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SGLDBench: A Benchmark Suite for Stress-Guided
Lightweight 3D Designs

Junpeng Wang

, Dennis R. Bukenberger, Simon Niedermayr, Christoph Neuhauser

, Jun Wu'?,

and Riidiger Westermann

Abstract—We introduce the Stress-Guided Lightweight Design
Benchmark (SGLDBench), a comprehensive benchmark suite for
applying and evaluating material layout strategies to generate stiff,
lightweight designs in 3D domains. SGLDBench provides a seam-
lessly integrated simulation and analysis framework, including six
reference strategies and a scalable multigrid elasticity solver to
efficiently execute these strategies and validate the stiffness of their
results. This facilitates the systematic analysis and comparison of
design strategies based on the mechanical properties they achieve.
SGLDBench enables the evaluation of diverse load conditions and,
through the tight integration of the solver, supports high-resolution
designs and stiffness analysis. Additionally, SGLDBench empha-
sizes visual analysis to explore the relationship between the geomet-
ric structure of a design and the distribution of stresses, offering
insights into the specific properties and behaviors of different
design strategies. SGLDBench’s specific features are highlighted
through several experiments, comparing the results of reference
strategies with respect to geometric and mechanical properties.

Index Terms—Topology optimization, lattice infill, lightweight
design, simulation design.

1. INTRODUCTION

OPOLOGY optimization (TO) and functionally graded lat-
T tice infill are primary strategies for designing mechanically
sound, lightweight structures, i.e., structures with high stiffness
(corresponding to a low compliance, or degree of deformabil-
ity) under applied loads. TO determines the optimal material
distribution within a given design domain to achieve a desired
structural performance, such as maximizing stiffness, while
satisfying constraints like material use [1], [2]. Functionally
graded lattice infill refers to a design approach in which the
density, size, shape, or material properties of the lattice structure
vary spatially within a 3D object to meet specific performance
requirements [3]. For beam-based lattices, the final design can
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be represented by a graph or grid composed of polyhedral cells,
each constructed from individual edges.

TO, inits basic form, does not consider the geometric structure
of the resulting material layout but aims to achieve the highest
possible stiffness. Lattice infill design strategies, in principle,
share this goal, by tailoring the lattice layout based on the
stress distribution. Stress is a measure of the internal forces that
develop within a material when it is subjected to external loads
and quantifies the intensity of these forces at a specific point in
the material. The structural rigidity of an infill increases when the
material aligns with the orthogonal principal stress directions of
the object under load [4]. These directions, corresponding to the
eigenvectors of the 3x3 stress tensor, indicate the normal stresses
acting on specific planes within where shear stresses are zero.
At the limit of material volume, considering these directions for
the lattice layout results in microstructures resembling quads or
hexahedra [5], [6].

Each lattice infill design strategy, however, involves additional
considerations that may compromise stiffness. These include
achieving geometric properties such as regularity (i.e., variation
in element type), uniformity (i.e., variation in element size),
or space-fillingness to enhance robustness, as well as purely
aesthetic features [3], [7], [8], [9].

Moreover, generating 3D domain-filling lattice structures that
align with major stress directions presents significant challenges.
This difficulty arises from the existence of degenerate points [10]
(or degenerate regions in 3D domains [11], [12], [13]) where
the stress tensor has repeating eigenvalues, making the principal
stress directions indeterminate. As a result, integrability con-
ditions are violated, and consistent domain parameterizations
cannot be computed [14].

To assist users in selecting the right 3D lightweight design
strategy for various use cases, and to help researchers identify
open research questions, a benchmark suite for generating,
analyzing, and comparing the results of different strategies is
essential.

A few benchmark papers have addressed issues such as special
solvers for TO [15], benchmarks for 2D TO in specific load
cases [16], practices that should be considered when performing
TO [17], as well as the mechanical soundness of simple lattice
infills such as orthogonal grids and shells [18]. Different ar-
chitectures for multidisciplinary design optimization have been
reviewed and compared [19], and the design and structural
optimization of lightweight design has been discussed, espe-
cially in the context of additive manufacturing [7]. A review
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(c) Voronoi infill,
c=2.86

(a) Density-based TO,
c=1.53

(b) Porous infill
optimization, ¢ = 2.26

Fig. 1.

(d) PSL-guided material
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(f) Volumetric Michell
trusses, ¢ = 3.54

(e) Conforming lattice

layout, ¢ = 2.41 structure, ¢ = 3.43

Infill designs computed using the strategies provided by SGLDBench. All designs consume roughly the same amount of material and are subject to the

same boundary conditions: the bottom of the design domain is fixed, and the loads are indicated by green arrows in (a). Below each design, its compliance c is
provided. For visualization, isosurface volume rendering is used. All designs are coated with fully solid boundary elements of consistent thickness. In (c) to (f),

these elements are peeled away to reveal the infills.

of uniform and non-uniform lattice structures such as foams
and honeycombs sheds light on their properties and methods
for designing and optimizing such structures [20], [21]. Unit
cell lattices comprising structures made of a single type of
cells have been researched [22], and the properties of certain
types of lattice infills regarding 3D printing processes have been
discussed [23]. The combination of TO and micro element-based
lattice infills have resulted in structures exhibiting anisotropic
mechanical properties [24], [25]. There is no benchmark that
allows researchers and users to efficiently compute 3D designs
with different strategies and to effectively compare the results
with respect to their mechanical and structural properties.

We introduce SGLDBench to address this gap. It provides

a comprehensive investigation of the combination of bound-
ary shapes and conditions with lightweight design strategies
in 3D domains. This is facilitated by a seamlessly integrated,
MATLAB-based simulation and analysis framework offering
the following key features:

o Selection of Lightweight 3D Design Strategies: The bench-
mark includes various strategies, enabling comparisons
between TO and lattice infill, as well as studies of new
scenarios and designs. For a 3D human femur under load,
Fig. 1 shows visualizations of the infill designs computed
by SGLDBench.

® Material Layout Generation: A central feature of the
benchmark is the voxelization of complex infills into a
Cartesian simulation grid. This ensures consistent com-
parisons of lightweight designs—whether represented as a
material field, mesh, or edge graph—with respect to their
mechanical properties.

e Simulation Suite: SGLDBench provides a MATLAB-
interfaced simulation framework with an efficient multi-
grid solver for generating high-resolution stress fields and
assessing the stiffness of a design efficiently.

