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partial reconfiguration selected in this thesis will be tested for com-
patibility with the existing implementation of the MOLEN processor.

project website: http://pragma-fpga.googlecode.com





PRAGMA: A Partial-Reconfigurable Audio

Platform
Exploring the usability and feasibility of partial

reconfiguration

Thesis

submitted in partial fulfilment of the
requirements for the degree of

Master of Science

in

Computer Engineering

by

Siebe Krijgsman B.Sc.
born in The Hague, The Netherlands

This work was performed in:

Computer Engineering Group
Department of Microelectronics & Computer Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology



Delft University of Technology

Copyright c© 2009 Computer Engineering Group
All rights reserved.



Delft University of Technology

Department of

Microelectronics & Computer Engineering

The undersigned hereby certify that they have read and recommend to the Faculty
of Electrical Engineering, Mathematics and Computer Science for acceptance a
thesis entitled “PRAGMA: A Partial-Reconfigurable Audio Platform” by
Siebe Krijgsman B.Sc. in partial fulfillment of the requirements for the degree
of Master of Science.

Dated: 02-07-2009

Chairman:
dr. K.L.M. Bertels

Advisor:
dr.ir. J.S.S.M. Wong

Committee Members:
dr.ir. T.G.R.M. van Leuken





Abstract

As the area of applications for Field Programmable Gate Arrays, or FPGAs, con-
tinues to expand, designers are searching for new methods to enhance the flexibility
and efficiency of these devices. A technique called Dynamic Partial Reconfigura-
tion is based on a principle of reconfiguring a small region of the FPGA, while the
remainder of the device remains operational.

This thesis will investigate the current status of the field of dynamic partial
reconfiguration and select the most promising technique for implementation. A
proof-of-concept system will be designed and implemented using the selected tech-
nique in order to clearly uncover the properties and possibilities of dynamic partial
reconfiguration.

The implemented system is an audio processor, capable of manipulating sound
through the use of several filters. All filters can be replaced while the system
remains functional by performing partial reconfiguration. As such, this system
also provides a platform upon which new filters can be designed and tested.

The MOLEN polymorphic processor is a processor architecture that supports
the notion of partial reconfiguration. The technique for partial reconfiguration
selected in this thesis will be tested for compatibility with the existing implemen-
tation of the MOLEN processor.

project website: http://pragma-fpga.googlecode.com
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Preface

In order to clarify the choice for this project, I would like to start by providing
the reader with a little background information on the writer. Since long before
starting a Bachelor in electrical engineering I have always had a special interest
in music and sound. Being faced with the choice of starting a musical career or
an education at the university, I ended up choosing the latter. Throughout my
engineering education, I have always had a special interest in the borderline be-
tween the physical and the virtual domains. As one might be able to expect, I had
a particular interest in combining two of my greatest passions, being engineering
and sound.

When dr.ir. Wong proposed a subject incorporating dynamic partial recon-
figuration, we decided to integrate a sound-based proof-of-concept, which evolved
into a partial reconfigurable sound manipulation engine. Furthermore, I was to in-
vestigate the possibilities for incorporating my project into the MOLEN research
project [1].
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Introduction 1
Designers are on an everlasting quest to improve the functionality of our computers.
One way of realizing this is to extend the flexibility of an implementation without
sacrificing on another area of interest such as speed. This thesis will explore a way
to do just this: improving the flexibility of a (co-)processor by applying the notion
of Dynamic Partial Reconfiguration. In order to clearly point out the strengths and
weaknesses of this method, both a theoretical background and a proof-of-concept
in the form of an audiovisual implementation will be provided.

This chapter is divided into several sections. First, Section 1.1 will discuss the
motivation for undertaking this project, followed by the project goals discussed in
Section 1.2. Finally, Section 1.3 will discuss the organization of the remainder of
this document.

1.1 Project Motivation

Although the notion of partial reconfiguration is not new, there has been a recent
influx of interest in this topic. Despite the fact that there is quite a lot of research
going on in the field of partial reconfiguration, there are very few actual imple-
mentations of large projects to be found. This thesis is intended to contribute to
the field by both doing research regarding methods of partial reconfiguration, as
well as designing and implementing a large project in order to show the workings
of partial reconfiguration.

The goal of this project is to create an audio-manipulation platform using par-
tial reconfiguration. In order to best visualize the effect a system was designed that
has both an audio output and a video output. This system is built up out of sev-
eral partial reconfigurable time domain effects, followed by a frequency transform,
several partial reconfigurable frequency domain effects and a transform back to
the time domain. Apart from this main path, video data is gathered from several
points in this path, feeding information to a video screen.

Aside from these goals, a section of this project will be dedicated to research-
ing the possibility of including this partial reconfigurable design in the MOLEN
polymorphic processor. Although the MOLEN architecture was built with a sup-
port for partial reconfiguration, there have been no actual implementations using
this feature. Therefore, investigating the possibility of implementing such a fea-
ture would provide us with some insight into the requirements and restrictions one
would encounter when attempting to incorporate partial reconfiguration.

Throughout the project discussions took place with other engineers about par-
tial reconfiguration. In many cases the issue of feasibility came up, being: If
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2 Introduction

reconfiguring an entire FPGA generally takes only a few hundredths of a second,
why would you bother to configure only a part of the system, which takes a few
milliseconds, as both are basically unnoticeable? Since this project had seemed
challenging and technologically significant, there had been no previous considera-
tion regarding the relevance to the development of FPGAs in general. However, we
have had time to research this problem and we would like to present three examples
in which case partial reconfiguration is useful, if not indispensable. These situa-
tions, however, are by no means the only situations in which partial reconfiguration
provides a solution, they are just to illustrate some fields of application.

• For the first example we would like the reader to consider the situation where
a partial reconfigurable FPGA serves as a co-processor in a PC. Say that
the FPGA would be programmed to handle all video and audio applications
with scalable parts, meaning resources could be reassigned while a minimum
required core could be kept to sustain the application. In this particular
case, one would be watching a streamed video that is being fully handled
by the FPGA. Since streaming video is usually handled best by buffering a
few seconds, the FPGA would have to keep track of this buffer. If our test
case person would now get an VoIP phone call in the middle of his video, the
partial reconfigurable core could reassign some resources to the audio section
of the FPGA, pausing the video, but sustaining the video buffer. Would
we have reconfigured the entire FPGA at this point we would have lost the
control over the buffer and thus the stored contents.

• In the second case, consider an FPGA that has been pre-programmed with
several (license-protected) cores and shipped to a customer. Although this
customer may want to implement several functions in this FPGA using the
protected cores, he could also be assigned a user-programmable section of the
FPGA that could be programmed freely without damaging of overwriting
the protected cores. One might argue that in this situation the manufac-
turer would use a hard-wired core, however, this would strongly reduce the
ease with which the manufacturer could provide updates or redesigns of the
protected cores.

• The third example is quite straightforward: Say we have a unit with a static
core that uses 90% of available resources on the FPGA. The remaining 10%
is occupied by 3 different modules that all occupy 10% and are thus switched
in and out one after another. Now say that this particular design is used to
compute some numbers, for which the computation would take a few hours.
If we would use a full FPGA reprogram every time we needed to switch
designunits we would lose all intermediate values, thus making it impossible
to ever finish the task.

Siebe Krijgsman B.Sc. M.Sc. Thesis



1.2 Project Goals 3

1.2 Project Goals

The main goal of this project is formulated as follows:

• To design and implement an audio processor making use of the partial recon-
figuration technique.

Additionally, several secondary goals are defined:

1. To research partial reconfiguration and select the most feasible implementa-
tion to incorporate in this project.

2. To design and implement an audio processor making use of the selected partial
reconfiguration technique.

3. The to be designed system is to feature a clear user interface as well as be as
autonomous as possible.

4. To investigate the possibility of implementing this project on the available
implementation of the MOLEN polymorphic processor.

Chapter 3 will further clarify these goals.

1.3 Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 will deal with all
the background information required to comprehend the work described in the
following chapters, as well as the preliminary research done in the course of this
project in the field of partial reconfiguration. Next, all design choices will be
motivated in Chapter 3, after which the actual implementation will be discussed
in Chapter 4. Although most final test results are hard to present in this thesis, as
they are audio signals, a number of significant test results will be shown in Chapter
5. Finally, this thesis will be concluded in Chapter 6.
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Background 2
In order to understand the processes used in the system, a basic understanding of
several functions is required. This chapter will discuss theory required in order to
understand the entire range of techniques used in the project.

We will start with an explanation regarding Reconfigurable Computing, Field-
Programmable Gate Arrays (FPGAs) and Dynamic Partial Reconfiguration, which
also contains a paragraph dedicated to related work, in Section 2.1. The remainder
of this chapter, just like the system itself, is split up into the time domain and the
frequency domain. First all necessary information regarding the time domain will
be handled in Section 2.2, along with the theory with respect to the modules and
effects that were implemented or were attempted to implement, directly followed
by a similarly structured section regarding the frequency domain in Section 2.3.
The conclusion will summarize what has been discussed in this chapter in Section
2.4.

2.1 Reconfigurable Computing

Before starting on an in-depth explanation of the functionality of FPGAs, the
concept and history of reconfigurable computing will be discussed, in order to
show in what cases a reconfigurable implementation can aid, extend or replace a
static design.

