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SYMBOLS AND CONVENTIONS

This thesis incorporates terminologies from estimation theory, radar signal processing,
electromagnetics, and atmospheric physics. Therefore, it is necessary to use discernible
terminologies to avoid confusion.

SYMBOLS:
• j =p−1: The imaginary unit,

• σn : Noise standard deviation,

• 1N : Identity matrix of size N ×N ,

• B: Bias,

• E: Expected value,

• V: Variance,

• C GP : Complex Gaussian Process,

• FT : Fourier Transform,

• N : Normal distribution,

• A: Amplitude,

• C : Covariance. Specific sub-scripted C (like CCN) are explained in the chapters
where those are defined,

• D : Diameter,

• d : Number of decimal places,

• F : Model of the expected PSD,

• f : Frequency,

• fc : Central frequency,

• fs : ADC sampling frequency,

• G : Covariance of signal with vertical fall of raindrops,

• I : Fisher Information,

• J : Cost function,

xix
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• L: Number of measurements,

• N : Number of echo samples. Specific sub-scripted N (like Nper) are explained in
the chapters where those are defined,

• N (D): Drop Size Distribution,

• R: Reflectivity,

• r : Range, Radius

• S: Complex Fourier transform (has real and imaginary parts) of the signal model,

• s: Signal model,

• T : Pulse repetition interval (PRT). Specific sub-scripted T (like Tap,min) are ex-
plained in the chapters where those are defined,

• t : Time,

• v : Radial velocity,

• Va : Maximum unambiguous velocity,

• V : Volume,

• VT : Terminal fall velocity,

• Y : Covariance of signal from wind only,

• Z : Power Spectral Density (PSD) of the measurements,

• β: Phase. Specific sub-scripted β (like βs ) are explained in the chapters where
those are defined,

• ϵ: Used for threshold computation in (5.18) (in chapter 5), and attenuation of
weather echoes (in chapter 6).

• ∈: Belongs to,

• η,Λ: Shape and scale DSD parameters,

• Γ: Gamma function,

• λ: Wavelength,

• µ: Mean of a quantity. Specific sub-scripted µ (like µ f n) are explained in the chap-
ters where those are defined,

• φ: Azimuthal angle,

• ψ: Elevation angle,

• σ: Standard deviation of a quantity. Specific sub-scripted σ (like σ f n) are ex-
plained in the chapters where those are defined,

• Θ: Parameter vector, θ refers to any parameter
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ACRONYMS:
• BW: Bandwidth,

• CGP: Complex Gaussian Process,

• CGP-R: Complex Gaussian Process Regression,

• CRB: Crámer Rao Lower Bound,

• dB: Decibel,

• dBZ: Decibel relative to reflectivity factor,

• DFT: Discrete Fourier Transform,

• DSD: Drop Size Distribution,

• FMCW: Frequency Modulated Continuous Wave,

• ML: Maximum Likelihood,

• PP: Pulse Pair,

• PRT, PRI, PRF: Pulse Repetition Time, Pulse Repetition Interval, Pulse Repetition
Frequency,

• PSD: Power Spectral Density,

• PSE: Parametric Spectrum Estimator,

• rRMSE: relative Root Mean Square Error,

• WiDSE: Wind and DSD Estimator.

CONVENTIONS
• A diacritic mark of a hat (ˆ) is used on top of the variables to refer to their estimated

quantity. Sometimes, a diacritic mark of a hat ( ˆ ) also refers to a unit vector in
space, and they are specified wherever unit vectors are mentioned.

• Regular lowercase mathematical symbols are variables, such as s, z, etc.

• Bold lowercase mathematical symbols are vectors, such as s, z, etc.

• Bold uppercase mathematical symbols are matrices, such as S, Z, etc.

• 0: Zero vector,

• 0: Zero Matrix,

• A superscript ( ∗ ) is used for complex conjugate,

• A superscript ( T ) is used for transpose,

• A superscript ( H ) is used for Hermitian.





SUMMARY

Modern, multifunctional ground-based weather radar systems deployed at the airports
are designed to detect and track point-like targets, such as birds and drones. There-
fore, these radars scan the field of view in azimuth very fast to get quick updates on
the whereabouts of these targets. The fast scanning nature of these radars limits their
capacity to accurately estimate parameters for weather applications, such as the precip-
itation intensity and velocity distribution parameters of the raindrops during rainy con-
ditions. This thesis aims to develop novel techniques to estimate the parameters related
to the precipitation Doppler spectrum with limited time on target. In addition to esti-
mating the parameters, this thesis extensively discusses the trade-offs and recommends
application-specific measurement techniques.

Chapter 2 discusses the historical development of weather radars, the scattering mech-
anisms of electromagnetic waves, and a brief literature review on the Doppler effect and
processing. The chapter also contains a short review of the application affected by the
Doppler processing: the 3D wind field estimation. In addition to that, it includes the
modern challenges faced by the phased array weather radars deployed at the airports.

Chapter 3 formulates the estimation of statistical Doppler spectrum moments as a
parametric estimation problem (parametric spectrum estimator - PSE). The power spec-
tral density (PSD) of the Doppler spectrum is modeled with the Doppler moments but
also the limited observation interval. Modeling the PSD with the limited observation
interval significantly improved the statistical performance of the parameter estimation.
The proposed approach can also accommodate the PSD measurements from incoherent
radar scans, typically realized in fast scanning radars.

Chapter 4 formulates the local Doppler spectrum reconstruction with a more generic
scenario where the pulse train doesn’t necessarily have to be periodic. Contrary to the
previous chapter, the Doppler moments estimation problem is formulated in the time
domain with a parametric form of the covariance of the echo sequence. It is shown that
the performance of the parameter estimation matches that of the PSE but requires more
computational resources as it involves an inverse matrix operation. The advantage of
this approach is that it can process aperiodically spaced echoes in time, which can be re-
alized when some of the samples are corrupted or for applications where aperiodic pulse
trains are purposefully desired for resolving ambiguities. With the proposed approach,
the local Doppler spectrum can be reconstructed directly in the frequency domain with
the Gaussian process posterior with high resolution.

In chapter 5, the problem of aliasing in the Doppler spectrum is discussed, and an
integrative approach is proposed to mitigate the issues in the estimation of the mean
Doppler velocity. A comprehensive literature review has been presented where the ad-
vantages and limitations of various research disciplines that address the aliasing/ am-
biguity are delineated. The integrative approach proposed in this chapter makes use of
an appropriate aperiodic pulse train and the complex Gaussian process (CGP) regres-
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sion introduced in the chapter 4 to estimate the mean Doppler velocity unambiguously
and reconstruct the Doppler spectrum directly in the frequency domain. The proposed
approach outperforms the state-of-the-art methods in resolving ambiguity, like the ap-
proach involving multiple alternating periodic sequences.

In chapter 6, the formulation of chapter 3 is extended, and a novel generic model
of the Doppler PSD is proposed that contains the raindrop size distribution (DSD) and
the wind velocity parameters, such as mean wind and turbulence. These parameters are
then retrieved with a similar procedure as explained in chapter 3. The proposed tech-
nique is effective in fitting the Doppler spectrum with DSD and wind parameters. How-
ever, the estimation of DSD parameters from the Doppler PSD is a challenging problem,
and these estimated parameters can be heavily biased because the radars are not very
sensitive to the smaller raindrops. Despite the biased results, the statistical performance
of the DSD-derived parameters, such as the vertical fall speed and the mean diameter,
is adequate enough with the proposed approach. As it is a joint estimation of the wind
speed and vertical fall speed of raindrops designed for each resolution volume, it can
play a pivotal role in the estimation of a 3D wind field with high spatial resolution.

This thesis presents a deeper insight into the Doppler parameters and spectrum es-
timation for precipitation with scanning radar echoes. It shows that with the proposed
signal processing approaches, the statistical performance of the atmospheric Doppler
parameter estimation can be significantly improved. Although the core application is
precipitation Doppler parameter and spectrum estimation, the techniques developed in
the thesis can be easily tuned for other applications involving any form of spectral es-
timation. In addition, it also presents future research avenues based on the limitations
presented in the current research.



SAMENVATTING

Moderne, multifunctionele grondgebaseerde weerradarsystemen die op luchthavens wor-
den ingezet, zijn ontworpen om puntdoelen, zoals vogels en drones, te detecteren en te
volgen. Daarom scannen deze radars het gezichtsveld in azimut zeer snel om snel up-
dates te krijgen over de locaties van deze doelen. De snelle scanmethode van deze ra-
dars beperkt echter hun capaciteit om nauwkeurig parameters voor weersvoorspellings-
doeleinden te schatten, zoals de neerslagintensiteit en de snelheidsverdelingsparame-
ters van regendruppels tijdens regenachtige omstandigheden. Dit proefschrift heeft als
doel nieuwe technieken te ontwikkelen om de parameters met betrekking tot het Dop-
plerspectrum van neerslag te schatten met beperkte tijd op het doel. Naast het schatten
van de parameters, bespreekt dit proefschrift uitgebreid de afwegingen en geeft het aan-
bevelingen voor toepassingsspecifieke meetmethoden.

Hoofdstuk 2 bespreekt de historische ontwikkeling van weerradars, de verstrooiings-
mechanismen van elektromagnetische golven, en een beknopte literatuurstudie met be-
trekking tot het Dopplereffect en de verwerking ervan. Het hoofdstuk bevat ook een kort
overzicht van de toepassing die door de Dopplerverwerking wordt beïnvloed: de schat-
ting van het 3D-windveld. Daarnaast komen de moderne uitdagingen aan bod waarmee
de fasegestuurde antennes op luchthavens worden geconfronteerd.

Hoofdstuk 3 formuleert de schatting van statistische Dopplerspectrummomenten
als een parametrisch schattingsprobleem (parametrische spectrumschatter - PSE). De
spectrale vermogensdichtheid (PSD) van het Dopplerspectrum wordt gemodelleerd met
zowel de Dopplermomenten als het beperkte observatie-interval. Door de PSD te mo-
delleren met het beperkte observatie-interval werd de statistische prestatie van de para-
meterschatting significant verbeterd. De voorgestelde aanpak kan ook de PSD-metingen
van incoherente radarscans verwerken, welke typisch zijn voor snel scannende radars.

Hoofdstuk 4 formuleert de lokale reconstructie van het Dopplerspectrum in een meer
generiek scenario waarbij de pulsreeks niet per se periodiek hoeft te zijn. In tegenstelling
tot het vorige hoofdstuk wordt het Dopplermomentenschattingsprobleem in dit hoofd-
stuk geformuleerd in het tijddomein met een parametrische vorm van de covariantie
van de echoreeks. Het wordt aangetoond dat de prestatie van de parameterschatting
overeenkomt met die van de PSE, maar meer rekenkracht vereist vanwege de betrok-
ken matrixinversieberekening. Het voordeel van deze benadering is dat het aperiodiek
gespreide echo’s in de tijd kan verwerken, wat nuttig is wanneer sommige monsters be-
schadigd zijn of voor toepassingen waarbij aperiodieke pulsreeksen opzettelijk worden
gebruikt om ambiguïteiten op te lossen. Met de voorgestelde aanpak kan het lokale Dop-
plerspectrum direct in het frequentiedomein worden gereconstrueerd met de Gaussi-
aanse procesposterior in hoge resolutie.

In hoofdstuk 5 wordt het probleem van aliasing in het Dopplerspectrum besproken
en wordt een integratieve aanpak voorgesteld om de problemen bij het schatten van
de gemiddelde Dopplersnelheid te verlichten. Een uitgebreide literatuurstudie toont de
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voordelen en beperkingen van verschillende onderzoeksdisciplines die zich richten op
aliasing/ambiguïteit. De in dit hoofdstuk voorgestelde integratieve aanpak maakt ge-
bruik van een geschikte aperiodieke pulsreeks en de complexe Gaussiaanse procesre-
gressie (CGP) die in hoofdstuk 4 werd geïntroduceerd, om de gemiddelde Dopplersnel-
heid eenduidig te schatten en het Dopplerspectrum direct in het frequentiedomein te
reconstrueren. De voorgestelde aanpak overtreft de state-of-the-art methoden voor het
oplossen van ambiguïteit, zoals de aanpak gebaseerd op meerdere, afwisselende, perio-
dieke reeksen.

In hoofdstuk 6 wordt de formulering uit hoofdstuk 3 uitgebreid en wordt een nieuw
generiek model van de Doppler PSD voorgesteld dat de regendruppelgrootteverdeling
(DSD) en windsnelheidsparameters, zoals gemiddelde wind en turbulentie, bevat. Deze
parameters worden vervolgens teruggevonden met een procedure vergelijkbaar met die
in hoofdstuk 3. De voorgestelde techniek is effectief in het modelleren van het Doppler-
spectrum met DSD- en windparameters. Het schatten van DSD-parameters uit de Dop-
pler PSD blijft echter een uitdagend probleem, aangezien radars minder gevoelig zijn
voor kleinere regendruppels, wat kan leiden tot vertekening in de resultaten. Ondanks
deze vertekening is de statistische prestatie van de DSD-afgeleide parameters, zoals de
verticale valsnelheid en de gemiddelde diameter, voldoende met de voorgestelde aan-
pak. Omdat het een gezamenlijke schatting van de windsnelheid en de verticale valsnel-
heid van regendruppels betreft, die is ontworpen voor elk resolutievolume, kan het een
cruciale rol spelen bij het schatten van een 3D-windveld met hoge ruimtelijke resolutie.

Dit proefschrift biedt diepere inzichten in Dopplerparameters en spectrumschatting
voor neerslag met behulp van scannende radarecho’s. Het toont aan dat met de voor-
gestelde signaalverwerkingsbenaderingen de statistische prestatie van de atmosferische
Dopplerparameterschatting aanzienlijk kan worden verbeterd. Hoewel de kern van de
toepassing ligt bij de schatting van Dopplerparameters en -spectrum van neerslag, kun-
nen de in dit proefschrift ontwikkelde technieken eenvoudig worden aangepast voor an-
dere toepassingen waarbij enige vorm van spectrumschatting betrokken is. Daarnaast
biedt het proefschrift toekomstig onderzoek aan op basis van de beperkingen die in het
huidige onderzoek zijn gepresenteerd.
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1
INTRODUCTION

इयं॒ िवस॑ृिष्॒टयर्त॑ आब॒भूव॒ यिद॑ वा दधे॒ यिद॑ वा॒ न ।
यो अ॒स्याध्य॑क्षः परमे॒ व्यो॑म॒न्सो अ॒ङ्ग व॑ेद॒ यिद॑ वा॒ न वेद॑ ॥

ऋग्वेदः १०.१२९.०७

1

iyam. visr. s. t. ir yata ābabhūva yadi vā dadhe yadi vā na
yo asyādhyaks. ah. parame vyoman so aṅga veda yadi vā na veda ||

r.gvedah. 10.129.7 International Alphabet of Sanskrit Transliteration - IAST

This creation, whence it has arisen— whether it was made or not— that which
surveys it in the highest heaven, it alone knows, or perhaps it does not know.

Rig Veda 10.129.7 (Translated to English)

1
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2 1. INTRODUCTION

1.1. ROLE OF DOPPLER RADARS IN WEATHER MONITORING
Weather forecasting has always been a pressing issue, and researchers across various
domains work together to create tools, both theoretical and experimental, to tackle
the challenge of predicting the weather. As we improve our ability to forecast
weather, we enhance our capacity to mitigate the impacts of extreme weather events
and adapt to the evolving climate, ultimately contributing to global efforts in climate
change adaptation and resilience. Predicting weather accurately is a very broad
topic, and it goes outside the scope of the thesis.

However, all disciplines of study that address this issue, whether directly or
indirectly, contribute significantly and are essential. The thesis looks at one such
discipline, which is dedicated to the precise measurement of specific weather
phenomena. Without appropriate instruments and theoretical tools to measure the
weather, addressing global challenges like climate change and local issues such as
aviation safety becomes implausible.

Many different wireless instruments and systems are used for this purpose. These
instruments, such as radiometers, radars, and lidars, study the hydrometeors at a
distance without physically interacting with them. The whole process of measuring
wirelessly, retrieving critical parameters, and interpreting them is often called remote
sensing. These instruments work under the principles of electromagnetic (EM) wave
scattering (more on that later in §2.2).

The sub-discipline of atmospheric remote sensing that this thesis focuses on
is the accurate estimation of velocity parameters of hydrometeors, particularly
raindrops, during precipitation events. The instruments of focus are ground-based
weather Doppler radars. The following section explains the difference between the
operating principles of traditional and modern radar systems to motivate the need
for novel Doppler processing techniques.

1.2. WHAT IS THE NEED FOR NEW DOPPLER PROCESSING

TECHNIQUES FOR WEATHER RADAR? WHY DOPPLER

PROCESSING FOR FAST SCANNING WEATHER RADARS?
In traditional weather radar systems, the radars typically scan the whole field
of view mechanically at a fixed elevation angle. Due to the mechanical scan
of the radar beam, the time that it spends at each radar resolution volume is
limited. As the time on target for each resolution volume determines the velocity
resolution (for Doppler processing), scan strategies are carefully designed. This scan
rate, while effective for detailed weather observations, is sometimes inadequate for
rapidly updating information on pointed targets like birds and drones. Modern
phased array radars, designed to scan and track these fast-moving objects quickly,
highlight the limitations of conventional methods when applied to weather-related
signal processing. Therefore, to enhance radar capabilities for both rapid target
detection and accurate weather monitoring, novel Doppler processing approaches
are essential. These advanced techniques must reconcile the need for fast scanning
with the requirement for precise weather data, enabling radars to provide timely
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updates across the entire field of view while maintaining the accuracy needed for
comprehensive meteorological analysis.

It is crucial to understand that the notions of "fast" and "slow" are relative
and context-dependent, varying significantly with the specific demands of the
radar application (more on it in §3.2). In weather radar systems, a scan rate
considered fast enough to capture rapid meteorological changes might still be
insufficient compared to the demands of other applications that require more
immediate updates. Therefore, a comprehensive scientific investigation into the
trade-offs involved in Doppler processing is necessary. The development of novel
Doppler processing techniques and their performance estimation under a range of
diverse weather conditions, considering factors such as precipitation intensity, storm
dynamics, and turbulence, has become a necessity.

Furthermore, the importance of these advancements is underscored by their
deployment in critical environments like airports, where weather radars play a
pivotal role in aviation safety. The ability to rapidly and accurately monitor
weather conditions is essential for ensuring safe aircraft operations and preventing
adverse weather-related incidents. Additionally, incorporating statistical performance
metrics is essential to this analysis. Evaluating the accuracy, reliability, and overall
effectiveness of different processing methods through rigorous statistical assessments
will provide deeper insights into their practical applicability. By systematically
studying these trade-offs and performance statistics, one can better understand how
to balance scan speed with the precision of weather information. This approach will
help optimize Doppler processing methods to ensure that weather radars can deliver
timely, accurate, and reliable data, ultimately enhancing the effectiveness of weather
monitoring systems and improving our ability to respond to dynamic weather events.

1.3. RESEARCH QUESTIONS ADDRESSED IN THE THESIS
The following research questions are addressed in the thesis:

1. How to accurately estimate the Doppler spectral moments with limited time
on target? How do we make use of the radar-backscattered echoes from several
fast scans of the radar (coherent echo sequences from individual radar scans
that are mutually incoherent across scans) to estimate the Doppler moments?

2. How do we accurately estimate the Doppler spectral moments for aperiodically
sampled echo sequences? How do we reconstruct the local spectrum with a
few echo samples aperiodically spaced?

3. Which probing pulse sequences should be used for unambiguous estimation
of the Doppler spectrum, and how to reconstruct the local spectrum with
a few echo samples from such a sequence? How the Doppler moments of
precipitation can be estimated unambiguously? How to mitigate aliasing effects
in the Doppler spectrum? How do we unambiguously estimate the mean
Doppler velocity of precipitation?

4. How to simultaneously estimate the contribution of the radial wind and
vertical fall velocities of raindrops on the Doppler spectrum with limited time
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on target? Can we accurately and effectively fit the Doppler spectrum with a
generic model involving the raindrop size distribution (DSD) parameters?

1.4. RESEARCH APPROACHES AND OUTLINE OF THE THESIS

To address these questions, the main body of the thesis is organized as follows:

CHAPTER 2
In this chapter, a broad overview of weather radar signal processing is presented,
starting with a brief history of the development of meteorological radar systems,
followed by the physical principles with which meteorological radars operate
(electromagnetic scattering of microwaves), to the mathematical frameworks that
have paved the way for processing radar signals to get valuable insights about the
weather. The chapter explains the Doppler effect and the Doppler shift observed
in the radar echo sequence, which the radar systems take advantage of to deduce
the motion of hydrometeors. Finally, it presents state-of-the-art 3D wind field
estimation using weather radars and advancements/ challenges associated with
modern fast-scanning phased array radars deployed typically at airports. In each
sub-section of the chapter, the added value and novelty of the thesis have been
highlighted.

CHAPTER 3
This chapter addresses the first research question mentioned in §1.3. It underscores
the importance of estimation accuracy for Doppler moments. It has a detailed
state-of-the-art section (§3.2) explaining the current methods to estimate the Doppler
moments for precipitation. The chapter presents further enhancements to the
Doppler moment estimation by proposing a novel model of the Power Spectral
Density (PSD) as a function of the Doppler moments, but also the dwell time
(total time of observation). By adding the dwell time into the model, it has been
shown that the statistical performance of the Doppler moment estimation has
significantly improved. Furthermore, the proposed parametric maximum likelihood
estimation approach (also called as the Parametric Spectrum Estimator - PSE)
can incorporate PSD measurements from several scans of the radar, assuming the
stationarity condition of the atmosphere. Its limitation at higher spectral widths
(a measure of the turbulence present in precipitation), formulae for theoretical
variance, and Crámer Rao Lower Bound (CRB), along with a scanning strategy
for smaller spectral widths (for accurate estimation), have been presented in this
chapter. An experimental validation has been carried out to show the applicability
of the proposed approach. This chapter is successful in addressing the research
question but also shows the limitations of the approach for weather conditions that
are rapidly changing, like the melting layer of the atmosphere.
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CHAPTER 4
This chapter introduces a different technique to estimate the Doppler moments
and reconstruct the echo sequence and the local Doppler spectrum with a few
echo samples in one sequence, which are not necessarily placed periodically. A
practical application of aperiodically sampled sequence can be realized when some
of the samples are corrupted or interfered with or in cases where it is purposefully
made aperiodic to mitigate aliasing in the spectrum. A complex Gaussian process
regression (CGP-R) approach (leveraging a known form of the covariance of the echo
sequence) is proposed with which the Doppler moments can be estimated, and the
local Doppler spectrum can be reconstructed. The proposed approach has been
implemented on simulated and real radar echo sequences. This chapter is successful
in addressing the second research question mentioned in §1.3. This approach can
be used directly and accurately for each scan of a fast-scanning radar.

CHAPTER 5
This chapter addresses the issue of aliasing observed in the Doppler spectrum. A
detailed inquiry about aliasing/ ambiguity is presented in §5.2 from several research
areas. An integrative approach has been presented where an aperiodic sampling of
the radar echo sequence is proposed along with a suitable inverse technique (with
CGP-R proposed in chapter 4) to reconstruct the Doppler spectrum. It is concluded
that with this integrative methodology, the mean Doppler velocity of precipitation
can be unambiguously estimated. Furthermore, it has been shown with simulated
radar echoes that this approach is applicable for applications involving multiple
extended targets (multi-layered precipitation or with the presence of vortices inside
precipitation). Although this approach is effective and accurate in estimating the
Doppler parameters and local Doppler spectrum, its limitations are presented. A
trade-off between the applicability of this approach in terms of the spectral widths
and the non-linearity in the sampling sequence has been presented. The superiority
of this approach is shown by comparing it with state-of-the-art techniques along with
the well-known staggered sequence approach. This chapter adequately addresses the
third research question presented in §1.3.

CHAPTER 6
In this chapter, the challenge of jointly estimating the parameters of rain Drop Size
Distribution (DSD) and radial wind velocities with a very fast scanning weather radar
is addressed. The approach is named as Wind and DSD Estimation (WiDSE). A novel
semi-analytical expected Doppler PSD model has been proposed as a function of the
above-mentioned parameters and the dwell time. A maximum likelihood estimation
is proposed where the measurements are the stochastic Doppler PSD realizations.
The proposed approach has been compared with one state-of-the-art estimator that
uses the Doppler PSD as the measurement. Furthermore, the proposed technique
can use incoherent PSD measurements from several fast radar scans. The estimator’s
performance has been assessed by the theoretical variance in the estimates, and it is
shown that this variance converges to the CRB when the number of echo samples
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reaches infinity. An unprecedented analysis with parameter sweeps with respect to
the number of echo samples N , wind spectral width σv , the DSD parameters (η
and Λ), and the number of incoherent PSD measurements L is presented. Although
the proposed approach performs better than the existing approximate approaches,
it is shown that the estimation of DSD parameters, in general, is very challenging
because the log-likelihood (cost function with radar retrieved measurements) is not
very sensitive to the DSD parameters. Nonetheless, even though estimates of DSD
parameters are biased, the Doppler spectrum’s fitting is sufficient for determining
derived parameters such as the terminal fall velocity and median volume diameter
of the raindrops. The proposed approach is implemented on simulated and real
weather radar echoes. This approach can effectively be used on echo sequences
gathered from several scans for each radar resolution cell. Furthermore, this
approach can help decompose the radial Doppler velocity into a sum of the
estimated terminal fall velocity and the radial wind velocity (with turbulence).

CHAPTER 7
This chapter contains the conclusions drawn from the thesis and presents several
ideas for future research.

APPENDICES

APPENDIX A
This appendix contains the expected value of the power spectrum used in chapter 3.

APPENDIX B
This appendix contains the derivation of the theoretical variance and the CRB for
PSE and CGP approach used in chapters 3, 4, 5.

APPENDIX C
This appendix contains the study of the covariance of the signal related to the
vertical fall of raindrops G(q) used in chapter 6.

APPENDIX D
This appendix contains the derivation of the theoretical variance and the CRB of the
WiDSE approach used in chapters 6.



2
A BRIEF OVERVIEW OF

ATMOSPHERIC WEATHER RADAR

REMOTE SENSING

This chapter provides an overview of the historical development and current state of
research in weather radar remote sensing applications. An introductory section sets
the stage for understanding the broader context within which this thesis is situated,
highlighting the specific issues it addresses. Additionally, this chapter elucidates the
applications directly impacted by the research outcomes presented herein. Furthermore,
it introduces the terminologies and conventions employed throughout the thesis.

The laws governing the motion of air molecules, and also of the other physical
quantities that might be relevant to computing the weather, all are perfectly well

known. However, the weather patterns that may actually emerge, after only a few
days, depend so subtly on the precise initial conditions that there is no possibility of

measuring the conditions accurately enough for reliable prediction.

§1.7, (Chaos)
R. Penrose, Shadows of the Mind: A Search for the Missing Science of Consciousness.

Oxford University Press, 1994

Parts of this chapter have been published in:

T. Dash, O. A. Krasnov, and A. G. Yarovoy, “Performance Analysis of the Wind Field Estimation for a
Very Fast Scanning Weather Radar,” in 2022 23rd International Radar Symposium (IRS), pp. 420–425,
IEEE, 9 2022
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The following sections dive deep into the historical development, state-of-the-art
weather radar systems, principles of EM scattering in the atmosphere, wind field
estimation with Doppler radars, advancements and challenges in modern weather
radar technologies, and the terminology adopted in the thesis.

2.1. HISTORY OF WEATHER RADAR SYSTEMS

Weather radar remote sensing has evolved significantly since its inception and
has become an essential tool in meteorology. This section outlines the historical
development of weather radar systems and their current state.

2.1.1. EARLY DEVELOPMENTS (1940S-1960S)

Initial weather radars were developed for defense during World War II. These radars
were S-band frequency range (2 → 4GHz). This band of frequencies was chosen to
have a balance between good range resolution and its ability to penetrate heavy
precipitation without significant attenuation.

The scattering in the S-band for hydrometeors like raindrops, snowflakes,
and hailstones primarily follows the Rayleigh scattering principles. The radar
wavelengths in this band (15 → 7.5cm) are much higher than the sizes of the
raindrops (0.1mm → 6mm [7]). The radar received power from these hydrometeors is
proportional to the sixth power of the diameter. Therefore, these radars are sensitive
to the larger hydrometeors and not sensitive to the smaller ones, like light drizzles
and cloud droplets [8].

2.1.2. DOPPLER RADAR IN THE LATE 1960S

In addition to detecting precipitation, the technology in the late 1960s allowed
radar systems to deduce the radial velocity of the ensemble of raindrops (in large
volumes) using the principles of the Doppler effect. This capability provided critical
information about wind patterns within storms, significantly enhancing the detection
and prediction of severe weather events such as tornadoes and hurricanes.

The C-band radars (4 → 8GHz) operate in a scattering regime that is still
largely governed by Rayleigh scattering for typical hydrometeors but with slightly
higher resolution and sensitivity to smaller particles compared to S-band radars.
These advancements allowed meteorologists to identify features like wind shear and
tornado signatures with greater accuracy [9] (more on it in §2.3).

Before the advent of dual-polarization technology, conventional Doppler radars
were only capable of measuring (estimating) the first three Doppler moments. The
zeroth moment is the reflectivity, which in the Rayleigh regime is proportional to
the sixth moment of the particle size distribution (more on that in §2.2). The first
moment is the mean Doppler velocity of the scatterers, and the second moment is
the square of the Doppler spectrum width. For each radar resolution volume, these
three spectral moments are computed.
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2.1.3. DUAL POLARIZATION RADARS

The introduction of dual-polarization (in the late 20th and early 21st century)
radars paved the way to acquire unprecedented information about the atmosphere
by exploiting two different polarizations of the EM waves. As these radars use
two different orthogonal polarizations, identifying different precipitation types and
estimating more accurate rainfall rates became possible [10].

The dual-polarization radar systems compute derived quantities like the
differential reflectivity Zdr, the linear depolarization ratio (Ldr), differential phase
(βdp), and its derivative with respect to range (kdp). These quantities help discern
different kinds of hydrometeors and their phases (rain, hail, snow), enhancing the
understanding of complex precipitation processes [11, Ch. 19a], [8, Ch. 8, §8.5.3].

2.1.4. PHASED ARRAY RADARS
The phased array radars operate under the principles of superposition of the signals
received at several antennas placed in space according to some specific rules. These
radars can steer the antenna beam in directions of interest based on the phase
difference between the antennas. Unlike conventional radars, these radars can
provide precipitation profiles in elevation instantaneously. Thus, in addition to radar
range and Doppler, angular information can also be provided [12].

These phased array radars usually operate in the X-band (8 → 12GHz), offering
higher resolution and better sensitivity to small-scale precipitation features, making
them ideal for studying rapidly evolving weather systems.

2.2. ELECTROMAGNETIC ASPECTS AND RAYLEIGH SCATTER-
ING

2.2.1. SCATTERING PRINCIPLES AND REGIMES
To understand the signals received from hydrometeors in weather radar, one needs
to understand the scattering phenomena. As the phenomena occur in space when
the EM waves interact with the hydrometeors, it can be safely assumed that these
waves are plane waves. Plane waves are the general solution to Maxwell’s equations
in space. The electric and magnetic fields for plane waves can be represented as
follows:

E(r, t ) = E0 exp
(

j
(
k · r−ωt +β))

, (2.1)

B(r, t ) = B0 exp
(

j
(
k · r−ωt +β))

,

where E0 and B0 are the amplitudes of the electric and magnetic fields respectively,
j =p−1, k is the wave number vector:

k = kx x̂+ky ŷ+kz ẑ, (2.2)

where x̂, ŷ, ẑ are the unit vectors in x, y and z directions respectively. The amplitude
of k vector is k0, which is the wavenumber k0 = 2π/λ, where λ is the EM wave’s
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Figure 2.1: Scattering phenomena.

wavelength. The r is the position vector r = xx̂+ y ŷ+ zẑ, ω is the angular frequency
of the EM wave (ω= 2π f = 2πc/λ, where c is the speed of light, f is the frequency
of the EM wave), t and β1 are time and the initial phase of the EM wave. Thus, the
term k ·r encapsulates the spatial variation of the wave’s phase in the direction of the
wave vector k and ωt represents the evolution of the temporal phase of the wave.

When the EM wave is incident on a target/ object, the object scatters the energy
in different directions based on its geometry. For radars, the back-scattered fields
are important as these are the only scattered fields that arrive at the radar. A
back-scattered field is a field that is scattered exactly in the direction from where
they arrived in the first place (Fig. 2.1).

If the incident field is denoted as Ei = Ei
0 exp

(
j (k1 · r−ωt )

)
, the scattered field Es

is given by 2:

Es = f (K1,K2)r−1 exp
(− j kr

)
, (2.3)

where K1 is the unit vector along the incident wave, and K2 is a unit vector directed
from the origin to the observation point. The function f (K1,K2) is a vector function
denoting scattering amplitude and the polarization state of the scattered wave [1].
An illustration of the scattering mechanism with vectors is presented in 2.2.

The size parameter χ defines the scattering regimes. The size parameter is given

1The notation β is chosen for phase unlike popular literature because ψ, φ, and θ are reserved in this
thesis for elevation, azimuth, and parameters (for estimation problems).

