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1. Introduction
The main contribution of the confocal microscope to microscopy is that it provides a practical
method to obtain microscopic volume images. Although a confocal microscope is a true
volume imager, its imaging properties give rise to a blurring phenomenon similar to that of a
conventional microscope, but with a reduced range. The resulting distortions hamper
subsequent quantitative analysis. Therefore, operations that invert the distortions of the
microscope may improve these analyses. In previous work [1], the iterative constrained
Tikhonov-Miller (ICTM) inversion was used to restore diffraction-induced distortions.
Quantitative texture measurements, based on the grey value distance transform (GDT) [2],
showed that the results improved when applied to images after restoration.
The use of the ICTM restoration method was motivated by the linear system model of the
imaging properties of a confocal microscope. In this model, the image is a convolution of the
object with the microscopes point spread function and distorted by additive noise.
However in images with a low signal-to-noise ratio (SNR), this additive noise model is a poor
description of the actual photon-limited image recording. Under these circumstances, the noise
characteristics are best described by a Poisson process, which motivates the use of restoration
methods optimized for Poisson noise distorted images.
We have compared the ICTM inversion with the expectation-maximization algorithm for
computing the maximum likelihood estimator (EM-MLE) for the intensity of a Poisson process

2. Image restoration methods
The incoherent nature of the emitted fluorescence light allows us to model the image formation
of the confocal fluorescence microscope (CFM) as a convolution of the object f with the
confocal point spread function h (CPSF) of the microscope, The image g formed by an ideal
noise free CFM can thus be written as

g y h y x f x dx

X

= − (1)

with x being a coordinate in the object space X, and y in the image space Y.  Due to the photon
nature of light and its effect on f, g is distorted by noise. Noise, caused by photon-counting, by
the readout of the detector, and by the analog-to-digital conversion, disturbs the image. We
model this noise distortion here in a general way

m y N g y= (2)

with m(y) being the recorded image and N() the noise distortion function.
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Restoration methods are based on finding an approximate solution 
�

f , given g and h, from a set
of feasible solutions according to certain criteria. These criteria depend on the type of noise,
imposed regularization, and constraints set on the solutions found by the restoration algorithm.
Although both the EM-MLE algorithm as the ICTM inversion are in principle based on
maximum likelihood estimation, they differ significantly due to the different modeling of noise
distortion on the image and imposed constraints and regularization.
The EM-MLE computes the maximum likelihood estimate of the intensity of a Poisson process
[9]. The ICTM inversion is a constrained, regularized mean-square-error restoration method for
finding a non-negative solution for images distorted by additive noise.

The EM-MLE Algorithm
A confocal microscope acquires an image of an object by scanning the object in three
dimensions. At each point of the image, the emitted fluorescence light from the object is
focused on a photo multiplier tube (PMT). Under low light-level conditions, the PMT detector
behaves essentially as a photon counter. This conversion of fluorescence intensity to a discrete
number of detected photons is described statistically as a Poisson process. The log likelihood
function of equation (2), for N() being a Poisson process, is given by [3]

L f g y dy g y m y dy

Y Y

�

�

ln
�

= − +   (3)

with 
�

g  the convolution of the 
�

f  and h. The maximum likelihood solution for 
�

f  can be found
using the EM algorithm, as described by Dempster, Laird and Rubin[4]. The EM-MLE solution
for Eq. (3) is [9]:

� �

�f x f x
h x y

h y x f x dx
m y dyk k

k

X
Y

+ =
−

−
1 (4)

The EM-MLE algorithm insures non-negative solution, when non-negative initial guess 
�

f1 is
used. Snyder et al.[5] have shown that maximizing the mean of the log likelihood of Eq. (3) is
equal to minimizing Csiszár's I-Divergence [19],

I f f L f E L f
g y

g y
g y g y g y dy

Y

,
� �

ln �

�

= − = − + (5)

with E[ ] the expectation operator.

The Iterative Constrained Tikhonov-Miller inversion
The ICTM inversion is based on the assumption that the noise distortion function N() can be
modeled as an additive noise function[6]. For images with a relatively high SNR, the additive
noise model can be motivated by the Central Limit theorem: Under these circumstances, the
distribution of a Poisson process can be approximated with a Gaussian distribution.
The Tikhonov-Miller (TM) inversion combines two selection criteria for finding 

�

f  in one
quadratic functional
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Φ
� � �

f g h f
E

f= − ⊗ +
2 2 2ε

(6)

with ε the noise power and E the power of the object. The TM functional consists of a mean-
square-error (MSE) criterion and an energy bound. This bound suppresses solutions of 

�

f  that
oscillating wildly due to spectral components outside the bandwidth of h. Direct minimization
of Eq. (6) yields the well-known TM solution,

�

F
H G

H
=

+

∗

2 η
(1)

with η ε= E 2and capitals the Fourier transform of the corresponding function. Although this
solution requires modest computational efforts, it is a linear solution, thus not capable of
restoring missing frequency components. Furthermore, the solution may contain negative
values, which is a major drawback, since the intensity of light intensity is by definition
positive.
A solution to these disadvantages is to solve Eq. (6) with an iterative procedure, the ICTM
method. It constrains the solution 

�

f  to be non-negative, by clipping each successive estimate.
We used the method of conjugate gradients to iteratively find the TM inversion [6]. The so-
called conjugate direction is given by

p r
r

r
pk k

k

k
k= +

−
−

1
1 (2)

with rk denoting the steepest descent direction,

r f h f h gk f k= − ∇ = + + ⊗1

2
Φ

� �

*η (3)

A new conjugate gradient estimate is now found as
� �

f f pk k k+ = +1 β (4)

In absence of a non-linear constraint, the step size ß can be calculated analytically. However, in
the presence of such a constraint, the optimal ß must be searched for iteratively.