One of the roots of the need for a reconfigurable hardware solution can be
found in the trade off between speed and flexibility. A General Purpose Processor
can implement any function by breaking it down into the various instructions it
supports. Although this is the most flexible solution, it requires many instruction
fetches and instruction decodes for most functions, giving it a large overhead.
Furthermore, breaking down a complex function into basic operations is in many
cases not an efficient approach, reducing the speed of the solution even further.
On the other end of the spectrum are Application-Specific Integrated Circuits, or
ASICs. As the name reveals these are full hardware circuits designed to execute
a single task. While this is generally the fastest solution, it has no flexibility at
all. Although several hybrids can be thought up at this time, of which for example
Digital Signal Processors are a notable family, these will be left out in order not
to stray from our core explanation.

As one may already suspect, reconfigurable computing populates the area in
between the two extremes. While a reconfigurable solution is generally static in
operation, it can be reconfigured to change the functionality, thus retaining some
flexibility with respect to an ASIC, while sacrificing some speed. Although, in
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Figure 2.1: An SRAM programming bit
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contrast to the GPP, where only the instructions are changed, we need to physically
change an FPGA to change its behavior, an FPGA can be designed to implement
complex functions in a direct and efficient manner. The same implementation on
a GPP would have to be constructed out of the supported basic operations and
would be (far) less efficient and therefore far slower.

2.1.1 Field-Programmable Gate Arrays

A Field Programmable Gate Array, or FPGA, is a structured grid of standard logic
cells that can be programmed to fulfill any desirable function. In modern FPGAs,
the programming is performed by SRAM bits, depicted in Figure 2.1. These
programming bits consist of 5 transistors –1 enabling switch and two inverters–
and are the atomic particle of the FPGA. As FPGAs are reprogrammable and
can implement any (very large) function, they are most often used for prototyping
purposes. Although they generally lack the speed of an ASIC, FPGAs can be used
to test a designed function in minutes rather than days or even weeks.

From a macro design perspective, an FPGA consists of lookup tables, con-
nection blocks (C-blocks) and switching blocks (S-blocks). The lookup tables, or

DFF
4

input
LUT

Figure 2.3: A Basic Logic Element (BLE)
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LUTs, can be programmed to behave like any binary function and are generally
based on 4 inputs and 1 output. A 4 input LUT is shown in Figure 2.2, where the
four inputs are used to select one of the 16 saved values. When combined with a
memory element, such as a flip-flop, we end up at a Basic Logic Element (BLE),
shown in Figure 2.3. In order to facilitate easy routing, we would like to group
BLEs together and build an infrastructure of routes around the formed clusters.
The BLE clusters, which Xilinx refers to as Configurable Logic Blocks, or CLBs,
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Figure 2.7: The final FPGA layout

with i inputs and n outputs are shown in Figure 2.4. Research shows that small
cluster sizes are the most routing efficient [2], and as such most commercial FPGAs
use cluster sizes between 4 and 8 BLEs per cluster. When we arrange a number
of CLBs in a structure connected by connection and switching blocks, shown in
Figures 2.5 and 2.6, respectively, we arrive at the standard FPGA layout depicted
in Figure 2.7. This layout is often referred to as an “island-style” layout.

Configuration of the FPGA Configuration of an FPGA is quite straightforward.
In order to explain the process, we should first inspect the breakdown of an FPGA,
meaning to show how an FPGA is built up. For clarification, the Virtex-II Pro
will be used as an example.

The breakdown of the FPGA is presented in Table 2.1. Further explanation
regarding the table’s contents are at the end of this section. The FPGA is config-
ured using a bitstream, which can address any frame in the device uniquely. Table
2.2 shows the 32 bit frame address composition. the 2 BA bits specify the Block
Address. Block Address 01 specifies all BRAM columns and BA 10 specifies all
BRAM interconnect columns, while everything else (IOB, IOI etc.) is addressed
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Table 2.1: FPGA breakdown for the Virtex-II Pro (XC2VP30). Numbers represent
Frames Per Column (FPC) and Columns Per Device (CPD)

IOB IOI CLB BRAM BRAM GCLK
interconnect

FPC CPD FPC CPD FPC CPD FPC CPD FPC CPD FPC CPD

2 4 2 22 46 22 8 64 8 22 1 4

with BA 00. The Major Address (MJA) then specifies a column in the selected
block, and the Minor Address (MNA) specifies the frame in the selected column.
The byte number is only used by the configuration logic and should always be
zeros.

Table 2.2: The Virtex-II Pro Frame Address Composition
BA MJA

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

MNA Byte Number

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The fact that we can address separate frames within the FPGA is very useful
in the perspective of partial reconfiguration. This means that we can address a
small number of frames or columns, and program these, while leaving the rest of
the configuration untouched. It even means that we can reprogram a part of our
device, while the rest of the device continues to run, which is referred to a dynamic
partial reconfiguration, which will be discussed in the next section.

For clarification of Table 2.1, a direct citation of the Virtex-II Pro User Guide
is provided here [3].

IOB Columns IOB columns configure the voltage standard for the I/Os on
the left and right edges of the device. IOBs on the top and bottom edges of the
device are configured by the CLB Columns with which they are vertically aligned.
There are two IOB columns per device.

IOI Columns IOI columns configure the IOB registers, multiplexers, and 3-
state buffers in the IOBs on the left and right edges of the device. IOBs on the top
and bottom edges of the device are configured by the CLB columns with which
they are vertically aligned. There are two IOI columns per device.

CLB Columns The CLB columns program the configurable logic blocks, rout-
ing, and most interconnect. IOBs on the top and bottom edges of the device are
also programmed by CLB configuration columns. The number of CLB configura-
tion columns matches the number of physical CLB columns in the device.
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BlockRAM Columns BlockRAM configuration columns program only the
user memory space BlockRAM. BlockRAMs are accessed by the configuration con-
trol logic in the same way that user designs access BlockRAMs: via the address
and data pins that are available on the BlockRAM primitive. Consequently, the
user design is not able to access BlockRAM while BlockRAM columns are being
addressed by the configuration logic. For this reason, active reconfiguration and
readback on BlockRAMs should not be attempted. The number of BlockRAM
configuration columns matches the number of physical BlockRAM columns in the
device.

BlockRAM Interconnect Columns BlockRAM Interconnect columns pro-
gram all other BlockRAM and multiplier features, including aspect ratios. The
number of BlockRAM Interconnect configuration columns matches the number of
physical BlockRAM columns in the device.

GCLK Column The global clock column configures most global clock re-
sources, including clock buffers and DCMs. There is one global clock column per
device.

2.1.2 Dynamic Partial Reconfiguration

What if we could now extend our flexibility without sacrificing speed? Dynamic
Partial Reconfiguration, in this thesis referred to as simply Partial Reconfiguration,
involves changing a section of the programmed hardware, while the remainder of
the design continues to function. Static Partial Reconfiguration, which reconfigures
an FPGA partially when it is off-line, will not be discussed here. The direct effect
of Dynamic Partial Reconfiguration is that we are no longer strictly bound to the
size of the FPGA we are using. Consider this small example: Say that 90% of
an FPGA is filled with necessary hardware and we want to implement two more
modules, both requiring 10% of the FPGA. Traditionally, this would be impossible.
However, if we do not need both additional modules to function at the same time,
we can swap them back and forth. Now the only restriction is that we have to do
this while the other 90% of the chip remains active.

Currently, partial reconfiguration is only supported by chips manufactured by
Xilinx and Atmel. Since there are Xilinx FPGAs and toolsets readily available,
Xilinx has been selected for this project and Atmel solutions will not be discussed
in-depth here. Those interested in Atmel partial reconfiguration solutions could
consider reading [4] and [5].

Xilinx distinguishes two styles of partial reconfiguration [6]. With difference-
based partial reconfiguration, partial reconfiguration is achieved by comparing two
bitstreams of a full design, being the one currently programmed on the FPGA
and the one that contains the full design modified with new logic, removing the
overlapping parts, and successively programming the difference onto the FPGA.
The other strategy is module-based partial reconfiguration, which is used when

Siebe Krijgsman B.Sc. M.Sc. Thesis



2.1 Reconfigurable Computing 11

several modules are required to communicate with one another. In this case, bus
macros need to be inserted between the modules.

R2L N

R2L W

L2R N

R2L N

partial static
region

static
region

region
reconfiguration

Figure 2.8: The orientation of bus macros in a partial reconfigurable region

These bus macros are placed on the boundary between the static and the dy-
namic regions of the FPGA, and ensure correct routing when reconfiguration is
performed. Bus macros are strictly directional, and it is mandatory for a bus
macro to stride across the static-dynamic boundary, placing all the input ports
inside the dynamic region and all the output ports inside the static region or vice
versa. This setup is shown in Figure 2.8, where L2R indicates a dataflow from left
to right and R2L the other way around. The addition N and W stand for narrow
and wide versions of the bus macro. While narrow bus macros, depicted in Figure
2.9, can transport up to 8 bits across the boundary, wide bus macros, presented
in Figure 2.10 are intended for grouping signals wider than 8 bits together. Using
wide bus macros can be advantageous when the PRR has a limited space at the
boundary between the static and partial regions. We can see here that the bus
macro itself does not change the signal, it is only used to carry the signals over
the PRR boundary. There should not be any connections between the static and
dynamic regions that are not routed through a bus macro, with exception of global
clocks. Another important note here is that the Virtex-II family of Xilinx devices
can only reconfigure an entire column of cells, while the Virtex 4 and later devices
can dynamically reconfigure in blocks, making reconfiguration even more feasible.
This difference is shown in Figure 2.11: While a small partial reconfigurable block
requires an entire column to be empty on a Virtex-II, it has a much smaller spacial
impact on a Virtex 4.

Related work Since a significant portion of this project and thesis are based on
the notion of partial reconfiguration, a summary of related work in this field is
presented here.