2In this chapter, the notation r for electric field equations (like in (2.3)) represents the range. However,
for the size parameter (like in (2.4)), r represents the radius of the scatterers.
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Figure 2.2: Scattering illustration with vectors. Adapted from [1, Fig.1].

by:

χ= 2πr

λ
. (2.4)

Another parameter that affects the scattering is the relative refractive index m, which
is given by:

m = n2

n1
, (2.5)

where n2 and n1 are the refractive indices of the object and the surrounding
medium, respectively.

The different kinds of scattering regimes are explained below:

1. Rayleigh Scattering: Rayleigh Scattering occurs when the size (denoted with
radius r ) of the scatterers is much smaller than the wavelength of the incident
wave:

χ<< 1, r <<λ. (2.6)

2. Mie Scattering: Mie Scattering occurs when the size of the scatterers is similar
to the wavelength of the incident wave:

χ≈ 1, r ≈λ. (2.7)

3. Geometrical Optics: In this regime, the wavelength is much smaller than the
size:

χ>> 1, r >>λ. (2.8)

This chapter focuses on the Rayleigh scattering only, as it is relevant for the
chapter 6 of the thesis. However, the real radar data used in this thesis are from an
X-band radar at a center frequency of 9.5 GHz. The size parameter χ is approximately
equals to 0.2r (r in mm) at this center frequency. Typical raindrop diameters are
less than 4mm (r = 2 mm), and they rarely exceed 6 mm (r = 3 mm). If we consider
a maximum diameter of 6 mm (r = 3 mm), the size parameter becomes χmax ≈ 0.6,
which is not small enough to be considered in the Rayleigh regime. The Rayleigh
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scattering regime can safely be assumed for a radius less than λ/20. At 9.5 GHz, this

maximum radius is r (Rayleigh)
max = 1.6 mm (e.g, in [13, Tab. 5.1] it says that Rayleigh

regime can be applied for r (Rayleigh)
max = 1.15 mm). For raindrops exceeding this radius

experience a mix of Rayleigh and Mie scattering instead of purely Rayleigh scattering.
There is a gradual introduction of Mie scattering for r > 1.6 mm. It implies that the
Rayleigh approximation completely holds for light rain events, but as the sizes of the
raindrops increase, Mie scattering plays a role.

However, modeling the scattered power with a Mie scattering model is
mathematically very involved and is out of the scope of this thesis. For the Doppler
parameter estimation in chapters 3, 4 and 5 do not consider any explicit model of
the reflectivity as the focus is on retrieving the Doppler moments/ spectrum. The
reflectivity is considered a nuisance parameter and is estimated with the total power
contained in the signal (more on it in chapter 3). However, in the simulations of
chapter 6, the reflectivity in the PSD is modeled with the Rayleigh approximation
in X-band frequencies to avoid mathematical complexity (similarly as in [14],
[15]). A complete scattering model considering Rayleigh and Mie scattering can be
considered in the future.

The scattered intensity in the Rayleigh regime is proportional to the sixth power
of the particle diameter and inversely proportional to the fourth power of the
wavelength. The following §2.2.2 explains the scattering from rain in the Rayleigh
regime.

2.2.2. RAINDROP BACKSCATTERING

If we consider a volume of raindrops (and not one isolated raindrop) because the
wavelengths in the Rayleigh regime are much larger than the size of the raindrops,
the backscattering cross-section per volume ΣVol [16, Eq. (66)] can be given as
(assuming spherical raindrops) 3:

ΣVol =
π5

λ4

∣∣∣∣m −1

m +2

∣∣∣∣2

R, (2.9)

where R is the radar reflectivity factor, which is given by [16, Eq. (67)]:

R =
∫ Dmax

Dmin

N (D)D6dD, (2.10)

where D is the diameter of the raindrops and N (D) is the drop-size distribution.
There are many models explaining the drop size distribution of raindrops inside a
volume (more on this in chapter 6).

3A change of notation is adopted in this thesis, which is not typically present in popular literature.
Radar reflectivity factor Z is changed to R, as Z is used in later chapters for measurements of
power spectral density (more on it in chapter 3). The backscattering cross-section σ is changed to
Σ, as σ is reserved later for the standard deviation. These changes are adopted as the thesis also
uses terminologies of estimation theory, which might create confusion if not discernible from the
scattering-related physical quantities.
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2.3. DOPPLER VELOCITY AND WIND FIELD ESTIMATION WITH

WEATHER RADARS
With the introduction of weather Doppler radars, which are capable of Doppler
processing, the estimation of wind fields became an interesting problem to tackle.
Let’s first discuss the Doppler shift observed by the radars in general before
discussing the estimation of wind fields.

2.3.1. DOPPLER SHIFT
The Doppler shift is the change in frequency observed due to the relative motion
between the source and observer. Let’s consider a radar that generates a train of
microwave pulses spaced with an interval of Ts in time (Pulse Repetition Interval or
PRT); each pulse has a duration τ. if the radar is stationary, and a point scatterer at
a range r is moving with a velocity v ; the signal received in time for this one object
can be expressed as [8, Eq. (3.25)]:

x(t ,r ) = A exp

(
j 2π f

(
t − 2r

c

)
+ jβ

)
U

(
t − 2r

c

)
, (2.11)

where U
(
t − 2r

c

)
is:

U

(
t − 2r

c

)
=

{
1 , r

c ≤ t ≤ ( r
c +τ)

0 , otherwise.
(2.12)

The amplitude of the scatterer is A (proportional to the electric field in the direction
of the backscattered field). This complex amplitude A = |A|exp( jβs ) encompasses all
the effects, such as the scattering and attenuation. The βs is the phased shift caused
by the scatterer. The total echo phase βe is therefore given as [8, Eq. (3.26)]:

βe =−4πr

λ
+βt +βs , (2.13)

where βs is the phase shift caused by scattering, βt is the transmitter phase shift (ωt
is not included in this expression).

The angular Doppler frequency shift is nothing but the change of the phase βe .
The quantities that change over time are r and βs .

ωd = ∂βe

∂t
(2.14)

If βs is not changing over time, (2.14) can be rewritten as [8, Eq. (3.30)]:

ωd = ∂βe

∂t
=−4π

λ

∂r

∂t
=−4π

λ
vr , (2.15)

where vr is the Doppler velocity. It is worth noting that the Doppler velocity
is the estimate of only one component of the target’s resultant velocity in space.
The resultant velocity is the total velocity vector of the target in 3D space. The
component that is observable by the radar when transmitting to one direction in
space is the radial component (the subscript r represents the radial component).
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The expression and discussion of vr as a function of the other components are given
in further chapters 3 and 6.

A physical explanation for the Doppler shift is as follows: A pulse of radiation
striking a hydrometeor induces molecular vibrations that synchronize with the
time-varying electric and magnetic fields. If the hydrometeor is moving toward the
transmitter at a velocity vr , its vibrational frequency increases by vr /λ because
the scatterer molecules experience more rapid fluctuations of electric and magnetic
forces. These vibrating molecules then generate electromagnetic fields that radiate
outward from the scatterer. The Doppler frequency shift is fd = 2vr /λ; the factor of
2 comes from the fact that the frequency of the radiation field in the direction of
the receiver is increased by a further vr /λ [8, §3.4.3].

The objective of any Doppler processing algorithm is to retrieve the information
fd and, by extension, vr given a set of echo samples in time (an echo sequence). It
is a usual practice to change the domain of the signal, e.g., frequency or correlation
domain, to estimate the Doppler frequency shift (more on it in chapter 3).

Transforming the signal to a different domain is beneficial because it can
enhance certain features of the signal, making the Doppler frequency shift more
discernible. For example, in the frequency domain, periodic components of the
signal become more apparent, which is crucial for identifying and measuring the
frequency shift caused by the Doppler effect. This approach leverages the Fourier
transform, which is widely used due to its ability to decompose a signal into its
constituent frequencies.

Notable studies have underscored the advantages of such transformations. In [8],
the authors discuss how Fourier-based methods facilitate the separation of different
velocity components in meteorological radar signals, thereby improving the accuracy
of velocity measurements.

The above-mentioned explanations for the Doppler effect are for pointed targets.
However, when we consider many scatterers inside a big resolution volume (like
in the case of weather radars), the echo sample signal in time can be written as
(detailed expressions in §3.3):

s(t ,r ) =
M∑

m=1
xm(t ,r ), (2.16)

where M is the number of scatterers and xm(t ,r ) are the echo sequence of
mth scatterer. The objective of Doppler processing algorithms for signals from
hydrometeors is, therefore, should be to detect all the frequencies present in
the signal (2.16). However, as M can be a very large number, the signal
becomes stochastic in nature, and estimating all frequencies in the signal becomes
uninformative. The frequency domain response of stochastic signals is continuous.
Therefore, it is sufficient to retrieve only some parameters that can describe the
whole Doppler spectrum (the frequency response of echo sequence is denoted as
the Doppler spectrum) instead of retrieving each and every frequency present in
the signal. The motion of scatterers can be very random in the resolution volume.
However, the signal can still remain stationary. A signal is classified as “stationary"
when the statistical properties of the signal are independent of time, although the
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signal samples themselves can be a random variable in time. A completely stationary
process does not exist, especially in weather where the atmospheric parameters are
constantly changing. However, given a short observation interval4, and the signal can
be considered stationary. There are different kinds of stationary random processes,
and the echo samples from hydrometeors are often considered wide-sense stationary
(WSS) for a short time period. The following conditions have to be met for a random
process X to become WSS:

1. E[X ] =µX ,

2. V[X ] =σ2
X ,

3. E[X (tp )X ∗(tq )] =C (tp − tq ) =C (τ),

where C is the covariance, which is a function of the difference of times only (tp − tq )
(more on it in §4.2). It has a constant mean (µX ) and a constant variance (σ2

X ) as
well. The symbols E and V denote expected value and variance, respectively. The
superscript ∗ denotes the complex conjugate. The power spectrum of the WSS is the
Fourier transform (FT ) of its autocorrelation (autocovariance) (Wiener–Khinchin
theorem)5.

S(PSD)( f ) =FT [C (τ)] ( f ) =
∫ +∞

−∞
C (τ)exp

(− j 2π f τ
)

dτ (2.17)

For stationary random processes, the parameters controlling S( f ) and C (τ) do
not change in time. The parameters that affect these quantities are estimated to
provide an informative quantification of the processes. The usual process followed
in the case of echoes from hydrometeors in precipitation events is to estimate the
statistical Doppler moments. The details of these are presented in chapter 3. In
this thesis, the estimation of the Doppler moments is extensively studied, and new
approaches are presented (chapter 3, chapter 4). The chapters 3 and 4 discuss
the Doppler moments estimation with short echo sequences with multiple periodic
sequences (typically realized from multiple scans of radar) and aperiodic sequences
with missing echo samples, respectively. Furthermore, given a short echo sequence,
a full reconstruction of the local spectrum is presented (chapter 4).

Chapter 5 discusses the problem of Doppler spectrum aliasing when the
scatterers’ velocities fall outside the radar’s unambiguous velocity interval. Aliasing is
a very well-known issue not only in the field of radar but in other domains as well,
where the signal of interest has a sampling interval (in this case, it is the PRT) that
is not small enough to capture the fast-moving phenomena in the signal (in this
case, it is the Doppler frequency/ velocity). Due to aliasing, the Doppler moment
estimations can be wrong (especially the mean Doppler velocity µv ; more on it in

4The use of “short" in this context does not mean there is a universal observation interval that applies
to all weather applications to realize a stationary random echo sequence (process). For stratiform
rain events with weaker wind fields, the observation time (to realize stationarity in the signal) can be
longer than storms that are affected by variable background wind fields, convective storms, etc.

5Only continuous Fourier transforms are shown in this chapter. In later chapters, discrete Fourier
transforms are demonstrated.
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the next subsection 2.3.2), causing issues in decision-making under adverse weather
conditions (e.g., aviation).

Earlier attempts at mitigating the aliasing issue in Doppler by simply decreasing
the PRT resulted in the well-known range-Doppler dilemma. The maximum
unambiguous range (ra) is directly proportional to the pulse repetition interval, but
the maximum unambiguous velocity (Va) is inversely proportional to it.

ra = cTs

2
, (2.18)

Va = λ

4Ts
,

raVa = cλ

8
.

The product of ra and Va is a constant indicating that one has to make a
compromise in either range or velocity unambiguous interval. Due to this dilemma,
radar waveform design becomes a crucial task. With approaches dealing with
aperiodically sampled sequences for Doppler processing, a maximum range (for
Doppler-related computations) is chosen using the minimum PRT present in the
sequence of echoes. For example, for a two-pulse repetition time-based staggered
sampling scenario, the reliable Doppler velocity estimates are drawn from ranges
with a maximum range associated with the shorter PRT [17], [18], [19]. There
are other techniques [20], [21] to deal with overlaid signals and improve the
unambiguous range, but this is outside this scope of the thesis.

An aperiodically sampled echo sequence is proposed in chapter 5 to mitigate
the aliasing issue and enhance the unambiguous velocity interval. The sampling
sequence proposed in this thesis is a log-periodic one, which is parametrized in
a way that the minimum PRT can be fixed. This parameter can be tuned based
on the maximum range requirements (to perform Doppler processing). Doppler
spectrum moments play a crucial role in further interpreting the storm dynamics.
For example, a spatio-temporal distribution of the mean Doppler velocity can be
used to reconstruct the wind fields in space and in time. The following sub-section
explains the trends followed for the wind field estimation.

2.3.2. WIND FIELD ESTIMATION
In the context of weather radar signal processing, the notion of “wind" is different
than in other fields. Here, the wind field is the velocity with which the ensemble
of scatterers (e.g., raindrops) move in space. The actual wind field is the motion of
the aerosols (even smaller particles than the hydrometeors that are not sensitive to
weather radars). There is a difference between the actual wind field (aerosol motion)
and the motion of the ensemble of the hydrometeors, and it can be explained by
the inertia effect [22, Ch. 2]. However, we do not consider the inertia effect in the
thesis and only consider the motion of the hydrometeors.

As pointed out in the previous sub-section, the Doppler velocity is the radial
velocity of the scatterers only; to deduce the wind fields (resultant velocity), one
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needs more information. Apart from the wind, Doppler velocity also includes the
vertical fall velocity of the hydrometeors (more on this in chapter 6) if the radar
beam’s elevation direction is greater than 0 (ψ> 0). To retrieve the wind field only,
one needs to estimate and eliminate the terminal fall velocity of the raindrops from
the Doppler velocity.

The traditional weather radars scan the atmosphere (in azimuth φ at a fixed
elevation ψ) and retrieve the mean Doppler velocities from several different
directions. The azimuthal variation of the mean Doppler velocity can give some ideas
about the wind fields and was discussed first in [9] and applies to the observations.
In [9], it is assumed that the resultant wind field as a function of azimuth can be
decomposed with a Fourier series with a few components. The zeroth harmonic
explains the pure divergence; the first harmonic explains pure translation, and the
second harmonic explains pure deformation. The order of the Fourier series can be
higher than two, but for simplicity, it is considered to be 2. This approach is called
the Velocity Azimuthal Display (VAD).

µv (φ) = a0 +
2∑

k=1
ak cos

(
kφ

)+bk sin
(
kφ

)
. (2.19)

The objective is to estimate the coefficients ak , k = 0,1,2. If there is no vertical
wind effect, the quantity a0 explains an averaged estimate of the projection of the
vertical fall speed of hydrometeors onto the radial direction. In this approach, it is
assumed that the wind field is homogeneous, i.e., ak , k = 0,1,2 are constants and are
not functions of space. However, in realistic scenarios, local wind fields can exist.

To estimate the local wind fields, more information is needed, and approaches
such as the simple adjoint (SA) and least squares (LS) method [22–28] in 3-D
and 4-D use the continuity of the reflectivity field in time (with the assumption
that the reflectivity field is conserved) and Doppler information to deduce local
wind fields. The terminal fall velocity of the scatterers is separately estimated
with external inputs (vertically pointed radars or non-radar inputs computed from
retrieved rainfall rates). The studies mentioned above are called single Doppler
velocity retrieval techniques (SDVR). There are approaches that involve the data from
two Doppler radars (dual-Doppler approach) [29] as well. In all these techniques,
the assumption of reflectivity conservation (with the continuity equation) can be
inadequate as the concepts of the incompressible flow of fluids can not directly be
applied to the reflectivity images of weather radars.

There are other approaches [30] that try to compute the contribution of the
terminal fall velocity and the wind velocity jointly by modeling the Doppler spectrum
with parameters related to the DSD of the hydrometeors. The terminal fall velocity
is a function of the DSD [2, Eq. (4)]. If the wind and DSD parameters are computed
jointly for each resolution cell, the 3D wind field can easily be deduced. However,
these approaches are computationally very expensive. In this thesis, a novel model
of the Doppler spectrum is presented with the wind and DSD parameters in chapter
6.

There are other approaches to estimating DSD parameters using polarimetric
variables, but these are not in the scope of this thesis. The details about the
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Figure 2.3: Max3D phased array X-band radar.

challenges in estimating the DSD parameters with Doppler techniques are presented
in the chapter 6.

2.4. ADVANCEMENTS IN RADAR REMOTE SENSING: ADVENT

OF MULTIFACETED RADARS WITH PHASED ARRAY TECH-
NOLOGY

The phased array radars deployed at the airports are designed to detect and track
point-like targets like birds and drones. The phased array radars provide an extra
feature where multiple beams can be formed in elevation, and the echo sequences
from several elevations can be acquired simultaneously. These X-band (8 → 12GHz)
radars have very high range resolution and are short-range, unlike the traditional
S or C-band weather radars. Although these radars have a phased array in the
elevation, they scan the azimuthal direction very quickly, limiting the time on
target. An example of such a radar is discussed in [31]. Such X-band radars
are of Frequency Modulated Continuous Wave (FMCW) type, improving the range
resolution. A picture of the Max3D radar [31] is shown in Fig. 2.3.

Modern demands for improving the situation awareness in airports and urban
regions formulated the interest to extend the capabilities of such radars’ with new
functions - to observe and estimate the intensity of precipitations to retrieve the 3D
wind field with high temporal and spatial resolution. This task requires coherent
Doppler signal processing for the estimation of the Doppler velocity spectrum of
the meteorological objects. The performance of such processing is limited by the
negative effect of fast radar antenna rotation, limiting the radar’s dwell time (TDwell)
- the time the radar spends in one specific azimuthal sector of space. This time on
target is directly proportional to the radar’s beamwidth and inversely proportional to
the scanning speed of the radar. The applicability of Doppler processing becomes
questionable with such dependency between the dwell time and the radar scan
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speed because the existing techniques for Doppler processing require long echo
sequences to be coherently integrated for Doppler velocity spectrum estimation for
weather applications.

The errors in the Doppler parameters (in this case, the moments) due to the fast
scanning nature of such radars affect the retrievals of the other derived parameters
that are dependent on the Doppler moments.

The phased array radars offer new opportunities, such as effectively and
instantaneously estimating the profile of Doppler moments in 3D. This thesis
addresses research questions on effective Doppler processing, assuming a fixed radar
beam in the elevation. However, the Doppler processing approaches developed here
are designed for fast scans in azimuth, augmenting the capabilities of phased array
radars. For instance, the techniques introduced in Chapters 3 and 5 can be applied
across multiple elevations simultaneously (leveraging the phased array nature) to
estimate 3D Doppler information. Additionally, using the technique from Chapter 6
across various elevations enables instantaneous estimation of the 3D motion of the
precipitation field.

Although this thesis focuses only on the Doppler/ wind velocity parameters
for raindrops, the methodologies presented can be scaled for other hydrometeors
using several models of terminal fall velocity (e.g., for snow, hail and ice) provided
there are instruments sensitive to their sizes and equipped with Doppler processing
capabilities (e.g., polarimetric Doppler radars). Such DSD and terminal fall velocity
models are developed in the past by using basic principles such as Reynold’s and
Davies numbers [32–52]. The use of these models in inverse problems requires the
estimation of many more physical parameters. Similarly, for turbulence estimation,
novel models can be formulated by considering parameters such as the Eddy current
Dissipation Rate (EDR) [8, 53–55].

2.5. CONCLUSIONS
In this chapter, a broad overview of weather radar remote sensing has been
presented. A brief history of the evolution of such radars is put forward with details,
including their frequency of operation and dual-polarization abilities. As weather
radars operate with the principles of electromagnetic (EM) wave propagation, several
aspects of the EM wave interaction with the extended atmospheric targets (e.g.,
precipitation fields) are explained. First, the fundamentals of the scattering regimes
are presented in terms of the relative sizes of the targets with respect to the
wavelength of the radar. Then, the principles of the Doppler effect are presented,
which helps in determining the radial motion of the targets of interest. Then, general
practices followed for the modeling of the radar echo signals from atmospheric
targets, the parameters of interest, and the retrieval practices of these parameters
are presented. Furthermore, the state-of-the-art approaches to estimating the wind
fields in space and time are presented. Moreover, in each section, the contributions
of this thesis are delineated, wherever applicable, to underscore the novelties.
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DOPPLER SPECTRUM MOMENTS

ESTIMATION FOR PRECIPITATION

This chapter proposes a novel approach that is apposite for mitigating the challenges
related to the estimation of the Doppler moment estimation for fast scanning radars.
The results indicate the superiority of the proposed approach, especially for short
observation intervals (in each radar scan). The proposed approach is also capable of
fusing the echo sequences from multiple scans. Furthermore, a scanning strategy to
accurately estimate the Doppler moments based on the true velocity dispersion of the
scatterers is provided with the help of the proposed approach.

Parts of this chapter have been published in:
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3.1. INTRODUCTION
Traditionally, three Doppler parameters (also known as the Doppler moments) are
retrieved from the echoes received by the radar to characterize the intensity and the
motion of the raindrops. The first parameter is the total power contained in the
backscattered radar signal (also known as the Zeroth Doppler moment), and it is
used to detect the presence of precipitation.

The other two parameters help determine the motion of the raindrops, which
are derived from the phase change of these echoes over time. The mean Doppler
velocity (also known as the first Doppler moment) is a measure of the mean radial
velocity of the raindrops. The spatial and temporal variability of the mean Doppler
velocity helps determine the horizontal wind field (speed and direction of the wind
as a function of space and time) and the mean vertical fall velocity of the raindrops
[9, 23–28].

The Doppler spectrum width (the square root of the second spectral Doppler
moment about the mean velocity, i.e., the second central moment) is a measure
of velocity dispersion associated with several statistical effects such as wind shear,
turbulence, as well as antenna beam shape. The Doppler spectrum width is used
mainly to estimate the turbulence intensity field in the atmosphere [22, 54, 58–60],
and the drop size distribution (DSD) of the raindrops [61–65]. The use of Doppler
moments can also be found in fields of study other than weather radars, such as
ultrasonic Doppler blood flow sensing [66] and radar astronomy [67], [68].

The classical Doppler moment estimators need long records of the echo samples
to estimate the moments accurately (especially for the Doppler spectrum width), for
which it is assumed that the spectral content is constant for a long observation time
(stationarity condition). However, the stationarity condition is often not realized
in practice due to, e.g., instability of the physical atmospheric conditions and
rapid radar scans. A changing atmosphere is disadvantageous for slowly scanning
traditional weather radars that can accumulate long records of echo samples. On the
other hand, classical estimators give biased results in the case of rapidly scanning
radars because of limited time on target [69].

In this chapter, the focus is on the fast azimuthal scanning radars. Therefore,
considering the stationarity condition of the atmosphere only for a short period, a
desired moment estimator should have the feature to estimate the moments with
a small observation time accurately. Another feature of this desired estimator is
the ability to process the data from multiple radar scans. A maximum likelihood
estimator that has both the features mentioned above is proposed. In addition,
a quantitative guide to how fast the radar should scan as a function of the true
velocity dispersion is proposed.

The main body of the chapter is organized as follows. The §3.2 discusses
the classical estimators and the rationale behind the proposed approach. The
§3.3 explains the simplified time domain echo signal model for precipitation-like
weather targets. The §3.4 contains the proposed semi-analytical model of the
power spectrum. The §3.5 discusses the optimization goals of the approach and
the formulation of the likelihood function for the parameter estimation. The §3.6
contains some examples of the estimation using simulated weather echoes, the
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comparison with the existing approaches, and the performance analysis. The §3.7
presents the application to real radar observations. The §3.8 presents a joint Doppler
moment and noise variance estimation strategy. The conclusions are mentioned in
the §3.9. The Appendix A contains the derivation of the expected semi-analytical
model of the PSD. The Appendix B contains the derivation of the theoretical
variances (for any number of echo samples) and the unbiased CRB for the proposed
approach (for an infinite number of echo samples).

3.2. CLASSICAL DOPPLER MOMENT ESTIMATORS AND THE

RATIONALE BEHIND THE PROPOSED APPROACH
Before diving deep into the classical Doppler spectrum moment estimation
algorithms, it is important to understand the requirements for the bias and
standard deviation for various radar variables, including the Doppler moments. The
requirements vary with respect to the type of storm. An example of such practical
requirements on the bias and the standard deviations for radar variables can be
found in [70] for the Weather Surveillance Doppler Radar (WSR 88D) in the absence
of clutter filtering. Based on the requirements and the capability of the estimation
technique, a suitable scan strategy and pulse repetition interval can be adopted. A
balance must be maintained between the radar’s scan time and pulse repetition time
to ensure accurate retrievals within each resolution volume, while also providing
timely updates across the full field of view with acceptable temporal resolution.
Therefore, the extent to which a scan can be called “slow” or “fast” depends on the
storm dynamics and the pulse repetition time.

In this chapter, the Doppler moments under investigation (mean Doppler and
Doppler spectral width) are normalized with the maximum unambiguous velocity,
which is a function of the pulse repetition time. This chapter does not explicitly
study the estimation of the reflectivity (zeroth Doppler moment). The type of the
storm is characterized by the normalized spectral width. As this chapter evaluates
the classical Doppler moment estimators with a proposed one, the study is made
very generic by considering normalized quantities. The pulse repetition times are
the same for all the estimators under study, and then the performance is evaluated
as a function of the coherent processing interval (per radar scan), the normalized
spectral width, and the normalized mean Doppler velocity. The bias and variance
studies in this chapter the bias and variance studies can directly be used for practical
applications based on the requirements by scaling the pulse repetition time and
normalized spectral width accordingly. Let’s dive deep into the classical Doppler
moment estimators and their advantages and disadvantages.

The Doppler moments estimation techniques can be categorized into parametric
and non-parametric approaches. The most common and classical non-parametric
techniques used to estimate these moments are the periodogram-based (also called
the power spectrum-based approach, which is referred to as DFT in this chapter)
and the Auto-Co-Variance (ACV) based approach (also called the pulse pair method,
and referred as PP approach in this chapter). The performance analysis of such
methods, along with some other classical non-parametric estimators, such as the
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Vector Phase Change (VPC) and the scalar phase change (SPC), has been studied in
existing literature [69, 71–73]. The DFT-based moment estimation is carried out after
the reconstruction of the spectrum shape in the frequency domain and is sensitive
to the Doppler spectrum resolution due to limited observation time. The moment
estimates are asymptotically unbiased, meaning that the estimates converge to the
true value when the number of coherent echo samples in time approaches infinity.
The PP approach on the other hand, is an unbiased estimator of the first moment
provided the Doppler spectrum is symmetric around the mean Doppler velocity.
Different versions of the PP approach exist for the spectrum width estimation that
benefit from various combinations of the auto-covariance of the echo samples with
various numbers of sample lags [74], [75], [76, Ch. 6, p. 136-138]. The different PP
approaches are denoted as PP Rm/Rn, where Ri is the auto-correlation of the echo
samples in the time domain with ‘i’ number of sample lags. It has been shown in
[74] and [75] that the PP approaches with higher lags perform superior for smaller
spectrum widths and vice versa. A hybrid estimator is proposed in [75], where the
estimator chooses one of the PP versions heuristically based on an initial estimate
of the spectrum width. Moreover, a different version of the PP algorithm exists in
the literature as Poly Pulse Pair (PPP) [77] method for the first Doppler moment,
but its discussion goes beyond the scope of this chapter. Another non-parametric
approach [78] assumes the band-limited nature of the Doppler spectrum. Although
its accuracy is better than the DFT and PP approaches, it is based on estimating
interpolation-filter coefficients. The choice of the impulse transfer function of the
filter is empirical and due to the need to estimate many filter coefficients, the
approach becomes computationally expensive. Another non-parametric moment
estimator class uses auto-regressive moving average (ARMA) models [79]. However,
fitting ARMA models also consumes considerable computational resources. Even
though many non-parametric approaches for Doppler spectrum estimation exist in
the literature, the DFT and PP approaches are the most popular because of their
computational efficiency and non-parametric nature.

The parametric approaches assume a model for the echo samples’ PSD or
auto-covariance (ACV). The maximum likelihood estimation using a power spectrum
model of the weather echoes is studied in [80], [81] and a maximum entropy-based
approach is studied in [82]. These methods have the advantage of processing finite
sequences of echo samples and gapped records (like that of a scanning radar).
Although these techniques provide accurate results for the mean Doppler velocity,
they give biased results when estimating the Doppler spectrum width due to the
limited observation time. These estimators use a closed-form shape of the Doppler
spectrum and do not consider the Doppler resolution. In [83], a Gaussian spectrum
convolved with a rectangular window has been considered as a model of the
PSD to remove the effect of the limited resolution. However, the de-convolution
is performed manually after studying the bias in a tabular form, and analytical
expressions are not known for the variance of the estimator.

In this chapter, a novel approach, referred to later as a parametric spectrum
estimator (PSE), is proposed to estimate Doppler spectrum moments accurately
by processing several mutually incoherent finite sequences of echo samples. The
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method is based on a novel semi-analytical model of the PSD, which is derived
using a limited observation time and thus incorporates the Doppler resolution in
the model. The PSD model is derived using a simplified physical model of the time
domain signal similar to [84] with some changes in the model of the velocities of
the raindrops.

In the signal model, the velocities of the scatterers are considered to be
independent and identically distributed (i .i .d .) random variables. As the shape of
the majority of the weather Doppler spectrum is Gaussian in nature [76, Ch. 5,
p. 112-115][71][72][85], the velocities of the raindrops are assumed to be normally
distributed having parameters µv as the mean of the distribution (true mean Doppler
velocity) and σv as the standard deviation (true Doppler spectrum width). The model
of the PSD is derived by taking the expectation of the power of the Discrete Fourier
Transform of the time domain signal model. The resulting expression for the PSD is
semi-analytical with a numerical sum across the finite time interval with steps equal
to the pulse repetition time of the radar. A maximum likelihood approach is used to
obtain the spectrum parameters similar to [80]. The formulation of the signal model,
along with the derivation of the PSD is presented in the following sections.

The performance of this estimator is evaluated by comparing its variance with
the other approaches, such as DFT, PP and Levin’s ML approach [80]. In addition,
a quantitative guide to how fast a radar should scan the atmosphere as a function
of the true velocity dispersion is proposed. The approach is successfully applied to
multiple scans of experimental data acquired by a fast-scanning atmospheric radar.

3.3. SIGNAL MODEL

This chapter focuses on the echo sample modeling of weather radar in the context
of precipitation-like events only. Consider a radar resolution volume filled with M
raindrops during a rain event. The radar echo at time k is a superposition of the
echoes received from all the raindrops [76, Ch. 4, p. 67]. It is given by:

s(tk ) =
M∑

m=1
Am exp

(
j

4π

λ
rm(tk )

)
. (3.1)

In (3.1), Am is the amplitude caused by the reflection from the mth scatterer. It is
usually a function of the geometry of the scatterers (size, shape, orientation, and
composition), the range weighting function due to the effect of the radar waveform,
and the antenna weighting function based on the antenna beam shape [76, Ch. 5,
p. 112-115], [84]. The quantity λ is the wavelength of the radar signal, rm is the
distance to the mth scatterer, and j is the imaginary unit

p−1. The change in
a scatterer’s radial distance depends on its radial velocity. If one considers the
radial velocity of the m’th scatterer to be vm,r at the time instant tk−1, the radial
distance of the mth scatterer at time tk becomes rm(tk ) = rm(tk−1)+ vm,r T , where
T = tk − tk−1 is the pulse repetition time for the radar. If the radial velocity of each
scatterer is constant throughout the observation time, and if the initial position of
the m’th scatterer is denoted as rm,0, the expression in (3.1) could be rewritten as
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the following:

s(tk ) =
M∑

m=1
Am exp

(
j

4π

λ

(
rm,0 + vm,r (tk − t0)

))
. (3.2)

If one considers the initial time instant to be t0 = 0 and by using βm = (4π/λ)rm,0,
(3.2) could be rewritten as the following:

s(tk ) =
M∑

m=1
Am exp

(
jβm

)
exp

(
j

4π

λ
vm,r tk

)
, (3.3)

where the term exp
(

jβm
)

is the initial phase caused by the incident phase of the
electromagnetic wave (related to the transmit phase, range to resolution volume,
and atmospheric affects) and the position of the mth scatterer relative to the center
of the resolution volume. In this chapter, several assumptions have been considered
for mathematical simplicity. The first assumption is that the sizes of the scatterers
(raindrops) are assumed to be the same (Am = A,∀m). The initial positions of the
scatterers are i .i .d . random variables with a uniform distribution.

{βm}M
m=1

i .i .d .∼ U [−π,π]. (3.4)

It is assumed that the Gaussian shape of the Doppler spectrum around the mean
Doppler velocity is caused purely by the scatterers’ motion and not by other
statistical effects explained in the introduction for mathematical convenience. The
radial velocities of the scatterers are considered i .i .d . random variables with a
Gaussian probability density.