® Visual Design Analysis: A fast volume visualization mod-
ule accompanies the benchmark, offering visual feedback
on a design’s shape, stress distribution, and material align-
ment before and after layout optimization.

We chose MATLAB as the working environment due to its
widespread use in computational design. SGLDBench leverages
MATLAB’s simulation and visualization capabilities for design
generation and analysis. New design strategies can be integrated
either through MATLAB programs or by using MATLAB’s
functionality to call executables or Python programs from other
codebases via inline calls. All SGLDBench-specific operations
have been implemented in MATLAB or rely on publicly avail-
able MATLAB, C++, or Python programs. SGLDBench also
uses external libraries for core operations such as meshing
and voxelization. The visualization module is implemented in
WebGL, allowing it to function either as a standalone viewer in
a web browser or via inline calls to MATLAB’s viewing func-
tionality. The entire codebase for SGLDBench can be accessed
through the link https://github.com/PSLer/SGLDBench.

II. SGLDBENCH’S FUNCTIONAL STRUCTURE

We begin by introducing the key functionality of SGLD-
Bench. SGLDBench provides an interface to enable users to
specify the boundary conditions, which include the boundary
of a domain, the applied loads, and the fixed boundary regions.
The domain is then voxelized, meaning it is discretized into a
Cartesian grid, with per-voxel properties assigned based on the
boundary conditions and material properties. We refer to this
configuration as a preset.

Using the selected preset, SGLDBench simulates the ob-
ject’s internal stress field via a multigrid finite-element elas-
ticity solver [26], [27], [28], [29]. While some design strategies
require repeated solver executions to iteratively optimize the
material layout, others generate an infill structure guided by the
principal stresses in the initial field.

Users can choose from six layout strategies for computing
an infill design: density-based TO [30], porous infill opti-
mization [31], Voronoi infill [32], stress-line-guided material
layout [33], conforming lattice structures [34], and volumetric
Michell trusses [35].


https://github.com/PSLer/SGLDBench
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Fig. 2.

SGLDBench’s visual analysis options. (a) Major (brown) and minor (green) PSLs according to boundary conditions from Fig. 1. (b) Direct volume

rendering of scalar von Mises stresses in the solid domain. (¢) Voronoi infill (c = 2.86). (d) Infill with color-coded von Mises stresses. (e) Same as (d), but different
forces apply and von Mises stresses change (¢ = 4.14). (f) Comparative visual stress analysis showing the misalignment between the major stress directions in the

solid and the infill under the same loads.

Our selection has not been made with the intention to favor
any of these methods, but to reveal the specific characteristics of
3D design strategies following different objectives. The methods
span the spectrum from purely stiffness-based optimization to
geometry-aware infill generation. We select density-based TO
as a representative of various TO approaches. It serves as a
reference for the stiffness that can be achieved. Porous infill
optimization, while not explicitly using the principal stress
directions, results in wall-like structures that largely agree with
two of these directions. Voronoi infill considers only the stress
magnitude but not its principal directions. In contrast, material
layouts guided by the Principal Stress Lines (PSLs) follow
exactly the mutually orthogonal principal stress trajectories in
the initial solid domain. PSL-guided infills serve as a reference
conveying these directions, even though the final designs are
not connected in general. Conforming lattice structures and
volumetric Michell trusses aim at finding a balance between
stress alignment and geometric regularity of the designs. While
the first approach favors stress alignment and, therefore, needs to
resort to an edge-graph structure, the latter approach strives for
a pure hexahedral mesh and, therefore, needs to sacrifice stress
alignment.

While TO and porous infill generate a material field, other
methods compute a lattice structure composed of edges and
nodes. SGLDBench voxelizes these structures into a material
field on a Cartesian grid with the same resolution as the initial
preset. Using the material field and boundary conditions, the
elasticity solver computes the compliance of the design. When
using iterative optimization methods, the compliance history is
recorded and can be visualized.

SGLDBench supports different visualization options to in-
spect a 3D design. The principal stress directions in a stress
field are visualized using PSL-guided trajectory visualization
implemented in MATLAB programs [36]. These programs are
accessible through SGLDBench’s interface and allow users to
customize the number and appearance of the visualized trajec-
tories (see Fig. 2(a)).

From the principal stresses the scalar von Mises stresses
are computed. The von Mises stress is commonly used in

engineering and materials science to predict yielding in ductile
materials under load. It provides a single value that reflects the
combined effect of all stress components acting on a material.
This scalar field can then be visualized with SGLDBench’s
WebGL-based visualization module for enhanced rendering
performance (Fig. 2(b)). An infill structure is rendered as an iso-
surface in the material field (Fig. 2(c)), and it can be color-coded
with the von Mises stress to reveal local stress concentrations
(Fig. 2(d)).

Additionally, a variable load structural analysis can be per-
formed, by loading a design with forces different from those for
which it was initially optimized. This functionality enables users
to evaluate the robustness of a design under different loading
conditions. The optimized design can be color-coded with the
von Mises stresses occurring under the new load conditions
(Fig. 2(e)).

Furthermore, SGLDBench offers tailored visualization op-
tions to examine how the mechanical properties of the initial
solid and the generated infill design have changed. Direct volume
rendering is used with a predefined color transfer function to
visualize the per-voxel stress deviations in the final design
relative to those in the initial solid body (see Fig. 2(f)).

III. COMPONENTS OF SGLDBENCH

We describe here the most important features and operations
of SGLDBench, including descriptions of the supported TO and
lattice infill methods. The use of SGLDBench is demonstrated
in the accompanying videos.

A. Domain Specification

SGLDBench simulates a stress field in the design domain
using Finite Element Analysis (FEA). This requires discretiz-
ing the domain into finite elements and specifying boundary
conditions. SGLDBench uses a hexahedral finite-element rep-
resentation to facilitate the use of scalable geometric multigrid
solvers. Therefore, SGLDBench first converts an initial object
representation to a hexahedral simulation grid.
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(b) (c)
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Fig. 3. (a) A triangle mesh defines the domain boundary. (b) After voxelizing
the domain, the user specifies boundary forces and fixes grid vertices. Black and
violet dots indicate fixed vertices and vertices subjected to an external force,
respectively. (c) Passive elements are shown in brown.

Voxelization: The simulation grid is created by voxelizing the
simulation domain. The user provides the domain boundary as a
closed triangular mesh. SGLDBench utilizes MATLAB’s vox-
elization capabilities [37] with a user-defined voxel resolution
to compute a solid voxelization. For complex-shaped simulation
domains, the voxels are classified as solid or void, depending on
the centroid of the voxel. Alternatively, users can upload a 3D
voxel grid that discretizes the domain and marks each voxel as
solid or void. Void elements are excluded from the finite element
analysis.