The earliest relevant reference appeared in 2000 in an application note [7], in
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PRR static

Figure 2.9: The layout of a narrow bus macro

PRR static

Figure 2.10: The layout of a wide bus macro

which Xilinx introduces the notion of configuring a single column of data. Here
we see that they divide the configuration memory into frames, with a width of 1
bit and spanning from the top to the bottom of the device. A frame is the atomic
unit of configuration, meaning it is the minimum amount that can be addressed
separately. The FPGA is then divided into CLB columns, where each column is

Virtex-2 Virtex-4

Figure 2.11: Impact of partial reconfiguration. The used module is shown as the small
box, the unusable area as the larger
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48 frames wide - this only holds for the Virtex-I, the Virtex-II uses 22 frames per
column. Finally, and most importantly, this application note states that partial
reconfiguration of the FPGA is possible with and without shutting down the device.

Secondly, an article by Mesquita et al. [8] gives an overview of the origin of
dynamic reconfiguration as well as an insight into the development of the toolchain
required for this process. Although the tools and techniques discussed in Mesquita
et al. are outdated now, they provide us with an insight of how partial reconfig-
uration is performed. The main problem of partial reconfiguration identified by
Mesquita et al. is that you cannot define the wire positions, resulting in a discrep-
ancy in input and output connections. They chose to define special input/output
(IO) buffers, similar to bus macros, and to synthesize the module separately, re-
placing the unknown modules with dummies with only the mentioned IO buffers in
place. Although at this time they did not achieve a fully automated partial recon-
figuration design flow, they clearly identified the restrictions of the tools regarding
this subject, thereby contributing to the quality of the tools available today.

An article in Xilinx’ XCell Journal, titled “PlanAhead Software as a Platform
for Partial Reconfiguration”, discusses the use of Xilinx’ new program PlanAhead
for use with partial reconfiguration [9]. This article briefly describes the workings of
the Virtex series FPGAs, after which it clearly explains how to incorporate partial
reconfiguration in a project through the use of PlanAhead. Alongside this article
are several other publications by Xilinx [10, 11, 12] , all of which aided in achieving
an understanding of and and implementation of this partial reconfigurable project
using Xilinx tools.

In a chapter of the book “Introduction to Reconfigurable Computing” Bobda
and Murr describe the entire design flow process from the start to the implemen-
tation of a partial reconfigurable project [13]. Although this chapter is actually
targeted towards users looking to implement a project using Handel-C [14], which
is an extension of the C language specifically designed for FPGA development,
this chapter provides a very water-tight approach to designing a partial reconfig-
urable system. Every single design constraint is mentioned and explained, making
this a very good reference for people looking to understand how to use partial
reconfiguration and its requirements.

Andres Upegui and Eduardo Sanchez discuss the feasibility of implementing
evolving hardware using partial reconfiguration [15]. Their study in mapping chro-
mosomes on an FPGA to study the evolution has led them to start searching for a
flexible solution. In their article they discuss three approaches to achieve evolving
hardware by using the capabilities of the Virtex family FPGAs. The first approach
is coarse-grained, using a modular design structure. Secondly, they apply a more
fine-grained implementation, using the difference-based partial reconfiguration, al-
lowing them to modify the contents of a LUT directly. The third method is the
direct manipulation of the configuration bitstream, another fine grain angle. Fi-
nally, they propose a mix of the three techniques, allowing for different evolution
paradigms to be supported.

McDonald’s paper on dynamic partial reconfiguration [16] provides a good in-
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sight on how to devise a project with partial reconfiguration in general, and specif-
ically through use of the SelectMap/ICAP interface for on-board reconfiguration.
This paper suggests an implementation where the MicroBlaze processor reads the
configuration data from some off-chip memory, and configures the FPGA through
the ICAP interface. As this project strives for autonomy, on-board reconfiguration
would be a useful addition to implement.

In a chapter of the book “Field-Programmable Logic and Applications” [17],
Xilinx engineers B. Blodget et al. suggest a new approach to enable a device to
(partially) reconfigure itself, by using the internal ICAP interface and a PowerPC
or microBlaze processor available to the Virtex device. They have devised a toolkit
for this very purpose, which they called the Xilinx Partial Reconfiguration Toolkit
(XPART). However, for some reason this toolkit was never (yet) made available
to the public, but this project may have led to or inspired the partial reconfigura-
tion features in PlanAhead. Although the toolkit was not actually released, this
chapter provides us with the necessary knowledge and insights, should we decide
to implement such a feature.

Although there has been a lot of research and discussion in the field of partial
reconfiguration, there are very few large projects based on this principle. This
project aspires to fill a piece of this void.

2.2 The Audio Time Domain

In this section all the behavior of the modules that are considered to be part of
the time domain are explained.

2.2.1 Analog to Digital Conversion

Since we require our system to be digital in order to apply a partial reconfiguration
strategy, we need to convert our continuous time based signal into a sampled
time based signal. In order to do this we first need to apply a sample-and-hold
strategy on the input so we get a signal that is discrete in time but continuous
in magnitude as in Figure 2.13. To do this we need to select a suitable sample
frequency. According to the Nyquist-Shannon Condition [18, 19] we need to choose
a sample frequency that is at least twice as large as the highest frequency we are
using as input, in order to avoid aliasing. Aliasing is caused by the spectrum of
the input signal that is ‘folded’ back around the sample frequency. When aliasing
occurs, we can no longer unambiguously determine our input signal and the result
will be a distorted output signal. In Figure 2.12 we can clearly see the effect of
aliasing: we see the desired spectrum and the mirror spectrum that has been folded
around the sample frequency. The overlapping sections in Figure 2.12a will cause
distortion of the output signal. In Figure 2.12b we can see that using a sample
frequency of twice the maximum input frequency will result in a clean, unaliased
output signal.
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Figure 2.13: The sample-and-hold strategy

After discretizing the magnitude of the obtained time-discrete samples we end
up with a set of time-discrete magnitude-discrete samples. In most cases a 16-bit
per channel representation is used, although some high-end cases use up to 24 bits
of precision in the magnitude.

2.2.2 Time-based Effects [20]

Although all effects used in today’s music can be implemented in the time domain,
some of them have a strong root in this domain in particular. One class of effects
for which this holds are delay effects, which will be discussed first. Another class
of effects which can be performed most efficiently in the time domain are volume
based effects, as they are based on amplitude modulation. Although we can change
the amplitude of a signal in the frequency domain, there are multiple operations
we have to perform first, while it is very straightforward in the time domain.

Delay Effects Delay effects are here considered to be all effects that in some form
use a time delay to achieve a sound effect. The pure delay/echo, the chorus, the
reverb and the repeater, among others, all belong to this class. A short overview
of the attributes of these effects will be provided.
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Figure 2.14: The digital comb filter
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Figure 2.15: The digital allpass filter

Important Filters Before we start on the actual effects, we should take some
time to inspect two important filters that many effects are based on. The Comb
filter, shown in Figure 2.14, can be viewed as the decaying effect of something
bouncing back and forth, diminishing its energy with every consecutive step. The
Allpass filter, shown in Figure 2.15, is similar to the comb filter. However, it has
the nice property of passing all frequencies with equal amplitude, although it does
introduce a phase lag, which will be explained later on in this chapter.

The Pure Delay A pure delay effect is one the simplest effects, yet very
powerful. When applied correctly, a delay can produce a broader sound or spice
up other effects. When using the delay with a feedback loop we get an echo effect,
shown in Figure 2.16. The attentive reader will have identified the comb filter
in the feedback loop. If the feedback gain is smaller than one, the sound that is
reheard will diminish over time, creating an echo. In fact, choosing the feedback
gain as 0 brings us back to the pure delay. These effects should have a delay time
in the range of [50 : 500] ms, depending on the effect you want them to have on
the sound.

+

delay+

mix

feedback gain

Figure 2.16: The echo effect
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Figure 2.17: The chorus effect

Chorus The chorus effect is achieved by mixing the original input signal with
one or more copies of itself, all slightly out of phase and off pitch. This gives the
listener the impression that there are several of the same instruments playing and
gives a richer more dense sound. The effect is achieved by splitting the input signal
and routing every copy through a different delay to achieve different phase. These
delays are all individually modulated by a Low Frequency Oscillator (LFO) that
runs at a frequency of at most 3 Hz. Figure 2.17 shows this setup. In the figure
all delays are driven by the same LFO for simplicity. Modulating the delay with
an LFO will change the pitch of the sound. To understand this it is easiest to
think of a record playing at the wrong speed. Since the record was recorded at
a certain speed, playing it back at a different speed will change the pitch of the
sound. Similarly, when we change the length of the delay we effectively read the
data faster or slower than intended, modulating the pitch of the sound. If we want
to change the sound of the chorus, we can change the amplitude, frequency, or the
waveform of the LFO.

Reverberation One of the most widely used effects is the reverberation, or
reverb for short. Although most people think of reverb as an effect, it is actually a
simulation of an everyday phenomenon. Consider the room shown in Figure 2.18.
Although the bulk of the sound travels directly from the source to the receiver, a
part of the sound are reflected by the walls, reaching the receiver slightly later and
with less power, because of absorption. Because this effect is so embedded in our
day-to-day life, we generally have to focus in order to perceive the effect. So why
would we apply the effect manually if it is already present? Basically, people tend
to listen to music in a space with no or poor reverberation, such as on headphones
or in a living room. With the reverb effect applied, one will then still have the
same sound properties as though he or she was in -for instance- a concert hall. A
rather basic implementation of a reverb effect is depicted in Figure 2.19, known as
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b

b

source

receiver

Figure 2.18: A graphical explanation of reverberation

Schroeder’s reverberator [21]. The comb filters all have a slightly different delay
time, thereby generating several unpredictable, unevenly spaced echoes, similar
to a real room. The two all-pass filters increase the pulse density, enhancing the
reverb effect.