3. Experiments and Results
In a first experiment, we compared the results of EM-MLE and ICTM algorithms on simulated
spheres convolved with a CPSF and distorted with Poisson noise. The spheres were generated
using an analytical description of their Fourier transform [7]. The Fourier transform of the
sphere is multiplied by the Fourier transform of the CPSF to ensure bandlimitation. We
computed the CPSF from a theoretical model based on electromagnetic diffraction theory [1].
Generated in this way, the spheres are free from aliasing effects which arise from sampling
non-bandlimited analytical objects.
The restoration results were compared using the MSE and I-Divergence[8] because the
investigated restoration methods minimize these distances measures.
Figure 1 shows the I-Divergence and MSE performance of the EM-MLE and ICTM methods
on the restoration of spheres as a function of the SNR (figure 2). The I-Divergence and the
MSE performance of EM-MLE is in most cases an order of magnitude better than ICTM. Only
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for high SNR, the MSE performance of ICTM approaches EM-MLE. The SNR (defined as
E ε ) ranges from 1.0 to 256.0.
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Figure 1 The I-Divergence and MSE of the EM-MLE and ICTM restoration of spheres.

object image EM-MLE ICTM

Figure 2 Restoration of spheres. the object, the confocal image with a SNR of 16.0 and the results of the EM-
MLE and ICTM algorithms.

In a second experiment, we investigated the influence of the restoration methods on the CPSF
measurement technique as has been used by Van der Voort and Strasters [1]. We used their
approach, and compare the ICTM results with EM-MLE (figure 3 and 4).
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Figure 3 The I-Divergence and MSE of the EM-MLE and ICTM result of the CPSF restoration. The MSE is
normalized by dividing it by the squared maximum intensity of the CPSF.

In a third experiment, the influence is investigated of EM-MLE and ICTM on a quantitative
texture analysis. The restoration methods were used prior to a quantitative texture measure
based on the GDT [2].  The experiment was performed as function of the angle of the object
with respect to the focal plane This angle varies the distance between the objects in the z-
direction, in which most of the blurring occurs.
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Figure 4 Restoration of the CPSF. The left pictures show the center x-y and x-z planes of the theoretical
CPSF. The middle two pictures show EM-MLE result, with the ICTM result on the right. Each transition
from black to white represent an intensity reduction of a factor of ten.

The GDT sum values of the confocal image of the generated cylinders, as well as the values of
the EM-MLE and ICTM results are shown in Fig. 5. This figure shows a considerable reduction
of the GDT sum value for ICTM. The reduction of the EM-MLE reconstructed images is an
order of magnitude better than the ICTM results. However, the % error of the EM-MLE values
are negative in most cases, indicating a smaller GDT value for the EM-MLE result than for the
object.
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Figure 5 Left: Schematic model of the multiple cylindrical objects as used in the third experiment. Right:
Error in the GDT texture measure before and after restoration with EM-MLE and ICTM. Horizontal axis:
object’s rotation angle with respect to the focal plane. Vertical axis: percentage of the relative error between
the GDT values derived from the (restored) image and of the object.

For our simulations, we have selected microscope parameters corresponding to typical working
conditions: a numerical aperture of 1.3, a refractive index of 1.515, an excitation wave length
of 479 nm, and a pinhole size of 282 nm. The images were generated with a sampling density
of twice the Nyquist frequency. An important motivation for this choice is given by the
multiplicative iterative updating of the EM-MLE algorithm (Eq. (4)). The spatial multiplication
of 

�

f  results in a convolution of 
�

F  in the Fourier domain, giving rise to potential aliasing
effects. By sampling at above the Nyquist frequency, these aliasing effects are reduced.
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Figure 6 The GDT of the images used in the third experiment

4. Conclusions
We have compared the performance of the EM-MLE and ICTM restoration algorithms applied
to confocal images. Both methods greatly reduce diffraction-induced distortions of confocal
images. From our experiments it is clear that for our test objects the EM-MLE algorithm
performs much better than ICTM. It produces better results under all the conditions we tested,
and with respect to all three performance measures (I-Divergence, MSE, GDT) we used. Only
for high SNR conditions, the MSE performance of ICTM approaches the EM-MLE results. The
poor ICTM performance shows that its functional is not well suited for images distorted with
Poisson noise.
We did not find artifacts such as ringing in the results of either algorithm. The restoration
results on the cylindrical objects show however that the EM-MLE algorithm has a tendency to
reconstruct an image which is sharper and smaller than the original object (Fig. 6). This aspect
of EM-MLE should be investigated thoroughly. Greander’s method of Sieves [3] seems a
promising method for regularizing the EM-MLE algorithm.
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