Voxels with at least one of their 26 neighboring voxels clas-
sified as void are designated as boundary voxels. SGLDBench
applies a dilation operation to expand the boundary by assigning
any voxel adjacent to an initial boundary voxel as a new bound-
ary voxel. This voxelized object serves as the foundation for all
subsequent operations in SGLDBench.

Boundary Conditions: The boundary conditions define where
the object is fixed and how loads are applied. Fixations and forces
are assigned to the nodes of the boundary elements. The user
specifies the extent and position of an axis-aligned box or sphere,
and SGLDBench automatically fixes or applies the specified
loads to all boundary nodes within this region. Similarly, the
nodes to be reset can be selected in the same manner. When all
nodes of a finite element are fixed, the element becomes rigid
and does not respond to any loads.

Passive Elements: Passive elements are used to preserve spe-
cific geometric features, such as object boundaries or notches for
mounting connections. Passive elements remain solid through-
out the optimization process and contribute to the stiffness of
the structure. SGLDBench supports two general methods for
specifying passive elements: Setting all boundary elements as
passive, which is common in infill design problems, and setting
elements with loaded or fixed nodes as passive to preserve
geometric features during optimization. The dilation operation
can also be used to enlarge passive structures as needed. Fig. 3
illustrates the transformation from a boundary mesh to a voxel
model, including boundary conditions and passive elements.

B. Stress Simulation

At the core of TO and lattice infill methods is the numerical
simulation of a stress tensor field using the selected boundary
conditions and material properties. SGLDBench provides a
MATLAB-interfaced C++ implementation of a multigrid elas-
ticity solver to efficiently simulate the stress field.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 31, NO. 10, OCTOBER 2025

24 X 24 24 x M
K e0 [Ue]
Fig. 4. Element-based computation layout. M is the number of hexahedral

simulation elements, Ko is the generic element stiffness matrix and U, is
the element-wise displacement matrix. Different colors represent the 8 node-
based displacement vectors per element. With each column /; in U., MATLAB
computes the product Keq - I;.

The implementation employs a geometric multigrid solver
as a preconditioner for a conjugate gradient method to solve
a sparse linear system of equations, i.e., KU = F'. The global
stiffness matrix K is assembled from the element stiffness ma-
trices under the assumption of a linear material law. The compu-
tation of the element stiffness matrices accounts for the stiffness
tensor, which reflects material properties, and the strain matrix,
which expresses the strain-stress relationship. U represents the
static displacement vector in response to the external loads F'.
Several prior works have addressed the efficient assembly of
the system matrix K and the specific adaptations of numerical
solvers for linear elasticity simulations in TO [26], [27], [28],
[29], [38].

SGLDBench’s multigrid implementation is primarily based
on the work of Wu et al. [27], utilizing on-the-fly numerical sten-
cil assembly and multigrid interpolation and restriction across
multiple levels simultaneously. However, the implementation
has been adapted for MATLAB running on a CPU, resulting in
changes to the internal data and computation layouts.

First, SGLDBench uses MATLAB’s built-in Cholesky solver
rather than the TAUCS library’s Cholesky solver for solving
the linear system on the coarsest multigrid level. Second, it
transitions from a matrix-free node-based computation layout to
a matrix-free element-based layout to take advantage of MAT-
LAB’s efficient matrix-vector operations. Instead of assembling
stencils per grid vertex on-the-fly using indexed memory access
operations, SGLDBench constructs a generic element matrix
and utilizes MATLAB to compute the products of this matrix
with the 8-node displacement vectors of each element. Since
the stiffness matrix of an element with density p is obtained by
correspondingly scaling the generic stiffness matrix, the final
results only need to be scaled accordingly. For each element,
the 8 displacement vectors at the vertices are organized into
columns of an element-wise displacement matrix, as illustrated
in Fig. 4. MATLAB then computes all matrix-vector products
between the generic element matrix and each column in the
displacement matrix efficiently.

C. Infill Computation

For each of the six lightweight design methods provided
by SGLDBench, the user selects specific parameters and lets
SGLDBench compute the material layout. SGLDBench pro-
vides MATLAB code for density-based TO, porous infill op-
timization, PSL-guided material layout and volumetric Michell
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trusses. To generate a Voronoi infill, MATLAB calls a Python
script including precompiled libraries. Conforming lattice struc-
tures are generated by compiling code from a publically avail-
able repository and running the executable from MATLAB with
the required parameters.

1) Topology Optimization: TO minimizes the compliance of
a material layout under the constraint of applied forces and a
prescribed global material consumption. SGLDBench imple-
ments the density-based TO approach [30], [39]. To formulate
the minimization problem over a discrete set of elements e with
densities p., a hexahedral finite element discretization of a linear
elastic solid material is generated from the voxelized geometry.
The object’s compliance c¢ is computed by summing the strain
energy over all material elements, i.e.,

c=UTKU. (D

The lower the compliance, the higher the object’s stiffness.

With selected measure of a material’s ability to deform under
an applied stress, i.e., the Young’s modulus Fjy of the solid
(pe = 1), and the linear material law, TO proceeds in three steps:
1) A large linear system is solved using the MATLAB multigrid
implementation to compute the force-induced displacements of
the hexahedral vertices. 2) The derivatives of the total strain
energy c and the total volume V' with respect to the elements’
densities p. are computed and used to guide the material distri-
bution to maximize stiffness. 3) The design is updated according
to the computed sensitivities. These steps are repeated until
the change in material distribution is below a threshold or the
number of iterations reaches the prescribed maximum iterations.
The computational pipeline for density-based TO is mainly
written in MATLAB, using our optimized C++ code for solving
the linear system and updating the design variables.

Density-based TO takes the available material budget Vj as
the constraint, known as the global volume constraint. Thus,
the problem-specific constraint function for a material layout ¢
using n hexahedral elements is

9(¢):Zpe_nV0§0

We use the so-called Solid Isotropic Material with Penaliza-
tion (SIMP) model, where a non-zero constant minimum value

(@)
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Material layout optimization with density-based TO (a) and porous infill optimization (b). Compliance history is depicted by the green curves, with violet

represents the background stiffness of the void region. In each
optimization iteration, the design variables are updated within a
prescribed step size through a gradient-based optimizer using the
optimality criteria method [30]. After optimization, the design
variables shall converge to a (near-)binary layout that indicates
the spatial material distribution.