The reverberator has two main coefficients. First is the feedback gain for every
unit, g. This factor should be the same for all comb and all-pass filters. The second
is the delay time. The delay time is different for every unit in the reverberator.
For the best results, the delay time of the comb filters should be between 30 and
50 ms, and should be relatively prime, meaning they do not share common factors,
e.g. [31; 37; 41; 47]. The reverberation time, being the time a sounds takes to
be reduced to 1/1000 of the original volume, can be calculated based on the two
mentioned factors as follows:

.001 = g
Treverb
Tdelay , or Treverb = Tdelay × logg (.001)

The Repeater A repeater is a device that is essentially a big controllable de-
lay. This effect is frequently used by solo artists. By enabling the input the device
will start “recording”, if successively the output is enabled the device will start
looping the recorded sound. Additional sounds can be recorded on top of the orig-
inal recording by enabling the mix. This system is shown in Figure 2.20. It should
be clear that since this delay should be able to record several seconds, implementing
a repeater in digital hardware requires a very large memory, for example: recording
10 seconds would require 16 bit/sample ×48000 samples/second ×10 seconds =
7.68 Mbit.

Volume-based Effects Although one might not think of volume as an effect,
there are some powerful effect that can be realized by only modifying the signals
amplitude.

Volume Control The simplest possible implementation of a volume effect
is the direct volume control, similar to a volume knob on any audio-producing
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Figure 2.20: The repeater

device. Volume control gives the musician power over the impact the sound has on
the listener and therefore the message he or she is trying to convey. Disregarding
the fact that most amplified instruments have a volume control on-board, this
feature is very important for any musician and is thus featured in this project.

Tremolo The tremolo effect is a more nuanced implementation of volume
control. The output of an LFO is added to the amplitude of the signal, creating a
slight cyclic variation in the sounds volume, yielding a pulsating sound similar to
a church organ. Most electric guitars are equipped with what is called a ‘tremolo
arm’. This term, however, is incorrect as tremolo refers to a change in amplitude,
while a tremolo arm produces a change in pitch, generally referred to as vibrato.
The frequency of effective tremolo is in the region of [1 : 20] Hz.

Distortion Distortion, shown in Figure 2.21, is in fact a direct limiter on the
amplitude of the signal, flattening everything that exceeds the maximum value.
Flattening the top of the signal creates a large number of ‘unwanted’ frequencies
that pollute the clean sound of the signal. The lower the threshold, the lower the
signal to noise ratio (SNR) will be, and the more distorted the sound will be.

Compression and Expansion When one hears the term compression of sound
these days, the first image that we get is that of mp3. This is not the compression
that we are discussing here. Compression (and its counterpart expansion) are in
fact effects that are identified by their creation of a ‘flat’ sound. The compression
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Figure 2.21: The distortion

effect will diminish the volume of any sound that crosses a pre-set threshold, thus
reducing the dynamic range. We cannot do this directly, as any signal alternates
between its maximum positive and negative value and as such will at some point
have a value below the threshold, even if only for a short time. We therefore have
to find an average value for the volume, and diminish the sound if it exceeds the
threshold for a certain amount of time. These time offsets (both at the start and
the end of the effect) are known as the ‘attack’ and the ‘release’ time. Figure 2.22
shows how a compressor functions. Expansion is the opposite of compression: Any
value over a certain threshold is amplified, thereby increasing the dynamic range.
However, in digital hardware we are bound to a certain maximum value for our
signal. As such, expansion is more useful when implemented to attenuate values
below a certain threshold, creating a similar effect.

Octaver Although this may sound like a frequency based effect, this is an
effect that is actually performed very easily in the time domain. What this effect
does is take the signal, and mirror all the negative values to their positive counter-
part, as shown in Figure 2.23. The fact that this doubles the effective frequency
might be hard to grasp at first, and will be easier to understand once one is famil-
iar with the Fourier transform explained in Section 2.3.1. What happens is: if we
count the times we encounter the value 1/2 in the first full period of the signal of
Figure 2.23, we would arrive at a frequency of 2, while the value −1/2 would also
have frequency 2. If we now take the absolute value of the signal, the frequency of
the value 1/2 will have increased to 4, thus doubling the frequency.

Of course this effect has a side effect. By taking away the entire negative part
in the signal, we lose a part of the character of the sound, thus creating some
distortion. Although one might think of this as a negative effect, if used correctly
this can add some excitement and tension to the signal, giving it more appeal than
the original.
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Figure 2.23: The octaver

2.3 The Audio Frequency Domain

This section will handle all explanations that are based around the frequency
domain. This includes the transform from the time to the frequency domain and
the effects most easily performed in this domain.
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2.3.1 The Fourier Transform [22, 23]

The Fourier transform is generally used to break down a signal into its frequency
components. This is done by describing any signal as a sum of simple waves. This
can be easily seen when we analyse the formula:

F (x) = F{f(t)} =

∫
∞

−∞

f(t)e−2πixtdt (2.1)

where
einx = cos(nx) + i sin(nx) (2.2)

The first thing we have to note is that since e−2πixt is complex valued, F (x) will
also be complex valued, meaning any value of F (x) is described in the complex
plane as a magnitude and a phase. Now, we can see in the formula that F (x) will
only have a high value when f(t) and e−2πixt are oscillating at or close to the same
frequency. What we end up with are peaks on the base frequencies of the signal,
thus effectively breaking it down into its component frequencies.

One important attribute of the Fourier transform when dealing with purely real
input signals is that it is symmetric, more specifically it has an even symmetry in
the real output component and an odd symmetry in the imaginary output, i.e.

<{F (x)} = <{F (N − x)} (2.3)

and
={F (x)} = −={F (N − x)} ∀ k ∈ [0..N/2] (2.4)

This basically means that we have the description of the entire input signal
contained in the first half of the output.

The Inverse Fourier Transform In order to recreate the original (time domain)
input signal, we also need an inverse transform. Luckily, the inverse transform
constitutes as little as using the opposite sign in the exponent for the transform:

f(t) = F
−1{F (x)} =

∫
∞

−∞

F (x)e+2πitxdx (2.5)

The Discrete Fourier Transform Now that we have created the frequency spec-
trum of the signal, we want to start using it. However, the Fourier transform deals
with a continuous signal, requiring an infinite amount of computational steps to
compute. Since we do not have an infinite amount of time, we want to use a
sampled input in order to reduce the necessary computation to an amount we can
handle. The effect of this step on the frequency spectrum is that the spectrum will
now be divided into small sets of frequencies, commonly referred to as bins. This
also means that only the exact bin frequencies will only contribute to their own
bins. Any other frequencies in between will be “smeared” across its neighbouring
bins, although its contribution to its own bin will still be the largest. Coming back
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to the theory, this means that we have limited the number of simple component

waves, constraining out frequency resolution to (
fsample

#bins
) Hz/bin, thereby limiting

ourselves in the recreation of the original signal.

The Short-Time Discrete Fourier Transform If we are handling a streaming
input, i.e. the duration of the input is unknown, we still want to calculate the
DFT without waiting for the input to finish. What we then arrive at is known
as the Short-Time Discrete Fourier Transform, or STDFT. The STDFT approach
constitutes waiting for a predefined number of samples, then calculating the inter-
mediate DFT and then waiting for another set of samples to arrive, and so forth.
This, again, means limiting our simple component frequencies even more, up to a

resolution of (
fsample

transform length
) Hz/bin. Now, the formula for the STDFT looks as

follows:

X[k] =
N−1∑
n=0

x(n)e−2πi(n/N)k (2.6)

It can be easily seen that this algorithm requires N2 complex multiplications
and N2 −N complex additions. Since experience has taught us that a divide and
conquer strategy can yield a complexity of O(N log N) in these kind of cases, we
will attempt to apply this in the next section.

The Inverse Discrete Fourier Transform Just as with the continuous Fourier
Transform, the inverse DFT, or IDFT, we need to change the sign of the exponent
to convert back to our original signal. However, for normalisation of the summing
over N samples, we also need a factor of 1/N .

x(n) =
1

N

N−1∑
n=0

X[k]e2πi(k/N)n (2.7)

The Fast Fourier Transform In order to analyse and alter the frequency com-
ponents of the system input, we will use a special form of the Fourier transform,
the Fast Fourier Transform, or FFT. The FFT is in essence an implementation of
the Short-Time Discrete Fourier Transform described in the previous paragraph.
Now, if we apply a divide and conquer strategy to the STDFT we arrive at the
FFT algorithm known as the Cooley-Tukey FFT. This algorithm divides the DFT
into an odd and an even part, as shown in this formula:

X[k] =

M−1∑
m=0

x(2m)e−2πi(m/M)k +

M−1∑
m=0

x(2m + 1)e−2πi(m/M)k (2.8)

This strategy is then applied recursively until we are left with a set of DFTs
of length 2. Because we halve the FFT with every successive step, this algorithm
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is called radix-2 and since we are rearranging the time samples rather than the
frequency samples it is furthermore referred to as decimation-in-time, or DIT for
short. By applying this strategy we are limiting ourselves to an input vector length
of only powers of 2, although in practice this is not a hard constraint to meet. Also,
as we recursively continue to separate the odd and the even numbers we will end
up with a scrambled input such that it hold that:

{0, 1..N − 1} >>

{0, 2..N − 2, 1, 3..N − 1} >>

{0, 4..N − 4, 2, 6..N − 2, 1, 5..N − 3, 3, 7..N − 1} >> etc.

