :
print ’ERROR: ␣ i n i t i a l ␣weights ␣ sigma␣ vec to r ␣ s i z e ␣ i s ␣not␣ equal ␣ to

␣number␣ o f ␣ l a y e r s ’

return s e l f . WeightsStore , s e l f . B iasStore

def f e ed forward ( s e l f ,w, b , u) :
"""
Feedforward a l gor i thm fo r N d i f f e r e n t samples , f o r a r b i t r a r y s i z e

and l a y e r s o f neura l networks .
"""
u=u [ np . newaxis ]
for i in range (0 , s e l f .N) :

l=0

while l < s e l f . num_layers�1:
i f l ==0:
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a = np . convolve (u . f l a t t e n ( ) , np . rot90 (w[ i ] [ l ] , 2 ) . f l a t t e n
( ) , ’ v a l i d ’ )+b [ i ] [ l ] . T

a=r e l u ( a ) .T
l+=1

i f l < s e l f . num_layers�1:
a = np . convolve ( a . f l a t t e n ( ) , np . rot90 (w[ i ] [ l ] , 2 ) . f l a t t e n

( ) , ’ v a l i d ’ )+b [ i ] [ l ] . T
a = r e l u ( a ) .T
l+=1

s e l f . forward_output [ i ]= np . convolve ( a . f l a t t e n ( ) , np . rot90 (w[ i ] [ l
] , 2 ) . f l a t t e n ( ) , ’ v a l i d ’ )+b [ i ] [ l ] . T

return s e l f . forward_output

def backprop ( s e l f , b ias , weights , x , y ,R) :
"""Return a t u p l e ‘ ‘ ( nabla_b , nabla_w) ‘ ‘ r e p r e s en t i n g the
g rad i en t f o r the co s t f unc t i on C_x. ‘ ‘ nabla_b ‘ ‘ and
‘ ‘ nabla_w ‘ ‘ are layer�by� l a y e r l i s t s o f numpy arrays , s im i l a r
to ‘ ‘ s e l f . b i a se s ‘ ‘ and ‘ ‘ s e l f . weights ‘ ‘ . """

nabla_b = [ np . z e r o s (b . shape ) for b in b ia s ]
nabla_w = [ np . z e ro s (w. shape ) for w in weights ]

a c t i v a t i o n = x [ np . newaxis ]
a c t i v a t i o n s = [ a c t i v a t i o n ] # l i s t to s t o r e a l l the a c t i v a t i on s ,

l a y e r by l a y e r
zs = [ ] # l i s t to s t o r e a l l the z vec tor s , l a y e r by l a y e r
for b , w in zip ( b i a s [ : �1 ] , we ights [ : �1 ] ) :

z = np . convolve ( a c t i v a t i o n . f l a t t e n ( ) , np . rot90 (w, 2 ) . f l a t t e n ( ) , ’
v a l i d ’ )+b .T

zs . append ( z )
a c t i v a t i o n = r e l u ( z )
a c t i v a t i o n s . append ( a c t i v a t i o n )

z = np . convolve ( a c t i v a t i o n . f l a t t e n ( ) , np . rot90 ( weights [ �1 ] , 2 ) .
f l a t t e n ( ) , ’ v a l i d ’ )+b ia s [ �1 ] .T

zs . append ( z )
a c t i v a t i o n = z
a c t i v a t i o n s . append ( a c t i v a t i o n )
# backward pass

de l t a = cos t_der i va t i v e ( a c t i v a t i o n s [ �1 ] , y ,R)
nabla_b [�1] = de l t a
nabla_w [�1] = np . convolve (np . rot90 ( de l ta , 2 ) . f l a t t e n ( ) , a c t i v a t i o n s