{vm,r }M
m=1

i .i .d .∼ N (µv ,σ2
v ). (3.5)

The time domain measurement model considered in this chapter includes the signal
(3.3) with added zero mean complex white Gaussian noise with variance σ2

n and is
given by:

z = s+n, {nk }N−1
k=0

i .i .d .∼ C N (0,σ2
n). (3.6)

3.4. SEMI-ANALYTICAL FORM OF THE PSD
The signal model of (3.3) is used to derive the semi-analytical form of the PSD.
Considering uniform sampling with pulse repetition interval of T , the DFT at a
velocity point v can be represented as:

S(v) = A
N−1∑
k=0

M∑
m=1

exp

[
j

(
4πT

λ
(vm,r − v)k +βm

)]
. (3.7)

Performing the sum with respect to the time (summing a geometric progression)
results in the following expression:

S(v) =A
M∑

m=1

sin
( 2πT

λ N (vm,r − v)
)

sin
( 2πT

λ (vm,r − v)
) ×exp

[
j (N −1)(vm,r − v)

2πT

λ
+ jβm

]
, (3.8)



3.5. OPTIMIZATION GOALS

3

27

where sin
(
(2πT /λ)N (vm,r − v)

)
/sin

(
(2πT /λ)(vm,r − v)

)
(3.8) is a result of the finite

observation time. This function is also called the Dirichlet kernel [86, Ch. 8, p. 189].
As it is assumed that the β are uniformly distributed phase, the expectations of the
real and imaginary parts of (3.8) are 0 when M →∞. However, the PSD of the
spectrum function of (3.8) does have a positive expectation. The PSD using (3.8) can
be represented as follows:

|S(v)|2/N = A2/N
(∑M

m=1
sin2((2πT /λ)N (vm,r −v))
sin2((2πT /λ)(vm,r −v))

+∑M
p ̸=q

sin((2πT /λ)N (vp,r −v))
sin((2πT /λ)(vp,r −v))

sin((2πT /λ)N (vq,r −v))
sin((2πT /λ)(vq,r −v))

×cos
[
(N −1)(vp,r − vq,r )(2πT /λ)+ (βp −βq )

])
,

(3.9)

where the expectation of the second term is 0 because of the uniformly distributed
β inside the cosine term. A detailed explanation of these two terms and their
contribution to receiver power can be found in [76, Ch. 4, p. 67-68]. Finally,
the following expression gives the expectation of the first term, and the detailed
derivation is presented in Appendix A.

F (v) = E
[

1

N
|S(v)|2

]
(3.10)

= A2M

[
1+2

N−1∑
q=1

(
1− q

N

)
exp

(
−

(
4πT

λ

)2 σ2
v q2

2

)
×cos

(
4πT

λ
q(µv − v)

)]
The dependence on N in the model is advantageous, especially for estimating the
Doppler spectrum width, because that parameter is heavily affected by the limited
resolution of the spectrum. This makes it different from the existing maximum
likelihood estimators, where a complete closed form of the PSD is used without the
dependence of N .

3.5. OPTIMIZATION GOALS
The expression of (3.10) suggests that the PSD is a function of the spectrum
parameters (the mean frequency (velocity, µv ), the spectrum width σv ), the finite
number of coherent samples N , and the multiplicative factor A2 ×M . As the
multiplicative factor is a measure of the signal power, it can be estimated by taking
the average of the signal power in the time domain.

Â′2 ≈ |z|2 (3.11)

Here, a change of parametrization is used for A2M and is indicated as A′2. The
notation Â′ is used to suggest that it is an estimated quantity. In the following
analysis, however, the value of A′ is assumed to be known beforehand. The objective
of the optimization here is to estimate the parameters Θ = [µv ,σv ] based on the
given PSD (the PSD of z is referred to as Z).

Let us denote the number of observations (measurements) of the PSD as L. Each
of the L observations contains the PSD of N coherent radar echoes.
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However, the observations themselves need not be coherent. L can be interpreted
as the number of measurements with similar statistical properties (similar mean
Doppler velocity and Doppler spectrum width, for example). There are several
practical ways to gather such measurements. For example, measurements from
several neighboring range cells or high temporal updates can be used to increase L
[87]. Similarly, the measurements after whitening in the range can be considered
[88], [89]. In this case, the received signal is sampled at a rate several times
larger than the reciprocal of the transmitted pulse length. In this chapter, however,
these incoherent measurements are interpreted as the echo sequences acquired
from several fast scans of the radar corresponding to the same resolution volume.
For a radar with a constant scan rate, the number of samples N in each of the
L observations (measurements) at a specific resolution volume remains the same.
Therefore, unlike in [88], [89], each of the L measurements is considered in the
temporal domain (scan-to-scan) instead of in the range (spatial domain).

If the power spectrum is denoted by Zl (v) for l th observation, at a velocity point
v , the likelihood probability is given by the following expression [80] [81]:

p(Z|Θ) =
N∏

i=1

L∏
l=1

1

π
(
F (vi ,Θ)+σ2

n
) exp

(
− Zl (vi )

F (vi ,Θ)+σ2
n

)
, (3.12)

where p(Z|Θ) is the likelihood probability of Z given the parameters Θ. Here, Z
is a matrix of size L ×N . This likelihood function is inspired by the fact that
the probability density function of the PSD at a particular frequency (velocity) is
exponential, indicating that the mean of the PSD is equal to its standard deviation
[90].

Z (vi ) ∼ Exp

[
1

F (vi )+σ2
n

]
(3.13)

The following expression gives the logarithm of this likelihood function. In this
formulation, the noise variance σ2

n is considered to be known.

log
(
p(Z|Θ)

)=−
N∑

i=1

[
L log

(
π

(
F (vi ,Θ)+σ2

n

))+ ∑L
l=1 Zl (vi )

F (vi ,Θ)+σ2
n

]
(3.14)

The optimization aims at maximizing this log-likelihood (3.14) function to estimate
the parameters Θ.

Θ̂= max
Θ

log
(
p(Z|Θ)

)
(3.15)

The theoretical variances are computed for PSE and Levin’s ML approaches by
following [80, eq. (4)]. The derivation of these variances is given in Appendix B.
These can be computed for a finite number of samples. The theoretical variance
(also can be referred to as the dispersion ((1/senstivity)2) as explained in [80, eq. (4)]),
and should not be confused with the unbiased CRB because to get the unbiased
CRB, one should consider unbiased estimators. However, the estimators here are
not unbiased in all conditions, so there can be a difference between the theoretical
and the numerical standard deviations. A biased CRB can also be computed by
considering the biased gradients of the parameters [91, eq. (2)], [80, eq. (2)]:

CRB(θ) = diag{[1+∇θB(θ)]I−1(θ) [1+∇θB(θ)]T}, (3.16)
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where B[θ] are the bias vectors, and ∇θB(θ) is the bias-gradient matrix. However,
the biases of these estimators are not known in closed form, making it challenging
to obtain the biased CRB for a finite number of samples or with constraints for the
parameter space (as considered in this and later chapters of the thesis). Nevertheless,
it is essential to note that the theoretical variances for the infinite number of echo
samples (N →∞, and for a fixed L) reach the unbiased-CRB (also referred to as CRB)
as the estimators are asymptotically unbiased.

In (3.14), it can be noticed that the likelihood function can integrate multiple
observations (L in the expressions) of the stationary stochastic signal PSD. However,
the existing classical non-parametric techniques only process one observation for
the Doppler moment estimation, except for the DFT approach when periodogram
smoothing is applied. The moment estimation with the DFT approach can be carried
out after applying a periodogram smoothing technique on several realizations of
the PSD (e.g., the periodogram of Bartlett and Welch [92, Ch. 4, p. 49-52]) at the
expense of poor Doppler resolution and hence is out of the scope of this chapter. In
the simulation study, to have comparable results with DFT and PP, L is kept as 1,
suggesting that only one observation (3.6) is processed in the proposed method and
the classical methods. The optimization is performed using the active-set and the
Limited Memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithms [93] [94].
This method is chosen because of its faster computation time.

The optimization is performed several times with random starting points
(following a uniform distribution) inside the parameter space to avoid getting stuck
at local minima if any. The algorithm is explained in 1. In algorithm 1, Θ(0)

i are
the starting points of the parameters in iteration i , Θl , Θu are the lower and upper
limits of the parameter space, and U is the number of iterations. In all the examples
in this chapter, the optimization is performed U = 32 times.

Algorithm 1 Optimization Algorithm

1: for i = 1 to U do

• Initialize parameters Θ(0)
i ∼U (Θl ,Θu)

• Θ̂i = maxΘ log
(
p(Z|Θ)

)
• Ji = log

(
p(Z|Θ̂i )

)
2: end for
3: imax = maxi Ji

4: Θ̂= Θ̂imax .

3.6. NUMERICAL SIMULATION
This section applies the Doppler moment estimation on simulated radar echo
samples. First, the noise-free echo samples are simulated using (3.3). A complex
white Gaussian noise is added to the samples as shown in (3.6). The input noise
variance for the measurement model is computed with a user-defined input SNR
[90]. The PSE parameter estimation is compared with the DFT, PP, and Levin’s ML
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approach. For all these approaches, the noise variance is assumed to be known to
allow for a fair comparison. The expressions for moment estimation with the DFT
approach using known noise variance are from [71, eq. (9)] (The equation is for the
mean Doppler, but similarly, the Doppler spectrum width is computed by using the
second moment). The mean Doppler estimation with the PP approach is taken from
[71, eq. (16)]. For the Doppler spectrum width (PP R0/R1; also denoted as PP in this
chapter, and PP R1/R2), the formulae [95, eq. (6.17), eq. (6.32)] are used as these
estimators are asymptotically unbiased. The formula [75, eq. (3)] is used for the
R1/R3 spectrum width estimator.

For Levin’s approach, the parameters are estimated jointly, like the PSE. The
implementation of Levin’s approach in this chapter differs from [80] in the sense that
the continuous integrals are replaced with numerical sums along the frequencies, to
include the effect of the limited frequency resolution. However, the implementation
proposed in [80] assumes that the resolution is enough to contain the detailed
structure of the spectrum, and also, it is assumed that the PSD is slowly varying (after
applying some smoothing operation). Hence, in [80], continuous integrals along the
frequencies are justified. However, to have a fair comparison of the PSE with Levin’s
approach, no smoothing operation has been performed on the PSD. Comparing the
results of PSE with Levin’s ML approach allows us to observe the differences between
the estimates when using a model of the PSD has a semi-analytical form (PSE) that
includes the Doppler resolution as a sum over time as compared to a model with a
complete closed form (Levin).

The quantitative performance is assessed with Monte Carlo simulations.
The evaluation metric used in this chapter is the bias and variance of the
estimators. The Doppler frequencies in the following examples are normalized
(λ/(2T ) = 2Va), where Va is the unambiguous Doppler velocity of the radar.
Therefore, the range of frequencies is from −0.5 to 0.5. The parameters are
denoted as µ f n = µv /(2Va) = 2Tµv /λ (normalized mean Doppler velocity), and
σ f n = σv /(2Va) = 2Tσv /λ (normalized Doppler spectrum width). The upper and
lower bounds of the parameters for the optimization (explained in algorithm 1) are
[µ f n,l ,µ f n,u] = [−0.5,0.5], and [σ f n,l ,σ f n,u] = [0,0.5].

The bias is the difference between the expected value of the estimated quantity
and the true value.

B
[
Θ̂

]= E[
Θ̂

]−Θ. (3.17)

Here, the expectation of the estimated quantity (E
[
Θ̂

]
) is approximated by doing

a Monte Carlo simulation and taking the average. Therefore, a positive bias refers to
an overestimation, and a negative bias refers to an underestimation. The following
expression computes the numerical variance in the parameters:

V
[
Θ̂

]= E[(
Θ̂−E[

Θ̂
])2

]
. (3.18)

The standard deviation in the estimates is computed by taking the square root of
V

[
Θ̂

]
.

In the following sections, “GT” refers to the Ground Truth. The normalized
quantities are denoted with a subscript n . The theoretical variances are denoted as
“Theor” on the plots.
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Figure 3.1: Estimation and performance of the Doppler moments for L = 1 with respect to the number
of coherent samples N . a Mean normalized Doppler frequency µ̂ f n . b normalized Doppler frequency
width σ̂ f n . c Standard deviation in estimating the normalized Mean Doppler frequency µ̂ f n . d
Standard deviation in estimating the normalized Doppler spectrum width σ̂ f n .

3.6.1. PARAMETER ESTIMATION WITH L = 1
In this example, the simulated signal has parameters (also referred to as the ground
truth) µ f n = 0 and σ f n = 0.033. The number of scatterers in the model is kept as
M = 10000. The SNR input for the model (3.6) is 12dB. The number of iterations
used in the Monte Carlo simulation is 1024 for this analysis. The mean retrieval
(using the Monte Carlo simulations) of the normalized mean Doppler frequency and
the Doppler frequency width is shown in Fig. 3.1a and Fig. 3.1b, respectively.
According to Fig. 3.1a, all approaches perform similarly when the number of
coherent samples is large for estimating the first moment. For a lower number of
coherent samples (especially below N = 30), PSE and PP approaches have lower bias
than the DFT and Levin’s ML approaches. From 3.1b, it can also be observed that
the biases of the higher lag versions of PP PP R2/R1 and PP R3/R1 are lower than PP
R0/R1, because the spectrum width considered for this example is relatively narrow.
According to Fig. 3.1b, PSE achieves convergence at a lower number of coherent
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samples (at N > 30) than the other approaches. The bias is −0.004 and percentage
error is 13.34% at N = 30 for σ f n .

The variances of the estimates in µ f n and σ f n are computed numerically as a
function of the number of coherent samples (N ). The standard deviation is plotted
in Fig. 3.1c and Fig. 3.1d for µ f n and σ f n , respectively. The standard deviations of
the approaches are plotted for N > 30, which is the reciprocal of the true normalized
frequency spectrum width (1/σ f n). The minimum number of coherent samples for
the performance analysis is greater than 1/σ f n ( the normalized frequency resolution
∆ f f n should be 0 <∆ f f n < 1/[σ−1

f n −1]) to have sufficient resolution for the PSD and

a low bias in the estimates.
According to Fig. 3.1c and Fig. 3.1d, the variance of the PSE goes lower than the

other techniques with an increase in the number of samples.
Performance is also evaluated as a function of the normalized Doppler spectrum

width σ f n , with a fixed normalized mean Doppler frequency (µ f n = 0) and a fixed
number of coherent samples (N = 64). The biases in the estimation results are shown
in Fig. 3.2a and Fig. 3.2b for the mean Doppler frequency and Doppler spectrum
width, respectively. The performance analyses of both parameters are shown in Fig.
3.2c and Fig. 3.2d with the other approaches.

All the approaches perform similarly for the mean Doppler velocity σ f n = 0.2. The
PP and PSE approaches have large biases and oscillate around the true normalized
mean Doppler. The variance of the PSE approach is lower as compared to the other
approaches for the mean Doppler till σ f n < 0.2. The DFT and Levin’s approach have
an increasing negative bias with increasing spectral width for σ f n > 0.2.

It can be observed that the different versions of the PP approach give lower
bias than the PSE approach for specific intervals of the spectrum width. It is well
known from the literature that the PP approaches with larger lags give lower bias for
smaller spectral widths and vice versa [74], [75]. However, to construct an adaptive
lag estimator, some prior information has to be known for the spectral width such
that one of the PP versions can be chosen. It is evident from Fig. 3.2b that the PSE
approach performs reliably across all ranges of spectral widths. The bias increases
for very large spectral widths σ f n > 0.25.

For very low spectral widths σ f n < 0.04, the PP versions R2/R1 and R3/R1 perform
better and have lower variances than the PSE. For spectrum widths 0.04 <σ f n < 0.25,
PSE has the lowest variance amongst all the approaches. For higher spectrum
widths, PP R1/R0 and PSE approaches give similar variances. The PP R3/R1 and
DFT show very low variances at very high spectrum widths σ f n > 0.25 due to their
significant biases.

The performance is further evaluated as a function of the normalized mean
Doppler frequency µ f n with a fixed normalized Doppler spectrum width (σ f n = 0.05)
and a fixed number of coherent samples (N = 64). The biases in the estimation
results are shown in Fig. 3.3a and Fig. 3.3b for the mean Doppler frequency and
Doppler spectrum width, respectively. The performance analyses of both parameters
are shown in Fig. 3.3c and Fig. 3.3d. The estimated mean Doppler frequency suffers
from the aliasing near the unambiguous limit for all methods. The aliasing effect is
observed at a lower mean Doppler frequency for the positive frequencies and higher
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Figure 3.2: Estimation and performance of the Doppler moments for L = 1 with respect to σ f n at
µ f n = 0. a Biases in the estimates of the mean Doppler frequency normalized µ̂ f n . b Doppler
frequency width normalized σ̂ f n . c Standard deviation in estimating the mean Doppler frequency
normalized µ̂ f n . d Standard deviation in estimating the Doppler spectrum width normalized σ̂ f n .

mean Doppler frequency for the negative frequencies with the DFT and Levin’s ML
approaches than the PP and PSE. The Doppler spectrum width estimated with PP
and PSE approaches is not affected by the aliasing, whereas the other approaches
suffer from the aliasing effect. The bias and variance of PSE are superior to the other
approaches for the Doppler spectrum width estimate.

3.6.2. PERFORMANCE ANALYSIS WITH RESPECT TO L

The performance analysis of PSE has been compared with Levin’s ML approach
with a different number of observations L, keeping the number of coherent samples
constant N = 64. The performances are shown in figure 3.4a and 3.4b. It can be
observed that with an increase in L, the variance decreases and converges for both
techniques. The variance of PSE is lower than Levin’s ML approach.
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Figure 3.3: Estimation and performance of the Doppler moments for L = 1 with respect to µ f at
σ f = 0.05. a Biases in the estimates of the mean Doppler frequency normalized µ̂ f n . b Doppler
frequency width normalized σ̂ f n . c Standard deviation in estimating the mean Doppler frequency
normalized µ̂ f n . d Standard deviation in estimating the Doppler spectrum width normalized σ̂ f n .

3.6.3. DISCUSSION ON THE SIMULATION RESULTS

The following conclusions can be made from the performance analysis of the
proposed estimator in the previous sub-sections. The minimum observation time
duration required for an accurate estimation of the Doppler spectrum width for
PSE is inversely proportional to the true velocity dispersion of the scatterers (for
normalized spectrum widths of σ f n < 0.2). For example, for a velocity dispersion
of one-fortieth of the unambiguous velocity interval (2Va) in one resolution cell
(σv = 2Va/40), the number of slow time samples needed with PSE should be at
least more than 40 (or, the Doppler resolution of ∆v < 2Va/39) to measure the
Doppler spectrum width accurately. The minimum number of slow-time samples per
resolution cell can be used to decide the scanning rate of the radar in azimuth. For
the case mentioned above, if one uses 64 samples at least for one resolution cell with
813.2µs pulse repetition time, the radar needs to spend only 26ms per resolution
cell in azimuth. Suppose the azimuthal resolution cell is 2.5◦; the scanning speed of
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Figure 3.4: Estimation and performance of the Doppler moments for N = 64 with respect to L. µ f n = 0
and σ f n = 0.033 a Standard deviation in estimating the mean Doppler frequency normalized µ̂ f n . b
Standard deviation in estimating the Doppler spectrum width normalized σ̂ f n .

the radar can be fixed to 16rpm. If the rain is turbulent with velocity dispersion of
(σv = 2Va/10), and if one wants to use only 15 samples in one resolution cell, they
can set the scanning rate to 68rpm with the configuration mentioned above.

As the model and algorithm explained in the chapter are developed to solve
the estimation of Doppler moments considering the Doppler resolution, a practical
accuracy needed for such weather conditions is not specified. Based on the analysis
of the bias of the PSE, necessary scan strategies can be applied to meet the accuracy
demanded by the applications.

As PSE uses a maximum likelihood technique performed numerically with an
optimization algorithm (L-BFGS), it is challenging to provide a quantitative idea
about the computational cost, unlike the non-parametric approaches. However, PSE
has a lower computational cost than the ACV-based parametric approaches as it
does not involve any matrix inverse operation.

3.7. APPLICATION TO REAL DATA
The proposed approach has been applied to real radar data recorded from the
MESEWI radar at the Delft University of Technology in the Netherlands. In these
experiments, only the signals from the HH channel is used. The MESEWI radar
system is a fully polarimetric X-band (9.4 GHz) FMCW radar system. The PRI for
each polarization is 406.6µ s. For one polarization, the PRI is 813.2µ s resulting in
an maximal unambiguous Doppler velocity of Va = (λ)/(4×PRT) = 9.8 m/s (λ is the
central wavelength of the radar). The radar specifications are shown in Table 3.1.
The raw radar data is stored in a 3D format with fast time, slow time, and azimuthal
angles as the three dimensions. The data discussed below was collected when the
radar was pointed to a fixed elevation angle of 30◦. Two experiments were performed
with an interval of 26 minutes (the second experiment was performed 26 minutes
after completing the first). In the first experiment, the azimuthal rotation speed
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Table 3.1: MESEWI radar specifications

Parameter Value
Center Frequency ( fc ) (Hz) 9.4×109

PRI (T ) 813.2µs
Beamwidth in Azimuth (dφ) 2.5◦

Elevation Angle (ψ) 30◦
ADC Sampling fs (Hz) 4.92×106

was one rotation per minute (1rpm), while in the second one, it was five rotations
per minute (5rpm). The date of observation was May 9, 2023. It was a rainy day
surrounding the area of Delft, Netherlands, which allowed us to observe clouds, the
melting layer, and rain.

The pre-processing of sampled intermediate frequency data was performed along
the following steps. After DC compensation, an FFT is applied on the fast time
domain to ascertain the range dependence as it is an FMCW radar system. The
mean is subtracted from each slow time sequence to remove the effects of the
clutter. The Doppler processing is carried out on the slow time sequence for each
range-azimuth resolution cell of the radar.

3.7.1. EXPERIMENT 1: SLOW SCAN OF ONE ROTATION PER MINUTE
The bandwidth of operation is BW = 50 MHz for this experiment. The
maximum range of the radar in this operational mode is six kilometers
Rmax = ( fs × c)/(4BW×PRF) = 6 km (c is the speed of the electromagnetic wave),
while the range resolution is three meters (∆R = c/(2×BW) = 3 m). After the range
processing across the fast time, 512 echo samples for Doppler processing for each
range-azimuth cell are available. For the DFT approach, several cells around the zero
Doppler are chosen as the clutter region and are interpolated with a chosen noise
level. The noise spectrum level (σ2

n) is decided by taking the 15th percentile of the
data contained in the PSD for each range-azimuth resolution cell because it is safe
to assume that 15% of the data in the PSD are not from hydrometeors. The clutter
region is not part of the observations for the PSE and Levin’s ML approaches. The
power scaling factor is determined from (3.11) for both Levin’s ML approach and
PSE. With the DFT approach, the total power estimate (reflectivity) of the Doppler
spectrum in each resolution cell is shown in Fig. 3.5a. The reflectivity is shown
here to explain some aspects of the mean Doppler and Doppler spectrum width
estimated later in the chapter.

The Fig. of 3.5a shows a bright band ring of strong reflection around a range
of 4km. It could be attributed to the melting layer in the atmosphere where the
precipitation forms [96]. The azimuth is considered clockwise (0◦ is towards the
north) in this figure and the successive figures in the chapter. It can be observed
that the reflectivity is considerably higher in ranges below 4km, which corresponds
to reflections from rain and in almost all azimuth sectors.

For the Plan Position Indicator (PPI) plots for the mean Doppler and Doppler
spectrum width, the 512 echo samples are separated into eight observations (L = 8),
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Figure 3.5: a PPI plot of reflectivity using the DFT approach. b log-likelihood (3.14) of PSE.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.6: PPI plots showing Mean Doppler velocity and Doppler spectrum width with all the
approaches discussed in the chapter. The first row shows the results of the mean Doppler velocity, and
the second row shows the results of the Doppler spectrum width. a e, DFT, b f, PP, c g, Levin, d h, PSE.

with each observation containing 64 coherent samples (N = 64) for the PSE and
Levin’s ML approach. The mean Doppler velocity and the spectrum width estimated
with all the approaches considered in this chapter are shown in Fig. 3.6.

It is observed from the first row of Fig. 3.6 that the mean Doppler velocity
estimates from all the approaches look similar except for some regions. The
differences can be observed in the case of the DFT and Levin’s ML approaches
towards the edges of the figures (at more considerable distances from the radar).
Although these approaches show near zero mean Doppler velocity, the PP and PSE
approaches show a large deviation from zero. It is because the Doppler spectrum
is nearly flat (having almost the same power in all velocity bins). Although the
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spectrum is nearly flat due to minor asymmetry around the zero Doppler, the other
approaches are sensitive and estimate the mean Doppler velocity on either side of
the zero Doppler. The existing literature [71], [90] shows that the PP approach
is an unbiased estimator of the mean Doppler velocity and very robust at low
signal-to-noise ratios. According to the results of the mean Doppler velocity, it is
observed that the estimate of the proposed approach (PSE) is very close to that of
the PP. In the directions around from 175◦ till 225◦ azimuth, there is aliasing of the
mean Doppler velocity. It has been captured by all the moment estimates. In the
processing chain, it is logical first to perform de-aliasing based on the mean Doppler
velocity and use an appropriate window of velocities to estimate the moments.
However, the focus is not on the problem of de-aliasing the mean Doppler velocity
in this chapter but rather on the moment estimation only. The next chapter in the
thesis explores a new approach to avoiding aliasing to improve the mean Doppler
estimates. Several observations are made based on the second row of Fig. 3.6.
The borders of the aliased region are prominently visible on the Doppler spectrum
width estimates of DFT and Levin’s ML approaches having large values (till 9m/s).
This can be explained by the theoretical simulations in the previous §(Fig. 3.3a,
and Fig. 3.3b). As the mean Doppler velocity approaches the unambiguous limit,
the estimation of mean Doppler velocity becomes increasingly negatively biased. As
the Doppler spectrum width is the square root of the second central moment and
the DFT and Levin’s ML approaches use PSD measurements, the spectrum width
also becomes increasingly biased at the borders of this folded region. However,
these high-spectrum width borders are not visible in the case of the PP and the PSE
estimates because the PP estimator uses measurements in the time domain directly,
and the PSE approach takes care of the aliasing (the semi-analytical model takes the
finite observation window into account). A visual inspection of the mean Doppler
velocity estimate suggests that the wind direction (the direction the precipitation
field is moving) is towards φ= 15◦. The radial velocity observed by the radar is a
scalar sum of projections of the horizontal wind (V ) speed and the vertical speed
(VT ) of the raindrops in the radial direction and is given by:

µv =V cosψcos(φ−φwind)+ V̄T sinψ, (3.19)

where the ψ is the elevation angle from the ground, and φwind is the horizontal wind
direction in azimuth. The mean vertical velocity V̄T is usually associated with the
diameters of the hydrometeors [49] [50] [43] (more on it in §6.3). That is why the
Mean Doppler velocity estimates are closer to zero towards φ= 135◦, and φ= 315◦
because these directions are perpendicular to the wind direction (φ−φwind ≈ 90◦).

In all the approaches discussed in this chapter, it has been assumed that the
echo samples in the slow time domain are stationary and the spectrum is Gaussian
shaped. Therefore, it is important to study not only the estimation performance but
also the profile of the log-likelihood (3.14) as a function of the space because it gives
a quantitative understanding of how well the real data fit the semi-parametric model
discussed in the chapter. The log-likelihood (3.14) has been plotted and shown in
Fig. 3.5b to access the performance of the PSE approach on the real radar data. It
can be observed that at high reflectivity regions below the melting layer shown in
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Fig. 3.5a, the likelihood is larger than in the melting layer. It can be concluded that
the model considered in the PSE approach fits the observations better in the case of
the rain Doppler spectrum than in the melting layer.

The Doppler spectrum reconstruction is performed on specific resolution cells
using all the approaches discussed in the chapter to validate the abovementioned
test cases. The PSD of the echo samples is used as a reference (Ground Truth).
The reconstruction is performed using the theoretical expected PSD of (3.10). Their
estimated counterparts replace the parameters µv and σv in (3.10). To highlight the
range-azimuth cells discussed in the next sub-sub-sections, Fig. 3.6d is shown again
in Fig. 3.7. Table 3.2 shows the coordinates of the chosen resolution cells for the
analysis.

Table 3.2: Highlighted resolution cells’ coordinates

Cell Number R(km) φ ◦

(1) 1.26 277
(2) 2.39 234
(3) 4.7 166

Figure 3.7: PSE derived mean Doppler velocity. The Doppler spectrum is analyzed in the highlighted
areas of this figure.

HIGH REFLECTIVITY REGION (PRECIPITATION REGION)
Fig. 3.8a shows the Doppler spectrum at the cell (1). The Doppler spectrum
reconstruction for the same resolution cell is shown in figure 3.8b for N = 64 and
L = 1 case.

According to Fig. 3.8b, it is observed that with only one observation L = 1 of
64 coherent samples, the PSE approach converges and reconstructs the spectrum
better than the other approaches. The other approaches overestimate the Doppler
spectrum width. This shows the superiority of the PSE approach with a low number
of samples over the other approaches discussed in this chapter.
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Figure 3.8: Doppler spectrum reconstruction at cell (1) a 512 total samples b 64 total samples
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Figure 3.9: Doppler spectrum reconstruction at cell (2) a 512 total samples b 64 total samples

HIGH REFLECTIVITY REGION WITH DOPPLER ALIASING

Fig. 3.9a shows the Doppler spectrum at cell (2). The Doppler spectrum
reconstruction for the same resolution cell is shown in Fig. 3.9b for N = 64 and L = 1
case.

It is observed from Fig. 3.9b that the PSE approach converges only with one
observation L = 1 of 64 coherent samples. In addition to that, the results of Fig. 3.9a
and 3.9b validate the theoretical conclusions made on the Fig. 3.3b. The PP and
PSE approaches are immune to the Doppler aliasing in the Doppler spectrum width
estimate case. On the other hand, the other approaches overestimate the Doppler
spectrum width.

MELTING LAYER REGION (LOW PSE LIKELIHOOD REGION)
Fig. 3.10a shows the Doppler spectrum at the cell (3). The Doppler spectrum
reconstruction for the same resolution cell is shown in figure 3.10b for N = 64 and
L = 1 case.



3.7. APPLICATION TO REAL DATA

3

41

-10 -5 0 5 10
Velocity [m/s]

-50

-30

-10

10

30

50
P

ow
er

 [d
B

]

GT, N = 512
DFT, N = 512
PP, N = 512

Levin, N = 64, L = 8
PSE, N = 64, L = 8

(a)

-10 -5 0 5 10
Velocity [m/s]

-50

-30

-10

10

30

50

P
ow

er
 [d

B
]

GT, N = 64
DFT, N = 64
PP, N = 64

Levin, N = 64, L = 1
PSE, N = 64, L = 1

(b)

Figure 3.10: Doppler spectrum reconstruction at cell (3) a 512 total samples b 64 total samples

According to Fig. 3.10a, all moment estimators cannot reconstruct the spectrum
with a large number of samples. The Gaussian spectrum shape assumption is
violated for a long record of samples at the melting layer. It is confirmed by
lower log-likelihood (3.14) values at the melting layer compared to the precipitation
area, as shown in Fig. 3.5b. The log-likelihood (3.14) at this range-resolution cell
for N = 64, and L = 8 is −2891. However, according to Fig. 3.10b, PSE fitting is
superior to the other approaches when a short record of only 64 echo samples is
used. The log-likelihood (3.14) for N = 64, and L = 1 is −334. From this analysis, it
can be concluded that the Doppler spectrum at the melting layer can only assume
stationarity for a short period.

3.7.2. APPLICATION TO FAST SCANNING RADAR DATA

Under the assumption that the spectral content (in terms of the spectral width) of
the echo signals received from the multiple scans (from the precipitation regions)
remains unchanged over this period, the PSE has been applied to real data acquired
from multiple scans of the MESEWI radar with a fast scan in azimuth. In
this experiment (mentioned as the second measurement at the beginning of the
section), the bandwidth of operation was 20 MHz, and consequently, the range
resolution was ∆R = c/(2×BW) = 7.5 m. The maximum range in this example was
Rmax = ( fs ×c)/(4BW×PRF) = 15 km. However, in all the PPI plots, the range is shown
till 6 km to avoid the region above the melting layer. The number of echo samples
was 100 per resolution cell per scan. The 100 echo samples were grouped into
two 50 coherent samples. Five azimuthal scans are processed, resulting in 10 PSD
observations per resolution cell (L = 10). The real data discussed in this section were
acquired on the same day as the data discussed in the previous §3.6. As the data was
acquired after 26 minutes of the first experiment, the spatial variability of reflection
differs from the case shown in Fig. 3.6. The moment estimation uses both PSE and
Levin’s ML techniques. The performance is evaluated by reconstructing the spectrum
with the moments derived similarly to the previous §3.6 for a few resolution cells.
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The reconstruction is compared with the PSD of all the observations (1 ≤ L ≤ 10 in
this case). The noise variance estimate here is determined only from the first scan
of the radar. The resolution cells chosen for the analysis of the reconstruction are
highlighted on top of the Fig. 3.11, which shows the PPI plot of the mean Doppler
velocity retrieved from PSE after incoherently processing five scans of the radar data.
Table 3.3 shows the coordinates of the chosen resolution cells for the analysis.