In order to counter this scrambled input we have to pre-shift the inputs to match
this structure. To do this we can apply a method known as bit reverse ordering.
This method takes the index of the input and reverses it bitwise such that

[bN−1 . . . b1 b0] >> [b0 b1 . . . bN−1] where bi denotes the ith index in the bit vector

For instance, if we take assume a 3-bit tree, the value at index 4 would end up at
position 1: 4d = 100b >> 001b = 1d.

FFT Structure Next, since there is only a limited set of possible powers of
e, we can precompute these values, otherwise known as twiddle factors. Before
continuing there are some important properties to these twiddle factors, commonly
denoted as

W n
N = e−2πi(n/N) (2.9)

Firstly, because of the periodic nature of e it holds that

W
n+N/2
N = −W n

N (2.10)

The second important attribute is that

W 0
N = 1 ∀ N ∈ N (2.11)

Finally, it should be noted that

W n
N = W kn

kN ∀ k ∈ N (2.12)

Now that we have reduced the problem at hand to a structure of length 2 DFTs,
let us take a look at an implementation of one of these basic building blocks of our
FFT.

What we can see in Figure 2.24 is that we have reduced the partial problem
to a complex multiplication, an addition and a subtraction. This basic building
block of our FFT is called a butterfly for visual similarity.
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Figure 2.24: The construction of a single butterfly
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Figure 2.25: The construction of an FFT by stacking butterflies

When we start expanding the tree of butterflies we have to keep in mind to keep
simplifying the twiddle factors in order to keep a clean structure. For instance, in a
size 4 FFT, the twiddle factors of the second stage will be W 0

4 and W 1
4 , while in the

size 8 FFT they will be W 0
8 and W 2

8 , as in compliance with equation 2.12. When
we have expanded the structure to a size 8 FFT, we end up with the structure
depicted in Figure 2.25.

The bit-reverse process is added to the structure for clarification. We can now
clearly see the final structure of the radix-2 DIT FFT.

M.Sc. Thesis Siebe Krijgsman B.Sc.



26 Background

Algorithm Complexity Now that we have finished the radix-2 DIT FFT, let us
inspect the savings we have accomplished. Remember that for the original STDFT
we needed N2 complex multiplications and N2 − N complex additions. Now that
we have applied the divide and conquer strategy with some minor optimisations we
have ended up with log2 N stages and N/2 butterflies per stage. Combining this
with the fact that we need 1 multiplication, 1 addition and 1 subtraction, which
in essence is another addition, per butterfly we end up with

N

2
log2 N complex multiplications (2.13)

N log2 N complex additions (2.14)

We can see that without any further optimisations we have saved a factor 2N
log2N

complex multiplications and a factor N−1
log2N

complex additions.

Frequency Estimation As mentioned earlier in this chapter, dividing our spec-
trum up into bins results in a loss of frequency information. While the exact
frequency of the bin will result in an exact peak in the spectrum, any frequency
in between will result in a “smearing” of the energy over the entire spectrum, as
depicted in Figure 2.26.

Since at this point we cannot see all the distinct frequencies anymore, it will
be hard to conduct any clean effects on the signal. In order to counter this we can
employ frequency estimation. There are several ways to create a system suitable
for frequency estimation. We either require overlapping FFTs or we need several
FFTs operating at different sample frequencies. Where the former gives us higher
resolution locally, being in the region of a specific sample frequency, the latter will
help us reduce the smearing effect, on we which we will focus at this time.

Although every non-exact bin frequency will cause smearing across all frequen-
cies, every single one will leave a unique pattern. Since we know these patterns
in advance we can use these to our advantage in calculating the frequency that
caused it. However, we need at least an overlapping of 75% [23] in order be able
to uniquely identify any frequency.

At this point we can apply many useful and nice effects much more efficiently
than in the time domain, such as accurate frequency filtering and pitch shifting,
which will be discussed in the next section.

2.3.2 Frequency-based Effects [20]

This section will describe all filters that are rooted strongly in the frequency do-
main.

Filtering When we discuss filters in the audio domain, we discuss one of the
most basic, distinguishable and most audible effects we can imagine. In our case,
filtering can be employed to remove parts of the signal, allowing us to analyse
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Figure 2.27: The various filters

a certain part of the spectrum. The most basic implementations of a filter are
the Low-, Band- and High-pass filter and their blocking counterparts. Figure 2.27
shows these basic setups.

The main advantage of applying these filters in the frequency domain is the
complexity of the operations. While you need several multiplications, additions
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and divisions, of which the last is quite resource expensive to implement, to achieve
filtering in the time domain, a single multiplication yields the same results in the
frequency domain. If we devise a strict filter, we can even do without the multiplier
by just passing the desired frequency bins and blocking the rest.

The main problem of filtering in the frequency domain is the smearing effect:
the blocked bins will also contain a small piece of our desired signal and vice versa.
This means that in order to achieve a truthful filter we have to apply frequency
estimation.

Vibrato The vibrato effect, as mentioned earlier in this chapter, is the effect
of quickly but slightly varying the frequency of the signal, resulting in a minor
pulsating sound, similar to a guitar player moving an excited string perpendicular
to the neck of the guitar. By moving the string in this fashion, the length of the
string –and thus the frequency– is varied. Although this effect has a strong base
in the frequency domain, it can be quite easily implemented as a delay effect as
well.

The Wah Effect In some special cases, such as the wah effect, pieces of the
spectrum are extracted and added to the original to alter the sound. The wah
effect is basically a band-pass filter with a tunable centre frequency whose output
is added to the original signal. When the centre frequency is varied up and down
at a low frequency (around 1 Hz) we create a sound that is similar to a person
saying “wah-wah”, hence the name.

Phase Shifting As explained earlier, the representation of a signal in the fre-
quency domain consists of a magnitude and a phase. Where a filter essentially
changes the magnitude, we can also change the phase of the signal. Although this
could be represented quite easily as a delay element in the time domain, we are
looking for a delay in the range of 10 ms to achieve our phase shifting, more often
referred to as phasing. Since generally the sample frequency is 48 kHz, resulting
in a sample time of about 20 µs, we require quite a lot of memory to store 500
samples, while we do not require any additional memory in the frequency domain.
Although we call this a delay, the human ear can not perceive it as such. Only
delays of over about 50 ms will be heard as an echo.

A phaser is in essence an all-pass filter: a filter with a flat magnitude transfer,
but with a (non-linear) phase transfer, as depicted in Figure 2.28. After the filter,
the result is mixed with the original signal. If we now change the delay of the
all-pass filter, effectively moving the phase lag back and forth at a frequency of
around 1 Hz, we create a “whooshing” sound similar to the sound that is created
by the wind blowing back and forth.

Flanging Another effect that is usually generated with a delay is flanging. A
flanger is a variable delay element whose output is added to its original. This is
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Figure 2.28: The Bode plot of an all-pass filter

the linear case of the all-pass filter depicted in Figure 2.28, for instance, a frequency
of 180 Hz would be delayed by −180 degrees and added to its original, cancelling it
out, the same holding for any frequency of 180+360×k Hz, where k is an integer.
This effect creates “notches” in the signal transfer, as shown in Figure 2.29.

This is called a comb filter. As with the phaser, varying the delay causes a
“whooshing” sound, although slightly different from its non-linear equivalent. In
Figure 2.29 this could be viewed as the “comb” acting like a spring, expanding and
retracting in time. Flangers are often used by drummers to broaden their sound,
while keeping it fairly straightforward.

2.4 Conclusion

In this chapter, all the information required to understand the work done during
this project, and the processes and functions described in this thesis, is contained.

A short history of reconfigurable computing shows us that FPGAs populate a
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Figure 2.29: The Bode magnitude plot of a comb filter

region in hardware in between the fast but rigid ASIC and the slow but flexible
GPP. Rather than excelling at either speed or flexibility only, the FPGA can be
designed to fit a large region of this trade-off, sacrificing speed for flexibility or
vice versa. Along with the description of how an FPGA works and how it is
(re)configured, the notion of partial reconfigurability is introduced, referring to
a technique where only a small portion of the FPGA is configured, leaving the
remainder intact. Partial reconfiguration can be divided into static and dynamic
partial reconfiguration, where the former means the FPGA does not operate while
it is partially reconfigured, whereas the with the latter strategy the remainder of
the FPGA will continue to function whilst partially reconfiguring.

We continued by discussing several pieces of work directly related to this
project. Despite the fact that there are many papers regarding partial recon-
figuration, few hold a direct relation to this project. As such, several researchers
that have compiled other related work were cited, in order to form a complete
picture of this field of work. Furthermore, there have been many publications by
Xilinx that are relevant to what this thesis is proposing to do, as this project is
implemented using their product, and therefore the majority of the citations have
direct tie-ins with this company.

Apart from taking in a sounds signal and sending out a sounds signal, this
project incorporates additional input and output. The input is in the form of
a keyboard, allowing us to control the processes existing within the FPGA. The
additional output is a visual output to a screen, displaying the sounds time or
frequency spectrum, enabling us to visually analyse the sound and the difference
between the unaltered and the altered sound.

As this project is for the most part built up out of custom made blocks, a large
section of this chapter is dedicated to explaining the workings of these modules.
The most notable part covers the functionality of the Fourier Transform and its
derivatives. The Fourier Transform is used to derive the relative frequencies from
a signal. In the case of sound, the extraction of the frequency pattern provides us
with a good insight into the frequency composition of the sounds, and enables us
to extract certain frequencies from the signal, in order to process them separately.
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The remainder of this chapter handles the functionality contained within the effect
modules, designed to alter the sound stream running through the system.
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System Design 3
This chapter will describe the design step from the project goals to the design to be
implemented, as well as the motivation for the design choices made to accomplish
this.