It’s worth mentioning that several auxiliary processes are also
introduced in practical TO for good design quality. For instance,
the density-based filtering to counteract numerical instabilities
and the Heaviside projection to promote the generation of a
binary design, where the proxy density value of each voxel is
encoded by the projected value of the filtered value of the design
variable [40].

Fig. 5(a) shows the optimized shapes after different optimiza-
tion iterations. The optimization produces a mono-scale design
comprising mainly a thick resistant strand along the maximum
stress directions.

2) Porous Infill Optimization: Porous infill optimizationis an
extension of density-based TO that generates porous substruc-
tures distributed across the design domain. This is achieved by
replacing the global volume constraint with local volume con-
straints, which prevent material from accumulating and forming
dense, solid regions.

The global volume constraint restricts the total material con-
sumption within the entire simulation domain. The local volume
constraint imposes an upper bound V. on the percentage of solid
voxels within a prescribed neighborhood of voxel e. These local
constraints ensure a more evenly distributed material layout,
promoting porosity and lightweight design. Beyond this adjust-
ment, the optimization process largely follows the approach used
in density-based TO.

For the material around each voxel e, the local volume con-
straint leads to the constraint function

_ 2ien, Pi B

g(e) = V. <0. 3)
‘ ZieNe 1 ¢
N, defines the voxel neighborhood that is considered, i.e.,
Ne = {i] || ;i — zc [|2< Re}, Ve. )

R, is the radius of a spherical region centered at a voxel’s center,
It defines the area within which local material accumulation is
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measured. SGLDBench’s implementation of density-based TO
in MATLAB has been extended to include the specific constraint
function for porous infill optimization. The optimization process
uses the Method of Moving Asymptotes (MMA) [41] as the
optimizer to iteratively update the design variables.

Fig. 5(b) illustrates the optimization process of porous infill
optimization. Unlike standard TO, porous infill optimization
generates a space-filling, multi-scale design. These designs gen-
erally exhibit lower stiffness compared to those produced by TO
with a global volume constraint, as some material is deposited
in regions that do not significantly contribute to overall stiffness.
However, such designs are typically more robust under varying
load conditions and localized damage [31], [33]. Additionally,
porous infill optimization in 3D tends to form wall-like structures
aligned with the major and minor principal stress directions, as
shown in Fig. 1(b).

3) Voronoi Infill: 3D Voronoi infills are generated by com-
puting an initial Delaunay tetrahedralization, based on a set
of samples () following a stress-based distribution density.
Therefore, more samples are generated in regions of higher
stress, whereas the sampling density is lower in less stress-
critical regions [32]. The Voronoi mesh follows as the dual of
the Delaunay complex. Procedural infill optimization techniques
building upon similar concepts have been proposed for additive
manufacturing [42], [43].

Graded Sampling: In SGLDBench, S is initialized with a
small set of auxiliary samples, equally distributed on a sphere,
fully enclosing the input object. Further initial samples are added
from the set of vertices of the input object’s hull. Then, the
input tetrahedral mesh is used as sampling domain, where S
is iteratively updated in a progressive Poisson disk sampling
scheme until no further samples can be added. For improved
performance, this is realized using batches of n samples per
iteration and organizing S in a kd-tree. Radii for Poisson disks
are interpolated at their sample positions based on the von Mises
stress field oy, using the mapping

R =icdf(ovm) - (Fp —7) + 7 5)

where 7 the size of the largest radius (determined as a fraction of
the objects bounding box diagonal length) and p € (0, 1] gives
the ratio of smallest to largest radii. As the von Mises stress has
an arbitrary range from smallest to largest values with spatially
varying concentrated extremes, we normalize and homogenize
the field using an inverse cumulative distribution function (icdf).

Restricted Delaunay/Voronoi: The Delaunay complex or
Voronoi diagram resulting from the generated samples are not
natively limited to the design domain, i.e., the object’s outer
boundary. As S includes vertices from the object’s hull as
samples, the Delaunay complex is restricted to the object’s shape
by simply excluding Delaunay simplices outside of the object
using robust winding numbers [44]. Due to the dual nature of the
Voronoi diagram and the Delaunay complex, the Voronoi cells
of such hull vertex samples always transcend the object’s outer
boundary. Therefore, Voronoi cells crossing the outer hull are
cut and clipped [45], [46] such that only their inner part remains,
cells fully outside are omitted.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 31, NO. 10, OCTOBER 2025

(a)

Fig. 6.  Stress-aware Voronoi infill. (a) Scalar von Mises stress field. (b) Point
cloud with stress-aware density. (c) Tetrahedral Delaunay mesh from (b). (d)
Voronoi infill from (c).

' S o'a
(a) Original PSLs  (b) Conforming lattice structure (c) Smoothed PSLs (d) Volumetric Michell trusses

Fig. 7. Major (brown) and minor (green) PSLs in the solid object under load
(a) and in the smoothed stress field (c), used to generate the designs in (b) and
(d), respectively.

The edges of a Voronoi infill do not follow the stress directions
in the initial solid object. Whereas the Delaunay criterion guar-
antees the most regular simplices when applied on the available
sampling points, there is no trivial control for edge directions in
the Voronoi graph, for instance, to construct Voronoi infills with
controlled elasticity [42] or constraint alignment of the Voronoi
edges [47].

SGLDBench provides Voronoi infill generation via Python
due to the easy accessibility of required functionality. The
SciPy [48] library is used to generate the Voronoi and Delaunay
graphs using Qhull [49] and further provides the kd-tree acceler-
ation structure for the Poisson disk sampling. Our code includes
fallback methods required for restricting the graph structure to
the object domain. The pipeline is illustrated in Fig. 6.

4) PSL-Guided Lattice Infill: Inthe seminal work by Michell
[5] on stiffness-optimal lightweight design, it was conjec-
tured that a stiffness-optimal structure should bear only normal
stresses. This means that the sub-structures of such a design
align with the principal stress directions. This is known as
Michell’s Theory, which has been considered since then in
various lightweight design methods.

The most straightforward approach to create an infill that
considers the principal stress directions in the loaded solid
domain is to deposit material along the PSLs. When using line
seeding strategies to obtain an as uniform as possible and domain
filling distribution of PSLs [33], [50], PSL-guided infills show
surprisingly good mechanical properties in 2D domains [51]. In
3D domains, however, many PSLs do not significantly contribute
to the infill’s stiffness, and PSLs might travel through space over
along distance before they intersect with any other PSL or attach
to the boundary (see Fig. 7(a)).
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On the other hand, when depositing material by voxelizing
lines with a selected thickness, the thicker the PSLs are, the
more connections are generated. This increases significantly
the mechanical performance, and it often results in infills that
show superior mechanical properties. In addition, since the stress
field needs to be computed only once in the solid domain, the
computational complexity is significantly reduced.