Table 3.3: Highlighted resolution cells’ coordinates

Cell Number R(km) φ ◦

(1) 2.89 48
(2) 1.34 264

Figure 3.11: PSE derived mean Doppler velocity. The Doppler spectrum is analyzed in the highlighted
areas of this figure.

The estimation of the first and second Doppler moments are shown in Fig. 3.12a
and Fig. 3.12b with respect to L at the resolution cell (1). It can be observed that
both the PSE and Levin’s ML approaches converge to the same estimates with an
increasing number of scans, but the rate of convergence of PSE is better than that
of Levin’s ML approach. As the resolution cell is inside the precipitation region, the
approximation of the PSD with a Gaussian spectrum is adequate. The spectrum
reconstruction with PSE and Levin is shown in Fig. 3.13 at L = 10. In the
resolution cell (2), the mean Doppler velocity exceeds the maximum unambiguous
velocity and Doppler spectrum aliasing takes place. The estimation of the first and
second Doppler moments for this situation are shown in Fig. 3.14a and Fig. 3.14b
with respect to L. It can be observed that the spectrum width estimate of the PSE
approach is not affected by the aliasing of the Doppler spectrum, while Levin’s ML
approach gives completely wrong results. The spectrum reconstruction with both
approaches is shown in Fig. 3.15 at L = 10. The PPI plots of the mean Doppler
velocity and spectrum width are shown in figure 3.16 with five scans (L = 10)
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Figure 3.12: Doppler moments estimation on real radar data with respect to number of observations L
at resolution cell (1). a Mean Doppler velocity µ̂v m/s b Doppler spectrum width σ̂v m/s
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Figure 3.13: Doppler spectrum reconstruction with L = 10. Incoherent processing of 5 scans of the
radar at cell (1)
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Figure 3.14: Doppler moments estimation on real radar data with respect to the number of observations
L at resolution cell (2). a Mean Doppler velocity µv m/s b Doppler spectrum width σv m/s

integrated into the estimation until the melting layer. It can be observed that the
PSE approach is not affected by the Doppler aliasing when it comes to estimating
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Figure 3.15: Doppler spectrum reconstruction with L = 10. Incoherent processing of 5 scans of the
radar at cell (2).

the Doppler spectrum width.

3.8. JOINT ESTIMATION OF NOISE VARIANCE AND THE

DOPPLER MOMENTS
In the previous sections of the chapter, the noise variance is considered known. This
assumption is usually valid for radar applications because there are heuristic ways
to estimate the noise variance. One such way to estimate it is to take the 15th
percentile of the power in the PSD measurement (considered in the Subsection 3.7.1
for the real data analysis). In estimation problems, if the noise is of white Gaussian,
the noise is often treated as a nuisance parameter [97]. In this section, the noise
standard deviation σn is considered unknown, and it is estimated jointly with the
Doppler moments. The parameters to be estimated here are Θ= [µ f n ,σ f n ,σn]. The
noise standard deviation is automatically estimated without making any assumptions
using the PSD model (3.10).

3.8.1. NUMERICAL SIMULATION
The simulated signals are generated similarly to those in the previous subsection
3.6. The SNR with which the signals are generated is 12 dB. The number of coherent
echoes N = 64, and the number of measurements L = 16. The performance is studied
with respect to the normalized spectral width σ f n . The bias and standard deviations
in the estimates are shown in Fig. 3.17. The results of the PSE are compared with
Levin’s approach.

It can be observed that the bias in the estimates of normalized spectrum width
σ̂ f n and noise standard deviation σ̂n for PSE is lower than that of Levin’s approach
lower than a normalized spectral width of around σ f n = 0.16. Doppler PSDs having
a normalized spectral width of σ f n = 0.2, or more can be considered "flat," and
therefore, the estimates are increasingly biased. Therefore, typically, weather radars
should be designed with a suitable PRT to have a sufficient maximum unambiguous
velocity that can contain the useful spectrum from a wide range of atmospheric
events (such that the σ f n remains lower than 0.1).
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(a) (b)

(c) (d)

Figure 3.16: PPI plots at L = 10. Incoherent processing of 5 scans of the radar a Mean Doppler velocity
µv m/s with Levin’s ML approach. b Mean Doppler velocity µv m/s with PSE. c Doppler spectrum width
σv m/s with Levin’s ML approach. d Doppler spectrum width σv m/s with PSE.

The theoretical standard deviations are derived by taking the diagonal elements
of the inverse of the Fisher information matrix. The formulation of the Fisher
information matrix of (B.1) is extended for three parameters instead of two (3×3
matrix).

It can be concluded that as the observation interval reaches infinite N →∞, the
estimator achieves unbiasedness, and the derived theoretical variance converges to
the unbiased CRB. The theoretical standard deviations deviate from the numerical
results for higher σ f n due to the increasing biases.

3.8.2. APPLICATION TO REAL RADAR DATA
The proposed approach is applied to the same data mentioned in the §3.7. The
specification of this particular measurement set-up can be found in Table 3.1. The
scan speed of the radar was five rotations per minute (rpm) in the azimuthal
direction. The number of echo samples for each resolution cell was 100 (with a
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Figure 3.17: Estimation performance with σ f n with an input SNR of 12dB, N = 64, L = 16 a Bias of
µ̂ f n b Standard deviation of µ̂ f n c Bias of σ̂ f n d Standard deviation of σ̂ f n e Bias of σ̂n f Standard
deviation of σ̂n . The legend with “Theo” refers to theoretical plots.

PRT of 813.2µs, the time on target per scan was 81.32ms). The pre-processing,
including the range Fast Fourier Transform (FFT) and the clutter removal processes,
is explained in 3.7. The maximum unambiguous velocity for this radar is Va = 9.8m/s.
The number of radar scans used in this experiment is five, and the number of PSD
measurements is L = 10 (with two PSDs obtained from one radar scan using 50 echo
samples each).



3.9. CONCLUSIONS

3

47

0 2 4 6 8 10
L

-10

-9.5

-9
v
 [m

/s
]

Levin, N = 50 PSE, N = 50

(a)

0 2 4 6 8 10
L

0.4

0.5

0.6

0.7

v
 [m

/s
]

Levin, N = 50 PSE, N = 50

(b)

0 2 4 6 8 10
L

0

0.5

1

1.5

2

n
 [L

in
ea

r 
S

ca
le

]

Levin, N = 50 PSE, N = 50

(c)

-5 0 5 10
Velocity [m/s]

-30

-20

-10

0

10

20

30

40

50

P
ow

er
 [d

B
]

GT, N = 50
Levin, N = 50, L = 10

PSE, N = 50, L = 10

(d)

Figure 3.18: Parameter estimation and Doppler PSD reconstruction with real radar data collected from
five consecutive scans of a fast scanning radar from the voxel located at range R = 1.24 km, azimuth
φ= 264◦ from the north in a clockwise direction, and an elevation of θ = 30◦. a µ̂v m/s b σ̂v m/s c
σ̂n (linear scale) d Reconstruction of the PSD. The abbreviation “GT” stands for “ground truth” PSD
measurements.

One resolution volume is chosen to show the variation in the estimated
parameters as a function of L. The results are shown in Fig. 3.18. The location of
this resolution cell can be referred from Fig. 3.11 and Table 3.3 (It is marked with a
label (2)). This region was chosen because the useful Doppler spectrum from the
precipitation is aliased at this resolution volume, making it challenging for typical
Doppler moment estimators that use PSD measurements.

3.9. CONCLUSIONS
In this work, a model of the Doppler power spectral density (PSD) for the
precipitation-like target is proposed as a function of the Doppler moments and
the observation interval. A log-likelihood is then formulated by assuming that
the spectral power is distributed exponentially at each velocity/ frequency. This
log-likelihood function can deal with multiple such PSDs. Multiple PSDs can be
acquired from several radar scans for a typical scanning radar. A maximum likelihood
estimation is performed on the log-likelihood to estimate the Doppler moments.
The proposed novel approach is named the Parametric Spectrum Estimator (PSE).
The statistical bias and variance are presented with Monte Carlo simulation (to have
enough realizations of the simulated signal in the time domain). Several parameter



3

48 3. DOPPLER SPECTRUM MOMENTS ESTIMATION FOR PRECIPITATION

sweeps are performed to show the performance.

The parameters considered in these sweeps are the normalized coherent
processing interval (number of coherent echo samples in the time domain N ), the
normalized spectral width σ f n (the square root of the normalized second central
Doppler moment), the normalized mean Doppler velocity µ f n , and the number
of incoherent realizations of the PSDs L (the number of radar scans assuming a
stationarity condition of the atmosphere). Normalized quantities are studied instead
of the raw physical quantities to make an impartial and scalable performance
analysis, meaning that the measurement device (in this case, it is the measurement
strategy in terms of the pulse repetition interval T and the dwell time TDwell) can
be scaled following the real physical velocity parameters such as the raw Doppler
parameters µv ms−1 and σv ms−1.

From the performance analysis, it is concluded that the desired number of
samples required to have a good bias should be larger than the reciprocal of the
normalized spectral width (N > 1/σ f n) for normalized spectral widths below 0.25,
i.e., σ f n < 0.25, whereas the other Doppler moments estimators need an even larger
number of echo samples to achieve a similar bias in the estimates. For higher
normalized spectral widths σ f n > 0.25, all approaches, including the proposed PSE
approach, become increasingly biased.

The theoretical variances of the parameters are derived and compared with the
numerical ones computed with Monte Carlo simulation. The estimates’ theoretical
variance converges to the Crámer Rao Lower Bound (CRB) when the number of echo
samples approaches infinity N →∞.

The performance analysis with the number of incoherent PSD realizations L
suggests that the variance in the estimates decreases with an increase in L. Based
on theoretical analysis (B.1), (B.4), and (B.8), it can be observed that the theoretical
variance in the estimates approaches 0 for L →∞.

The proposed PSE approach is applied to real scanning radar data acquired
from the MESEWI radar at TU Delft. It has been shown that the PSE approach
is superior to the other methods. The spectrum reconstruction is also presented
with all the methods, and the fitting with PSE outperforms. The PSE approach
needs comparatively smaller dwell time than the other methods, which shows its
applicability for fast scanning radars.

The proposed approach has also been extended to accommodate the noise
standard deviation as a parameter to be estimated. The joint estimation of Doppler
moments and the noise standard deviation is presented in this chapter. The
proposed PSE is compared with Levin’s approach with simulated radar echoes. The
PSE outperforms Levin’s approach regarding the bias for Doppler spectrum width
and the noise standard deviation.

The PSE is applied to real radar observations collected from the MESEWI radar
at TU Delft. For resolution volumes with rain having high reflectivity, it is shown
that an accurate estimation of the parameters with PSE is achieved with a relatively
small number of samples. In some resolution volumes, especially in the melting
layer, the echo samples in time do not follow the assumption that the PSD is
Gaussian and stationary for a long period. For these cases, the estimation of the
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Doppler moments is erroneous. However, using a short data record, the Doppler
spectrum can be reconstructed accurately with the PSE approach. A comparison of
the Doppler moments estimation using the techniques discussed in this chapter is
shown for all range-azimuth radar cells.

A similar approach also could be developed using a semi-analytical form of the
ACV function of the time series instead of the PSD. The next chapter in the thesis
explores the approach in detail.





4
GAUSSIAN PROCESS REGRESSION

FOR DOPPLER SPECTRUM

RECONSTRUCTION

This chapter introduces a Complex Gaussian Process regression (CGP-R) technique
for Doppler spectrum reconstruction with aperiodically sampled data. In addition to
estimating the Doppler moments with a few samples in the sequence, the proposed
approach can directly reconstruct the Doppler spectrum in the frequency domain by
using the measurement in the time domain. The CGP-R is an advanced Bayesian
inference technique that can estimate a high-resolution Doppler spectrum in the
frequency domain along with providing uncertainty bounds for the estimates.

Parts of this chapter have been published in:

T. K. Dash, H. Driessen, O. A. Krasnov, and A. Yarovoy, “Precipitation Doppler Spectrum Reconstruction
with Gaussian Process Prior,” 2023 IEEE Conference on Antenna Measurements and Applications (CAMA),
pp. 909–914, 2023
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4.1. INTRODUCTION
The Parametric Spectrum Estimator (PSE) for Doppler moment estimation proposed
in the previous chapter 3 uses a model of the expectation of the PSD for the echo
sequences sampled periodically. However, one can not use PSE for echo sequences
that are acquired/ sampled aperiodically over time. An aperiodically sampled signal
can be realized in cases where 1) periodic data acquisition is not possible, such as in
radio astronomy applications; 2) some samples in the sequence are corrupted with
interference; or 3) the sampling sequence is deliberately chosen to be aperiodic to
address ambiguity or aliasing (more on this in chapter 5).

Given the short records of the echo samples in time and retrieved Doppler
moments, the traditional approaches do not attempt to reconstruct the local Doppler
spectrum, which could help study the microphysics of such events. In this case,
the local spectrum of a stochastic signal refers to the spectrum of a finite-length
(windowed) version of the signal. The stochastic signal sequence is considered
stationary in that the covariance structure of the sequence remains constant no
matter which local part of the signal is considered. However, the signal’s spectrum
can be different from realization to realization. The unavailability of local Doppler
spectrum reconstruction techniques comes from the fact that only the Doppler
moments are usually stored for further use rather than the raw echo samples due to
memory limitations.

Due to the abovementioned limitations, a desired signal processing chain should
have the following features for fast scanning radars:

1. Accurate estimation of Doppler moments with aperiodically sampled short
echo records.

2. Reconstruct the local Doppler spectrum with the help of a few echo samples.

In this chapter, a novel signal processing pipeline is proposed that has several
features such as accurate moment estimation with a few echo samples in time, the
ability to process the echo samples that are not necessarily coherent (usually realized
in a very fast scanning radar with the stationarity assumption of the atmosphere
assumed for a short period) and reconstruct the high-resolution local stochastic
signal and its spectrum directly using a few echo samples in the time domain.
Therefore, by introducing the proposed processing chain, one can store a few echo
samples from regions of interest in space for later investigations. Real radar data
application is shown in §4.8.

The main body of the chapter is organized as follows. The §4.2 presents the
rationale behind the proposed approach. The §4.3 presents the training of the
complex Gaussian process (hyper-parameter estimation). The §4.4 presents the
reconstruction of the local Doppler spectrum (complex Gaussian process posterior).
The covariance models used in this chapter are presented in the §4.5. The
performance of the hyper-parameter estimation is shown in the §4.6. The §4.7
presents the spectrum reconstruction using simulated radar echoes. The §4.9
concludes the chapter. The appendix B presents the formulae to compute the
theoretical variances of the hyper-parameter estimation.
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4.2. RATIONALE BEHIND THE APPROACH, A BAYESIAN PER-
SPECTIVE

As this chapter proposes an estimation of the Doppler moments and the
reconstruction of the Doppler spectrum with a few echo samples stored in time,
a new perspective is put forward. A Bayesian approach has been followed. The
complex weather radar echoes are received from an ensemble of many raindrops in
a certain volume in space [69], [76, Ch. 4, eq.(4.1), p. 67], the sequence of echo
samples can be considered a complex Gaussian process (CGP) with zero mean,
covariance function C and pseudo-covariance P . The PSD of the same process
can be determined by taking the Fourier transform (FT ) of the covariance. A
stationarity condition is considered for the rainy events for a short period; therefore,
it can be assumed that the covariance is a function of only the time difference
between the echo samples and not the absolute time instances C (tp , tq ) =C (tp − tq ).
A parametric form of the covariance function with parameters denoted as Θ is
considered. From a Bayesian perspective, the model is assumed for the time domain
sequence itself (as a CGP); the parameters of its covariance are usually referred to as
hyper-parameters. The CGP of the echo samples in time can be expressed as the
following [99].

z ∼C GP (0,C (Θ) ,P (Θ)) (4.1)

The covariance and pseudo-covariance are given as:

C (tp , tq ) = E[z(tp )z∗(tq )] (4.2)

P (tp , tq ) = E[z(tp )z (tq )] (4.3)

In some special cases, such as typical weather radar echoes, the Gaussian process
is circularly symmetric, meaning that the pseudo-covariance is zero (the process is
also called proper CGP). This can be easily derived if we consider the signal model
of (3.3). The complex covariance function can be written as:

C =Crr +Cii + j (Cir −Cri), (4.4)

where Crr, and Cii are the covariances of the real and imaginary parts only. The
covariances Cri, and Cir are the cross-covariances of the real and imaginary parts,
and j =p−1. For a proper CGP, the following identities hold:

Crr=Cii (4.5)

Cir=CT
ri=−Cri (4.6)

The complex covariance function can be expressed in a matrix form with only
real entries as follows:

CR=
[

Crr Cri

−Cri Cii

]
(4.7)
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This real-valued covariance matrix formulation of (4.7) is advantageous when
dealing with complex-valued observations. The complex-valued observations can be
stacked up as one column vector with real and imaginary parts.

zr,i =
[ ℜ(z), ℑ(z)

]T
(4.8)

Gaussian process regression has two steps. Firstly, the hyper-parameters are
estimated by maximizing the marginal log-likelihood. The second step is sampling
from a posterior distribution. These steps are explained in detail in the following
sections.

4.3. HYPER-PARAMETER ESTIMATION ( TRAINING THE CGP)
Modeling the signal sequence as a proper CGP gives us the advantage of using
the well-defined marginal log-likelihood to estimate the hyper-parameters Θ. The
log-likelihood is given by (derived from the probability density function of [100, eq.
(5.8)]:

log
(
p(z|Θ)

)=−1

2
zH(C+σ2

n1N )−1z− 1

2
log |C+σ2

n1N |− N

2
log(2π) , (4.9)

where H is the Hermitian operator, || is the determinant operator, and σ2
n1N is the

covariance matrix of a zero mean white Gaussian noise (N is the number of data
points). The hyper-parameters can be estimated by maximum likelihood estimation.
It is worth noting that in (4.9), the covariance matrix used is the complex one
(4.4), and the observations are also directly the complex observations z. The
hyper-parameters are the Doppler moments in this case.

Θ̂= max
Θ

log(p(z|Θ)). (4.10)

The algorithm adopted for optimization is presented in algorithm 1.

4.4. LOCAL SIGNAL AND SPECTRUM RECONSTRUCTION

4.4.1. POSTERIOR IN THE TIME DOMAIN
After obtaining the estimates of the Doppler moments, the posterior can be obtained
both in time and frequency domains directly using the time domain observations.
The posterior outputs are jointly proper with the training data (observed data). The
mean and covariance of the posterior outputs are given below.

ẑr,i
(
t∗

)= CT (
t,t∗

)
C−1

CN(t,t)zr,i, (4.11)

Ĉ(t∗,t∗) = CT(t∗,t∗)−CT(t,t∗)C−1
CN(t,t)C(t,t∗), (4.12)

where t are the time instances of the observations and t∗ are the desired time
instances for the posterior. The observations z have the same dimension as t. The
lower case letters in bold represent vectors, whereas the bold upper case letters
represent matrices. The ˆ superscript refers to an estimated/ posterior quantity. The
covariance with the subscript CN refers to the covariance of the data with added
covariance of a white Gaussian noise sequence.

CCN = CR +σ2
n12N (4.13)
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4.4.2. POSTERIOR IN THE FREQUENCY DOMAIN
The frequency domain posterior can be sampled directly from a Gaussian process
having the following mean and covariance [101] (because the time domain signal
and the spectrum functions are jointly proper):

ẑF(r,i) (f) = CtF
T (t, f)C−1

CN(t,t)zr,i, (4.14)

ĈFF(f, f) = CT
FF(f, f)−CT

tF(t, f)C−1
CN(t,t)CtF(t, f), (4.15)

where f are the desired frequency points where the posterior needs to be sampled.
In (4.14) and (4.15), there are two extra covariance matrices used along with CCN.
The covariance matrix CFF is nothing but the covariance of the local spectrum CF ( f )
[101] and is the FT of the covariance matrix in the time domain C.

CFF=
(

CFrr 0
0 CFrr

)
(4.16)

The entries of the CFrr are given by:

CFrr( fp , fq ) = 1

2
FT (C (τ))

(
fp + fq

2

)
×δ( fp − fq ) (4.17)

The cross-diagonal terms are 0 because the Fourier transform of the time covariance
is a real-valued function. It is also the PSD. The formulation of this covariance matrix
is the same as given in [101] but without consideration of the window function. The
cross-covariance between the local spectrum and the time series can be expressed
as:

CtF=
(

CtFrr CtFri

−CtFri CtFrr

)
(4.18)

The entries of CtFrr , and CtFri are:

CtFrr(t , f ) =FT (C (τ))( f )cos
(
2π f t

)
(4.19)

CtFri(t , f ) =−FT (C (τ))( f )sin(2π f t ) (4.20)

The covariance functions of typical weather, like Doppler time sequences, are
explained in the following §4.5.

4.5. COVARIANCE MODEL FOR WEATHER ECHOES
The signal model with the Doppler moments as parameters are referred from [69]
(also (3.3)). Using the same signal model and by using (4.2), it can be shown that
the covariance function has the following expression:

CCN(tp , tq ) =R exp
(
−8π2T 2σ2

v

(
tp − tq

)2/λ
)
×exp

(
j

4πT

λ
µv

(
tp − tq

))+σ2
nδ(tp − tq ),

(4.21)

where v is the radial velocity, R is the total power of the signal PSD, µv and σv

are the mean Doppler velocity and the Doppler spectrum width, λ is the central
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wavelength, T is the pulse repetition time of the radar. For simplicity, normalized
frequency quantities (normalized with the maximum unambiguous frequency) are
used instead of velocities for the parameters, and the normalized parameters are
denoted with a subscript n . Therefore, using µ f n = 2µv T /λ, and σ f n = 2σv T /λ , the
covariance can be rewritten as:

CCN(tp , tq ) = R exp
(
−2π2σ2

f n

(
tp − tq

)2
)
×exp

(
j 2πµ f n

(
tp − tq

))+σ2
nδ(tp − tq ). (4.22)

The model of the CFrr therefore can be given by the FT of the covariance function.

CFrr( f ) = R

2
√

2πσ2
f n

exp

(
− (µ f n − f )2

2σ2
f n

)
(4.23)

The covariance CtF can therefore be expressed in closed forms based on (4.19), and
(4.20). In practice, for radar applications, obtaining an estimate of noise variance is
possible experimentally. Moreover, in estimation problems, the power/ amplitude is
often considered a nuisance parameter. An estimate of R can be obtained by taking
the average power of the signal in the time domain. Therefore, in this chapter, it is
assumed that the power R and the noise variance σ2

n are known quantities.

4.6. PERFORMANCE OF HYPER-PARAMETER ESTIMATION

The signal model of (3.3) is used to simulate the weather echoes in time with
various normalized spectrum widths and a fixed normalized mean Doppler µ f n = 0
(the number of echo samples N = 64). The samples are coherent in time, making a
fair comparison with the non-parametric techniques. The number of iterations in
the optimization process explained in the algorithm 1 is U = 256. A Monte-Carlo
simulation is performed for each spectral width at a fixed noise level with 12 dB input
SNR [90]. The hyper-parameters (Doppler moments) are computed by maximizing
the log-likelihood (4.9). The optimization is performed using the active-set and the
Limited Memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithms [93]. This
method is preferred for its shorter computation time. Both moment estimates’ bias
and standard deviation ((3.17), (3.18)) with 1024 Monte-Carlo runs are shown in
Fig. 4.1 with two other non-parametric techniques (DFT and PP) and PSE. The
theoretical variances are computed similarly to those in PSE. The entries to the
Fisher information matrix for CGP is presented in Appendix B.

It can be observed that the bias and standard deviations obtained by the
proposed approach CGP and PSE are better than DFT and PP for (σ f n < 0.2 ).
However, especially for very high spectrum widths (σ f n > 0.2 ), PP has a lower bias.
The DFT approach has a smaller standard deviation for (σ f n > 0.2 ) than other
approaches due to its considerable bias. The estimation performance of CGP is
very similar to that of PSE. PSE does not involve inverse matrix operation, so it
remains computationally more efficient. The advantage of CGP over PSE in moment
estimation is that CGP can handle aperiodically sampled echoes.
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Figure 4.1: Performance of the hyper-parameter estimation for with respect to σ f n at µ f n = 0. a
Biases in the estimates of the mean Doppler frequency normalized µ̂ f n , b Doppler frequency width
normalized σ̂ f n . c Standard deviation of the estimates of the Mean Doppler frequency normalized
µ̂ f n , d the Doppler spectrum width normalized σ̂ f n , e legends for the figures. “Theor” refers to the
theoretical plots.

4.7. SPECTRUM RECONSTRUCTION ON SIMULATED RADAR

ECHOES

The spectrum reconstruction is applied to simulated radar echoes generated using
the signal model given in (3.6) in chapter 3. The true normalized mean is µ f n = 0.1,
and the normalized spectral width is σ f n = 0.04. The signal is generated with N = 128
coherent samples. Two cases are shown for reconstruction: one with 16 (12.5% data
) echo samples randomly chosen from the original 128, and the second with 32
(25% of the data). Table 4.1 shows the hyper-parameter estimation results for one
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realization of the measurement.
The real part of the posterior (posterior mean with some realizations sampled

from the posterior distribution) with the observations and ground truth (the original
signal) is shown in Fig. 4.2. It can be observed that with an increasing number
of samples, the reconstruction is better. The uncertainty bounds in the estimates
increase in regions without measurements. There are some large regions where there
are no measurements, e.g., in Fig. 4.2a from t = 90 till t = 110, the predicted mean
in the reconstruction converges to 0, which is the prior distribution assumed by the
Gaussian process model.

Table 4.1: Hyper-parameter (Doppler moments) estimation

Parameter Percentage of data True Estimated
µ f n 12.5 0.1 0.1174
σ f n 12.5 0.04 0.0402
µ f n 25 0.1 0.0905
σ f n 25 0.04 0.0418

The real parts of the reconstructed posterior spectrum (posterior mean and some
realizations sampled from the posterior distribution) are shown in Fig. 4.3. The
plots are zoomed in to show the useful part of the spectrum. The reconstruction
is compared with the DFT spectrum of the full signal and with zero-padded
measurements. It can be observed that with just a fraction of the full signal as
measurements, the CGP approach reconstructs the local spectrum, which agrees
with the full DFT spectrum.

The power spectrum is shown in Fig. 4.4. The PSD reconstruction with CGP
improves with an increasing number of samples. The posterior mean estimate only
with 12.5% data can reconstruct the local spectrum adequately. As the frequency
domain estimates are integral representations of the signals in the time domain, the
reconstruction errors in the frequency domain can be averaged out and become
smaller than the errors encountered in the time domain. A study of the errors in
the time domain is presented for the reconstruction, considering the mean posterior
estimate.

Two different criteria are chosen to evaluate the performance of the reconstruction:
one is the error in the CGP mean reconstruction, and the other is the error in
the CGP mean but only at the places where the observations/ measurements are
available. This error analysis is performed for CGP reconstruction in the time
domain. The performance is not studied in the frequency domain because the
objective of the reconstruction in the frequency domain was to reconstruct the local
spectrum and not the true spectrum. The error chosen is the relative Root Mean
Square Error (rRMSE) in the percentage scale and is given by:

rRMSE =
√√√√ 1

N

(∑
i

(
ẑ(i )− z(i )

z(i )

)2
)
×100 (%). (4.24)

For this analysis, the number of samples in the original sequence is Ngt = 128
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Figure 4.2: Time domain reconstruction for real part of the signal a 12.5% data, b 25% data, c legend
for the figures.

(can be considered ground truth). The analysis is carried out with respect to the
samples considered in the measurements N at a constant normalized mean Doppler
frequency µ f n = 0 and normalized spectral width σ f n = 0.04. The results are shown
in Fig. 4.5. The number of Monte Carlo runs for this analysis is 128. The errors
decrease with an increase in the number of data points.
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Figure 4.3: Real part of the frequency domain reconstruction a 12.5% data, b 25% data, c legend for
the figures. “Meas” stands for measurements.

4.8. APPLICATION TO REAL RADAR DATA
The Doppler spectrum reconstruction is performed with data collected from a rain
event on May 9, 2023 from the X-band in FMCW MESEWI radar (from the horizontal
polarization “HH” channel) at the Delft University of Technology, Netherlands. The
radar parameters are shown in Table 3.1. The sampled intermediate frequency data
is processed as follows. After DC compensation, range processing is carried out
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Figure 4.4: PSD reconstruction a 12.5% data, b 25% data, c legend for the figures. “Meas” stands for
measurements.

by an FFT in the fast-time domain. The mean is subtracted from each slow time
sequence to remove the effect of the clutter. The Doppler processing is carried
out in each range-azimuth cell. However, in this chapter, the reconstruction of the
Doppler spectrum at one resolution cell that had a range of 1.5 km from the radar
and at an azimuth of 277◦ in a clockwise direction from the geographical north is
shown. The elevation at which this data was acquired was 30◦.
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Figure 4.5: PSD reconstruction a rRMSE error in the full mean reconstruction, b rRMSE error in the
mean reconstruction only at the observation points.

The radar scan speed was one rotation per minute 1 rpm with 512 echo samples
available from each resolution cell for Doppler processing. The first 128 samples are
considered for the study and these samples are considered as the ground truth in
the time domain. To simulate a condition where only a few samples are available,
random samples from this sequence as measurements are chosen to be used for the
reconstruction. A few random samples are chosen for this research to show that
the proposed approach can reconstruct the Doppler spectrum of extended weather
targets with only a few aperiodically spaced measurements.

The hyper-parameter estimation is shown in Table 4.2. The time domain
reconstruction of the real part of the echo samples is shown in Fig. 4.6. Similar
conclusions can be drawn here, as in the case of simulated signal reconstruction.
The reconstruction is better with an increase in the data points. In the figures, “GT”
stands for the ground truth, which incorporates all the 128 samples in the sequence.
Of these measurements, only a few are used for the reconstruction.

Table 4.2: Hyper-parameter (Doppler moments) estimation

Parameter Percentage of data Estimated (m/s)
µv 12.5 -6.96
σv 12.5 0.50
µv 25 -7.07
σv 25 0.63

The real parts of the reconstructed posterior spectrum (posterior mean with
some realizations sampled from the posterior distribution) with the observations and
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Figure 4.6: Time domain reconstruction for real part of the signal a 12.5% data, b 25% data, c legend
for the figures.

Schuster periodogram (DFT power spectrum) are shown in Fig. 4.7. The plots are
zoomed in to show the useful part of the spectrum. The PSD reconstruction is shown
in Fig. 4.8. Similar conclusions can be drawn for the reconstruction as they were
drawn from the simulation analysis. The performance is superior to the Schuster
periodogram constructed with zero-padded measurements. The reconstruction with
only a few data points can match the trends of Schuster’s periodogram constructed
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Figure 4.7: Real part of the frequency domain reconstruction a 12.5% data, b 25% data, c legend for
the figures. “Meas” stands for measurements.

with the full signal.

4.9. CONCLUSIONS
A time-domain approach to Doppler spectrum reconstruction is explored in this
contribution. The signal in the time domain is assumed to be a stochastic complex
Gaussian Process (CGP) with zero (0) mean and a complex covariance structure (C).
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Figure 4.8: PSD reconstruction a 12.5% data, b 25% data, c legend for the figures. “Meas” stands for
measurements.

The covariance C is parameterized with physical parameters of interest related to the
rain (Θ). In GP literature, these parameters are known as the hyper-parameters. For
simplicity, the hyper-parameters are considered the same as in the previous chapter,
i.e., the Doppler spectral moments.

Complex Gaussian process regression (CGP-R) is applied to reconstruct the
Doppler spectrum. Firstly, the marginal log-likelihood for the hyper-parameters is
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maximized to estimate the hyper-parameters (Θ̂). Using the estimated parameters
Θ̂, the signal and spectrum can be reconstructed using the CGP posterior. Unlike
popular GP literature, this work tries to reconstruct the spectrum directly using
a CGP posterior in the frequency domain. The CGP-R is a Bayesian technique.
Therefore, uncertainty in the estimates is also computed in addition to the predicted
signal mean in the time and frequency domain. To the author’s knowledge, it is
the first time a direct frequency domain posterior is formulated and applied to the
weather radar echoes to reconstruct the Doppler spectrum for precipitation, making
it novel.

The hyper-parameter estimation performance is assessed by the bias and variance
in the estimates and compared with the non-parametric techniques, such as DFT
and PP, and the parametric technique PSE proposed in the chapter 3 for equispaced
echo samples for a fair comparison. The proposed CGP approach outperforms the
other methods in terms of bias and variance. It matches the performance of PSE.

This approach has been applied to simulated radar echoes and real radar data
acquired from MESEWI radar at TU Delft at specific resolution cells to reconstruct
the Doppler spectrum with the CGP posterior. It has been shown that the CGP-R
in the frequency domain can reconstruct the Doppler spectrum with only 12.5% of
the echo samples. The posterior mean with 12.5% of the echo samples has excellent
agreement with the DFT Doppler spectrum (using all the echo samples acquired
during the observation). From the simulation analysis, it is concluded that the
reconstruction rRMSE error in the time domain is only 1% when only 5% data is
available for a normalized spectral width of σ f n = 0.04. The uncertainty estimates
are also computed. The frequency domain posterior is calculated directly using the
time domain measurements, posing no additional computational burden.

To sum up, the novel time domain CGP-R approach is effective and accurate
for the Doppler spectrum reconstruction with only a few echo samples, preferably
un-uniformly spaced in time. The only drawback is the comparatively higher
computational resources required than the PSE for the hyper-parameter estimation
as it involves matrix inverse operations (as it uses both real and imaginary signal
parts in the time domain).