This chapter is divided into five sections. First, the translation from design
requirements to a system design will be discussed and motivated in Section 3.1.
Section 3.2 will elaborate on the choice for the used technology, whereas Section
3.3 will discuss the changes made to the design while the project was in progress,
as some unforeseen restrictions were uncovered. Afterwards, The investigation
regarding the incorporation of this project in the MOLEN polymorphic processor
will be discussed in Section 3.5, after which the chapter will be concluded in Section
3.6.

3.1 The Initial System Design

For the design of the system, a project with a clearly visible relation to partial
reconfiguration was required. To best visualize and emphasize the fact that only a
part of the system is reconfigured, it was decided to design a system where there
is a drastic change of behavior, while the system remains fully operational. A
good way to create a clearly different sound (as we had already decided on a audio
implementation) is to alter the sound signal in some way using filters and other
effects.

In order to best visualize the effect in case the audible effect is not clearly
distinguishable, and to add to the user friendliness of the system, we decided to
add an output to a screen. Although it might be useful in some cases to visualize a
time spectrum graph, most effects are best visualized in the frequency domain. As
such, an FFT was required to generate the frequency spectrum. Since we already
need an FFT, we might as well incorporate some effects that are easily performed
in the frequency domain and transform the signal back to the time domain with
an inverse FFT.

At the location of both the time and the frequency domain effects there were
to be an unspecified number of cascaded effects, depending on the desire of the
user. Figure 3.1 shows the first system concept based on these initial constraints.
In this figure, the designated partial reconfigurable units are marked by a double
box, as well as the designation PRU (Partial Reconfigurable Unit).
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Figure 3.1: The first system concept

3.2 Technology Motivation

Looking at the baseline requirements for this project, we cannot get around the use
of an FPGA, as the desired design goals mandate the use of a platform with support
for partial reconfiguration. Although there are several FPGA manufacturers, there
are only two that currently support partial reconfiguration. Since Xilinx boards
are at our disposal at this department of the Delft University of Technology, it
would seem quite logical to use one of these boards for this project. If we then
look at the hardware best suited for partial reconfiguration, we would end up with
a Virtex 4 or Virtex 5, as these FPGAs do not put any constraints on the location
of the partial reconfiguration region (PRR). However, since one of the goals of
the project is to research integration in the MOLEN project, we are bound to the
Virtex-II, as the only existing implementation of the MOLEN was built on this
platform. Since the Virtex-II has a built in ADC and DAC, as well as suitable
in and output audio connections, it is still very suitable for the purpose of this
project.

As previously discussed, Raaijmakers [24] proposes a partial reconfiguration
method devoid of any placement constraints. Although this strategy would be
ideal for this project, the tools proposed and presented in the mentioned paper
do not seem to be available. As such, this project is bound to Xilinx tools that
are prepared for partial reconfiguration, despite the fact that it is mostly in an
experimental phase. The aforementioned tools, being ISE and PlanAhead both
pose some difficulties when working with partial reconfiguration. ISE requires a
specific version (being 9.2iPR8) for partial reconfiguration support, and PlanAhead
supports partial reconfiguration through a command line setting, but there are
still a lot of design flaws –in the worst case complete program crashes– when using
this setting. Furthermore, the method for partial reconfiguration that Xilinx uses
(explained in Chapter 2), poses several constraints on the design, for instance on
the number of usable PRRs. As such, this implementation has taken a slightly
different form throughout its lifetime, which will be elaborated on in the next
section.
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Figure 3.2: The final system concept

3.3 The Final System Design

As this project advanced, it became clear that not all of the features of the initial
system could be implemented in the set time frame. For this reason the design
was tuned down to the final prototype shown in Figure 3.2.

The reason for this modification is the following: At the time of writing, Xilinx
PlanAhead (v10.1.8) supports only a single PRR. Although this may be fixed
in future versions, there is currently no way to implement additional modules.
However, Figure 3.2 still shows two PRUs, due to the fact that both regions have
been modified to fit into a single PRR, making it impossible to reconfigure them
separately, but keeping the flexibility of designing filters for both domains.

FFT Length Issues A second unforeseen constraint is in relation to the frequency
domain. Unfortunately it turned out that the 128-point FFT running at a 48 kHz
sample rate used for this project by definition has a resolution of only 48000/128 =
375 Hz/bin. This imposes constraints on the display, as the lower frequencies
cannot be separated as nicely as one would want. For instance, most equalizers
use frequency bands of [20 : 50] Hz for the first, [50 : 100] for the second, [100 : 200]
for the third and [200 : 500] for the fourth band. The best our system could do
here is [0 : 375] for the first band and [375 : 750] for the second.

Although this first constraint is not very crucial to the project, the second
consequence of this low resolution is: For a reasonable frequency estimation we
require a much higher resolution. For instance, if we want to be able to uniquely
identify any note of the third octave and up, we would need a resolution of 138, 59
Hz (Db3) - 130, 81 Hz (C3) = 7, 78 Hz/bin. This would result in an FFT of length
48000/7, 78 = 6169, and as we can only use power-of-two lengths, we would need
a 8192-point FFT. This would not only require far too much memory and space
on the FPGA, but also be much too slow to use in this real-time system. For
illustration, using Equation (2.13), we arrive at 8192

2
log2 8192 = 53248 butterflies,

where a 128-point FFT uses only 448 by the same equation.
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FFT Length Solution To resolve the issue addressed in the previous paragraph,
the system could be redesigned to use several FFTs in parallel. The first would be
used with a low sample rate, for instance 1000 Hz, resulting in a resolution of 7, 81
Hz/bin when using a 128-point FFT, getting very close to the desired resolution in
that region. A second FFT could then for instance be used with a sample rate of
5 kHz resulting in a resolution of 39 Hz/bin, which would be quite feasible for the
frequencies in the fifth octave and up (frequencies over 500 Hz), where the smallest
required step is from C5 to Db5 which is 554, 37 − 523, 25 = 31, 12. Furthermore
this strategy would require very accurate filtering of the signal in order to divide it
into the rough sets of frequencies needed by the separate FFTs. Granted the time
required for this change in the project would be too long, this was not included in
this project. If at any time any further work was to be done by a fellow student
on this project, this addition is recommended to be the first to be made. Not only
will the existing filtering improve in quality by a large amount, but it would open
up a new set of filtering possibilities altogether.

Frequency Estimation Finally, the issue of frequency estimation discussed in
Section 2.3.1 should be addressed. Many effects discussed in the previous chapter
require some sort of accurate frequency knowledge, and therefore can not be im-
plemented on the current system. In addition to the more accurate FFT method
described in the previous paragraph, we also require an overlapping FFT struc-
ture exceeding the minimal requirement of 75% overlap. Since the accurate FFT
method was not implemented, this addition to the system will not be included
in this project either. However, anyone conducting further work is advised to
also feature this FFT overlap, as again it opens up a entirely new set of filtering
possibilities.

3.4 Interface Considerations

To start out, two signals were introduced to the system, being the system clock
and the reset. The system clock is assumed to run at 100 MHz, and the reset
signal is assumed to be active low, i.e. reset is enabled when 0. Soon to follow was
a third signal, being the sample clock, running at 48 kHz.

At the start of this project, it became clear that all modules to be implemented
in the partial reconfiguration regions were to have an identically defined interface.
So, before starting the implementation process, a PRAGMA standard PRU inter-
face specification was designed, as follows in Table 3.1. Furthermore, the standard
dictates that the least significant bit of the control input is an (active high) enable
signal for the module. Upon disabling this signal, the module should assume a
transparent behavior, i.e. output = input. Additionally, the module should not
run when the input clock is disabled, as well as output all zeros when the reset
signal is low.
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Table 3.1: The PRAGMA time domain PRU standard interface. Changes to the interface
made at a later stage are shown in parentheses

sound data sound data control data clock clock reset
left right 100 MHz 48 kHz

in 16(24) 16(24) 8 1 −(1) 1

out 16(24) 16(24) 4 − − −

During the development of the system, several design requirements arose, al-
tering the standard definition slightly. First of all, the intermediate signal changed
from 16 to 24 bits, which is shown in parentheses in the table. Secondly, the fre-
quency PRUs were easier to operate with several extra control signals. As such,
the frequency domain PRU standard differs slightly from the time domain version,
and is shown in Table 3.2. A second clock was added to the interface, allowing an
insight into the sample rate. Also 8 bits were added to the control input. The 8
most significant bits of this control signal (15 through 8) are mandated to contain
the current sample number, allowing us the knowledge of which frequency we are
currently dealing with.

Table 3.2: The PRAGMA frequency domain PRU standard interface. Changes to the
interface made at a later stage are shown in parentheses

sound data sound data control data clock clock reset
left right 100 MHz 48 kHz

in 16(24) 16(24) 8(16) 1 −(1) 1

out 16(24) 16(24) 4 − − −

3.5 Incorporation in MOLEN

One of the design goals for this project states that the feasibility of incorporating
this system into the MOLEN polymorphic processor is to be investigated. At
first sight, this should be very well possible, seeing as the MOLEN architecture is
capable of partial reconfiguration [1], and would even be able to control the partial
reconfiguration by itself. There are, however, several reasons why it is impossible
at this stage to combine this project with the existing MOLEN implementation.

The first problem that arises is that the existing MOLEN prototype only has
an implementation for Xilinx ISE 6.3i and Xilinx ISE 8.1/8.2. As mentioned
earlier, partial reconfiguration using PlanAhead currently only supports Xilinx
ISE 9.3iPR8. Porting the prototype to a newer version of ISE is a daunting task
in itself, and is as such beyond the scope of this project.