SGLDBench uses the publically available MATLAB backend
of 3D-TSV [36] to generate PSLs in a 3D stress tensor field.
It generates a domain-filling and evenly-spaced set of PSLs.
The method starts from a set of domain-filling seed points and
iteratively creates PSL from these seeds. All remaining seeds
in a certain distance to the PSL are removed to control the
sparseness of the resulting PSL distribution. The thickness of
PSLs is selected by the user, and for a selected thickness the
density of seeded PSLs is iteratively increased until the given
volume budget is roughly reached. A PSL might enter into a
region where the three principal stress directions are not uniquely
defined and exchange their orientation, i.e., around so-called
degenerate points [10]. Tracing a PSL stops if the resulting
directional change exceeds a given limit, and the PSL is removed
to avoid wasting material.

5) Conforming Lattice Structure: Conforming lattice struc-
ture originates from the geometry-based structural dehomoge-
nization presented by Wu et al. [6]. Structural dehomogeniza-
tion [52], [53], [54] diverges from the fine-resolution simulation
and optimization used by density-based TO and porous infill
optimization by adopting a multi-scale strategy:

Homogenization-based TO: During the initial optimization,
a coarse-scale representation is tuned to approach the optimal
distribution of material across a structure. This structure doesn’t
represent the exact material layout but rather provides a set of
specifications to guide the optimal material layout.

Dehomogenization: Once the optimized specifications are
found, dehomogenization is the process of converting coarse,
homogenized results into detailed, fine-scaled structures. This
involves creating actual geometric elements (trusses, lattices,
microstructures) realizing the material properties and orienta-
tions suggested by the homogenized result.

Homogenization-based TO provides an orthotropic direction
field as the optimized specifications. Dehomogenization extracts
a conforming lattice structure with edges aligning with the
direction field, and aspect ratios or sizes conveying the asso-
ciated properties of the corresponding directions. The optimal
directions are given by the principal stress directions of the
homogenization-based structure layout.

SGLDBench directly feds the stress field in the solid domain
to the dehomogenization stage, where it is used to generate a
stress-aligned lattice structure. Fig. 7(a) and (b) show the initial
stress directions in the solid domain and the conforming lattice
structure where the cell sizes have been further adapted to the
local von Mises stresses.

The conforming lattice structure addresses the intersection
issue found in PSL-guided infills by relaxing the requirement
to strictly follow the principal stress directions. This approach
builds upon the field-aligned hex-dominant meshing method by
Gao et al. [34], which employs an orthogonal frame field to
align the edges of a hexahedral mesh with this field. In the
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conforming lattice structure, the frame field is replaced with the
field of principal stress directions, and mechanical anisotropy is
incorporated into the field-aligned parameterization process.

Due to the presence of degenerate points and regions in a
stress field, it is generally impossible to compute a conforming
hexahedral mesh for all but the simplest fields. The conforming
lattice structure addresses this limitation by employing a local
smoothing strategy. The key idea is to leverage the rotational
symmetry of principal stress directions to generate a smoothed
direction field, which enables the construction of a conforming
hexahedral mesh.

From this smoothed direction field, a position field is com-
puted, ensuring that its gradient aligns with the adjusted stress
directions. By combining the smoothed direction field and the
position field, the method constructs a graph structure and sub-
sequently extracts the final mesh. To preserve the divergence and
convergence properties of the underlying stress field, irregular
vertex connections are introduced in the final structure, resulting
in an edge-graph representation.

6) Volumetric Michell Trusses: Volumetric Michell Trusses
compute a stress-aligned hexahedral lattice using a parametric
approach to align truss elements with the principal directions of
the stress field. This method involves two key steps:

Frame Field Smoothing: The algorithm first applies an FEA
to compute the stress tensor field, followed by a frame field
generation aligned with the principal stress directions. How-
ever, to achieve a global parametric structure, this step smooths
out tensor field singularities, sacrificing local alignment near
degenerate points for overall global consistency. To address
this, the method uses Loubignac iterations [55] to smooth out
the discontinuous stress field. This iterative method adjusts the
stress field to ensure that it becomes continuous across element
boundaries, thereby allowing for smoother and more uniform
alignment in subsequent steps. Therefore, a smoothness energy
function that penalizes sharp changes in frame directions is
minimized. This optimization enables a globally smooth frame
field that approximates the original stress directions.

Tracing Integer Isolines: After smoothing, integer isolines
of the volumetric texture parameterization are traced. This step
maps the truss nodes to integer points of the parameterization,
yielding the geometry for the extracted graph structure. Its con-
nectivity follows from the nodes’ adjacency in the grid. To ensure
flexibility, the method allows scaling of the parameterization via
auser-defined resolution parameter p, which controls the density
of the truss structure.

Due to the applied smoothing of the initial stress field, vol-
umetric Michell trusses produce a regular hexahedral lattice
structure with improved continuity of load transmissions, as
demonstrated in Fig. 7(c), Fig. (d). However, the smoothing
process can substantially alter the initial stress field, leading
to significant deviations in the resulting design’s stiffness from
the optimal value.

D. Infill Voxelization

While TO and porous infill compute a binary material field
on a 3D voxel grid, the other methods compute a 3D lat-
tice structure composed of edges and nodes. To enable a
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(b) Minor PSLs  (c) Minor PSLs with a lower density

(a) Major PSLs

Fig.8.  PSL visualization with cylindrical elements and color-coded von Mises
stresses using MATLAB visualization programs.

meaningful comparison of the structural properties of all
approaches, SGLDBench voxelizes these structures into a voxel
grid. The grid resolution is selected automatically to represent
edges with a minimum required voxels. SGLDBench computes
for each edge the intersected voxels via the DDA line drawing
algorithm [56]. These voxels are set to solid. Edges are thickened
by setting for all these voxels their 26 neighboring voxels to
solid.

For all edge-based infill strategies, the material budget and
the targeted edge thickness are prescribed. The methods are
then conducted in a dichotomy manner to find the settings that
match closely the design specifications, i.e., the design process
is run multiple times to find the design that matches the material
consumption under the edge thickness constraint.