5
COUNTER-ALIASING OF DOPPLER

SPECTRUM

This chapter proposes an integrative approach to counter the effect of aliasing in
the Doppler spectrum for precipitation. The previous chapter demonstrated that PSE
surpasses state-of-the-art techniques for spectral width estimation, even with aliased
spectra, but did not address the aliasing/ ambiguity issue for the mean Doppler velocity
estimation. PSE is limited to periodically sampled echo sequences. Here, an aperiodic
sampling strategy is introduced, with parameter estimation formulated in the time
domain using Complex Gaussian Process Regression (CGP-R). Unlike PSE, which uses
PSDs of the echo sequence, CGP utilizes both real and imaginary parts, providing
complete information. Besides Doppler moment estimation, a high-resolution local
stochastic spectrum reconstruction using a direct CGP posterior in the frequency
domain is proposed. This counter-aliasing approach is superior to other techniques,
including the staggered pulse repetition time (PRT) de-aliasing approach, offering
significant advancements in accurate and reliable Doppler spectrum analysis.

Parts of this chapter have been published in:

T. Dash, H. Driessen, O. A. Krasnov, and A. Yarovoy, “Counter-Aliasing Is Better Than De-Aliasing:
Application to Doppler Weather Radar With Aperiodic Pulse Train,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 62, pp. 1–17, 2024,

S.A.K Syed Mohamed, T. Dash, O. A. Krasnov, J. Bout, R. v. d. Meer, and A. G.
Yarovoy, “Application of non-uniform sampling to avoid aliasing in the precipitation Doppler spectrum,”
2024 International Radar Symposium (IRS), pp. 216–221, 2024
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5.1. INTRODUCTION
Aliasing is caused by the sensor configuration, which limits the reconstructed
velocities/ frequencies to the Nyquist unambiguous velocity/ frequency limit. Aliasing
causes ambiguity when the targets of interest move with higher velocities than this
limit.

Doppler spectrum aliasing is not a new problem. It can also be found in other
radar-related applications, such as automotive and millimeter wave applications
[104], [105], [106], and synthetic aperture radar (SAR) remote sensing [107], [108],
[109]. Doppler aliasing is also observed in studies other than radar, such as in
ultrasound and ultrasonography sensing [110], [111], [112]. In this chapter, however,
the focus is on the aliasing impact on the parameter retrievals and Doppler spectrum
reconstruction for precipitation only.

The parameter that is heavily affected by aliasing is the mean Doppler velocity. It
is further used to compute the vertical raindrop speed (also known as the terminal
fall velocity) and the horizontal wind field as a function of space and time [9],
[23], [24], [25], [26], [27], [28]. Some of the de-aliasing techniques are addressed
in the post-processing phase to locate the mean Doppler velocity correctly by
using information from other sources (also sometimes non-radar sources). These
methods detect sharp mean Doppler velocity transitions across resolution volumes,
assuming smooth and homogeneous wind fields. In these post-processing de-aliasing
algorithms, challenges include missing or corrupted mean Doppler velocity retrievals,
addressed by advanced tools like [113] and [114, Ch. 5] (model-based optimization
technique). Some techniques incorporate temporal reflectivity and mean Doppler
velocity variability to relax the assumption of a homogeneous wind field [115], albeit
at increased computational cost. In addition, these temporal approaches may still
rely on assumptions like reflectivity conservation [116] (often associated with fluid
flow).

Aliasing in many existing sensor systems is inevitable due to one crucial system
design related to the transmitted radar pulse train: the fixed interval between two
successive transmitted signals (also known as the pulse repetition time, PRT). This
type of signal sampling is known as periodic sampling. Therefore, the apparent
strategy that has been tried to avoid aliasing is an aperiodic way of sampling
the signal. Despite numerous efforts to realize optimized sampling strategies and
parameter estimation techniques, aliasing remains an issue due to the lack of
an appropriate frequency domain conversion technique (leading to much higher
ambiguous lobe levels). One such sampling strategy is known as the staggered
sampling sequence, where the sequence alternates between two periodically sampled
sequences [19], [117]. Although the de-aliasing scheme presented with staggered
sequences is computationally efficient, they are susceptible to errors introduced by
the individual velocity estimates of the constituent sampling sequences. External
inputs are often used to mitigate such errors, like spatial and temporal continuity of
Doppler moments [19], [18].

To address the aliasing issues, one needs to broaden the research horizon,
investigate the problem of ambiguity from various perspectives, and combine the
outcomes of these investigations in one generic approach.
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This chapter constructs a generic, novel, and integrative approach that exploits an
aperiodic sampling sequence. An integrative approach means that complementary
knowledge from different research areas has been brought together to address the
problem of ambiguity (the word “integrative” is emphasized to show that it is not
just a combination of techniques).

The various research areas which contribute to the integrative approach proposed
are the following:

1. The Nyquist limit for aperiodically sampled signals.

2. Radar signal processing approaches to deal with aperiodically sampled signals
in the frequency domain.

3. Frequency domain conversion techniques specifically designed for aperiodic
sequences.

4. Model-based parameter estimation and reconstruction of Doppler frequency
spectrum.

Each topic mentioned above in the literature considers several aspects of aliasing
but ignores certain others. Hence, the significant contribution of this chapter is a
novel integrative approach for radar-based weather monitoring that addresses the
research gaps among all the areas mentioned above.

The proposed approach is based on Complex Gaussian Process (CGP) regression
on aperiodically sampled signals. It is a parametric technique where parameter
estimation is performed first, followed by spectrum estimation. Apart from the
novel integrative approach to address the gaps and the advantages of each research
area, an intuitive study of the Doppler parameter estimation performance analysis
using the proposed technique is presented. This study presents the benefits of
the integrative approach and shows the physical limiting conditions for accurately
estimating Doppler velocity/ frequency parameters unambiguously. The parameter
estimation is compared with the state-of-the-art Doppler moment estimators, such
as the Discrete Fourier Transform (DFT), Pulse Pair (PP), the Parametric Spectrum
Estimator (PSE) [56], and a staggered sampling approach [19]. The performance
of the parameter estimation is also studied with respect to the non-linearity in
the sampling sequence. Furthermore, the Doppler spectrum is reconstructed in
the frequency domain directly using the CGP posterior [98] and compared with
the non-uniform DFT-based periodogram (non-uniform Schuster periodogram). The
integrative approach proposed in this chapter is classified as a counter-aliasing
technique (and not a de-aliasing technique), where the Doppler velocities and the
spectrum are estimated directly from an aperiodically sampled sequence. It does not
involve any de-aliasing scheme where true velocities are estimated based on some
pre-estimated velocities (e.g., staggered sampling) or extra information (e.g., Unfold
Radar Velocity algorithm or UNRAVEL [113]).

The main body of the chapter is structured as follows. The §5.2 presents a broad
overview of the state of the art and the rationale behind the proposed approach. The
§5.3 explains the signal and the covariance model for typical precipitation events.
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The §5.4 is devoted to estimating hyper-parameters in the CGP covariance model
(parameters of the Doppler spectrum) and the local spectrum reconstruction. The
§5.5 presents hyper-parameter estimation performance analysis results and Doppler
spectrum reconstruction with simulated radar echoes. Finally, §5.6 concludes the
chapter.

5.2. STATE OF THE ART AND THE RATIONALE BEHIND THE

PROPOSED APPROACH
In this section, a comprehensive analysis of all the fields of study introduced in
the Introduction §5.1 to understand better the issue of aliasing from different
perspectives is presented. The missing analysis and research gaps in all these
areas of study are delineated. Finally, the rationale behind the proposed integrative
approach and its operation is presented.

5.2.1. THE NYQUIST LIMIT FOR APERIODICALLY SAMPLED SIGNALS
For any frequency domain interpretation, defining the maximum observable
frequency allowed (also called the Nyquist limit) due to the measurement setup is
essential. The Nyquist frequency limit is the maximum frequency observable as a
result of digitally sampling a signal. The Nyquist limit is very well defined when
the signal is sampled periodically ( fNY,per = 1/(2Tk,per)), where Tk,per is the periodic
sampling interval. However, the Nyquist limit for aperiodically sampled sequences is
very ill-defined in the literature. A definition is given in [118], [119], [120] for any
sampling sequence (note the ≤):

fNY ≤ 1

2
10d Hz, (5.1)

where d is the decimal point precision. For example, if we consider a time sequence
where we can measure time with six decimal point precision, the maximum Nyquist
limit can be as large as 0.5 MHz if the sequence is aperiodic in nature. This property
of breaking the periodicity of the sampling sequence is beneficial in avoiding
ambiguity or aliasing. The corresponding velocity parameters are related to the
frequency as v = f λ/2, where λ is the radar central wavelength. Therefore, the
maximum unambiguous velocity of any sampling sequence as Va is given by:

Va ≤ λ

4
10d Hz. (5.2)

Throughout the chapter, the subscript “per” s used for periodic sequences,
“ap” for aperiodic sequences, and “st” for staggered sequences for clarity. A
similar conclusion can be drawn from the literature describing staggered sampling
sequences. A staggered sampling sequence is a sampling sequence that switches
among several periodic sampling sequences. In [19] and [117], the staggered
sequence is made with two periodic sampling sequences whose ratio of sampling
intervals is denoted as m/n, where m and n are integers. If the sampling intervals
are Tst,1 and Tst,2, the underlying sampling interval that satisfies both should
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be the greatest common divisor of Tst,1 and Tst,2. If this underlying sampling
interval is denoted as Tu , the intervals Tst,1 and Tst,2 are integer multiples of Tu

(Tst,1 = mTu ,Tst,2 = nTu). This underlying sampling sequence decides the Nyquist
frequency of the staggered sequence, i.e., fNY,st = 1/(2Tu)Hz. If m and n are relatively
prime, the largest time interval of which Tst,1 and Tst,2 are integer multiples is 10−d s.
The Nyqyuist frequency in this case is fNY,st = 1/2×10d Hz. Therefore, the expression
in (5.1) is justified for any sampling sequence. To sum up, in any aperiodic sequence
in which there is no obvious greatest common divisor for all sampling intervals
in the sequence, one can safely consider that there is still an underlying periodic
structure (grid) of which all the sampling intervals are integer multiples, and it is
Tu = 10−d s.

Several methods exist to create an aperiodic sampling sequence, such as linearly
increasing chirp sampling, random sampling based on a Gaussian distribution,
sinusoidal sampling, etc [121], [122], [123]. However, choosing one for the required
application of interest can be challenging. In this chapter, only the log-periodic
sampling sequence is used and compared with the conventional periodic and
staggered sampling cases. Firstly, a log-periodic sampling is chosen because it is
inherently irrational, and the user can define the precision based on the desired
decimal point accuracy (an equality sign can be realized for this sampling in (5.1)
and (5.2)). The requirement for a certain number of decimal point accuracy can
arise from hardware constraints for measuring the sample instances. Secondly, the
parameters of the sampling rule can be tuned to ensure the minimum sampling
interval doesn’t subceed a threshold; hence, it allows for a fair comparison with a
corresponding periodic sampling sequence. Thirdly, its performance in the case of
point frequency response has been studied, and its performance is the best among
all the other non-uniform sampling strategies in terms of the sidelobe levels [121].
A detailed explanation of the sampling rule with the log-periodic sampling strategy
has been presented in the numerical simulation §5.5.

The application of log-periodic sampling can be found in the field of antenna
array design [124] (here, the sampling refers to the physical placement of antennas in
space), and Doppler processing [121]. In these studies, the effect of the log-periodic
sampling is studied in the case where the signal consists of one sinusoid in the
presence of white Gaussian noise. However, these analyses do not study the
performance when the frequency spectrum of the target response is continuous and
extended, like a typical precipitation-like Doppler spectrum.

5.2.2. RADAR SIGNAL PROCESSING APPROACHES TO DEAL WITH APERI-
ODICALLY SAMPLED SIGNALS IN THE FREQUENCY DOMAIN

As the raw radar echoes are collected in the physical time domain, extra processing is
often applied to visualize it in the frequency domain. Let’s consider the unambiguous
velocity interval being [−Va,per,Va,per] for a traditional periodic sampling case.

Let’s assume that the majority of the scatterers (raindrops, in our case, in
one big radar volume) are moving with an average velocity of v = 1.5Va,per in
reality. If we construct the Doppler power spectrum with a traditional frequency
domain technique, we will find that the majority of the scatterers are moving with
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(−Va,per +0.5×Va,per), meaning that the excess from Va,per is circularly shifted and
added in the opposite direction (at −Va,per). If we construct the power spectrum
for velocities [−pVa,per, pVa,per], p > 1, p ∈Z+ in the hope of finding the true mean
velocity at 1.5×Va,per with the maximum power level, to our surprise, we will find
that the power levels of all radial velocities that are of the form v ±2pVa,per are
the same; causing ambiguity (these lobes in the frequency domain are called as
“grating lobes” or “ambiguous lobes.”). As discussed in the previous subsection
5.2.1, in principle, with a proper frequency domain conversion technique, an
aperiodic sequence should decrease these higher ambiguous lobe levels, making it
unambiguous.

However, there are three missing pieces in the radar literature related to this
issue. First, a suitable frequency domain conversion technique is unavailable
to realize an unambiguous frequency spectrum for aperiodically sampled signals.
Many studies use a Discrete Fourier Transform (DFT) based periodogram approach
(Schuster periodogram [125]) to construct the frequency spectrum for aperiodically
sampled signals.

However, using a simple DFT on aperiodically sampled signals is inefficient as
the DFT approach inherently constructs the resonant peaks based on the sampling
intervals. If the sampling interval is aperiodic, the DFT response becomes noise-like.
Although the ambiguous lobe levels can be reduced, they are not considerably
suppressed. These partly suppressed ambiguous lobes that create noisy artifacts in
the spectrum will be referred to as “ambiguous artifacts” further in the text. The
term “ambiguous locations” is used to refer to the locations in frequency where
ambiguous lobes are expected. For example, aperiodic sampling has been used for
Doppler frequency response for time series [121]. However, the analysis is restricted
to point targets, and the frequency response is studied only with the Schuster
periodogram, resulting in higher levels of ambiguous artifacts. Another example
can be found in spatial aperiodic sampling, which is deliberately used in antenna
array design for communication and radar applications for two main purposes. The
first purpose is to increase the aperture size with fewer antenna elements than if
designed periodically to have a larger gain and suppression of the ambiguous lobes
to avoid confusion regarding the angle of arrival (radiation pattern). However, the
radiation patterns of these antenna arrays in these studies are usually computed
with a Schuster periodogram, resulting in higher levels in the ambiguous artifacts.
Some extra processing is usually applied to suppress the artifacts further [126], [127].

Secondly, the Nyquist limit of such aperiodic sampling strategies is not well
discussed. Thirdly, the effect of aliasing on continuous and extended frequency
responses (like that from precipitation-like Doppler spectrum) is not discussed. For
continuous and extended frequency response, by the application of the Schuster
periodogram, ambiguity remains a problem when the normalized spectral width of
the target crosses a threshold, even with an aperiodically sampled sequence. It is
demonstrated in the simulation §5.5. Usage of Schuster periodogram can be found in
[128] for log-periodic sampling for weather Doppler radar data. As this periodogram
produced higher levels of ambiguous artifacts (especially deteriorating the frequency
response as the spectral width increases), it suggests the use of techniques like



5.2. STATE OF THE ART AND THE RATIONALE BEHIND THE PROPOSED APPROACH

5

73

the iterative adaptive approach (IAA) proposed in [129] to suppress the artifacts
further. The frequency grid chosen for this analysis can be very large; therefore, the
computational complexity grows as a function of the number of iterations in the
IAA algorithm. If used incorrectly, the useful spectra levels can also get suppressed
along with the artifacts. Therefore, special care must be taken when applying these
techniques.

A useful de-aliasing algorithm has been presented for the mean Doppler
frequency in the study of the staggered sampling sequence of [19]. However, the
algorithm is highly sensitive to errors in the individual estimates of the mean
Doppler frequency by the two constituent periodic sampling sequences. Statistical
performance analysis of the estimate of the mean Doppler frequency is not presented
with respect to the spectral width in [19]. Therefore, the numerical analysis §5.5
of this chapter presents the performance of the Doppler moments estimation with
a staggered sampling sequence with a staggered sampling ratio m/n ≈ 2/3 and is
compared with the proposed log-periodic sampling sequence.

5.2.3. FREQUENCY DOMAIN CONVERSION TECHNIQUES SPECIFICALLY

DESIGNED FOR APERIODIC SAMPLED SIGNALS.
After discussing the problem in the radar domain, the analysis is extended to the
spectral estimation domain. Therefore, the literature based on spectrum estimation
explicitly theorized for aperiodically sampled signals [130], [131] is explored. These
techniques are typically found in the radio astronomy literature, where the received
signal is usually not acquired at periodic intervals.

The Lomb-Scargle periodogram mentioned in [130], [131] is based on a least
square fit of the observations with a Fourier-like basis, having discrete frequencies
but different amplitudes for the real and imaginary parts. The study drawn from a
Bayesian periodogram analyzed by [132] shows that the Lomb-Scargle periodogram
is the optimal periodogram for aperiodic sequences, assuming that the signal is
resonant with one sinusoid in the presence of white Gaussian noise. The Bayesian
formalism of the generalized Lomb-Scargle periodogram is given in [131], [133].

The exponentiation of the generalized Lomb-Scagrle periodogram for sinusoids
with white Gaussian noise explained in [131], acts like a spectral window where the
idea is to suppress the sidelobes and ambiguous artifacts significantly while retaining
the shape of the main lobe; however, exponentiation should be performed carefully
[118].

Although the nuances of such approaches are discussed, derivation of the power
spectrum with a generalized Lomb-Scargle periodogram [134] for a complex signal
(with real and imaginary parts of the signal acquired at the same instant with no
decay factor in the model), demonstrates no difference from the classical Schuster
periodogram. On the other hand, there is also a minimal difference in the sidelobe
levels, even for real-valued signals. These techniques are also often designed for a
Dirac comb-like frequency response (a combination of pointed frequencies placed at
sparse locations in the frequency domain). The issues related to extended frequency
responses still remain.

The staggered sampling of [19], is used in [117] to construct the Autocorrelation



5

74 5. COUNTER-ALIASING OF DOPPLER SPECTRUM

Spectral Density (ASD). This technique is useful in separating clutter from
precipitation. Although it shows the ASD preserves the spectral response of the
clutter near the zero frequency and the sidelobe levels are adequate enough in the
frequency range f < fNY/5 for a staggered sampling ratio of m/n = 2/3, it does not
show the power levels at the ambiguous locations. Therefore, it is difficult to judge
the ambiguous artifacts in the construction of ASD.

The approach proposed in this chapter is compared with the aperiodic Schuster
periodogram in the numerical simulation §5.5, because the radar echoes in slow
time, are also complex-valued, and the real and imaginary parts of the signal are
received at the same time instant.

5.2.4. MODEL-BASED PARAMETER ESTIMATION AND RECONSTRUCTION

OF DOPPLER FREQUENCY SPECTRUM.
Using model-based techniques, some crucial parameters of the Doppler spectrum
can be estimated first before reconstructing the spectrum. The literature on Gaussian
processes (GP) addresses this issue. The covariance of the signal is modeled with
these parameters. These parameters of the GP are estimated by performing the
maximum likelihood estimation (MLE) on the marginal log-likelihood.

There are a few missing points in all these studies. The literature that studies
the signal reconstruction in its original domain (for example, in this case, the time
domain) often ignores the rebuilding of the frequency domain [135]. The literature
that deepens into the frequency domain reconstruction often avoids the aliasing
issue and complex signals and only deals with real-valued signals [101]. The ones
that study complex signals with complex Gaussian processes (CGP) and study the
frequency domain reconstruction [98] do not study the ambiguity issues in detail.
In all the GP literature, the spectrum/ signal reconstruction is often assumed to
be non-parametric. Still, in reality, the covariance of the signal is modeled with
some parameters. These parameters are known as hyper-parameters, and the signal/
spectrum reconstruction is highly dependent on the estimated counterparts of these
parameters.

The periodic covariance models (or periodic kernel functions) of the GP literature
often have a quantity that can characterize an extended target (the spectral width
explained earlier in the Introduction §5.1) and a quantity that characterizes the
target’s location (the mean Doppler frequency explained earlier).

For correlating the meaning of these parameters with normalized weather
Doppler parameters mentioned in the Introduction §5.1, it is advised to check the
literature: γq , and θq of [101, eq. (15)] is similar as 2π2σ2

f n , and µ f n of (4.23),

respectively. However, as these studies focus on reconstructing the signal, they often
do not present a performance analysis of the estimation of the hyper-parameters.
For example, the focus of [136] is finding a global maximum in the log-likelihood
containing these parameters. It is understood that they try to find the global maxima
in an attempt to reach the true location of the target(s) by avoiding getting stuck
at the ambiguous lobes (the local maxima). However, the performance of such
hyper-parameter estimations has not been appropriately studied for extended targets
(by varying the normalized spectral width).
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It is also plausible that for certain values of normalized spectral widths, the
global maxima for the location parameter (mean Doppler) becomes highly sensitive
to the measurements, and the solution becomes truly ambiguous. These techniques
are also often applied to signals with missing observations, but they do not often
study the aliasing phenomenon and aperiodic sequences.

For the application discussed in this chapter, the hyper-parameters directly relate
to physical phenomena in the atmosphere and are highly important for wind and
turbulence predictions. As described in [69] and [56], modern fast-scanning weather
radars do not have enough time on the extended target volumes due to their
fast scanning nature. The “CGP” approach is often preferred, especially when the
number of data points is small. Therefore, this chapter presents an estimation of
these parameters with a few data points mimicking fast scanning radars.

5.2.5. RATIONALE BEHIND THE PROPOSED APPROACH

In this subsection, the proposed integrative approach for counter-aliasing is
presented. A log-periodic sampling is adopted for this study as it has a good
frequency response for point-like targets [121]. The explanation is given in the
subsection 5.2.1. After that, the signal is modeled as a CGP with a covariance
function that combines components containing three parameters (their strength,
location, and width).

In this chapter, hyper-parameter estimation is conducted to assess the
applicability of the proposed log-periodic sampling, focusing on the spectral
width’s impact on the performance. The spectral width, also a hyper-parameter,
reflects the Doppler power spectrum’s “flatness”. Larger spectral widths make
unambiguous mean Doppler frequency detection more challenging. The study
compares hyper-parameter estimation performance with classical Doppler moment
estimators like DFT-based and Pulse Pair (PP) algorithms and a parametric spectrum
estimation approach [56] (referred to as PSE). The novelty lies in examining how
parameter estimations are influenced by this spectral width, addressing the question
of “How wide is too wide”? The word “wide” is used to dictate a larger spectral
width; typical spectrum width values for severe storms are discussed in [137]. Next,
the chapter discusses the physical limitations of accurately estimating parameters.
By enhancing the Nyquist unambiguous limit with the chosen sampling strategy,
the study avoids global maxima estimation, favoring Newton-based gradient descent
optimization from random starting points.

The performance analysis of such estimations is presented in terms of the bias
and variance in the estimation (by performing a Monte Carlo simulation). The
theoretical variances of such parameter estimation are also derived and compared
with the numerical variances obtained from the simulations.

The power spectrum reconstruction is carried out directly in an extended
frequency domain (avoiding the reconstruction in the time domain) using CGP
posterior to reduce computational complexity [98], [101]. Furthermore, a realistic
simulation of weather radar echoes is performed, having three extended targets (one
clutter and two extended precipitation-like targets), and the reconstruction is shown
using the proposed integrative approach.
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5.3. SIGNAL AND COVARIANCE MODEL
The echo sequence model with time is given in (3.3), and measurement model with
noise in (3.6). The signal at each instant of time is an ensemble of the backscattered
signals from each scatterer in the radar resolution volume. The signal is assumed
to be stationary (meaning that the frequency content remains constant over a short
period). The noise in the measurement model is assumed to be zero mean complex
white Gaussian. The measurement model is given as:

z = s+n, {nk }N−1
k=0

i .i .d∼ C N (0,σ2
n) (5.3)

where z = [z(0), z(1), · · · , z(N −1)]T is the complex measurement vector with N echo
samples, s is the signal vector, and n is the noise vector with noise variance σ2

n . The
signal is assumed to be a circularly symmetric complex Gaussian process (proper
CGP) [98]. Proper CGPs have the following properties:

E[z(ta)z(tb)∗] =C (ta , tb) =C (ta − tb) (5.4)

E[z(ta)z(tb)] = 0, (5.5)

where C is the covariance of the echo samples and only a function of the time
difference between the echoes (ta − tb), and the asterisk (∗) refers to the complex
conjugate. The expression in (5.5) is the pseudo covariance, 0 for a proper CGP. The
pseudo covariance of Doppler weather radar echoes is 0 because the signal model
[56, eq. (3), eq. (4)] assumes that the initial positions of the scatterers are uniformly
distributed in the resolution volume. The covariance is modeled as a mixture of
periodic kernels with Gaussian envelopes:

C (τ) =
Q∑

q=1
Rq exp(−2π2σ2

q, f nτ
2)exp( j 2πµq, f nτ), (5.6)

where Q is the number of Gaussian components in the mixture model, Rq is
the total power, µq, f n = µq,v /(2Va,per) is the normalized mean Doppler frequency,
and σq, f n = σq,v /(2Va,per) is the normalized Doppler spectrum width of the qth

component in the mixture. The term j refers to the imaginary unit
p−1. The

Va,per is the maximum unambiguous velocity for a periodic sampling case, and the
parameters are normalized with 2Va,per to make the performance comparison and
analysis easier. For velocity estimates, these normalized quantities can be scaled
with 2Va,per. The periodic sequence considered here is a sequence having a sampling
interval similar to or lesser than the minimum sampling interval of the aperiodic
sequence. The details of the sampling sequences that are used in this chapter for
performance analysis are given in the §5.5.1.

The motivation for modeling the weather radar signal covariance as a combination
of multiple periodic Gaussian kernels is the following:

1. If the radar volume is considerably large and spans multiple altitudes in the
atmosphere, there is a chance that the wind field is not constant in the volume
and can have different mean velocities in the response.
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2. Convective rain and vortices can contain multiple extended components in the
Doppler response [138] [139].

3. Due to several types of clutter, an extended target response can be observed at
the zero Doppler [140], [141], [142].

The approach developed in this chapter is also applicable to persistent stratiform
rain events. The stratiform rain Doppler spectrum is usually modeled as one
Gaussian-shaped continuous and extended spectrum. However, as mentioned
earlier, if the radar volume is large and covers several altitudes, it can also contain
multiple Gaussian-shaped spectra at different mean Doppler velocity locations (due
to inhomogeneity in the wind field as a function of height), and the Q value can be
adjusted in that case.

As the proposed approach can also handle a small amount of echo samples,
the change in the Doppler velocity parameters can be tracked in time, which is
beneficial for applications like hydrology. In this chapter, the Doppler covariance
is modeled with mean velocity and spectral width. However, applications like
hydrology may need more atmospheric parameters like the Drop Size Distribution
(DSD) parameters or the DSD-derived parameters such as the rainfall rate and the
terminal fall velocity of raindrops. The covariance can also be modeled with these
parameters and considered in the future.

The signal z can then be considered a zero mean proper CGP:

z ∼C GP (0,CCN,0), (5.7)

where the first entry is the mean, the second is the covariance, and the third is the
pseudo-covariance. The covariance CCN is nothing but the complex covariance C with
added covariance of the zero mean complex white Gaussian noise CCN = C+σ2

n1N .

5.4. HYPER-PARAMETER ESTIMATION AND SPECTRUM RE-
CONSTRUCTION

The hyper-parameters are estimated by maximizing the log-likelihood (4.9): A
constrained quasi-Newton optimization strategy is applied to optimize it. It uses
active-set and the Limited Memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS)
algorithms [93]. The algorithm 1 is used for the optimization similarly as in chapter
4. The parameter space for the normalized mean Doppler velocity is chosen as
several multiples of the Nyquist interval of the equivalent periodic sequence.

Several other strategies can also be applied for global maxima optimization, like
the Markov Chain Monte Carlo (MCMC) sampling methods [143]; these techniques
are avoided as they are computationally expensive. For the hyper-parameter
estimation performance analysis in §5.5.2, only one of these components (Q = 1)
is studied to make an intuitive comparison among the different approaches. The
total power P , and the noise variance σ2

n are considered known quantities for this
analysis.

In the spectrum reconstruction §5.5.6, three components are considered: two for
two extended weather targets and one for clutter (Q = 3). In this case, the number
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of unknown hyper-parameters is 8. The mean frequency of the clutter and the
noise variance are considered known in this case. The unknown parameters are
then the total powers of all the components, the mean frequencies of the extended
targets, and the spectral widths of extended targets and clutter. The information
on the number of components is assumed to be a known quantity. Closely spaced
multiple extended weather targets are not studied in this chapter. If the number of
components is unknown, it can also be used as a parameter to be estimated. There
are several techniques to address the estimation of Q. It can be separately estimated
using the Akike Information Criterion (AIC), and the Bayesian Information Criterion
(BIC) [144]. It can also be estimated jointly with the other parameters if a reversible
jump Markov Chain Monte Carlo Parameter estimation strategy is adopted [97].

For very closely spaced extended targets with velocities modeled with a mixture
model, it is a difficult problem and requires many data points. Even with many data
points, the parameter estimation is difficult in practice for several other factors and
requires dedicated attention [145]. The local spectrum reconstruction is performed
using the theory explained in §4.4.

5.5. NUMERICAL SIMULATION
This section presents the performance analysis of the hyper-parameter estimation
with Q = 1. The performance metrics are the bias and the variance.

5.5.1. SAMPLING STRATEGY
The specifications of the log-periodic sampling are given below. The following rule
gives the sample time instances of the sampling strategy:

tk,ap = d1

d2

[
exp(d2k)−1

]
, k = 0,1,2, . . . , Nap −1. (5.8)

The parameter d2 is the exponential growth rate of the sequence. If d2 approaches 0,
the sequence resembles a periodic sequence because limd2→0

[
exp(d2k)−1

]
/d2 = k.

The larger the d2, the more non-uniform the sequence becomes.
Let’s define a periodic sampling sequence suitable enough for a fair comparison.

The parameter d1 is chosen such that the minimum sampling interval of Tk,ap (i.e.,
Tk,ap,min) remains greater or equal to the sampling interval of the periodic sampling
tk,per (i.e., Tk,per).

d1 ≈ Tk,per. (5.9)

Firstly, this is deliberately posed in this chapter to compare the performance
fairly. By imposing this, the number of samples in the aperiodic case is not greater
than the periodic one. The spectral quantities, like the Doppler moments, are
normalized to the Nyquist unambiguous velocity interval 2Va,per associated with this
periodic sampling sequence for intuitive performance analysis.

Secondly, for practical applications involving FMCW radars, this fixed minimum
interval between sweeps ensures a desired maximum range and avoids the issues
related to the range overlaid signals. In practice, only the maximum unambiguous
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range corresponding to this minimum sampling interval can be studied. A practical
suggestion regarding the realization of the proposed aperiodic sampling sequence is
presented in subsection 5.5.7. The study of the impact of overlaid signals is not
explored. To ensure the same dwell time TDwell, the number of samples in the
periodic sequence is typically larger than that of the aperiodic one.

tk,per = kTk,per, k = 0,1,2, . . . , Nper −1, (5.10)

Nper =
⌈

TDwell

Tk,per

⌉
+1 > Nap, ∀d2 > 0

A sequence of Nper = 82 samples for the periodic case and Nap = 64 samples for
the aperiodic case is shown in Fig. 5.1 with d1 = 1 and d2 = 0.0074. The decimal
point precision in this sampling example is restricted to d = 3 for the aperiodic
sequence for the performance analysis.

Let’s define a staggered sampling sequence as well for comparison. To make a
fair comparison, the minimum spacing between the samples is chosen to be greater
than Tk,per. To create a staggered sampling sequence with an underlying periodic

sequence (with an interval of 10−d Tk,per), the value of m = 1001 and n = 1502 are
considered. The sampling sequence for the staggered case is, therefore,

tst = [0,1.001,2.503,3.504, . . . ]T ×Tk,per. (5.11)

It can be observed from (5.11) that the staggered sampling sequence has a
minimum sampling interval greater than Tk,per, has a decimal point precision
of d = 3, and a staggered sampling ratio T1,st/T2,st = m/n = 1001/1502 ≈ 2/3. The
constituent sampling intervals in this staggered sequence are T1,st = 1.001Tk,per, and
T2,st = 1.502Tk,per. The theoretical unambiguous velocity for this sequence is:

Va,ap = λm

4T1,st
= λn

4T2,st
≈ 10d

2Tk,per
= 10d Va,per. (5.12)

The mean Doppler frequency in the case of staggered sampling is estimated using
the velocity difference transfer function approach given in [19]. Although the
performance shown in [19] is as expected for smaller values of m, and n (typically
< 100), higher values for m and n (> 1000) are chosen to test the performance when
the theoretical maximum unambiguous velocity is much higher than the maximum
unambiguous velocity of each constituent sampling sequence.

In the following sections 5.5.2 and 5.5.3, the performance analysis of the
parameter estimations is studied with the normalized spectral width parameter σ f n

and d2, respectively.
The performance analysis contains the bias and the standard deviation (square

root of the variance) for the estimated parameters Θ̂ ((3.17), (3.18)). The theoretical
variances have been implemented and plotted for the CGP approach. The details are
in Appendix B. The inverse of this Fisher information matrix should not be confused
with the unbiased CRB in this case, as the retrievals are not entirely unbiased.
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Figure 5.1: Sampling sequences; periodic and aperiodic cases.