Other than the fact that the versions of the working environments do not
match, there is another fundamental problem withholding the combination of both
projects. Even if the MOLEN prototype would support the required version of Xil-
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inx ISE, an elaborate redesign of this prototype would be necessary in order to suit
it to the requirements that PlanAhead poses on any reconfigurable project. One
would for instance have to insert bus macros, although this is likely to be one of the
easier tasks. This suggests that the strategy of partial reconfiguration as designed
by Xilinx might not be a feasible option for MOLEN, and a different approach,
such as the strategy proposed by Raaijmakers [24], would conform better to the
approach used in the MOLEN architecture.

3.6 Conclusion

The goal of this project is to create an audio manipulation platform using partial
reconfiguration. In order to best visualize the effect a system was designed that
has both an audio output and a video output. The initial system is built up
out of several partial reconfigurable time domain effects, followed by a frequency
transform, several partial reconfigurable frequency domain effects and a transform
back to the time domain. Apart from this main path, video data is gathered from
several points in this path, feeding information to the VGA output.

Due to several unforeseen constraints, the initial system was reduced to a single
partial reconfigurable region, only able to reconfigure a single module partially,
leaving the rest fixed. Furthermore, multiple effect previously scheduled for the
frequency domain were moved to the time domain or left out completely.

In order to create the possibility for partial reconfiguration, a special interface
was defined. At a later stage of the project, this standard was divided into a time
domain standard and a separate frequency domain standard.

The possibility for implementing this project in the MOLEN polymorphic pro-
cessor was investigated. Using the technology this project is based on, however,
does not seem to be a feasible approach to accomplish this. First, the implementa-
tion of the MOLEN processor would have to be adapted to the required version of
Xilinx ISE 9.3iPR8, which is a time consuming project. Once this is complete, the
MOLEN implementation would have to be redesigned in order to fit the constraints
posed by Xilinx PlanAhead.
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This chapter describes the implementation steps takes while creating the modules
that constitute this project, as well as the step taken to realize partial reconfigura-
tion. If a module was not designed and implemented by me, this is stated clearly
in the respective section, together with a link or reference to the original design.

This chapter is divided up into five sections. First, Section 4.1 handles the
particulars regarding the inclusion of partial reconfiguration in this project. Next,
Section 4.2 will discuss the time domain, while Section 4.3 will discuss the frequency
domain. Section 4.4 contains a description of the implementation of the peripheral
modules that are not in the direct path of the sound data, but fulfill a role in
controlling or handling the data surrounding the system. Finally, Section 4.5 will
review what has been discussed in this chapter.

4.1 Partial Reconfiguration

The basic requirements for partial reconfiguration are as follows. First, the design
has to be modular, meaning the design has to be divided up into modules, because
we need clear separation between the static core and the reconfigurable core. Since
this project is already module based, this requirement has been fulfilled. Secondly,
all reconfigurable cores need to have the exact same interface to the static core.
This was discussed and handled in Chapter 3, and as such this requirement was
met as well. The remaining requirements, such as the global clock path and bus
macros, have been addressed earlier, and have all been met as well. What remains
now is the actual implementation.

Since an off-the-shelf solution to partial reconfiguration using PlanAhead was
chosen for this project, the steps taken to implement this project will not be elab-
orated on here. For a complete explanation of how this project was designed and
generated using PlanAhead and ISE, the reader is referred to Appendix B, which
shows all the implementation steps taken to generate the partial reconfigurable
bitfiles.

What remains to say here is that the implementation using PlanAhead was
successful and that a single partial reconfiguration region is operational within
this system, as discussed in Section 3.3.
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4.2 The Audio Time Domain

This section describes the implementation phase of the project. During the im-
plementation phase it became clear that several modules would be too large to
implement. As such, all modules in this project only use the left channel of the
stereo input. The right input is added to the modules as both an input and an
output for future use, but it is never used in the current state of the project. This
holds for both the time- and the frequency domain.

4.2.1 AD & DA Conversion

The used wrapper for the AC’97 AD and DA converters on the Virtex-II Pro
development board has been borrowed from the Xilinx Built-in Demo project [25].
This module configures the converters and outputs the serial data as two 16 bit
vectors, as well as takes two 16 bit input vectors, in both cases one vector for the
left and one for the right channel. Several small modifications to this core were
made in order to be able to incorporate it in this design.

One important function of this core is that it outputs a synchronize signal with
the frequency of the sample rate every time a new sample is ready. This signal has
a duty cycle of 1/16 and is therefore not suitable to be used as a clock. It can be
used, however, be used to construct a clock signal, which is essential to the correct
functioning of a large portion of this design.

4.2.2 Sample Clock Generator

Since the synchronization signal from the AC97 wrapper core does not have a
suitable duty cycle to be used as a clock, we need a different solution to obtain
this clock. The AC97 Bit Clock is available on a system pin, running at 12240 kHz.
In order to obtain the 48 kHz clock from this the AC97 wrapper divides it into 255
timeslots, resulting in an exact frequency of 48 kHz. Since the AC97 core only uses
this locally and does not actually output this clock, a custom clock generator based
on the same principle was created. Xilinx has Digital Clock Managers (DCMs)
available to generate accurate clock signals by division or multiplication, but the
minimal output frequency is 1 MHz, and therefore these are not feasible in this
case. In order to stay synchronized with the actual samples, this core waits for the
first issue of the synchronization signal from the AC’97 wrapper core, and starts
the counting process from there.

4.2.3 Time Based Effects

This section will relate the implementation phase of the effect modules. Please
note that all modules are required to use their least significant control bit as an
enable, which will not be repeated in every paragraph. Although implementing
the essence most of these effects is straightforward, most of them still took a lot
of time to configure just right in order to get the desired sound.
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The Delay Effect Implementing a pure delay is quite straightforward. If we
model the delay with a FIFO, we require a depth of half the sample rate to use a
delay of up to 500 ms, resulting in 24000, or actually the first higher power of two,
32768. We can then use 4 of our control bits to control the delay length. The 4
control bits are then shifted to the left by 11 bits, shifting in 1’s with every step,
changing the value range from [(20 − 1) : (24 − 1)] or [0 : 15] with steps of 1 to
[(211 − 1) : (214 − 1)] or [2047 : 32767] with steps of 2048. If we map this to the
time axis, this is equivalent to a range between 43 ms and 683 ms, with steps of 43
ms. Our theoretical desirable range of [50 : 500] ms falls nicely within our possible
range.

Since we cannot change the length of the FIFO if we want to change our delay,
we need some control parameters. As the FIFO has a separate read and write
enable, the write enable is bound to to high, resulting in the FIFO continuously
reading data on the input and writing is into its memory. Subsequently, the read
enable on a timer was put on a timer, counting down from the desired delay length.
Once this timer reaches zero, both the input and the output work continuously,
keeping the data pipeline at the desired length. If any value is changed the FIFO
is reset, and the process starts anew.

The remaining 3 bits of our control signal are used to select the decay of the
signal. By default, the signal is right shifted by 3 bits and as such 1/8 of the
original. The signal is then multiplied by the 3 bit value of the control signal,
resulting in a maximum of 7/8 being fed back to the input signal. To induce
minimal losses in the signal quality, the initial value is only shifted by 1 if the
control value is 4, and only shifted by 2 if the control value is 2. For the best
signal quality these values should be used.

Pitch Modulation Now that we have arrived at the pitch modulated effects, we
are faced with a challenge: How do we model the variable delay with the LFO
explained in the theory? We are unable to change the length of the FIFO at
runtime and we can not change the sample frequency. However, we can change
the sample frequency without our effect module.

Based on this notion, a FIFO with a varying output clock was designed, as
depicted in Figure 4.1. If we change the frequency at which the samples are read
back from the FIFO, we create an asynchronicity with the rest of the system. This
will result in reading some samples multiple times, causing the pitch to lower, while
“missing” some other samples, effectively increasing the pitch. Of course, since we
write the samples into the FIFO at the sample rate, we need to alternate raising
and lowering the pitch in a well-distributed way, keeping the average clock speed
equal to the sample rate.

Please mind: The sample signal in Figure 4.1 is stated as 1 Hz as an example,
as is the 10% frequency and pitch change. This is to clarify the effect, and by
no means a restriction. Furthermore, a 10% change in the clock frequency may
or may not induce a 10% change in the pitch. The amount the frequency of the
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48 kHz

sample (1 Hz)
@ 48 kHz @ 48 kHz @ 48 kHz @ 48 kHz

+/- 10%

FIFO

clk in clk out

sample (1 Hz) sample (1 Hz) sample (1 Hz +/- 10%)

clock
modulator

12.28 MHz
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+/- 10%

Figure 4.1: The modulation of the sound’s pitch by using a FIFO with different clocks

sample is changed varies with the frequency of the sample, and the value of 10%
is only used to show that the modulation of the clock frequency has a direct effect
on the frequency of the sample.

The clock modulator shown in Figure 4.1 functions in the same way as the
sample clock generator does. If we want to achieve the exact sample rate, we need
to divide the 12, 28 MHz clock by 256. However, if we for instance add or subtract
10% of this number by adding a integer-valued sine wave with an amplitude of
25 and at a frequency relevant to the effect we are trying to create, we create a
48 kHz average clock with an embedded pulse-modulated sine wave. Changing
the amplitude, frequency and shape of the pulse-modulated signal will change the
sound of the effect.

The Chorus Effect Having implemented a pitch modulating circuit, we can now
create a chorus effect. The implemented chorus effect uses 3 pitch shifters, all
with a different phase and a different period. According to the template, the least
significant bit of the control signal is the enable of our module. The remaining bits
are unused, but could be used to control the delay and/or the phase shift of the
module, when implemented by the user.