[ �2 ] . f l a t t e n ( ) , ’ v a l i d ’ )
for l in range (2 , s e l f . num_layers+1) :

z = zs [� l ]
sp = relu_prime ( z )
de l t a = np . convolve ( de l t a . f l a t t e n ( ) , weights [� l +1] . f l a t t e n ( ) ) �

sp
nabla_b[� l ] = de l t a .T
nabla_w[� l ] = np . convolve (np . rot90 ( de l t a .T, 2 ) . f l a t t e n ( ) ,

a c t i v a t i o n s [� l �1 ] . f l a t t e n ( ) , ’ v a l i d ’ )

return ( nabla_b , nabla_w)
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def update_weights ( s e l f ,w, b ,Q,R, x , y ) :
"""
Updating the weights , meaning g i v i n g them a noi se wi th sigma Q.
"""

for i in range (0 , s e l f .N) :
for l in range (0 , s e l f . num_layers ) :

s e l f . B iasStore [ i ] [ l ] = np . array (b [ i ] [ l ] + np . random . normal
(0 ,Q, b [ i ] [ l ] . shape ) )

s e l f . WeightsStore [ i ] [ l ] = np . array (w[ i ] [ l ] + np . random .
normal (0 ,Q,w[ i ] [ l ] . shape ) )

for i in range (0 , s e l f .N) :

b i a s=s e l f . B iasStore [ i ]
weight=s e l f . WeightsStore [ i ]

nabla_b = [ np . z e r o s (b . shape ) for b in b ia s ]
nabla_w = [ np . z e ro s (w. shape ) for w in weight ]

delta_nabla_b , delta_nabla_w = s e l f . backprop ( bias , weight , x , y
,R)

nabla_b = [ nb+dnb for nb , dnb in zip ( nabla_b , delta_nabla_b ) ]
nabla_w = [nw+dnw [ np . newaxis ] .T for nw, dnw in zip (nabla_w ,

delta_nabla_w ) ]

s e l f . WeightsStore [ i ] = [w� s e l f . e ta�nw
for w, nw in zip ( s e l f . WeightsStore [ i ] , nabla_w) ]

s e l f . B iasStore [ i ] = [ b� s e l f . e ta�nb
for b , nb in zip ( s e l f . B iasStore [ i ] , nabla_b ) ]

return s e l f . WeightsStore , s e l f . B iasStore

def SMC( s e l f , data , r ea l ,Q, R, thresho ld , indweight=None ) :
"""
This func t i on g i v e s a one s t ep ahead p r e d i c t i on . The f i r s t e lement

i s 0 as one cannot g i v e a p r e d i c t i on f o r
the f i r s t data po in t . So the error shou ld s t a r t wi th the second

element o f the p r e d i c t i on array compared wi th
the second data po in t o f the r e a l v e c t o r .
"""
K=len ( r e a l )
print s e l f . s i z e s
resample_index=np . z e ro s ( (K, 1 ) )
i f s e l f . p o s t e r i o r :

p o s t e r i o r=np . z e ro s ( ( s e l f .N, 1 ) )
pos t e r i o r_t imes tep=np . z e ro s ( (K, s e l f .N, 1 ) )

outcome_poster ior=np . z e ro s ( (K+1, s e l f .N, s e l f . output_dim ) )
predict ion_next_datapoint=np . z e r o s ( (K+1 ,1) )
i ter=0

for k in tqdm( range (0 ,K) ) :

i f k==0:
w, b = s e l f . i n i t i a l_we i gh t s ( s e l f .N) # i n i t i a l i z e Weights
output_model=np . array ( s e l f . f e ed forward (w, b , data [ k ] ) ) #

ge t output from every we igh t sample i
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p r ed i c t i on=np . array ( s e l f . f e ed forward (w, b , data [ k+1]) )# ge t
output from every we igh t sample , wi th input o f next data
po in t .

L0=s e l f . L ike l i hood ( r e a l [ k ] , output_model ,R) # ge t l i k e l i h o o d
o f every we igh t sample i

q=L0
q_norm=normal ize ( q )
outcome_poster ior [ k+1]=p r ed i c t i o n
predict ion_next_datapoint [ k+1]=np . nansum(q_norm�p r ed i c t i on )

i f s e l f . p o s t e r i o r :
for p in range (0 , s e l f .N) :

we ight l aye r=np . array (w[ p ] [ �1 ] )
p o s t e r i o r [ p]=we ight l aye r [ indweight ]

pos t e r i o r_t imes tep [ k]= po s t e r i o r

else :

w, b=s e l f . update_weights ( s e l f . WeightsStore , s e l f . BiasStore ,Q,
R, data [ k ] , r e a l [ k ] )

output_model=np . array ( s e l f . f e ed forward (w, b , data [ k ] ) ) # ge t
output from every we igh t sample i