However, these theoretical variances converge to the unbiased CRB for an infinite
number of echo samples N →∞ as the estimates are asymptotically unbiased. The
biased-CRB limits can also be inferred by studying the bias gradient of the estimator,
as shown in [91]. However, this is out of the scope of this chapter because a
functional form of the bias gradient is harder to achieve.

5.5.2. PERFORMANCE ANALYSIS OF HYPER-PARAMETER ESTIMATION WITH

σ f n
In this sub-section, the bias and standard deviation for the hyper-parameters
(Doppler moments) are studied with respect to the normalized spectral width σ f n

at a fixed d2 = 0.0074. The normalization here is performed with the unambiguous
interval for the periodic case (µ f n = µv /(2Va,per), σ f n =σv /(2Va,per), where µv , and
σv are the denormalized Doppler velocity moments). The total power and the noise
standard deviation are considered known quantities in these simulations. As both
DFT and PSE use PSD for the estimation, an extended normalized frequency axis
is used for a fair comparison. The bias and standard deviation in the estimation
of the mean Doppler and Doppler spectrum width are presented in Fig. 5.2. The
number of Monte Carlo simulations performed in this case is 128. The optimization
parameters listed in the §3.5 are set to the following values:

[µ f n,l ,µ f n,u] = [−3,3], (5.13)

[σ f n,l ,σ f n,u] = [0,0.5],

U = 512,

where U is the number of iterations in the optimization process explained in
algorithm 1. In the examples of this chapter, the parameter space for normalized
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mean Doppler velocity is chosen as three times the Nyquist unambiguous interval
for the periodic counterpart.

ALGORITHMS PERFORMED ON THE PERIODICALLY SAMPLED DATA

The estimators presented for periodically sampled sequences are DFT, PSE of [56],
and the PP algorithm.

The DFT approach of Doppler moment estimation is non-parametric and uses
Schuster’s periodogram as measurement. It is non-parametric because it assumes
no parametric structure of the signal or its Schuster periodogram. The formula
mentioned in [71, eq. (9)] is used to compute the mean Doppler frequency
(similarly, the square root of the second central moment is computed) for the DFT
approach with a known noise variance. For a fair comparison, first, the peak
location (frequency at which the power is maximum) of the Schuster periodogram is
detected, and one Nyquist unambiguous interval is chosen by keeping this location
at the center.

The PSE algorithm is a parametric moment estimator using a semianalytical
model for the expected Doppler PSD. The PSE is used on the PSD of a periodic
sequence because the semianalytical model of the PSD [56, eq. (10)] has a lower bias
when dealing with periodic sequences (because it considers the time on target in the
model of the PSD as well). The performance analysis in [56] shows that the PSE is
more accurate than Levin’s approach (which uses a closed form of the Doppler PSD
[80] without the time on target). Therefore, the performance using Levin’s approach
is not studied.

The PP estimates of the Doppler moments are based on the signal’s auto-
correlation with integer time lags. It is used on a periodic sequence where contiguous
pairs can be found. The estimation of mean Doppler with the PP approach is used
from [71, eq. (16)]. For the Doppler spectrum width (PP R0/R1), the formula [95, eq.
(6.17))] is used as this estimator is asymptotically unbiased.

ALGORITHMS PERFORMED ON THE APERIODICALLY SAMPLED DATA

A DFT moment estimator is implemented on the Schuster periodogram computed
for the aperiodically sampled data with log-periodic sampling. A similar approach
with the peak location detection is performed for a fair comparison, as in the
periodic case. The moments are computed using this as the frequency window with
the DFT approach. The proposed CGP approach has also been implemented on the
aperiodically sampled data with log-periodic sampling.

Two ways to compute the Doppler moments for the staggered sampling case
are presented. First, the de-aliasing approach based on the velocity difference
transfer function is used to compute the mean Doppler frequency [19]. To compute
the de-aliased mean Doppler frequency, the individual mean Doppler frequencies
corresponding to the two constituent periodic sampling sequences must first be
estimated. These mean frequencies [73, Eq. (5.a), Eq. (5.b)] are estimated by the PP
approach, but the one-lag autocorrelation can only be performed on independent
pairs [73, Eq. (3), Eq. (4)] (contiguous pairs are not available in the case of a
staggered sampling sequence). With this approach, the Doppler spectrum width is
computed using only one constituent sampling (the smaller one) [73, Eq. (6)] using
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the PP technique. The second technique applied to the staggered sampling case is
the CGP technique proposed in this chapter, which can also be found in [17].

The true normalized mean Doppler frequency with which the simulation of the
signals is carried out is µ f n =−1.2. The noise is added with an input SNR of 12 dB
[90].

PERFORMANCE ANALYSIS

It can be observed that the “DFT aperiodic” technique for the mean Doppler
estimation has a small bias for extremely small normalized spectral widths. This
validates the results in the literature for the periodogram techniques because a
very small normalized spectral width is analogous to having one sinusoid in the
signal. The non-uniform Schuster periodogram peak detection becomes increasingly
ambiguous with increased spectral width.

The periodic counterparts, including the PP algorithm, also show biased results
because of aliasing. In contrast to all these approaches, the proposed CGP
approach has a much smaller bias in the normalized mean Doppler frequency
estimates for normalized spectral widths less than 0.2. For larger normalized spectral
widths, the estimates become increasingly biased because the optimized mean
Doppler frequency becomes truly ambiguous and becomes highly sensitive to the
measurement.

The normalized spectral width estimates follow a similar trend in terms of bias
for the proposed CGP approach. The PP approach has a smaller bias in the
higher normalized spectral width regions. The PSE has the smallest bias across all
normalized spectral widths. It has also been showed in chapter 3.

The standard deviation for normalized spectral width of σ f n > 0.3 is not shown
as the results of all estimators are increasingly biased. For the normalized mean
Doppler frequency, the proposed approach has lower standard deviations than all
the other approaches except for the PP below a normalized spectral width of less
than 0.16. PP has the smallest standard deviation because it doesn’t consider an
extended frequency axis. Therefore, the estimation result is always near the fixed
aliased frequency inside the bound [−0.5,0.5]. The periodic approaches of DFT and
PSE have a more significant standard deviation.

All the methods work similarly to the estimation of normalized spectral width
except the DFT aperiodic approach. The theoretical variances for CGP are smaller
than the numerical ones for the mean Doppler µ f n . The theoretical variance for the
spectral width σ f n is higher than the numerical one if σ f n > 0.14. The principles
of biased CRB can explain the differences between the numerical and theoretical
variances. However, as explained earlier in this section, the biased CRBs are not
computed.

The staggered sampling technique also suffers from a large bias for the
normalized mean Doppler frequency. The reason for the large bias can be
attributed to the fact that the values of m and n are large, although the ratio
m/n ≈ 2/3. It shows the limitation of the staggered sampling technique when the
desired theoretical Nyquist unambiguous velocity is much larger than the Nyquist
unambiguous velocity of the individual constituent periodic sequences. For large
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Figure 5.2: Estimation and performance of the Doppler moments with respect to σ f n . For the periodic
case, the number of samples is 82, whereas for the aperiodic case, it is 64. Bias in estimating a
the mean normalized Doppler frequency µ̂ f n . b normalized Doppler frequency width σ̂ f n . Standard
deviation in estimating c the normalized mean Doppler frequency µ̂ f n . d the normalized Doppler
spectrum width normalized σ̂ f n . The abbreviation “per” refers to the periodic sampling, “aper” refers
to the aperiodic one, “ST” refers to staggered sampling (“ST” for velocity difference transfer function
and “ST CGP” for CGP applied to staggered sequence), “LP” for the log-periodic sampling, and “Theor”
refers to the theoretical plots. e Legend for the plots.

values of m and n (> 1000), to avoid errors, there are recommendations suggested
in [19]. However, these suggestions need manual intervention and additional
information based on continuity in space and time. Therefore, not all the suggestions
for such a configuration are implemented in this chapter. However, it is noticed that
the algorithms implemented on the staggered sequence successfully estimate the
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Figure 5.3: Histogram of parameter estimates µ̂ f n for staggered (“ST” for velocity difference transfer
function and “ST CGP" for CGP applied to staggered sequence) and the proposed CGP (“LP" stands for
the log-periodic sequence) approach at a σ f n = 0.01, and b σ f n = 0.2. True mean Doppler velocity is
µ f n =−1.2.

true Doppler velocity almost half of the time across the Monte Carlo simulations.
Therefore, instead of only bias and standard deviations in the estimates, the
distribution (in terms of histograms) of the estimated normalized mean Doppler
frequency by both the staggered sampling technique (both using velocity difference
transfer function [19] and the CGP approach [17]) and the proposed CGP technique
on the log-periodic sampling at normalized Doppler spectrum widths of σ f n of 0.01
and 0.2 is shown in Fig. 5.3. The comparison with the staggered sampling approach
shows that the proposed CGP approach is robust against different realizations of the
measurements.

The histograms suggest that the proposed CGP approach is distributed around
the true normalized mean Doppler frequency, and the width of this distribution
increases with an increase in the normalized spectral width. However, the mean of
this distribution is closer to the true normalized mean Doppler frequency. In the
case of staggered sampling, the distribution is more discrete, and only around half of
the estimates are around the true value. Therefore, the mean of all the estimates is
far away from the true value, causing a larger bias in the estimates. For the Doppler
spectrum width, however, the absolute bias is below 0.02 for smaller normalized
spectral widths σ f n < 0.16, indicating good performance. However, overall, the bias
of the proposed CGP approach is smaller than that of the staggered PRT approach.

5.5.3. PERFORMANCE ANALYSIS OF HYPER-PARAMETER ESTIMATION WITH

d2 FOR THE APERIODICALLY SAMPLED SEQUENCE
This section presents the performance analysis results of the hyper-parameter
estimation with the normalized spectral width σ f n and the non-linearity in the
aperiodic sampling sequence d2. The value of d1 is 1 and number of samples Nap

is 33 for this analysis. The DFT-aperiodic approach is chosen for the comparison.
The results are shown in Fig. 5.4 for the normalized mean Doppler frequency. The
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Figure 5.4: Estimation and performance of the normalized mean Doppler frequency µ̂ f n with respect
to σ f n and d2. The number of samples is 33. Bias in estimating the mean normalized Doppler
frequency µ̂ f n . a CGP, b DFT aperiodic. Standard deviation in estimating the mean normalized
Doppler frequency µ̂ f n . c CGP, d DFT aperiodic.

optimization configuration, in this case, is different than the previous section. The
parameter space for the normalized mean Doppler frequency has been reduced in
this experiment to avoid outliers in the estimates. The configuration in this study is
given below:

[µ f n,l ,µ f n,u] = [−3,3], (5.14)

[σ f n,l ,σ f n,u] = [0,0.5],

U = 256.

It can be observed that the bias of µ̂ f n decreases with increasing non-linearity
d2 for smaller spectral widths. It can also be observed that the spectral width at
which the absolute bias starts to rise for CGP decreases with an increase in d2. This
implies a trade-off between the spectral width at which µ̂ f n gets increasingly biased
and the estimator’s accuracy for smaller spectral widths. To demonstrate this, Fig.
5.5 shows the location of the σ f n (represented as σ(Th)

f n ) at which the bias of µ̂ f n

reaches a threshold that is 20% of its true value. In this analysis, the true µ f n =−1.2,
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Figure 5.5: The spectral width at which
∣∣∣B[

µ̂ f n

]∣∣∣= 0.2|µ f n | as a function of the non-linearity in the

sampling (d2).

and the threshold for the absolute bias is |B[
µ̂ f n

] | = 0.2|µ f n |. It can be observed

that the σ(Th)
f n is decreasing with increasing d2. Particularly, σ(Th)

f n is nearly 0.2 till

d2 is close to 0.004, nearly 0.16 till d2 is close to 0.01 and it converges to 0.12 for
higher values of d2 (till 0.02). The values of σ(Th)

f n for the DFT aperiodic approach are

much smaller than the proposed CGP approach, indicating the superiority of CGP
for applications involving extended targets.

The standard deviation for µ̂ f n of the CGP aperiodic approach has smaller values
than the DFT approach for σ f n < 0.12. The standard deviations of DFT and CGP
have comparable values for σ f n > 0.12, but the DFT aperiodic approach has slightly
smaller values than the CGP approach because of its rigid, biased nature (because it
uses a smaller frequency space for moment estimation: explained more in §5.5.2).
Overall, for σ f n < 0.12, ∀d2 < 0.02, the standard deviation of the CGP approach is
superior to that of the DFT aperiodic one.

The performance analysis for the normalized Doppler spectrum width is shown
in Fig. 5.6. For the spectral width estimation, the bias of the proposed CGP
approach is nearly zero for σ f n < 0.16 for all values of d2. The proposed approach is
superior and less biased than the DFT aperiodic approach. The standard deviation
of the CGP approach for σ̂ f n is smaller than that of the DFT-aperiodic approach
with increasing d2. For σ f n > 0.16, with increasing d2, the standard deviation of CGP
is smaller than that of the DFT aperiodic approach.

5.5.4. RECOMMENDATION FOR MINIMUM PULSE REPETITION INTERVAL
With the abovementioned analysis, it can be concluded that for a normalized
spectral width less than 0.16, the proposed approach produces unambiguous Doppler
moments for a precipitation-like extended target (for d2 < 0.01). Therefore, it is
recommended to use the log-periodic sampling with a minimum sampling interval
(Tap,min), which satisfies the following relationship:
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Figure 5.6: Estimation and performance of the normalized Doppler spectrum width µ̂ f n with respect
to σ f n and d2. The number of samples is 33. Bias in estimating the normalized Doppler spectrum
width σ̂ f n . a CGP, b DFT aperiodic. Standard deviation in estimating the normalized Doppler spectrum
width σ̂ f n . c CGP, d DFT aperiodic.

λ

2Tap,min
≥ 6σv , ∀ d2 < 0.01 (5.15)

which implies:

Tap,min ≤ λ

12σv
, ∀ d2 < 0.01. (5.16)

Here, λ is the radar central wavelength, and σv is the extended target’s absolute,
denormalized Doppler spectral width. The choice of σv depends on the application.
It should be noted that this recommendation is specific to an acceptable bias of
0.1|µ f n |, and with a non-linearity in the sampling d2 < 0.01. However, for other
user-defined requirements for the bias, variance of the parameters, and lower
and upper bounds parameter space for the optimization, the simulation can be
performed again to obtain similar recommendations as (5.16). The recommended
minimum sampling interval reduces with a reduction in the acceptable bias or
variance requirement for the mean Doppler velocity (for a given spectral width).
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(a) (b)

Figure 5.7: Estimation probability of µ̂ f with true µ f : a for µ f n ∈ [−500,500] b for µ f n ∈ [−100,−20]
(zoomed in). “GT”, “ST”, and “LP” stand for “Ground Truth”, “Staggered” and “Log-Periodic”, respectively.

5.5.5. PERFORMANCE ANALYSIS WITH VARYING µ f n
In the previous subsections, the performance has been assessed as a function
of the normalized spectral width σ f n at a fixed normalized mean frequency
µ f n . In this subsection, the performance analysis of the proposed CGP approach
with log-periodic sampling is presented at a constant normalized spectral width
σ f n = 0.06. The parameter space is chosen to be the complete theoretical Nyquist
interval; in this case, at a decimal point precision of d = 3 is 2 fNY = 1000, which is
much larger than the Nyquist interval of an equivalent periodic sequence having
the sampling interval equal to the minimum sampling interval of the aperiodic one
(2 fNY,per = 1). This parameter space can be reduced if prior information on the
mean µ f n is available. However, in this subsection, the entire parameter space is
used to observe if there are outliers in the estimation for some realizations of the
signals. At the same time, the number of starting points in the optimization has
also been increased to U = 2048 to reduce the number of outliers. The optimization
configuration is therefore:

[µ f n,l ,µ f n,u] = [−500,500], (5.17)

[σ f n,l ,σ f n,u] = [0,0.5],

U = 2048.

The scatter plot of µ̂ f n with the DFT aperiodic approach (with the log-periodic
sampling), the CGP approach with both staggered sampling, and the proposed
log-periodic sampling sequences with 128 Monte Carlo simulations are shown in
Fig. 5.7a. A zoomed-in version is shown in Fig. 5.7b. It can be observed that µ̂ f n

estimated with the proposed approach is localized at the true value. However, the
variance between the staggered sampling and the DFT approach on the log-periodic
sampling is much higher than the proposed approach.

To assess the quality of the estimates, a probability measure is also considered.
The probability of µ̂ f n , i.e., p(µ̂ f n) given that the estimates are close to the true
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Figure 5.8: Estimation probability of p(µ̂ f n ∈ [µ f n −2ϵ,µ f n +2ϵ]) (given in (5.18)). “ST”, and “LP”
stand for “Staggered” and “Log-Periodic”, respectively. The approach “DFT aper” is applied on the
log-periodic sampling sequence.

value (quantified by predefined thresholds) is computed. The thresholds are decided
based on σ f n and N :

p(µ̂ f n ∈ [µ f n −2ϵ,µ f n +2ϵ]) = |{µ̂ f n,i :µ f n −2ϵ≤ µ̂ f n,i ≤µ f n +2ϵ, i = 1, . . . , NMC}|
NMC

,

(5.18)

ϵ=
√
σ2

f n

N
,

where the operator || is the cardinality, and NMC is the number of Monte Carlo
simulations used. This probability of (5.18) is computed with 128 Monte Carlo
simulations. The thresholds here are equivalent to two standard deviation bounds
around the true µ f n , where one standard deviation is ϵ. This probability is shown in
Fig. 5.8. It can be seen that the estimation probability is very high near the true µ f n

(with a probability more than 0.91). Some outliers are detected for some realizations,
but the probability is extremely small (below 0.1). Due to aliasing, the outlier
probability increases as the true mean frequency approaches the fNY (close to 500
or −500). It is also observed that the proposed CGP approach with the log-periodic
sampling sequence is superior to both the CGP approach with the staggered
sampling sequence and the DFT aperiodic approach with the log-periodic sampling
sequence. From this analysis, it can be concluded that the proposed approach with
log-periodic sampling can enhance the maximum unambiguous frequency interval
up to 1000 times that of an equivalent periodic sequence having a sampling interval
the same as the minimum sampling interval of the log-periodic one.
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Table 5.1: Hyper-parameter estimation for the three-extended-targets scenario of §5.5.6

Parameter True Estimated
µ1, f n 1 1.002
µ2, f n 0.6 0.6053
σ1, f n 0.09 0.0881
σ2, f n 0.06 0.0513
σ3, f n 0.02 0.0161

R1 10000 10120
R2 10000 99424
R3 1000 700

5.5.6. SIMULATION STUDY OF THE SPECTRUM RECONSTRUCTION
Three extended targets are used to simulate the radar echoes in time. Two of
these extended targets mimic two precipitation-like targets. The mean locations
of these two targets are kept outside the Nyquist unambiguous interval of the
periodic sampling case purposefully to evaluate the retrieval and reconstruction.
The third extended target is a clutter whose mean location is µ3, f n = 0, which
is assumed to be a known quantity. The unknown hyper-parameters are
Θ= [µ1, f n ,µ2, f n ,σ1, f n ,σ2, f n ,σ3, f n ,R1,R2,R3]. The number of echo samples for the
periodic case is Nper = 213, and for the aperiodic case is Nap = 128. The parameters
for the aperiodic sequence are d1 = 1, and d2 = 0.0074. The hyper-parameter
estimation is shown in Table 5.1. The spectrum reconstruction is then followed using
the principles mentioned in the §4.4.

As it is a Bayesian approach, several different realizations of the power spectrum
are presented in Fig. 5.9 by first sampling from the posterior distributions of its real
and imaginary parts, respectively.

It can be concluded that the proposed CGP-based reconstruction avoids the
ambiguous responses of the extended targets in the extended frequency domain
by the counter-aliasing strategy. The reconstruction in the frequency domain is
performed using the measurements in the time domain, posing no additional
computational burden. The Schuster periodogram with the periodic sequence has
produced an aliased Doppler spectrum in the extended frequency domain, making
it uninformative. Likewise, the Schuster periodogram with the aperiodic sequence
(same as the generalized Lomb-Scargle periodogram) has produced very high levels
of artifacts (comparable with the power of the real targets), making it ambiguous.
However, the CGP posterior avoids these ambiguous artifacts and has smaller
sidelobe levels (around 35 dB) in this case. Therefore, there is an improvement of
around 20 dB over the other approaches as far as the ambiguous artifact levels are
concerned.

5.5.7. RECOMMENDATIONS FOR REAL RADAR APPLICATION
An application to real radar measurements with this proposed setting should be
studied. Changing the reset time T (reset)

k aperiodically by applying the sampling rules
for a Frequency Modulated Continuous Wave (FCMW) radar can be beneficial in



5.5. NUMERICAL SIMULATION

5

91

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

20

30

40

50

60

(a)

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

20

30

40

50

60

(b)

Posterior Spectrum - Power Schuster per
Schuster aper Mean Posterior

(c)

Figure 5.9: Spectrum Reconstruction: a Power spectrum b Power spectrum zoomed in c Legend for the
plots. The posterior spectrum contains five realizations of the power spectrum.

realizing such a configuration. The reset time is the time difference between the end
of one chirp and the start of the next. The chirp duration T (chirp) is constant and is
very less than Tk,per. The reset time is given by:

T (reset)
k = tk (Tk,per,d1,d2)− tk−1(Tk,per,d1,d2)−T (chirp), (5.19)

T (chirp) << Tk,per,

and a constant reset time (when tk (Tk,per,d1,d2)− tk−1(Tk,per,d1,d2) = Tk,per) will
redirect the radar to the periodic pulse repetition mode.
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5.6. CONCLUSIONS
In the previous chapter 3, the crucial contribution is the accurate estimation of
the Doppler spectral width, which typically characterizes the turbulence in the
rain. As this parameter is heavily affected by the Doppler resolution, the previous
contributions attempted to estimate it accurately with poor Doppler resolution by
modeling the signal PSD. It has been shown that even when the mean Doppler
velocity is closer to the Nyquist unambiguous velocity, the PSE can accurately
estimate the Doppler spectral width.

Although PSE is well suited for Doppler spectral width estimation, a serious
problem remains in the accurate estimation of the mean Doppler velocity when the
velocities of raindrops are higher than the maximum Nyquist unambiguous velocity
permissible by the radar. The velocities are usually aliased into the permissible
Nyquist interval, and the mean Doppler velocity estimate becomes ambiguous. This
limitation comes because the samples are typically equispaced, making a periodic
sequence.

This contribution explored what one could achieve using an aperiodic pulse train
instead. The literature regarding aperiodic pulse trains to avoid the aliasing problem
is vast. However, many research gaps were found by examining the issue of aliasing/
ambiguity from several perspectives (research domain including non-radar domains).
This contribution is novel, and an integrative signal processing approach is proposed
to address the research gaps from all the research domains. A detailed literature
review of all these research areas is presented, and the limitations are explained.

A novel sampling approach in the time domain is proposed for the aperiodic
pulse train (with a log-periodic sampling sequence). The theoretical Nyquist
unambiguous velocity limit for such aperiodic sequences is discussed in detail.
The minimum sampling interval of the aperiodic sequence is kept higher than a
threshold to make a fair performance comparison with a periodic sampling sequence
having a pulse repetition interval the same as the minimum sampling interval of
the aperiodic sequence. The Doppler moments are normalized with the Nyquist
unambiguous interval of this equivalent periodic sampling sequence.

The CGP-R is chosen to estimate the Doppler moments as the signal is sampled
aperiodically. The Doppler moment estimation is compared with the state-of-the-art
methods for both aperiodic and equivalent periodic sampling sequences. Although
some of the state-of-the-art moments estimation techniques perform as expected
with aperiodically sampled sequences for pointed targets immersed in white
Gaussian noise, the limitations of such methods to estimate the Doppler moments
for extended targets have been demonstrated. It has been shown that the proposed
approach outperforms the other methods for the normalized mean Doppler moment
estimation (when the true normalized Doppler spectrum width remains smaller than
0.16; i.e., σ f n < 0.16). An application-centric recommendation has been presented
for the minimum sampling interval.

The performance of the proposed approach has been assessed by changing
the parameter in the proposed sampling sequence, which is responsible for the
non-linearity. It is concluded that the accuracy in the normalized mean Doppler
velocity estimates improves with increasing non-linearity. Still, the spectral width at
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which the bias in the estimate starts to increase decreases with an increase in the
non-linearity in the sampling sequence, indicating a trade-off.

A novel criterion is proposed for designing a log-periodic sampling sequence with
a minimum sampling interval lower than λ/(12×σv ) (where the spectral width σv

is related to the storm’s severity) for an unambiguous retrieval of the mean Doppler
velocity. The more severe the storm in terms of spectral width (which can result
from strong turbulence, vortices, and convective storms), the smaller the minimum
sampling interval needed.

In addition, the chapter presents a Bayesian inference (CGP-R) approach to
reconstructing the Doppler spectrum with an extended velocity domain by directly
using the aperiodically sampled echoes in the time domain. The reconstruction
poses no additional computational burden. As it is a Bayesian technique, several
different realizations of the power spectrum are realized. To the authors’ knowledge,
this is the first-ever implementation of the direct frequency domain CGP posterior
on aperiodically sampled sequences for extended targets, making it novel. The mean
estimate of the power spectrum converges to the true spectrum. It is shown that
the posterior spectrum of the proposed reconstruction outperforms the conventional
periodogram techniques capable of handling aperiodic signals, such as the aperiodic
Schuster periodogram, in terms of accuracy. The problem of higher ambiguous
artifacts is avoided using the proposed approach. It has been shown in Fig. 5.9 that
there is at least 20 dB improvement in the ambiguous artifact levels.

This study does not include the impact of such a pulse train on estimating the
target’s range. However, as with the log-periodic sampling technique, the minimum
sampling interval in the slow time can be maintained at a desired level, which can
decide the maximum unambiguous range to which the mean Doppler velocity and
Doppler spectrum width can be recovered.





6
FITTING OF PRECIPITATION

DOPPLER SPECTRUM WITH WIND

AND RAIN DSD PARAMETERS

A computationally efficient novel semi-analytical expected Doppler Power Spectral
Density (PSD) model has been proposed as a function of the DSD, wind parameters,
and the finite observation interval. A maximum likelihood estimation is proposed
where the measurements are the stochastic Doppler PSD realizations. Although the
proposed approach performs better than the existing approximate approaches, it
is shown that the estimation of DSD parameters, in general, is very challenging
because the log-likelihood (cost function with radar retrieved measurements) is not
very sensitive to the DSD parameters. Nonetheless, even though estimates of DSD
parameters are biased, the Doppler spectrum’s fitting is sufficient for determining
derived parameters such as the terminal fall velocity and median diameter of the
raindrops.

Parts of this chapter have been submitted to:

T. K. Dash, H. Driessen, O. A. Krasnov, and A. Yarovoy, “Joint Estimation of Raindrop Size Distribution
and Radial Wind Velocity Parameters Using a Fast Scanning Weather Doppler Radar,” Journal of
Atmospheric and Oceanic Technology, 2025
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6. FITTING OF PRECIPITATION DOPPLER SPECTRUM WITH WIND AND RAIN DSD

PARAMETERS

6.1. INTRODUCTION
Although the DSD and wind parameter estimation are familiar problems and have
been widely discussed in the literature, several challenges still exist. Suppose we
consider the problem of DSD parameter estimation without considering the wind
ones. In that case, the popularly followed methodologies can be categorized into
polarimetry-based and Doppler Power Spectral Density (PSD)-based approaches.
Although the polarimetry-based approaches provide reliable and informative
estimates of the DSD parameters, measuring them correctly is challenging due to
several issues, including calibration [147]. In this chapter, the focus is on the
Doppler PSD-based approaches instead.

The state-of-the-art Doppler PSD-based DSD and wind parameter retrieval
approaches do not address a joint estimation of these parameters. The ones that
address a quasi-joint estimation have strong assumptions and are often equipped
with one more radar system (sensitive to clear air but not precipitation) to have the
information on the wind exclusive of the DSD ones [148], [149], [150], [151]. In
addition, signal processing with such approaches requires much longer observation
intervals. The stochastic Doppler PSD becomes smoother with increasing coherent
observation interval, and the cost functions defined in these studies do not contain
spectral variability [30]. However, if we consider the aviation application, the modern
phased array (in elevation) X-band weather radars at airports are often required to
scan quickly in the azimuthal direction to detect and track point-like targets (birds,
drones, etc.), limiting the time on target per scan. Therefore, there is a need to use
incoherent sets of Doppler PSDs from several fast radar scans as measurements and
spectral variability in the cost function.

Furthermore, the Doppler PSD-based approaches are based on optimization,
which requires computing the PSD several times. The existing model of the Doppler
PSD involves the computation of an intractable integral in the Fourier domain,
posing additional computational issues.

Joint estimation of the complete set of parameters for 3D wind field and rain
DSD from Doppler PSD is not studied in the literature (except for [30]). The usual
practice is to retrieve the wind parameters separately from the rain DSD and clear air
reflections. Typically, radar facilities operating at different frequencies are used for
separate retrieving Doppler velocities of clear air returns and precipitation. A long
observation interval is required for good sensitivity and high Doppler resolution.
Retrieval error minimization within the joint parameter estimation problem requires
derivations and detailed analysis of numerical and theoretical variances, which are
yet unavailable in the literature.

Considering the abovementioned issues, the challenge of jointly estimating these
parameters with a fast-scanning X-band radar addressed in this chapter is unique. A
novel formulation and approach is proposed to jointly estimate the wind and DSD
parameter estimation by only using the Doppler PSDs as the measurements. The
proposed approach has the following features addressing all the issues mentioned in
the paragraphs above:

1. contains a novel and computationally efficient model of the Doppler PSD with
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wind, DSD parameters, and the limited observation interval,

2. proposes a joint wind and DSD parameters estimation algorithm from the
Doppler PSD with limited observation interval,

3. makes use of the PSD observations from the incoherent sequence of fast radar
scans,

4. provides the estimation of parameters and their analysis in terms of their
theoretical variances, the CRB, and numerical biases (with Monte Carlo
simulations).

The main body of the chapter is organized as follows. §6.2 discusses the classical
approaches to estimate the DSD and wind parameters in detail. §6.3 discusses the
signal model as a function of the parameters of interest. §6.4 explains the modeling
of the Doppler PSD using the signal model of 6.3. §6.5 explains the optimization
goals and how the inverse problem is solved. §6.6 presents the estimator’s results
using simulated data along with the computational aspects. Application of the joint
estimation algorithm to the real radar data is described in §6.7. The conclusions are
drawn in §6.8. The appendix C shows the decay study for the covariance of the
reflectivity-weighted fall velocity spectrum. The appendix D presents the derivation
of the theoretical variance of the estimator along with the CRB.

6.2. CLASSICAL DSD AND WIND PARAMETER ESTIMATIONS

AND THE RATIONALE BEHIND THE PROPOSED APPROACH
The three-parameter gamma raindrop DSD model is the most popular in the
literature [3] and is also considered in this chapter. It is given by:

N (D) = N0Dη exp(−ΛD), (6.1)

where N0(m−3mm−1−η) is the number of raindrops per unit volume per unit size
interval, η is the shape parameter, and Λ(mm−1) is the rate parameter1. The DSD
also can be represented with the scale parameter instead of the rate parameter, where
the scale parameter is inversely proportional to the rate parameter (D0 ∝ 1/Λ(mm)),
where D0 has the physical meaning of the median diameter of the raindrops in the
resolution volume).

Estimating the DSD parameters from radar data has been studied extensively
in the existing literature, and it is not a trivial problem. There are several
challenges involved because radars do not measure these parameters directly.
The radar observables that are typically used for DSD parameter estimation
are the reflectivity(Z ), Doppler spectrum, differential reflectivity(Zdr), the linear
depolarization ratio(Ldr), differential phase(φdp), and its derivative with respect to
range(kdp). The observables Zdr, Ldr, φdp, and kdp are available if the radar is

1In literature, the shape parameter is often denoted as µ. However, to have consistency with
[56](chapter 3), µ is chosen for the radial mean wind velocity and η for the shape parameter of the
DSD (which is also followed in some other literature, such as, [2]).
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polarimetric [62], [152]. The DSD parameter estimates based on polarimetry are more
reliable because they provide extra information about the ensemble of raindrops.
However, measuring them poses additional difficulties due to inaccuracies caused by
calibration issues. With the polarimetric observations, a sensitivity analysis can also
be found in [147]. This chapter focuses more on the DSD parameter estimation with
the help of received echoes with one polarization only. Therefore, the techniques
based on reflectivity and Doppler spectrum become relevant for comparison and
analysis.

The Doppler spectrum-based estimation techniques can further be categorized
based on the type of radar system. The techniques listed in [148], [149], [150], [151],
[30], [153], use a model of the Doppler PSD that is a sum of clear sky echo spectrum
usually spread around zero Doppler velocity and a convoluted spectrum between the
clear sky spectrum and the vertical fall spectrum (also called as the rain spectrum).
Due to the convolution with the clear air spectrum, the rain spectrum is usually
broader than expected. However, as these radar systems (consisting of one or two
radars) are sensitive to the clear air spectrum independent of the fall spectrum, it is
convenient to estimate the clear air parameters (also referred to as wind parameters)
such as the mean wind field and wind spectral width (usually associated with
turbulence) independently of the DSD parameters. The DSD parameters can then be
estimated by deconvolving the rain spectrum using the estimated wind parameters.
It is also noteworthy that the clear sky spectrum model in all the studies mentioned
above is considered around the zero Doppler, assuming that the radars always point
upwards (Vertically Pointing Radar (VPR)).