E. Visualization and Layout Analysis

Once a Voronoi infill, PSL-guided infill, conforming lattice
structures, or volumetric Michell trusses has been computed,
users can view the meshes and graph structures using MAT-
LAB’s mesh viewing operations, rendering edges as cylinders
with a specified width. Thus, voxelizing the infill into a 3D
material field is not required.

To compute the compliance of a design, lattice infill designs
must first be voxelized into a 3D material field. SGLDBench then
uses its linear elasticity solver to perform an FEA and simulate
the stress field, from which the compliance is computed. For
density-based TO and porous infill optimization, the compliance
history throughout the optimization process is recorded and can
be visualized via a curve plot, as demonstrated in Fig. 5.

To visualize a stress field, an evenly spaced set of PSLs
covering the domain as uniformly as possible is computed using
MATLAB programs. Users can control the density of seeded
PSLs and select scalar stress measures, such as the von Mises
norm, to map onto the lines’ colors. PSLs can be computed
for the initial stress field in the solid domain. Examples of
PSL-guided visualizations using MATLAB are shown in Fig. 8.

For realtime visualization of even high resolution designs,
SGLDBench provides an advanced WebGL-based volume vi-
sualization module. It performs isosurface and direct volume
rendering, and assists users in a stress-based comparative design
analysis. Isosurfaces in a 3D material field are rendered using
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GPU ray-casting, with screen-space ambient occlusion to en-
hance depth perception, as demonstrated in Fig. 1. A view-space
parallel clip plane can be moved back and forth to expose
otherwise occluded structures.

Direct volume rendering is particularly used to visualize the
scalar von Mises stress field, enabling the evaluation of whether
a material will permanently deform under the given stress state.
High magnitudes of the von Mises stress indicate a risk of
fracture under the applied loads, and direct volume rendering
effectively highlights the spatial regions where this danger is
significant. This provides a powerful tool for structural and
mechanical analysis. SGLDBench’s WebGL interface allows
users to color a ray-traced infill surface based on the von Mises
stress.

In addition, SGLDBench’s visualization module highlights
the differences between the principal stress directions in the solid
design and the computed infill design. SGLDBench computes
the stress field of the infill using the initial boundary conditions
and generates an auxiliary grid where each voxel stores a single
deviation measure. This measure indicates the deviation of the
stress directions corresponding to the principal stresses with the
maximum absolute value, based on the ordering of the absolute
values of the principal stresses in the initial solid and the infill.

The resulting scalar field is visualized through direct volume
rendering. SGLDBench employs a transfer function that maps
directional deviations linearly to colors, ranging from white
(low deviation) to light brown (medium deviation) and dark
brown (high deviation). Opacity is initially set to one but can
be adjusted by the user to smoothly fade out regions with low or
high deviation.

Given an optimized infill structure, SGLDBench can also be
used to apply new boundary conditions to it, allowing users to
probe conditions different from those for which the structure
was initially optimized. This functionality is inspired by worst-
case structural analysis [57], [58], a method used to evaluate
the performance and reliability of a structure under its most
unfavorable conditions. While SGLDBench is designed for a
completely different use case and cannot perform such analysis,
it provides the tools to explore similar scenarios.

Specifically, SGLDBench includes an interface to modify the
initial boundary conditions by changing the direction of forces
and re-computing the compliance and von Mises stress under the
new conditions. A visualization of the structure with stress-based
color coding highlights the mechanical strengths and weak-
nesses of different parts, enabling a deeper understanding of
its behavior under varied conditions.

IV. EXPERIMENTS

We demonstrate the use of SGLDBench to generate and
analyze lightweight designs for various models and boundary
conditions. The models include a human femur (Bone), a ma-
chine part commonly seen in engineering applications (Part),
and Cantilever, a widely used benchmark model in TO. All
models are initially provided as triangle meshes. We showcase
the usability of SGLDBench with additional datasets in the
supplementary material.
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(a) Density-based TO,
¢=1.02V =010

(b) Porous infill optimization,
¢ =118,V =0.09

Fig.9. Material fields generated with TO (a) and porous infill optimization (b)
for Cantilever using a 800 x 400 x 400 voxel grid. The left face of the cubic
design domain is fixed, and a downward force acts along the bottom-right edge.

All experiments are conducted on a desktop computer
equipped with an Intel 6-core Xeon W2235 CPU, 64 GB of
RAM, and an NVIDIA RTX 2070 GPU with 8§ GB of video
memory. We intentionally select a mid-range architecture to
demonstrate SGLDBench'’s capabilities on affordable hardware.
The main memory limits the maximum number of simulation
elements to approximately 160 million for simulating a 3D stress
field.

A. Performance Evaluation

Solver: For the Cantilever model at a voxel grid resolution of
860 x 430 x 430 (159 million elements), SGLDBench solves the
FEA linear system on the CPU in roughly 30 minutes, achieving
convergence within 41 solver iterations at a threshold of 1.0 x
10°®

A one-to-one CUDA implementation of the solver by Wu et
al. [27] on the RTX 2070 GPU can simulate up to 45 million
elements before running out of GPU memory. For this number
of elements, the GPU implementation needs 91 seconds to
solve the FEA linear system. SGLDBench requires 610 seconds
for the same setting, showing roughly a 7x reduction of the
performance compared to the optimized GPU solver. For the
used GPU this is a reasonable reduction, and slightly better than
commonly reported when GPU and CPU implementations of
similar problems are compared.

Iterative Optimization: TO and porous infill optimization
require additional memory for updating the material distribution
during numerical optimization. SGLDBench performs these op-
timizations with grids of up to 130 million simulation elements,
corresponding to a 800 x 400x 400 simulation grid with 386
million degrees of freedom. For these cases, SGLDBench com-
pletes each optimization iteration in approximately 45 minutes
for TO and 67 minutes for porous infill optimization. The results
shown in Fig. 9 are generated using 30 iterations of TO and 280
iterations of porous infill optimization.

Compared to an optimized OpenMP CPU implementation of
TO [38], SGLDBench is only about 1.6 times slower when repro-
ducing the same Cantilever model at a resolution of 640 x 320 x
320 on a similar computing architecture (a 48-core Xeon CPU).
This demonstrates the efficiency of the MATLAB computing
environment in combination with SGLDBench’s element-wise
computation structure.