i f s e l f . p o s t e r i o r :
for p in range (0 , s e l f .N) :

we ight l aye r=np . array (w[ p ] [ �1 ] )
p o s t e r i o r [ p]=we ight l aye r [ indweight ]

pos t e r i o r_t imes tep [ k]= po s t e r i o r

L=s e l f . L ike l i hood ( r e a l [ k ] , output_model ,R) # ge t l i k e l i h o o d
o f every we igh t sample i

q=q�L
q_norm=normal ize ( q )
p r ed i c t i on=np . array ( s e l f . f e ed forward (w, b , data [ k+1]) )
predict ion_next_datapoint [ k+1]=np . nansum(q_norm�p r ed i c t i on )
outcome_poster ior [ k+1]=p r ed i c t i o n
Nef f=s e l f . Ne f f (q_norm)

i f Neff<thre sho ld or np .max( q )<1e�200: #cu t o f f to reduce
chance o f ove r f l ow
resample_index [ k]=1
i ter += 1
w, b , q=s e l f . resampl ing (w, b , q_norm , q )
q_norm=q

print ’Number␣ o f ␣ resamples ’ , i ter+1

return predict ion_next_datapoint , poster io r_t imestep ,
outcome_posterior , w, b , resample_index

def resampl ing ( s e l f ,w, b , q_norm , q ) :
"""
Resampling o f the we igh t samples based on CDF.
"""
N = len (q_norm)
# make N subd i v i s i on s , and choose p o s i t i o n s wi th a c on s i s t e n t

random o f f s e t
po s i t i o n s = ( random ( ) + np . arange (N) ) / N
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indx = np . z e r o s (N, ’ i ’ )
cumulative_sum = np . cumsum(q_norm)
i , j = 0 , 0

while i < N:
i f po s i t i o n s [ i ] < cumulative_sum [ j ] :

indx [ i ] = j
i += 1

else :
j += 1

for i , j in zip ( range (0 , s e l f .N) , indx ) :
for l in range (0 , s e l f . num_layers ) :

w[ i ] [ l ]= np . array (w[ j ] [ l ] )
b [ i ] [ l ]= np . array (b [ j ] [ l ] )

for l in range (0 , s e l f .N) :
q [ l ] = 1 . / s e l f .N

return s e l f . WeightsStore , s e l f . BiasStore , q

def Nef f ( s e l f , q_norm) :
"""
Ca l cu l a t i n g the e f f e c t i v e sample s i z e o f the q_norm
"""
x = 1 . / np .sum(np . power (q_norm , 2 ) )
return x

def Like l ihood ( s e l f , output , a , R) :
"""
Ca l cu l a t i n g the l i k e l i h o o d o f the outcome .
"""
for i in range (0 , s e l f .N) :

s e l f . L [ i ]=np . sq r t (1/(2�np . p i�R��2) )�np . exp (�0.5 � ( ( output�a [ i
] ) . dot (2� ( 1 . /R��2) ) . dot ( output�a [ i ] ) ) )

return s e l f . L

def r e l u ( z ) :
return z � ( z > 0)

def relu_prime ( z ) :
return ( z>0)

def l eaky_re lu ( z , e p s i l o n =0.1) :
return np .maximum( ep s i l o n�z , z )

def s igmoid ( z ) :
"""The sigmoid func t i on . """
return 1 .0/(1 .0+np . exp(�z . astype ( f loat ) ) )

def sigmoid_prime ( z ) :
""" Der i va t i v e o f the sigmoid func t i on . """
return s igmoid ( z )�(1� s igmoid ( z ) )

def normal ize ( probs ) :
"""Normaliz ing the input , such t ha t the sum equa l s one"""
prob_factor = 1 / sum( probs )
return np . array ( [ prob_factor � p for p in probs ] )
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def co s t_der i va t i v e ( output_act ivat ions , y , R) :
"""Return the vec t o r o f p a r t i a l d e r i v a t i v e s \ p a r t i a l C_x /
\ p a r t i a l a f o r the output a c t i v a t i o n s . """
return ( 1 . /R��2)�( output_act ivat ions�y ) �(np . exp (�0.5 � ( (

output_act ivat ions�y ) � ( 1 . / (R��2) ) ) �( output_act ivat ions�y ) ) )
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