However, modern Doppler weather radars operate in the X-band and are usually
not very sensitive to clear sky reflections. Therefore, the Doppler PSD does not
separately contain the clear sky spectrum and is always convolved with the fall
spectrum. Furthermore, these radars also scan the azimuth and don’t always have
to be pointed vertically. Estimating the DSD and wind parameters jointly from this
convolved Doppler PSD becomes challenging.

The existing estimators do not perform this estimation jointly and, therefore,
have multiple steps. For example, the DSD parameter estimation from the statistical
moments of the fall PSD [2], [65], using VPRs, assume that the contribution of the
wind spectra in the Doppler PSD comes from vertical air motion only. The mean
terminal fall velocity of the scatterers VT is computed by subtracting the air velocity
Vwind from the mean velocity calculated from the Doppler PSD (VT = µr −Vwind),
where µr is the mean radial velocity measured from Doppler PSD). The spectral
width caused only due to the vertical fall (σp ) can be computed by subtracting
the variances (σ2

p = σ2
r −σ2

wind), where σr is the radial spectral width measured
from Doppler PSD). The DSD parameters are estimated using functional empirical
relationships of VT and σp with respect to the parameters [2].

These Doppler moment-based estimators have several problems. Firstly, the
estimators rely on the spectral moments estimated from the observed PSDs. In
the case of scanning radars, the moment estimates are usually biased, especially
the spectral width, due to comparatively lower observation interval [56], [69]. With
wind profilers and VPRs, for example, the coherent acquisition times for Doppler
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processing is in the order of several minutes [148], [149] for an accurate DSD
parameter estimation. Secondly, the approximate empirical models correlating the
spectral widths of the fall spectrum and the air (wind) spectrum are biased because
the fall spectrum can not be characterized only with two spectral moments (because
the drop size distribution is not symmetric). A very small error in the computation
of the spectral moments can heavily affect the DSD parameter estimation. Thirdly,
if we do not use VPRs, the wind spectra will not produce a near-zero mean radial
velocity response, causing the radial mean Doppler velocity to be a function of the
projection of both the terminal fall velocity and the 3D wind velocity in the radial
direction.

This chapter focuses only on one X-band radar that scans the azimuth very fast,
resulting in very low observation time for Doppler processing. The modeling of the
PSD with the DSD and wind parameters is presented in this chapter using (6.1)
and the principles presented in [56] to incorporate the observation interval in the
model. The PSD model includes two different covariance functions with respect to
time. The first one is the covariance function of the complex time domain signal,
assuming that the radar only observes the wind, and the second one assumes that
the radar only observes the fall velocity of raindrops. As the second covariance
function involves an intractable integral over the diameters of the raindrops, a novel
approximate formulation of the covariance function related to the fall speed (which
depends on the DSD parameters) is presented to reduce the computation time.

A maximum likelihood estimator is proposed in which the log-likelihood
considers the spectral variability of stochastic signals. The estimator’s performance is
assessed by the numerical bias, variance (computed with a Monte Carlo simulation),
and theoretical variance.

6.3. SIGNAL MODEL
This section explains the modeling of the radar echo samples in time from a
precipitation event from one range-resolution volume. Considering a volume filled
with M scatterers (raindrops), the radar echoes at each instant tk , a superposition of
backscattered signals from all the scatterers.

s(tk ) =
M∑

m=1
Am exp

[
j

(
4π

λ
vm,r tk +βm

)]
(6.2)

In (6.2), Am is the amplitude caused by the mth scatterer, λ is the radar central
wavelength, vm,r is the radial velocity of the mth scatterer, βm is the initial phase
of the mth scatterer that is a function of its initial position, and j is the imaginary
unit ( j =p−1) [56]. Unlike in [56], where the amplitudes of each scatterer were
considered the same, in this chapter, it is assumed that that these amplitudes
depend on their respective diameters Dm . In the Rayleigh scattering regime, the
power received from the scatterers is proportional to the sixth order of the diameter.
Therefore, the amplitude for each scatterer is proportional to the third order of the
diameter.

Am ∝ D3
m (6.3)
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The radial velocities of the scatterers vr can be modeled as a scalar sum of the
projection of the 3D wind velocity and the fall velocity in the radial direction. The
radial velocity is given by:

vr =Vwind

[
cos(ψ0)cos(ψ)cos(φ−φ0)

+sin(ψ0)sin(ψ)
]

+VT sin(ψ),

(6.4)

where (ψ,φ) are the observation angles in elevation and azimuth, and (ψ0,φ0) is
the wind direction. For simplicity, this model assumes that the wind direction is
stationary without any local variations. However, for more complex wind fields, the
wind velocity Vwind and the direction can be modeled as functions of space. The VT

is the vertical fall velocity of raindrops. Many models of the fall velocity of raindrops
as a function of their diameters are available in the literature. An exponential model
is used for the velocities as given below [154], [155]:

VT (D) =−(c1 − c2 exp(−c3D)), (6.5)

where c1 = 9.65 m/s, c2 = 10.34 m/s, and c3 = 0.6 mm−1. This model is used
for simplicity, but more complex power law models can also be used with
extra atmospheric physical parameters (such as Reynold’s and Davies’ numbers,
atmospheric pressure at different altitudes, etc.) [39], [38], [37], [43], [156], [41],
[157]. The expression of (6.4) can be rewritten as:

vr =V +VTψ, (6.6)

where the trigonometric expressions in the projections are included in the velocities
(V = Vwind

[
cos(ψ0)cos(ψ)cos(φ−φ0)+ sin(ψ0)sin(ψ)

]
, and VTψ = VT sin(ψ)). The

diameters of the raindrops are assumed to be independent and identically distributed
according to a gamma distribution:

{Dm}M
m=1

i .i .d .∼ Gamma(η+1,Λ), (6.7)

p(D) = Λη+1

Γ(η+1)
Dη exp(−ΛD),

where the parameters of this gamma distribution are explained in (6.1), and Γ is the
gamma function. The concentration term N0 is related to the normalization constant

of the probability distribution as N0 = M × Λη+1

Γ(η+1) [158]. In the existing literature,

M is often represented as NT (in m−3). The initial phases of the scatterers βm

are assumed to be independent and identically distributed according to a uniform
distribution:

{βm}M
m=1

i .i .d .∼ U [−π,+π]. (6.8)

The radial wind velocity associated with the scatterers is assumed to be independent
and identically distributed according to a Gaussian distribution:

{Vm}M
m=1

i .i .d .∼ N (µv ,σ2
v ) (6.9)
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where µv is the radial mean wind velocity, and σv is the spectral width related to
the radial wind (also known as the velocity dispersion parameter). The measurement
model of the time series presented in (6.2) is the signal added with zero mean white
complex Gaussian noise with variance σ2

n :

z = s+n, {nk }N−1
k=0

i .i .d .∼ C N (0,σ2
n), (6.10)

where N is the number of coherent echo samples.

6.4. SEMI-ANALYTICAL FORM OF THE EXPECTED PSD AND

FORMULATION OF THE COVARIANCE RELATED TO VERTI-
CAL FALL

The semi-analytical form of the PSD, considering the number of coherent echo
samples (N ), can be given as (a generalized form of [56, eq. (10)]):

F (v) = R

[
1+

N−1∑
q=1

(
1− q

N

)
(6.11)

×
[

Y (q)G(q)exp

(
− j

4πT

λ
v

)
+Y (−q)G(−q)exp

(
j

4πT

λ
v

)]]
,

where Y (q) is the normalized covariance function of the signal related to the radial
wind only, and G(q) is the normalized covariance function of the signal related
to the fall velocity only, T is the pulse repetition time, and R is the total power
(reflectivity). Usually, the reflectivity is denoted as Z in the literature. However,
to make the analysis consistent with estimation theory, Z is used to represent
measurement PSDs and, therefore, chose R as reflectivity.

The difference between [56, eq. (10)] and (6.11) is that the earlier only considered
a Gaussian-shaped Doppler PSD, and therefore the term inside the summation is
much simplified. Equation (6.11) is the more generic form of [56, eq. (10)], which
considers the covariance function of the signal inside the summation (Y (q)×G(q)).
The covariance function of the signal is a multiplication of two different covariance
functions because the radial velocity of the scatterer is a scalar sum of the projections
of the wind and the vertical fall velocity of the scatterers onto the radial direction.
To realize this, a similar derivation can be performed as in [56, Appendix. A] by
replacing vr as V +VTψ and using two different probability distributions for V and
VTψ.

These covariance functions can also be represented as the expectation of the
signal multiplied by its complex conjugate. It is assumed that the initial positions
of the scatterers in the resolution volume follow a uniform distribution; the
covariance function becomes a function of only the time difference (or delay q).
A detailed formulation can be found in [98], [56, Eq. 9]. To perfectly characterize
a complex sequence, a pseudo-covariance is often formulated along with the
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covariance. However, with the same assumption of uniformly distributed scatterers,
the pseudo-covariance is zero [98]. The complex-valued random processes with zero
pseudo-covariance are known as circularly symmetric Complex Gaussian Processes
(CGP) or Proper Gaussian Processes [135]. The covariance related to the radial wind
component is given by:

Y (q) =
∫ +∞

−∞
p(V )exp

(
jV q

)
dV (6.12)

= exp

(
−1

2

(
4πT

λ

)2

σ2
v

)
exp

(
j

4πT

λ
µv

)
.

The covariance function of the reflectivity weighed fall velocity spectrum G(q) is
given by:

G(q) =
∫ ∞

0

N (D)D6

R

dD

dVTψ
exp

(
jVTψq

)
dVTψ, (6.13)

where R is given by:

R =
∫ ∞

0
N (D)D6dD = M

Γ(η+7)

Γ(η+1)Λ6 . (6.14)

The above-mentioned integral (6.13) can be simplified to the following:

G(q) = M exp( j qC1)

R

Λη+1

Γ(η+1)
(6.15)

×
∫ ∞

0
Dη+6 exp(−ΛD)exp(− j qC2 exp(−c3D))dD,

where C1 = c1
4πT
λ sin(ψ), and C2 = c2

4πT
λ sin(ψ). With a change of parametrization

y = DΛ, we have:

G(q) = exp( j qC1)

Γ(η+7)

∫ ∞

0
yη+6 exp(−y) f (y)dy, (6.16)

where f (y) = exp
(− jC2q exp

(− c3
Λ y

))
. Using generalized Gauss-Laguerre quadrature

[159] on the integral in (6.16), the expression for G(q) can be rewritten as:

G(q) = exp( j qC1)
n∑

i=1
wi f (yi ), (6.17)

where yi are the zeros of the generalized Gauss-Laugerre polynomial Lη+6
n (y), and

the weights wi are:

wi = Γ(n +η+7)yi

n!(n +1)2
[

Lη+6
n+1(yi )

]2 . (6.18)

In this case, the choice of n depends on the delay q ; the larger the q , the larger
should be n to achieve smaller errors. To decide a universal value of n for this
application, the decay of G(q) should be studied with respect to q . For an accurate
estimation of the parameters of a random process with a decaying covariance
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function, it is essential to have enough samples to capture a considerably correlated
part of the signal. In this study, n = 64 is chosen. A detailed analysis of the decay of
G(q) and the choice of n is presented in the Appendix C.

The power spectral density of a stochastic random process is assumed to be
exponentially distributed [56], [80], [81]. The parameters Θ are estimated by
maximizing the log-likelihood given below:

log(p(Z|Θ)) (6.19)

=−
N∑

i=1

[
L log

(
π

(
F (vi ,Θ)+σ2

n

))+ ∑L
l=1 Zl (vi )

F (vi ,Θ)+σ2
n

]
.

The noise variance σ2
n is assumed to be a known quantity, Zl are the PSD

measurements, and L is the number of such PSD measurements. These PSD
observations need not be coherent. The inverse problem can be represented as:

Θ̂= max
Θ

log(p(Z|Θ)). (6.20)

6.5. OPTIMIZATION GOALS
A quasi-Newton-based gradient descent optimization with the Limited Memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm [93] is chosen for faster
computation. To avoid local optima, the optimization is performed from distinct
starting points in the parameter space. The optimization algorithm with different
starting points can be found in [102, Algorithm. 1]. The lower bound (lb) and upper
bounds (ub) for the parameters in the simulations and also in the real data are:

[µlb
v ,µub

v ] = [−Va ,Va], (6.21)

[σlb
v ,σub

v ] = [0, σ̂(PP)],

[ηlb,ηub] = [−1,20],

[Λlb,Λub] = [0.1,20],

where, Va is the maximum unambiguous velocity of the radar and σ̂(PP) is the
estimated Doppler spectral width estimated with the Pulse Pair (PP) approach.

6.6. NUMERICAL SIMULATION
For the numerical simulation study, the radar echoes are generated with the signal
model of (6.2). The drop sizes are sampled from a gamma distribution (6.7). No
truncation has been applied to limit the maximum drop size in these simulations.
The estimation of the parameters is first studied with an increase in the radial
wind-related spectral width σv . This parameter explains the contribution of the
radial wind in the Doppler spectrum; it is essential to understand the bias and
uncertainty in the estimates of the DSD parameter retrievals based on it. The
simulation parameters are set according to Table 6.1. The proposed approach is
called the “WiDSE" (Wind and DSD Estimator).
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Table 6.1: Parameters for the analysis

Parameter Value
L 32
N 64
M 100000
Va 18.75 m/s
ψ 45◦

The bias and standard deviations are obtained with a Monte Carlo simulation of
128 different realizations of the measurements. The standard deviations are studied
with respect to the theoretical ones of (D.11). For the DSD parameter retrieval,
the approach of [2] is used as a reference. The approach of [2] is referred to as
“Chen’s approach" in the analysis, and a superscript of “Chen" is used on top of the
variables whenever relevant. An assumption has been considered: prior knowledge
of the radial wind-related parameters µv and σv . As the existing Doppler PSD
methods of DSD parameter retrieval assume that the radial wind parameters are
known beforehand precisely (from the measurements of another radar sensitive to
clear sky reflections, for example), the performance of one such method is assessed,
but with imposed uncertainty in the estimations of µ(Chen)

v and σ(Chen)
v .

The uncertainty in these parameters is imposed across the Monte Carlo
simulations. The µ̂(Chen)

v is sampled from a Gaussian distribution (with mean as the
true µv ), and σ̂2(Chen)

v is sampled from a gamma distribution.

µ̂(Chen)
v

i .i .d .∼ N

(
µ(True)

v ,

[
2Va

5N

]2)
(6.22)

σ̂2(Chen)
v

i .i .d .∼ Gamma
(
100×σ2(True)

v +1,100
)

(6.23)

A hat on the parameters refers to the fact that they are estimated quantities. For
the DSD parameter estimation, the following are used:

Λ̂(Chen) = c3

(
Ω−1

1−2Ω

)
, (6.24)

η̂(Chen) =
log

[
c2ψ

c1ψ− ˆ̄VTψ

]
log

[
1+ c3

Λ̂Chen

] −7, (6.25)

where Ω is given by:

Ω=
log

c1ψ− ˆ̄VTψ

c2ψ

log

[(
σ̂2

pψ

c2
2ψ

)
+

(
c1ψ− ˆ̄VTψ

c2ψ

)2] . (6.26)

These equations are used from [2, eq. (12, 13, 14)]. In these equations, ˆ̄VTψ

and σ̂pψ are used as ˆ̄VTψ = µr − µ̂(Chen)
v and σ̂2

pψ = σ2
r − σ̂2(Chen)

v (The ψ subscript
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refers to the fact that the variables include the elevation angle ψ: ˆ̄VTψ = ˆ̄VT sin(ψ),
σ̂pψ = σ̂p sin(ψ), c1ψ = c1 sin(ψ), c2ψ = c2 sin(ψ)). Here, µr and σr are the mean and
spectrum widths computed from the incoherent average of L Doppler PSDs, each
having N coherent echoes integrated.

The assertion that Chen’s approach, as described in [2], does not aim to estimate
the DSD parameters accurately may not fully capture the intent and methodology
presented in the study. In the research, a combination of retrievals from radar and a
disdrometer (with empirical second-order relationship between η and Λ) is studied
to treat the estimation of these parameters accurately. As the focus is only on radar
retrievals and not disdrometer ones, the analysis is restricted to the above-mentioned
equations (6.24), (6.25), and (6.26).

The approach is not compared with the other Doppler-based approaches such as
[30] because, in these studies, only one realization of the Doppler PSD is used with
very high Doppler resolution. Furthermore, the optimization procedure in [30] is
iterative, where one parameter is estimated at once exclusive of the others in each
iteration, increasing the computational cost.

The bias is the difference between the expected value of the estimated quantity
and the true value.

B
[
Θ̂

]= E[
Θ̂

]−Θ. (6.27)

Here, the expectation of the estimated quantity is computed by doing a Monte
Carlo simulation and taking the average. Therefore, a positive bias refers to an
overestimation, and a negative bias refers to an underestimation. The following
expression computes the numerical variance in the parameters:

V
[
Θ̂

]= E[(
Θ̂−E[

Θ̂
])2

]
. (6.28)

The standard deviation in the estimates is computed by taking the square root of
V

[
Θ̂

]
.

The theoretical variances are computed by taking the inverse of the Fisher
information matrix, and the detailed derivation is shown in Appendix D. The Fisher
information matrix (in this case, it is a 4×4 because there are four parameters)
is derived by taking the expectation of the second derivative of the log-likelihood.
For the discussion on theoretical variance (and how it is different than the
unbiased-CRB), unbiased CRB, and biased CRB, refer to §3.5.

The biases of parameters are dependent on each other. In this case, it is a 4×4
matrix. The identity matrix is 1, and the Fisher information matrix is I (all having
the same dimension of 4×4). The bias gradients ∇θ are computed with respect to
the parameters themselves. The estimation bias is caused by many factors, such
as insufficient echo sample size (N ), optimization process inaccuracies, parameter
space constraints, etc. Therefore, the functional forms of the bias-gradients are
harder to achieve [160] and are not a part of this chapter.

At N →∞ and L →∞, the theoretical standard deviations converge to the CRB
as the estimator becomes unbiased. Chen’s approach produces very low standard
deviations because of its biased nature. The estimation variance of WiDSE is
inversely proportional to L and can be verified by (D.1), (D.2), and (D.11).
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Figure 6.1: Bias in the estimation of: a µ̂v m/s b σ̂v m/s c η̂ d Λ̂mm−1 at µv = 3.53 m/s, σv = 0.6
m/s, η= 2.07, Λ= 3.48mm−1, and L = 32 with the number of coherent echo samples N . e Legend for
the figures.

6.6.1. DEPENDENCE ON THE NUMBER OF COHERENT ECHO SAMPLES N
The performance with the number of coherent echo samples N is presented in Fig.
6.1 and 6.2. The parameter values chosen are: µv = 3.53 m/s, σv = 0.6 m/s, η= 2.07,
Λ= 3.48 mm−1, and number of realizations is L = 32.

With an increasing number of samples, the estimates are converging. The
proposed WiDSE approach is superior to Chen’s approach in terms of bias in
the estimates. The numerical standard deviations follow the same trend as the
theoretical ones. The variance analysis is carried out after N = 23 to avoid numerical
errors in the integrals in the formulae in the Fisher information matrix.

6.6.2. DEPENDENCE ON THE RADIAL WIND SPECTRAL WIDTH (σv )
The bias and standard deviation in the estimates are shown in Fig. 6.3 and 6.4,
respectively. It can be seen that the bias of the DSD parameters increases with an
increase in the contribution of the radial wind spectral width. The contribution
of the radial wind component in the Doppler spectrum rises with an increase
in the spectral width; as a result, the DSD parameters suffer from larger biases.
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Figure 6.2: Standard deviation in the estimation of: a µ̂v m/s b σ̂v m/s c η̂ d Λ̂mm−1 at µv = 3.53
m/s, σv = 0.6 m/s, η= 2.07, Λ= 3.48mm−1, and L = 32 with the number of coherent echo samples N .
The expression “Theor" refers to theoretical plots, e Legend for the figures.

Nonetheless, the bias of WiDSE is smaller than Chen’s approximation.
The numerical estimation variance of mean Doppler velocity, spectrum width,

and the DSD parameters (for spectral widths >σv = 1.1 m/s) for η= 1.5 do not follow
the trend of the theoretical variance. It can be attributed to the fact that for larger
spectral widths and larger η > 0, the biases in the estimates affect the numerical
variance. The numerical and theoretical variances for smaller η values follow similar
trends for smaller spectral widths.

6.6.3. DEPENDENCE ON THE DSD PARAMETERS

The performance with the parameter η at fixed µv , and σv are presented in Fig. 6.5
and 6.6. The Λ parameter is also varied with η based on a quadratic relationship
proposed in [161, eq. (18)]. This relationship is used for the parameter sweep to
assess the performance. The estimation of η and Λ are still done independently. The
parameters µv , σv are set to 3.53 m/s, and 0.6 m/s, respectively. The number of
echoes N = 64, and the number of realizations are L = 32.
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Figure 6.3: Bias in the estimation of: a µ̂v m/s b σ̂v m/s c η̂ d Λ̂mm−1, with the radial wind spectral
width σv at N = 64, and L = 32. e Legend for the figures.

It can be observed that the bias of the proposed WiDSE technique is much
smaller than that of the Doppler moment based on Chen’s approximate formulae.
Even though WiDSE performs better than the Doppler moments-based approach, it
can be observed that the bias degrades with an increase in η and Λ.

The standard deviations in the estimates of the DSD parameters tend to increase
with an increase in η or Λ. The theoretical plots are in good agreement with
the numerical ones. Their biased nature can explain the difference between the
theoretical and numerical standard deviations.

6.6.4. DEPENDENCE ON L WITH KNOWN AND UNKNOWN CONCENTRA-
TION

A crude assumption of a previously known concentration parameter (which affects
the reflectivity) has been applied in all the above performance analyses. However, in
real measurements, this assumption may not hold because of the lack of knowledge
about the concentration parameter of the Gamma DSD (N0). As N0 is a parameter
typically multiplied in the reflectivity model, a slight change in this parameter can
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Figure 6.4: Standard deviation in the estimation of: a µ̂v m/s b σ̂v m/s c η̂ d Λ̂mm−1, with the radial
wind spectral width σv at N = 64, and L = 32.. The expression “Theor" refers to theoretical plots e
Legend for the figures.

heavily affect the relative change in the reflectivity. Here, the performance of WiDSE
is presented with respect to L (number of PSD measurements) with and without the
knowledge of the reflectivity. In the known N0 case, as in the previous parameter
sweeps, the reflectivity is estimated as shown in (6.14). In the unknown case, the
reflectivity is estimated as the average power in the signal. The averaging of L
sequences is done incoherently:

R̂ = 1

L

L∑
l=1

1

N

N−1∑
k=0

|zl ,k |2. (6.29)

It can also be estimated in the frequency domain by computing the integral power
in the PSD. The bias and standard deviations in the estimates are presented in Fig.
6.7 and Fig. 6.8, respectively, for WiDSE with respect to L (with N = 64). The values
of the other parameters are µv = 3.53m/s, σv = 0.6m/s, η= 2.07, and Λ= 3.48mm−1.

The bias in the estimates increases when the value of N0 is not known perfectly.
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Figure 6.5: Bias in the estimation of: a µ̂v m/s b σ̂v m/s c η̂ d Λ̂mm−1 with the DSD parameters at
σv = 0.6 m/s, N = 64, and L = 32. e Legend for the figures.

The radial wind parameters suffer from underestimation when N0 is not known
perfectly. With an increasing L, the standard deviations decrease and follow similar
trends as the theoretical ones. Therefore, the knowledge of N0 is crucial for
accurately estimating the DSD parameters.

6.6.5. DISCUSSION ON DSD-DERIVED QUANTITIES

In the previous subsections 6.6.1, 6.6.2, 6.6.3, and 6.6.4, the limitations in the
parameter estimation with the proposed technique are evident in some instances;
such as the lack of knowledge regarding N0, for higher radial wind spectral widths
σv and higher shape parameter η (often associated with light rain events).

It is known that weather radars are usually not very sensitive to larger η values
because of their significant-resolution volumes spanning several cubic meters in
dimension. Radar retrievals are generally sensitive to larger diameters, usually at the
DSD’s tail.

Although the DSD parameters are biased when computed with the proposed
approach, an excellent fit for the Doppler spectrum can still be achieved. To
demonstrate this, the log-likelihood is shown with respect to Λ and η parameter
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Figure 6.6: Standard deviation in the estimation of: a µ̂v m/s b σ̂v m/s c η̂ d Λ̂mm−1 with the DSD
parameters at σv = 0.6 m/s, N = 64, and L = 32. The expression “Theor" refers to theoretical plots, e
Legend for the figures.

space, assuming that µv , σv , and N0 are known perfectly. The log-likelihood is
shown in Fig. 6.9 for η= 1.2 and Λ= 3.

Firstly, it can be observed that the range of values the log-likelihood contains is
very limited. Secondly, although it has a maximum in the log-likelihood, the profile
is exceptionally smooth. The final estimate, therefore, can be very sensitive to the
starting point in the optimization routine. Consequently, the optimization is started
from several randomly selected starting points. Any estimate on the bright line on
this plot can still fit the Doppler spectrum adequately.

For practical applications, if the objective is to separate the contribution of the
radial wind from the fall velocity spectrum, the proposed approach can be proven
extremely valuable because of its computational efficiency. A spatial distribution
profile of fall and radial wind velocity spectra can be achieved efficiently.

The reconstructed Doppler spectrum is presented for a particular case to show
the fit with the simulated Doppler spectrum. The test case chosen for this analysis is
taken from the analysis shown in Fig. 6.7 and 6.8 at L = 64. Three sets of estimated
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Figure 6.7: Bias in the estimation of: a µ̂v m/s b σ̂v m/s c η̂ d Λ̂mm−1 with L at σv = 0.6 m/s, N = 64,
η= 2.07, Λ= 3.48mm−1. The expression “Theor" refers to theoretical plots, e Legend for the figures.

parameters are chosen, and they are:

1. Statistical average obtained from the Monte Carlo runs E[Θ].

2. Two standard deviation bounds on either side of the average estimate,
E[Θ]±2

p
V[Θ].

The Fig. 6.10 shows the Doppler spectrum reconstruction by replacing the
estimated parameters in the PSD model of (6.11).

The mean terminal fall velocity (V̄T ) derived with [2, Eq. (4)] is presented in Fig.
6.11a. The statistical retrievals with DSD parameter sweep in the subsection 6.6.3 are
used for this analysis. The proposed approach is in good agreement with the real
mean terminal fall velocity. The median volume drop diameter (D0) [3, Eq. (5)] is
presented in Fig. 6.11b. The retrievals of D0 also have good agreement with the
ground truth.
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Figure 6.8: Standard deviation in the estimation of: a µ̂v m/s b σ̂v m/s c η̂ d Λ̂mm−1 with L at
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Legend for the figures.

6.6.6. COMPUTATIONAL RESOURCE CONSIDERATIONS

The computational time required for the parameter estimation is proportional to
the number of iterations needed for the optimization procedure. Each iteration
involves the computation of the log-likelihood multiple times. Hence, the time
required for the entire process is proportional to the time needed to compute the
log-likelihood. It has been observed that with the same computer, the computation
of the correlation function G(q) requires around one decisecond (for N = 64)
when the internal form (6.16), whereas the approximate solution proposed in this
chapter (6.17) requires only a few milliseconds resulting in a very fast computation.
Furthermore, the log-likelihood is based only on the PSD, so it is computationally
more efficient than the covariance-based parameter estimation approaches (because
the covariance-based approaches require the computation of the inverse covariance,
which is computation-heavy).

With a Linux operating system (Red Hat Linux, 256 GB random access memory)
and MATLAB environment, a typical optimization execution at parameters with the
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Figure 6.9: Log-likelihood (6.19) log(p(Z |Θ)) with η, and Λ at N = 64, L = 32 at fixed values of µv and
σv . True values of η and Λ are 1.2 and 3 respectively.

WiDSE approach takes, on average, around 55 ms. Here, the average is computed
with 512 runs of the optimizer with distinct starting points of the parameters (chosen
randomly from a uniform distribution inside the parameter space). The total time for
the optimization increases with an increase in the number of distinct starting points
one wants to use for the optimization. If the hardware allows parallel computing,
retrievals for several resolution volumes can be performed at the same time.

6.7. APPLICATION TO REAL RADAR OBSERVATIONS

6.7.1. DESCRIPTION OF THE EXPERIMENT
The proposed approach has been applied to real radar data recorded from the X-band
fully polarimetric (9.4 GHz) MESEWI radar at the Delft University of Technology
in the Netherlands. The horizontal (HH) polarization data has been used in the
experiment presented in this chapter. The radar specifications are shown in Table
6.2.

Table 6.2: MESEWI radar specifications

Parameter Value
Center Frequency ( fc ) 9.4 GHz

PRI (T ) 813.2µs
Beamwidth in Azimuth (dφ) 2.5◦

Beamwidth in Elevation (dψ) 2◦
Elevation Angle (ψ) 30◦

ADC Sampling fs 4.92 MHz
Va 9.8 m/s

The data that is used in this experiment is from 32 fast scans (azimuthal scanning
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Figure 6.10: Doppler spectrum reconstruction at three sets of estimated parameters. “GT" stands for
Ground Truth. In the legend, the E [Θ], V [Θ] are expected value and variance of the radial wind and
the DSD parameters. The Doppler spectrum is then computed using (6.11) with the parameter values
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Figure 6.11: a Terminal fall velocity retrieval ˆ̄VT m/s. “GT" stands for Ground Truth. In the legend,
the E [Θ], V [Θ] are expected value and variance of the DSD parameters. The terminal fall velocity
is then computed using [2, Eq. (4)] with the parameter values mentioned in the legend, b Median
volume diameter D̂0 mm. In the legend, the E [Θ], V [Θ] are expected value and variance of the DSD
parameters. The median volume drop diameter is then computed using [3, Eq. (5)] with the parameter
values mentioned in the legend.
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speed of Ω= 5 rotations per minute, rpm). The date of observation was May 9, 2023.
The range processing and clutter treatment for this configuration are explained in
§3.7.

The number of radar echoes (in slow-time for Doppler processing) per resolution
volume is 100. The number of scans integrated using the proposed WiDSE algorithm
is Nscan = 32. The total number of echo samples per resolution volume is 32×100,
which is arranged with L ×N = 64×50, meaning that there are 64 observations
(realizations) for Doppler processing with each observation containing 50 echo
samples each.

For the retrieval with WiDSE, some prior information is used for the concentration
parameter N0 and the attenuation of reflectivity in the rain for the X-band as a
function of the range ϵ(r ). This prior information is used to model the reflectivity
to avoid underestimation of the spectral width (radial turbulence) parameter σv , as
demonstrated in sub-section 6.6.4 (with unknown N0).

For N0, an average estimate (during the time of radar observation) is used
by analyzing the data of a disdrometer located at the Green Village (at the Delft
University of Technology) at around a range of 475m at an azimuthal angle of
φ= 130◦ from the MESEWI radar location (The azimuth is considered clockwise; 0◦
is towards the north). The disdrometer provides the values for the concentration
parameter N0 once per minute. An average concentration of N0 = 3829 mm−1m−3

is used for the experiment in this chapter. For the attenuation, an approximate
empirical model has been used from [13, Ch. 5, Tab. 5.2] (in dB km−1) at a
temperature of 10◦C. This attenuation model is a function of the rain rate (in
mmh−1). Ideally, for each range cell, the rain rate should be modeled with an
integral over the DSD (is proportional to an integral involving the third power of the
diameters and the DSD). However, this chapter uses an average rain rate of 2 mmh−1

(light rain) by analyzing the disdrometer data. The reflectivity is modeled by the
following relationship:

R(r ) = N0
V

10ϵ(r )/10 × r

Γ(η+7)

Λη+7 , (6.30)

where r is the range of the target (in km) and V is the volume of the range cell
V = r 2 cos

(
ψ

)
dr dψdφ. The measured signal already considers the radar constant,

which includes a correction related to the range of the targets, gains of the antenna
systems (both the transmitter and receiver), attenuation correction in the receiver,
and a calibration correction. Therefore, (6.30) is suitable enough as a model for the
measured reflectivity.

The L measurement PSDs are computed, and for the retrieval process, four
PSD values around the zero velocity are not considered to avoid the clutter region.
Ideally, the clutter (without the clutter treatment in the pre-processing step) should
be modeled along with precipitation, which is avoided in this chapter for simplicity.

The results of the mean Doppler velocity (using the PP approach ) and the
averaged reflectivity are shown in Fig. 6.12.

It can be seen from Fig. 6.12a that the reflectivity corresponds to a light rain
event. It also shows a bright band ring of strong reflection around a range of
4.5 km. It is the melting layer in the atmosphere where the precipitation forms
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(a) (b)

Figure 6.12: a Average reflectivity (dbZ) using L = 64 PSDs, b Average mean Doppler velocity (m/s) using
L = 64 different mean Doppler velocities computed in each resolution volume using the PP approach.