All designs for Bone in Fig. 1 are generated with a 384 x
256 x 512 voxel grid, corresponding to 30 million degrees of
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freedom. TO and porous infill optimization, respectively, gener-
ate the infill in 1.5 hours and 15.1 hours. Porous infill requires a
significantly higher number of optimization iterations and addi-
tional computations to enforce the local volume constraint. Due
to the high geometric complexity of porous infills, generating
these infill also requires a higher number of iterations for solving
the linear FEA system in each optimization iteration.

Lattice Infill Optimization: To compute the various types of
lattice infills, we utilize state-of-the-art implementations cur-
rently available, which are provided as either C/C++ codes
(PSL-guided layouts, Voronoi, and conforming lattice infills) or
MATLAB programs (Michell trusses). Executing these imple-
mentations through SGLDBench does not result in performance
penalties.

SGLDBench requires approximately 10 minutes to generate
the Voronoi infill and the PSL-guided infill, with about half
of this time spent simulating the 3D stress field in the initial
solid domain. Using this stress field, the external codes for
generating the conforming lattice infill take around 5 minutes,
while the MATLAB code for generating the volumetric Michell
truss requires approximately 4.5 hours. For the latter, slightly
less than half of the execution time is allocated to smoothing the
original stress field.

B. Material Use as a Modelling Parameter

To evaluate the response of different design methods to
changes in material consumption, we repeat all experiments
shown in Fig. 1 with a reduced volume fraction. Instead of
the original volume fraction of 0.4, SGLDBench now uses a
lower volume fraction of approximately 0.2, enforcing finer
and less dense support structures. For methods that generate
graph structures, the thickness of the voxelized edges remains
constant.

The results, shown in Fig. 10, reveal an increased sparseness in
all designs, accompanied by reduced stiffness and significantly
varied topologies. TO and porous infill methods require no
changes to their simulation parameters but must rerun the entire
optimization process to produce the results. In contrast, other
approaches can utilize the stress field from the initial solid
domain and need to rerun only the steps that generate the graph
structure from it.

With a lower material budget, the PSL-guided infill demon-
strates surprisingly good relative performance, as it effectively
utilizes the material to generate support structures along the most
dominant stress directions.

One possible reason for this reversal is that the resolution of
the conforming lattice is too low, leading to the misalignment
of many edges in the graph structure with the dominant stress
directions. Furthermore, adaptive porosity also plays a critical
role in reducing compliance. Specifically, in regions of high
stress, more material should be allocated to resist strain effec-
tively. This could explain the relatively moderate stiffness of the
Voronoi infill, which is unable to concentrate more material in
high-stress regions due to the low material budget. Moreover,
by design, the Voronoi infill does not align with the dominant
stress directions, further contributing to its reduced mechanical
performance.
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(c) Voronoi infill,
c=6.29

(a) Density-based TO,
¢ =265

(b) Porous infill
optimization, ¢ = 4.95

Fig. 10.

(a) Conforming lattice structure, ¢ = 3.38 (b) Voronoi infill, ¢ = 2.68

Fig. 11. High resolution results using the same boundary conditions and
material budget as in Fig. 1.

The stress field in Bone is relatively simple and contains
few degeneracies, allowing the Michell trusses to preserve most
features effectively. This behavior, however, changes with Part
(see the firstrow of Fig. 13). In this case, the smoothed stress field
exhibits significant differences from the initial field, causing
many infill edges to deviate substantially from the original stress
directions. As a result, the Michell trusses demonstrate lower
stiffness compared to the other alternatives.

C. Infill Resolution and Compliance

To explore the relationship between compliance, volume frac-
tion, and geometric infill resolution, SGLDBench is used to
evaluate the stiffness of high-resolution lattice infills for Bone.
The volume fraction, edge thickness, and voxel grid resolution
are user-defined parameters, and SGLDBench computes the
compliance of the infill using a single FEA iteration.

In Fig. 11, a voxelized conforming lattice infill and Voronoi
infill with 136,877 and 396,458 edges, respectively, are shown,
using the same boundary conditions as in Figs 1 and 10.
SGLDBench generates a 848 x 576 x 1200 voxel grid and
constructs a finite element model from it. The voxelized versions
of the infills are visualized using SGLDBench’s WebGL visual-
ization module, employing isosurface ray-casting and ambient
occlusion for enhanced depth perception.

To compute the compliance of the voxel models, approxi-
mately 380 million degrees of freedom are solved, which SGLD-
Bench completes in roughly 45 minutes. Interestingly, as shown
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(f) Volumetric Michell
trusses, ¢ = 5.78

(d) PSL-guided material
layout, ¢ = 5.74

(e) Conforming lattice
structure, ¢ = 6.51

Same designs as in Fig. 1 but with lower material budget of roughly 0.22.

(a) PSL-guided material layout (b) Conforming lattice structure (c) Volumetric Michell structures

Fig. 12. A clip plane reveals the interior structure of different designs. The
closeup view shows the PSLs in the selected region, with the major, medium,
and minor PSLs, respectively, shown in ocher, green, and blue.

in Fig. 1, the stiffness appears to be independent of the geometric
details of the infills when using the same material budget.

D. Infill Geometry

Given the varying compliance of different types of infills for
the same object and load conditions, we use SGLDBench to
investigate the major causes of these differences. We compare
the interior structures of graph-based infillS, as illustrated with
BoneinFig. 12. A clip plane is used to expose the interior regions
of the PSL-guided infill, the conforming lattice structure, and the
volumetric Michell trusses.

The PSL-guided infill serves as a reference, illustrating the
primary load transmission pathways. Overall, the edges of the
conforming lattice structure align with the PSLs. However, in
regions where the curvature of the PSLs changes significantly
(see the inset in Fig. 12), the lattice loses its geometric regu-
larity. These irregularities appear to be associated with degen-
eracies in the stress field, where the principal stress directions
flip.

In contrast, the volumetric Michell trusses exhibit a highly
regular geometric structure but demonstrate less alignment with
the original stress directions. This discrepancy arises because
the original stress field is smoothed, which alters the stress field
globally and particularly eliminates unwanted degeneracies.

The visualization of the 3D conforming lattice structure re-
veals several stitching edges in the interior that do not align
with any of the dominant stress directions. Additionally, the
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PSL-guided material layout Conforming lattice structure Volumetric Michell trusses

Max

Variable load structural analysis. Top row: All infills are optimized for the same boundary conditions (see inset with downward forces). Rows 2—4:

Varying forces (Euler angles 6, 6,, 0. indicate angular deviation from the downward direction) are applied to the optimized infills. All designs are shown with

their compliance ¢ and are color-coded according to the von Mises stress.