[96]. The WiDSE processing is carried out for resolution volumes with reflectivity
of more than 10 dBZ. It can be seen from the mean Doppler velocity (Fig. 6.12b)
that the precipitation moving direction is towards φ = 15◦ (as the mean Doppler
velocity is tapered with a cosine function (6.4) across the azimuth and at φ= 15◦
it has a maximum). Therefore, the mean Doppler velocity is close to zero at
φ= 135◦, and φ= 315◦ as these directions are perpendicular to the moving direction
(φ−φ(max) ≈ 90◦). Around these azimuthal angles, the precipitation Doppler spectrum
comes closer to the clutter region. As in this experiment clutter removal has been
used and for the application of the WIDSE approach, the clutter Doppler frequencies
are not considered in the PSD measurements, the estimation accuracy degrades
(more on this in subsection 6.7.2).

The retrievals of the radial wind and DSD parameters with the proposed WiDSE
approach are presented in the following sub-section 6.7.2. In all the retrievals, a
crude assumption of signal stationarity (for 6.4 minutes) has been considered. The
WiDSE approach can be extended in the future to accommodate a rapidly changing
atmosphere where the parameters of interest change over time. However, for this
chapter, for demonstration purposes only, this crude assumption is considered.

6.7.2. APPLICATION OF WIDSE ON REAL RADAR DATA

The retrievals of radial wind, DSD parameters, along with the derived mean terminal

fall velocity ( ˆ̄VTψ/sinψ) of raindrops and the median volume raindrop size (D0), are
shown in Fig. 6.13. The scatter plot of the estimated DSD parameters till a range
2.24 km with the WiDSE approach, highlighted scatter plot of the estimated DSD
parameters around the Green Village (±75m of where the disdrometer is located),
and the estimated DSD parameters with both higher order and lower order method
of moments approaches [4] applied on the disdrometer data is shown in Fig. 6.14.
The fitting to the Doppler spectrum at some specific resolution volumes is shown in
Fig. 6.15. The log-likelihood of (6.19) is shown in Fig. 6.16.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.13: Plan Position Indicator (PPI) plots after applying WiDSE algorithm, a mean radial wind
velocity µ̂v m/s, b mean radial velocity width σ̂v m/s, c DSD shape parameter η̂, d DSD rate parameter

Λ̂mm−1, and derived parameters, e mean terminal fall velocity ˆ̄VTψ/sin
(
ψ

)
m/s, f median diameter

D̂0 = (
3.67+ η̂)

/Λ̂mm.

Some key findings are made from these results (Fig. 6.13-Fig. 6.16) and are listed
below.
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Figure 6.14: Scatter plot of the estimated DSD parameters η̂ and Λ̂mm−1. “HM" stands for the higher
order method of moments, “LM" stands for the lower order method of moments [4], and “Disdro"
stands for disdrometer.
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Figure 6.15: Doppler spectrum reconstruction at specific resolution volumes, a at the Green Village;
r = 472 m, φ= 128◦, b at a radar volume where the mean Doppler velocity is aliased (Fig. 6.12b),
r = 1.829 km, φ= 257◦, c at the melting layer, r = 4.662 km, φ= 73◦.

1. In the mean Doppler velocity retrieval (Fig. 6.12b) and the retrieved mean
radial wind with WiDSE approach (Fig. 6.13a), it can be observed that the
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Figure 6.16: Optimal log-likelihood using (6.19) at the estimated parameter values Θ̂. The melting layer
(around r = 4.5 km) is adequately filtered out because it has very small log-likelihood values than the
other regions.

aliased velocity region of Fig. 6.12b is not symmetric and only appears in the
negative radial velocity regions (around φ = 170◦ till φ = 260◦). However, as
WiDSE tries to decouple the radial wind contribution by eliminating the mean
terminal fall velocity (as a function of the retrieved DSD parameters), the
aliased regions of the mean radial wind velocity retrieval are more symmetric
than the mean Doppler velocity.

2. With increasing range, the radar volumes become bigger, introducing a
broadening in the Doppler spectrum. Therefore, the radial velocity width σ̂v

values are usually higher at higher ranges. A similar trend is also observed for
η̂ and Λ̂.

3. At the zero mean Doppler velocity regions (around φ= 135◦, and φ= 315◦),
and the mean Doppler aliased regions (around φ = 170◦ till φ = 260◦), the

estimated η̂, the absolute value of the derived | ˆ̄VTψ/(sinψ)|, and the median
volume drop diameters D0 are underestimated. This underestimation can be
attributed to the lack of useful spectrum for zero Doppler regions (clutter
region is eliminated in the retrievals) and Doppler aliasing at the aliased
regions. These regions are below the melting layer.

4. Except for the above-mentioned regions, below the melting layer, the mean
terminal fall velocity estimate is very uniform and around −4.5 m/s to −5.5 m/s.
Similarly, the estimated median volume diameters are between 0.8 mm to
1.4 mm indicating observation of a light rain event. These estimated mean
terminal fall velocities correspond to the estimated drop sizes for stratiform
rain ([154, Fig. 3]).

5. From Fig. 6.14, it can be seen that the range of values of the estimated
DSD parameters from WiDSE coincides with the ones from the disdrometer.
Radar and disdrometer are instruments with different sensitivities. Therefore,
the estimated parameters from both sensors can exhibit different variances.
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Radar volumes are several cubic meters, and radar is sensitive to larger drops,
whereas the disdrometer is sensitive to the smaller ones as well. Radar signals
are received from the atmosphere from a certain height, whereas a disdrometer
measures the drop sizes in close proximity to the ground.

6. These large values of the DSD parameters η̂ and Λ̂ correspond to light rain
and can be verified from the statistical analysis of [162, Fig. 4(a)]. The outliers
with smaller η values come from the zero mean Doppler and aliased mean
Doppler regions.

7. As explained in detail in the simulation study in the section 3.6, the DSD
parameters can be very biased with the WiDSE approach. However, the
derived parameters, such as the mean terminal fall velocity of the raindrops
ˆ̄VTψ/(sinψ) and the median volume drop size D0, can be very accurate

and more trustworthy. The WiDSE approach efficiently distinguishes the
contribution of radial wind and mean terminal fall velocity from the Doppler
spectrum.

8. When it comes to the melting layer, as the processes are dynamic, the Doppler
spectrum does not remain stationary during the time of observation. Therefore,
the parameter retrievals are not very stable. From Fig. 6.15c, it can be observed
that the measured Doppler spectral content is not stable (from scan-to-scan),
and therefore, the reconstructed Doppler spectrum with the WiDSE approach
has a wider spectral width to account for the broadening.

9. Fig. 6.15a and Fig. 6.15b shows the Doppler spectrum reconstruction at
the Green Village area and a volume where the Doppler spectrum is aliased,
respectively. From a visual inspection, it can be seen that the fitting is
sufficient for these locations.

10. From the log-likelihood computed at the optimal parameter values Fig. 6.16,
it can be observed that the zero mean Doppler regions have a higher
log-likelihood. However, a higher log-likelihood in this case is not necessarily
due to an adequate fit but is associated with the fact that the useful
spectra (around zero Doppler) are not taken as measurements. Another key
observation drawn from the log-likelihood is that the high-reflectivity regions
of the melting layer (near r = 4.5 km) are sufficiently filtered out with very
low log-likelihood values, suggesting that the stationary Doppler spectrum
assumption with time is violated.

6.8. CONCLUSIONS
In this chapter, a maximum likelihood approach for a joint DSD and radial wind
parameter estimation using fast-scanning weather radar Doppler PSD measurements
is proposed. The proposed model of the PSD is a function of the DSD, radial wind
parameters, and the finite observation time.

It has been shown that the proposed approach directly estimates all of the radial
wind and DSD parameters, unlike the existing approaches where the DSD parameters
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are estimated from either the Doppler moments of a vertically pointed radar or by
using prior information on the wind parameters (from a wind profiler radar). With
the proposed approach, the Doppler spectrum can be fit jointly and efficiently with
rain DSD and radial wind parameters from the point of view of measurement and
computation times. Furthermore, it does not require the radar to be only vertically
pointed. Therefore, the proposed approach can benefit aviation safety and air traffic
control applications, which require the spatial distribution (spatial coverage with
high temporal resolution) of the mean terminal fall velocity of raindrops (a function
of the rain DSD) and radial wind fields.

The performance of the parameter estimation has been studied extensively by
Monte Carlo simulations for several parameter sweeps, such as number of coherent
samples N , radial wind spectral width σv , the DSD parameters (η and Λ), and
number of PSD realizations L. The proposed estimator (WiDSE) is compared with
Chen’s approximate formulae for the DSD parameter retrieval from Doppler moments
of the fall velocity spectrum. It has been shown that the proposed estimator has a
smaller bias than Chen’s approximate formulae.

The DSD parameter estimates bias and standard deviation increase with increased
radial wind velocity dispersion (radial wind spectral width or turbulence in the radial
wind) and shape parameter of the DSD. It is shown that the prior information on
the concentration parameter N0 is essential for the DSD parameter retrieval.

The theoretical variances in estimating the parameters are derived and plotted
along with the numerical variances. The theoretical variances are computed by using
the Fisher information matrix. As the estimator is biased, the numerical variances
do not always follow the theoretical ones. The biased Crámer Rao lower bound
(CRB) for this biased estimator can also be derived by studying the bias gradients in
the future. However, with an increase in the number of coherent samples N and the
number of PSD realizations L, the theoretical variances converge to the unbiased
CRBs as the estimator is asymptotically unbiased.

The novel approximate model proposed in this chapter for the computation
of the correlation function of the reflectivity-weighted fall velocity spectrum (G(q))
helps in very efficient and fast parameter estimation.

The proposed approach can use several incoherent PSD measurements from
multiple radar scans. A practical application of such a scenario can be observed in
the case of fast azimuthal scanning radars where the time on target per scan per
resolution volume is small.

The fit of the Doppler spectrum is shown for one particular test case, and the
derived mean terminal fall velocity retrieval is presented as a function of the DSD
parameters. The proposed approach can adequately fit the Doppler spectrum. The
retrieved mean terminal fall velocity with the proposed approach also agrees with
the ground truth despite the estimated DSD parameters suffering from larger bias
and variance with an increase in the shape DSD parameter η.

Although the model of the Doppler PSD as a function of gamma DSD parameters
is presented, it does not include the concentration parameter N0. Estimating this
parameter requires additional complexity because it is a parameter that is simply a
multiplier in the reflectivity.
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In addition, this chapter does not consider any relationship between the η and Λ
parameters. However, a relationship can be considered in the future as explained in
[163] for reducing the complexity of the parameter estimation.

The proposed approach has been applied to real radar data acquired from the
MESEWI radar of the Delft University of Technology on a day with light rain.
Although there are some variations in the estimated DSD parameters with the
WiDSE approach applied to the real radar data, the derived parameters, such as the
median volume drop size and the mean terminal fall velocity of raindrops, are stable.
The log-likelihood performed in this chapter shows the potential to distinguish the
melting layer region with very high reflectivity from the regions with precipitation.
The results are sufficiently explained by a validation performed with the data from a
disdrometer. For modeling the reflectivity for the acquired data, an average value of
the N0 parameter is used that was acquired from the disdrometer.

In the future, this N0 parameter can be used as an estimation parameter for the
radar. The rain-related attenuation can also be modeled with the DSD parameters in
the future to make the study complete. Furthermore, at X-band frequencies, a pure
Rayleigh scattering approximation does not hold (for raindrops having diameters
bigger than 2.3 mm [13, Tab. 5.1]). A mixture of Rayleigh and Mie scattering
principles should be used for the DSD retrieval.





7
CONCLUSIONS AND

RECOMMENDATIONS

The Doppler processing for radar sensing of extended targets like precipitation has
been further developed in this work. The atmospheric parameters that are the focus
of the thesis are the mean Doppler velocity, which is a scalar sum of the projections
of mean wind and mean vertical velocity of the raindrops, the spectral width, which
is a measure of the turbulence in the rain, and the raindrop size distribution
(DSD) parameters. In each chapter of the thesis, new measurement and estimation
techniques are developed, several distinct atmospheric parameters of interest are
studied, and recommendations for estimating those accurately and efficiently are
presented.

The major contributions of the thesis are the following:

1. NOVEL DOPPLER MOMENT ESTIMATION APPROACH NAMED THE PARAMETRIC

SPECTRUM ESTIMATOR (PSE) FOR FAST AZIMUTHALLY SCANNING RADARS USING

INCOHERENT OBSERVATIONS FROM SEVERAL SCANS: (CHAPTER 3)

A Doppler power spectral density (PSD) model for the precipitation-like target
is proposed as a function of the Doppler moments and the observation interval.
A log-likelihood is then formulated by assuming that the spectral power
is distributed exponentially at each velocity/ frequency. This log-likelihood
function can deal with multiple such PSDs. Multiple PSDs can be acquired
from several radar scans for a typical scanning radar. A maximum likelihood
estimation is performed on the log-likelihood to estimate the Doppler
moments. The proposed PSE approach is applied to real scanning radar data
acquired from the MESEWI radar at TU Delft. It has been shown that the PSE
approach is superior to the other methods. The spectrum reconstruction is
also presented with all the methods, and the fitting with PSE outperforms. The
PSE approach needs comparatively smaller dwell time than the other methods,
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which shows its applicability for fast scanning radars. A scanning strategy is
proposed as a function of the velocity dispersion parameter (a measure of the
turbulence in the atmosphere).

2. NOVEL LOCAL DOPPLER SPECTRUM RECONSTRUCTION WITH A SHORT TIME

ON TARGET BY USING COMPLEX GAUSSIAN PROCESS REGRESSION (CGP-R):
(CHAPTER 4)

Complex Gaussian process regression (CGP-R) is applied to reconstruct the
Doppler spectrum. Firstly, the marginal log-likelihood of the hyperparameters
given the time domain radar echoes is maximized to estimate the
hyperparameters Θ. Using the estimated parameter 0, the signal and spectrum
can be reconstructed using the CGP posterior. As the CGP regression is a
Bayesian technique, uncertainty in the estimates is also computed in addition
to the predicted signal mean in the time and frequency domain. To the
author’s knowledge, it is the first time a direct frequency domain posterior
is formulated and applied to the weather radar echoes to reconstruct the
Doppler spectrum for precipitation, making it novel. The hyper-parameter
estimation performance is assessed by the bias and variance in the estimates
and compared with the DFT and PP nonparametric techniques for equispaced
echo samples for a fair comparison. The proposed CGP approach outperforms
the other methods regarding bias and variance for true normalized spectral
widths σ f n < 0.2 for the normalized spectral width estimation. This approach
has been applied to the real radar data acquired from MESEWI radar at TU
Delft at specific resolution cells to reconstruct the Doppler spectrum with the
CGP posterior. It has been shown that the CGP-R in the frequency domain
can reconstruct the Doppler spectrum with only 12.5% of the echo samples.
The posterior mean with 12.5% of the echo samples has excellent agreement
with the DFT Doppler spectrum (using all the echo samples acquired during
the observation). The uncertainty estimates are also computed. The frequency
domain posterior is calculated directly using the time domain measurements,
posing no additional computational burden.

3. A NOVEL INTEGRATIVE APPROACH FOR RECONSTRUCTION OF THE PRECIPITATION

DOPPLER SPECTRUM BY AVOIDING ALIASING IN THE DOPPLER SPECTRUM BY

EXPLOITING AN APERIODIC PULSE TRAIN (CHAPTER 5)

A novel sampling approach in the time domain is proposed for the aperiodic
pulse train (with a log-periodic sampling sequence). The theoretical Nyquist
unambiguous velocity limit for such aperiodic sequences is discussed in detail.
The minimum sampling interval of the aperiodic sequence is kept higher than
a threshold to make a fair performance comparison with a periodic sampling
sequence having a pulse repetition interval the same as the minimum sampling
interval of the aperiodic sequence. The Doppler moments are normalized
with the Nyquist unambiguous interval of this equivalent periodic sampling
sequence. The CGP-R is chosen to estimate the Doppler moments as the
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signal is sampled aperiodically. The Doppler moment estimation is compared
with the state-of-the-art methods for both aperiodic and equivalent periodic
sampling sequences. Although some of the state-of-the-art moments estimation
techniques perform as expected with aperiodically sampled sequences for
pointed targets immersed in white Gaussian noise, the limitations of such
methods to estimate the Doppler moments for extended targets have been
demonstrated. It has been shown that the proposed approach outperforms
the other methods for the normalized mean Doppler moment estimation
(when the true normalized Doppler spectrum width remains smaller than
0.16, i.e., σ f n < 0.16). An application-centric recommendation has been
presented for the minimum sampling interval. Furthermore, CGP-R has
been used to reconstruct the Doppler spectrum for simulated realistic radar
signals. Unlike the previous contributions, the simulated radar signals are
generated by considering three extended targets, two precipitation-like and
one clutter-like (at zero frequency). This signal model mimics severe weather
conditions like multilayered precipitation or precipitation with wake vertices.
The reconstruction of the Doppler spectrum is compared with the periodic
and aperiodic Schuster’s periodogram. It is shown that the proposed CGP-R
outperforms, and the Doppler spectrum is reconstructed unambiguously. The
normalized mean Doppler velocity for each extended target is estimated
unambiguously.

4. A NOVEL APPROACH OF FITTING THE DOPPLER SPECTRUM EFFICIENTLY WITH

DSD AND WIND VELOCITY PARAMETERS TO GET REAL-TIME ACCURATE AND

HIGH-RESOLUTION INFORMATION ABOUT HORIZONTAL WIND AND VERTICAL

FALL VELOCITY OF RAINDROPS (CHAPTER 6)

Assuming that the radial wind field of raindrops forms a Gaussian distribution
and the diameters of raindrops form a Gamma raindrop size distribution
(DSD), a novel Doppler power spectrum model is derived. The shape of such a
spectrum is not a perfect Gaussian but has a skewness because of the DSD. The
contribution of the DSD on the Doppler spectrum increases with increasing
elevation angle. The proposed model of the Doppler spectrum involves an
intractable integral. A novel approximation using Gauss-Laguerre polynomials
has been proposed for the intractable integral to reduce the computational
time. The PSD model in this study is a more generic form of the PSD proposed
for the Doppler moment estimation in Chapter 3. Estimating the DSD’s shape
and rate parameters, the mean wind velocity, and the wind spectral width is
performed with a maximum likelihood estimation. Several parameter sweeps
have been shown with all the parameters, including the number of echo
samples and radar scans. The proposed approach is much more efficient
than the state-of-the-art techniques when it comes to the computational
resources required. However, the estimated parameters, especially the DSD
parameters, can be heavily biased. The theoretical variances in estimating the
parameters are derived and compared with the numerical ones computed from
Monte Carlo simulations. Although the abovementioned limitations exist for
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DSD parameter estimation, the proposed approach is powerful in efficiently
fitting the Doppler spectrum. Estimating the derived parameters, such as the
terminal fall velocity and the median diameter of the raindrops in a resolution
volume, have a smaller and acceptable bias. Therefore, the proposed technique
efficiently separates the contribution of wind from the vertical velocity of the
raindrops for each radar resolution volume. The proposed technique is an
essential and efficient tool for high-resolution wind field estimation.

The research contributions presented in the thesis transition from specific to
generic formulations of Doppler spectrum parameter estimation, presenting novel
methodologies that enhance the accuracy and efficiency of fast-scanning modern
radars. The research proposed in this thesis shows a correlation between the
physical parameters of interest and the measurement strategy, which includes radar
parameters such as the azimuthal scan speed, non-linearity in the pulse repetition
interval, and so on.

The thesis outcome is useful in the formulation of measurement techniques
for radars and serves as a precursor for adaptive measurement strategies and
high-resolution wind field estimation, significantly advancing radar meteorology and
making the thesis a novel, holistic, and generic study.

FUTURE RESEARCH DIRECTIONS
While several novel approaches that deal with fitting the Doppler spectrum from
precipitation efficiently and accurately for fast scanning weather radars have been
proposed in this thesis, this study has also catalyzed further research for the future.
The following directions can be considered in the future:

1. Parameter estimation for complex weather phenomena such as multi-layer
precipitation, presence of vortices, rapidly changing wind fields, wind updrafts,
etc: this study will demonstrate the limitations of the existing techniques and
instruments for such convoluted estimation problems.

2. A direct 3D wind field estimation using advanced techniques in combination
with the ones presented in this thesis: these methods can be validated with
real data acquired from a radar having a phased array of antennas for the
elevation. This study will help predict wind fields with high spatial and
temporal resolution.

3. Classification of different types of hydrometeors, such as rain, snow, hail,
ice, etc, using radars: this study will enhance the identification of various
hydrometeors in radar images, improving the effectiveness of radar echo
processing.

4. Adequate modeling of the dynamics of various hydrometeor types within the
melting layer, along with the retrieval of their physical parameters using radar
echoes, is of critical importance. Such a study will provide significant insights
into the melting processes and their alterations due to climate change, thereby
enhancing our understanding of these complex phenomena.
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EXPECTED VALUE OF THE POWER

SPECTRUM

The expectation of the square of the modulus of the spectrum function (taken from
(3.9)) is presented in this Appendix. Here, for the derivation, we do not use the
normalization (1/N ). A change of parametrization from velocity to angular frequency
(ω= 4πT

λ v) is used in the derivation for mathematical simplicity.
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As the velocities of the raindrops are assumed independent and identically
distributed, the right-hand side of (A.1) can be approximated to the following
integral:
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−∞
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) p(x)dx, (A.2)

where the p(x) is the probability density function of the frequencies which is
assumed to be Gaussian in this case. The integral is then:
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where, µω and σω are normalized angular frequency equivalents of the normalized
Doppler frequencies. It can be further simplified as:
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If a parametrization ζ= exp( j (x−ω)) is applied, exp
(− j (N −1)(x −ω)

)×(
exp( j N (x−ω))−1
exp( j (x−ω))−1

)2

takes the following form:

I (ζ) = ζ−(N−1)
(
ζN −1

ζ−1

)2

, (A.5)

where the expression ζN−1
ζ−1 is equal to a finite length (N term) sum of a geometric

progression with starting point 1 and a common factor of ζ

I (ζ) = ζ−(N−1)

(
N−1∑
n=0

ζn

)2

(A.6)

The expression
(∑N−1

n=0 ζ
n
)2

can be expanded using the principles of multinomial
expansion , which then can be generalized by the following expression:

I (ζ) =N +
N−1∑
n=1

n
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ζn−N +ζN−n)

. (A.7)

Replacing ζ as the function of x, we have:
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n=1

n
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exp
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This can be rewritten by a change in parametrization n = N −q ,

I (x) = N +
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q=1
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Hence, the original integral (A.1) can be written as:
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The integral of a complex exponential function multiplied with a Gaussian function
is generalized by the following relation:∫ +∞
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Using (A.11), we can rewrite (A.10) as
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which then simplifies to:
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Changing the parametrization from angular frequency to velocity, and normalizing it
with the number of samples N , we have the following final expression for the PSD:

E[ 1
N |S(v)|2] =
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B
THEORETICAL VARIANCE AND THE

CRB OF PSE AND CGP

B.1. PSE
The log-likelihood of (3.14) is used to compute the theoretical variance. Here, as
there are two parameters (here we consider the normalized frequency parameters)
Θ= [θa ,θb] = [µv ,σv ], the Fisher matrix is of dimension (2×2). The entries of the
Fisher matrix are given by:

Ia,b =−E
[
∂2 log(p(Z|Θ))

∂θa∂θb

]
. (B.1)

The derivative of (3.14) with respect to any one of the parameters (θa or θb) is given
by:
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(B.2)
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.

The derivative of the above expression with respect to the other parameter (θa or
θb) is therefore given by (Using only F instead of F (vi ,Θ) and Zl instead of Zl (vi )
for convenience):
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The expectation of the expression above is given by (using the fact that E[Z ] = F +σ2
n):
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For normalized velocity parameters (λ/(2T ) = 2Va), the function F can be written as:

F ( f ,µ f n ,σ f n)

= M ×
[

1+2 ·
N−1∑
q=1

(
1− q

N

)×exp
(
−2π2σ2

f n q2
)
×cos

(
2πq(µ f n − f )

)]
.

(B.5)

The derivatives of the above expression are given below:
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Therefore, the theoretical variance is given by:

VTheor[θ̂a] ≥ I−1
a,a . (B.8)

It is also known as the square of the reciprocal of the sensitivity [80, eq. (4)]. As
the estimator is unbiased for both the parameters for N →∞, (B.8) can be used at
N →∞ to compute the unbiased CRB.

V[θ̂a] ≥ I−1
a,a |N→∞. (B.9)

A closed form of the unbiased CRB is out of the scope of this thesis.

B.2. CGP
The log-likelihood of (4.9) is used to compute the theoretical variance of the
hyper-parameters of the CGP. The inverse Fisher information matrix is computed
for the CGP likelihood (with real-valued covariance), and the diagonal entries of its
inverse are considered. The entries of the Fisher information matrix are:

Ia,b =−E
[
∂2 log

(
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)
∂θa∂θb

]
= 1

2
Tr

(
C−1

R (Θ)
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∂θb

)
, (B.10)

where the operator “Tr" refers to the matrix trace. The theoretical variance is
therefore:

VTheor[θ̂a] = (I−1)a,a . (B.11)



C
DECAY STUDY OF G(q):

AUTO-CORRELATION FUNCTION

RELATED TO THE VERTICAL FALL

VELOCITY

Firstly, it can be observed that in (6.17), the weights are a function of the η

DSD parameter, and the function f is a function of the other DSD parameter Λ.
Implementing (6.17) is made efficient by having a matrix of the weights wi for
several η values saved in the computer. For the implementation, we saved the
weights wi for η=−2(0.001)20; an array between −2 and 20 is considered with a
step of 0.001. The accuracy of the Gauss-Laguerre depends on the choice of the
order n and the value of the function f (yi ) for a given set of parameters η,Λ.

For a Gaussian-shaped power spectrum (with a periodic decaying Gaussian
covariance like Y (q)), it is recommended to have at least N = 1/σ f n (σ f n =σv /(2Va)
is the normalized spectral width with Va being the unambiguous velocity interval)
samples for an accurate estimation of the parameters with σ f n < 0.2 [56]. As G(q)
does not have a closed form expression with respect to q , a functional description
of the decay for all possible combinations of η and Λ is challenging to achieve.

The G(q) does not follow a quadratic Gaussian periodic decay; it is unfair to fit
it with one. The approximate expressions of the second spectral moment of the
fall PSD given in [2] can give us an idea about the decay rate of the covariance
G(q). However, it does not provide all the decay characteristics because of its
non-Gaussian nature. In this section, we compare the mean lifetime and halftime
of the decay based on the spectral width formulation of [2], with a numerical study
using the integral form of G(q) given in (6.16).

We use the theoretical formula of [2] for the spectral width (σW ) to plot
Nlifetime = 1/(

p
2π2σ f W n), where σ f W n = σW /(2Va) is the normalized fall spectrum
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VERTICAL FALL VELOCITY

width. To consider only vertical fall, the elevation is ψ= 90◦. The radar unambiguous
velocity is 37.5 m/s, more than three times the fall velocity of a hypothetical drop
with infinite diameter (can be checked by (6.5)). For the estimation problem,
the maximum unambiguous velocity interval does not matter significantly because
the PSD model also considers the aliasing of the PSD by considering the finite
observation interval (N). To validate the theoretical approximation, we also compute
the integral (6.16) numerically and find Nlifetime, numerical = q |G(q)=exp(−1). For the

half-life, Nhalf-life =
√

log(2)/(
p

2π2σ f W n) and Nhalf-life, numerical = q |G(q)=0.5.
The purpose of studying the lifetime and half-life of the decay is not to prove

that G(q) does not fit a Gaussian decay but to study the number of echo samples
needed to adequately cover the correlated part of the sequence. It helps us decide
on a suitable value of n for the Gauss-Laguerre quadrature (see (6.17)) for realistic
values of η and Λ.

The period of the covariance is often associated with the mean vertical fall
velocity of the scatterers. For raindrops, if we examine (6.5), we know that the
maximum velocity of raindrops can reach c1 = 9.65 m/s for a hypothetical drop of
size infinite.

The difference between the half-lives and lifetimes of the numerical one and the
model of [2] is presented in Fig. C.1c and C.1d as a function of η and Λ in dB scale.
It can be immediately observed that the difference in the lifetime is larger than the
half-life, especially for smaller Λ values (which is an indicator of larger raindrops
in the volume). This analysis shows that the G(q) decays slower than a quadratic
Gaussian decay. Nonetheless, we can observe that the time samples required for
realistic median drop sizes are less than 20 (if we consider the median drop size
roughly (3.67+η)/Λ [3] and a maximum drop size of 4mm [164]). It can be observed
from the Fig. C.1a, and C.1b in dB scale.

Fig. C.2 shows G(q) (both real and imaginary parts) using the integral form
of (6.16) and the approximate form of (6.17) with n = 64 for η = 10, and Λ = 4.
This configuration is chosen as it is the worst case in terms of decay, meaning
that the one lifetime with this configuration is comparatively larger than other
DSD parameter combinations. The approximate form of 6.17) follows the integral
form for a considerable time of decay. After around q = 70, the approximate form
accumulates errors.

Although we have kept n = 64, it can be changed based on the application using
a logic similar to that in this Appendix. In addition, the decay of the covariance
function Y (q) should also be considered along with G(q). If the number of samples
required to capture the covariance of Y (q) adequately is larger than 64, the n should
be increased. For rigorous consideration of the convergence of the Gauss-Laguerre
quadrature, [165] can be followed. A quick look into Uspensky’s formulae [166]
suggests that the convergence in our case should depend on a relation between η

and the function f which depends on the parameter Λ.
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(a) (b)

(c) (d)

Figure C.1: Decay study for G(q) with η, and Λ a Lifetime computed numerically b Analytical lifetime
based on [2] c Difference of halftimes between the numerical and the analytical methods. d Difference
of lifetimes between the numerical and the analytical methods. The times are converted to dB scale
for better visualization.
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Figure C.2: G(q). “Int form" is the original integral of (6.16), and “Approx" is the approximation of
(6.17).





D
THEORETICAL VARIANCE AND THE

CRAMER RAO LOWER BOUND

(CRB) OF WIDSE

The elements of the Fisher matrix with any two parameters are given by:

Ia,b =−E
[
∂2 log(p(Z|Θ))

∂θa∂θb

]
. (D.1)

The expectation term above is given by (E[Z ] = F +σ2
n): [56, eq. 34]
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∂Y (q)

∂µv
= j

4πT

λ
qY (q) (D.4)

∂Y (−q)

∂µv
=− j

4πT

λ
qY (−q).

The derivative with respect to σv is given by:
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where:
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∂σv
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4πT
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)2

σv Y (q) (D.6)
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The derivative with respect to η is given by:
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where:
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+ log(log(u−1))−ψ(0)(η+7)

]
du

∂G(−q)

∂η
= exp(− jC1q)

Γ(η+7)

∫ 1

0

(
Λ

c3

)η+7

u
Λ
c3

−1
exp

(
jC2qu

)
× (log(u−1))η+6

[
log

(
Λ

c3

)
+ log(log(u−1))−ψ(0)(η+7)

]
du

∂R

∂η
= R × (

ψ(0)(η+7)−ψ(0)(η+1)
)

.

The original integral of G(q) in (6.15) is from 0 to ∞. However, in the above
expressions for (D.8), the definite integral limits have been changed from 0 to 1
by using a transformed variable u = exp(−ΛD) to have numerical stability in the
implementation. Here, ψ(0)(x) is the digamma function ψ(0)(x) = Γ′(x)/Γ(x).

The derivative with respect to Λ is given by:

∂F
∂Λ = R

N−1∑
q=1

q
(
1− q

N

)[
exp(− j 4πT

λ v)Y (q) ∂G(q)
∂Λ +exp( j 4πT

λ v)Y (−q) ∂G(−q)
∂Λ

]
+ ∂R
∂Λ

F
R ,

(D.9)
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where:

∂G(q)

∂Λ
= exp( jC1q)

Γ(η+7)

∫ 1

0

(
Λ

c3

)η+7

u
Λ
c3

−1
exp

(− jC2qu
)

(D.10)

× (log(u−1))η+6
[
η+7

Λ
+ 1

c3
log(u)

]
du

∂G(−q)

∂Λ
= exp(− jC1q)

Γ(η+7)

∫ 1

0

(
Λ

c3

)η+7

u
Λ
c3

−1
exp

(
jC2qu

)
× (log(u−1))η+6

[
η+7

Λ
+ 1

c3
log(u)

]
du

∂R

∂Λ
=−6M

Γ(η+7)

Γ(η+1)
Λ−7.

The theoretical variances (also known as the square of the reciprocal of the
sensitivity [80, eq. (4)]) is computed as:

VTheor[θ̂a] ≥ I−1
a,a . (D.11)

The estimator is unbiased when N →∞, (D.11) can be used at N →∞ to
compute the unbiased CRB.

V[θ̂a] ≥ I−1
a,a |N→∞. (D.12)

No closed form of this unbiased CRB is given in this thesis.
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EPILOGUE

In bringing this thesis to closure, I envisage that the conclusions presented in the
thesis may change with the advent of a deeper understanding of the underlying
physical and mathematical principles. The instruments that measure the weather
dynamics like the one discussed in this thesis can be upgraded to accommodate
the novel understanding of the dynamics of the hydrometeors and scattering
mechanisms exploited by the instruments. Although the future insights remain
uncertain, I believe that an amalgamation of adequate physical models with precise
enough mathematical ideas will illuminate new dimensions to our inquiry into the
unprecedented.
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