(a) Density-based TO  (b) Porous infill optimization

(c) Voronoi infill

Fig. 14.
conditions is shown. A view plane aligned clip plane reveals interior parts.

number of longer edge sequences that consistently follow one
of the PSLs is lower compared to the PSL-guided infill and the
volumetric Michell trusses. This behavior might be attributed to
the approach allocating too much material to maintain a con-
sistent edge graph rather than prioritizing stiffness. Oscillating
load paths, represented by inconsistent edge sequences, may
lead to less effective load transitions and, consequently, reduced
stiffness.

E. Variable Load Structural Analysis

To shed light on how well a design optimized for a specific
load case can resist forces applied from a different direction,
SGLDBench is used in the following way: First, all six infill
design methods are applied with the same boundary condition
to compute six different designs, and the von Mises stress field
in the optimized material field is computed. Then, the applied
forces are changed, and the von Mises stress field is recomputed

(d) PSL-guided material layout (¢) Conforming lattice structure (f) Volumetric Michell trusses

Stress-to-stress alignment. High (white) to low (brown) alignment between stresses in the solid and the optimized infill with respect to the same boundary

for all designs. The designs, color-coded with the von Mises
stress under the varied forces, are shown in Fig. 13.

Density-based TO consistently shows higher compliance un-
der the new force conditions. While the compliance increases
only slightly with a slight change of the force direction, larger
directional changes result in a significant loss in stiffness. The
coloring with the von Mises stress shows where the critical
structures occur under the new forces and have the potential
to break. A significant re-distribution of the von Mises stresses
indicates a significant loss in stiffness.

All other designs show the same slight change in stiffness
as porous infill when the force direction changes only slightly.
For more significant changes in the force directions, however, all
other designs perform significantly better than the one optimized
with density-based TO. Interestingly, even the PSL-guided ma-
terial layout, which is specifically aligned with the major stress
directions occurring with the initial force setting, can signifi-
cantly better resist the new force directions.
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Designs that show a more uniform distribution of material
throughout the domain, such as the Voronoi infill, the conform-
ing lattice structures, and the volumetric Michell trusses, are
much better at resisting varying forces compared to topology-
optimized designs. When the force directions are varied signif-
icantly from their initial values, in some cases the stiffness be-
comes even higher. These are situations where the new forces are
along some of the principal stress directions that have occurred
in the initial stress field, and along which some of the structures
have grown, so that the structure is bearing more normal stresses
than shear stresses.

E. Reproducing Stresses in the Solid Domain

Using Part shown in Fig. 13, SGLDBench is applied to ana-
lyze how well different designs reproduce the stress directions
in the initial solid configuration. This analysis allows users
to examine, for instance, whether force transmission through
tension and compression occurs along the same load paths as
in the initial solid. Since an infill design can, in principle,
transmit forces along the most efficient load paths in the solid
design or diverge to alternative paths, understanding the re-
lationship between compliance and the reproduction of stress
directions can provide valuable insights for improving infill
designs.

Fig. 14 shows visualizations of the alignment fields computed
for each infill. Iso-surface rendering with the color transfer
function described in Section III-D is used to emphasize re-
gions with high deviation in brown. TO produces an infill that,
in many regions, aligns well with the major stress directions
in the solid under load. However, significant deviations are
observed in certain areas, particularly in thin structures and
regions near the fixed elements where stress concentrations are
highest.

Similarly, porous infill exhibits more pronounced deviations,
which are distributed throughout the entire domain. This be-
havior arises from its space-filling material distribution, which
emphasizes uniformity rather than alignment with the stress
directions.

The stress deviations are highest in the Voronoi infill, as
the initial stress directions are not considered in its edge-graph
layout. Only when edges align with boundary elements, which
are incorporated into the stress analysis of both the solid object
and the infill, stress deviations are lower.

The material in the PSL-guided infill is distributed along the
principal stress directions, resulting in good alignment with the
initial stress field. However, as shown in Fig. 14, alignment
accuracy decreases at the boundaries of the voxelized edges.
This reduction in accuracy stems from discretization-induced
inaccuracies in the stress simulation—a limitation shared by all
graph-based approaches when voxelized structures are used for
compliance analysis.

Additionally, all graph-based infills contain numerous edges
aligned with the two principal stress directions not corre-
sponding to the direction of the maximum absolute stress
value. This can lead to high directional deviations along these
edges.
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The deviation maps of the conforming lattice structure and
the Michell trusses are very similar, showing the same low
deviation patterns in the boundary region as the Voronoi infill.
In both infills, there is still a considerable number of voxels with
significantly different dominant stress directions than the solid
object.

V. CONCLUSION AND OUTLOOK

SGLDBench is a benchmark suite designed for the simulation
and analysis of stiff, lightweight designs, with a special emphasis
on high-resolution 3D models. It supports the computation of
six distinct design types, employing methods that range from
purely stiffness-based optimization to geometry-aware infill
generation.

SGLDBench enables users to create designs at varying res-
olutions and material consumption levels while assessing their
mechanical and geometric properties. Various visualization op-
tions provide additional insights into governing stress states and
a design’s geometric structure. The resistance of a design to
new force situations can be assessed via the color coding of
designs with scalar stress measures. Additionally, SGLDBench
visualizes deviations between stress directions in the initial
solid object and the generated design, providing insights into
relationships between stiffness, geometric properties, and stress
replication.

The suite allows users to compute individual designs with
specific boundary conditions and offers flexibility for integrating
new design strategies into its publicly available code base. More-
over, SGLDBench supports the creation of novel design types by
combining existing strategies. For instance, the material field of
an optimized design can be computed via TO and downloaded
to extract its boundary as an isosurface. This surface can then
be uploaded to SGLDBench to compute an infill restricted to
the interior of the surface, as demonstrated in the supplemental
material.

By leveraging SGLDBench’s capabilities, several intriguing
properties of existing design strategies have been uncovered,
paving the way for new research directions in lightweight design.
For example, why does the mechanical performance of conform-
ing lattice structures fall below expectations in 3D domains, what
role does adaptive porosity play in achieving high stiffness, what
is the interplay between truss thickness, cell size, and stiffness
in lattice infills, how can a tensor field be optimally smoothed
to minimize stiffness deviation while maintaining efficient load
transmission paths, or how would a Voronoi infill perform if
additional constraints on edge stress reproduction were applied?
SGLDBench provides researchers with tools to investigate these
questions and develop improved design strategies tailored to
diverse objectives.
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