Reverb The reverb effect was implemented exactly as explained in the theory.
4 comb filters were placed in parallel, cascaded with 2 all-pass filters. The 3
most significant bits of the control vector select one of these units, while the least
significant bit again functions as an enable. The remaining 4 bits are used to select
a value for the selected unit.

Repeater Due to a lack of onboard memory, the repeater was not implemented.
In the future one might implement a DDR controller, opening up enough memory
to make this effect feasible to implement.
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Volume Control The volume controller was implemented using the available
multipliers. The most significant bit (bit 7) is used to enable multiplication, and
bit 6 to enable division. Bits 5 through 3 are used for the multiplicand (range of
0 up to 7). Table 4.1 shows the results for the various combinations of settings.
The division scheme is made in such a way that we do not actually need division;
the input is pre-shifted in the same way as with the delay effect. Note that any
multiplication could lead to clipping of the output signal if the result is larger than
can be contained in a 16 bit signed vector.

Table 4.1: Settings of the volume controller explained
Multiply Divide Result

0 0 output = input (Transparent)

0 1 output = 1/8 x multiplicand x input

1 0 output = multiplicand x input

1 1 output = 0 (Mute)

Tremolo The tremolo effect is implemented using a sine lookup table. This
implementation uses a relative amplitude, meaning it scales with the amplitude
of the actual sound. The ratio between the original signal and the tremolo wave
is set at 1 : 3. The sine lookup table uses 16 bits to represent a value between
[−1 : 1] and a table length of 32 containing 1/4 of the complete sine wave, meaning
that one full period of the resulting sine wave contains 4 × 32 = 128 samples. If
we now add the same value from the sine table to our signal for 48000/128 = 375
consecutive samples and then continue to the next table entry we end up with a 1
Hz tremolo. Control bits 7 through 5 can be used to control 8 frequency settings,
presented in table 4.2.

Table 4.2: Control values of the tremolo effect and their corresponding frequencies
Control Value Step Size Frequency

000 375 1.000 Hz

001 187 2.005 Hz

010 125 3.000 Hz

011 75 5.000 Hz

100 37 10.135 Hz

101 25 15.000 Hz

110 19 19.737 Hz

111 15 25.000 Hz

Distortion Distortion was implemented in a full range scalable manner. The 4
most significant bits of the control vector are used to select a value v between 0
and 15. We then shift a value of 1 v times, which is used as an upper bound for the
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signal. Any amplitude larger (in the absolute sense) than the threshold is changed
to the value of the threshold. Note that this means that a control value of 0 results
is the worst distortion, while a value of 14 results in the mildest distortion. a shift
value of 15 would result in an upper bound of −1 and is therefore bypassed, and
used to disable the effect.

Compression and Expansion Compression and expansion are implemented in
a similar fashion to distortion. The most significant bit is used to select either
effect (0 being compression and 1 being expansion), and bits 6 through 3 are used
to select the trigger level. The remaining bits, 2 through 1, are used to select the
attenuation factor. The affected input in shifted by 2 bits, and then multiplied by
the attenuation factor, obtaining a attenuation factor in the range of [0 : 3/4]. The
used attack and release time are both set to 1023 samples, resulting in a minimum
detection frequency of approximately 50 Hz.

Octaver This is possibly the most straightforward effect. All negative input is
multiplied by a factor of −1, resulting in the desired effect. Only one minor bug
occurred in the test, because the absolute value function would not substitute the
maximum negative value, as it has no positive counterpart in the 2’s complement
notation. A simple condition was used to correct this problem.

4.3 The Audio Frequency Domain

Keeping in mind the restrictions defined in Chapter 3, the implementation steps
undertaken to create the modules that are still possible to implement within the
given restrictions will be explained.

4.3.1 The Fourier Transform

The FFT module is one of the largest modules in this design, as well as one of the
most timing-critical. Although the FFT has to sample at the set sample rate of 48
kHz, we want its core to operate at 100 MHz in order to reduce the input-output
lag to a minimum.

Xilinx FFT Core Implementation To start out, it was decided decided to use
one of the Xilinx FFT cores [26]. Despite the fact that the are many parameters
to modify this cores behavior, there is no direct way to enable the desired dual
clock speed. In order to implement this behavior, a basic wrapper using Xilinx
FIFO cores was created. This FIFO would have its input enable connected to the
48 kHz sample clock and its output enable to the 100 MHz system clock. When
the ‘full’ flag of the FIFO would go high, the wrapper would enable the output
clock, thus feeding the FFT data at 100 MHz until the FIFO was emptied. At the
output, a similar reverse structure was built.
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In order to establish an efficient transform length we need to consider the
number of cycles we can spend on performing the FFT without creating any, or as
little as possible, input/output lag. Given that our system runs at 100 MHz and
our ADC samples at 48 kHz, we have 2083 cycles to perform a transform at 100
MHz without missing any data. Given that we need N

2
log2 N butterflies, we can

solve the equation:
N

2
log2 N = 2083

which yields N = 469. This would imply that we could go as high as the closest
lower power of 2, 256. However in this case N = 128 was chosen, so we get 2 cycles
to perform each butterfly, as well as some extra slack in the control overhead.

After several trials, some problems arose with the core-wrapper construction.
First of all, using this structure has an inherent flaw that it uses double the nec-
essary memory, since the data from the FIFO is just read directly into the input
memory of the FFT core. Secondly, the FFT core uses an unload pin unless the
natural ordered output is requested. Since we do not want to use natural ordering,
the core will start unloading its data as soon as it is ready without any control from
the outside. This property made it very hard to time the output FIFO correctly,
resulting in a very inefficient timing scheme. Finally, The Xilinx core needed to
be used in unscaled mode, as we needed as high an accuracy as we could get. As
every stage of the FFT uses an addition, each introduces an extra bit in its output,
as does the final stage, resulting in log2 128+1 = 8 extra bits for a 128 input FFT,
resulting in a 24 bit vector. The reverse transform, in turn, would scale the 24
bit input back to the 16 bit vector we started out with. However, the Xilinx FFT
core does not take this reverse transform into account. We are thus required to
use a different core for the reverse transform, using a 24 bit input, creating a 32
bit output we would then have to post-scale back to the 16 bit vector we started
with in order to feed it back to the system.

Custom FFT Implementation Because of all these problems, it was decided to
implement a custom version of the FFT algorithm, resulting in a design able to
suit every specific need of this project. For the implementation of the Fast Fourier
Transform the radix-2 DIT FFT discussed in the Section 2.3.1 is used. However,
in its current form there is no practical way to implement it. Although this would
yield a very fast implementation, log2 N times the number of cycles required for
1 butterfly, it would also require 2N log2 N multipliers and 4N log2 N adders, as
we require 4 multipliers and 2 adders for 1 complex multiplication and 2 adders
for 1 complex addition. In order to keep the amount of resources a limited as
possible, a structure with a single butterfly, 3 memory units, for the input, output
and working memory, and some control logic in order to reuse the single butterfly
for the entire tree is used. The proposed structure can be found in Figure 4.2. In
this way we retain some of the efficient attributes of the FFT, while tuning it for
minimal resource usage.
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Figure 4.2: The implementation of the radix-2 DIT FFT algorithm

To ensure correct functionality, the design was first implemented in MATLAB.
Since MATLAB has a built-in FFT function, testing the custom FFT structure was
trivial, and any bugs it contained were eliminated efficiently. Despite the fact that
translating the well-formulated FFT to VHDL was a challenge, results similar to
the MATLAB implementation were soon achieved. The obtained values from the
VHDL model, however, strayed somewhat from the MATLAB model, due to the
fact that the VHDL butterfly uses (16 bit) fixed-point values where MATLAB uses
double precision floating points. To counter this problem, the MATLAB model
was redesigned to scale and truncate its values to simulate the 16 bit fixed point
notation.

The first version of the VHDL FFT model used distributed RAM, meaning
the memory values were stored in LUTs in the FPGA. Since 8 large memories are
used, specified in Table 4.3, this took up a lot of space on the FPGA. The design
was therefore redesigned for the use of BRAMs, of which the data sheet stated
that it would introduce a single cycle of output lag. Keeping this in mind the FFT
was redesigned, but the output results achieved with the previous version were not
realized. Eventually, after having spent almost a month on this problem, it turned
out that the requested values from the BRAM would arrive just after the next
clock cycle, resulting in it being used on the secondnext clock cycle, destroying the
entire functionality of the FFT. Once this problem was uncovered, the FFT was
modified to give the BRAM access time another cycle of slack, thereby increasing
its input/output lag.

In order to determine the input/output lag of the final FFT module, the sys-
tem was simulated with Modelsim. Figure 4.3 shows the amount of time used to
calculate the 128 point FFT. It can be seen that the calculation in fact takes longer
than a single cycle of the 48 kHz clock. When measured one full FFT calculation
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Table 4.3: The memory used by the FFT. (i)x(k) represents i bits and length k

input intermediate output twiddle
memory memory memory factors

16x64 0 0 0 2

24x128 2 2 2 0

000000000000000000000000 000000001110001100111101

000000000000000000000000 000000001100001011001101

000000000000000000000000 000000001111010111001000

000000000000000000000000 000000001011110100001000

0100000000000000 1100000000010011

0000000000000000 1111110011011100

000000000000000000000000 111111111111011100000100

000000000000000000000000 111111111111100111101101

000000000000000000000000 000000011100111101110110

000000000000000000000000 000000011000101110101101

/test_full_ t_vhd/clk_100m

/test_full_ t_vhd/clk_48k

/test_full_ t_vhd/uut/x0_re_i

/test_full_ t_vhd/uut/x0_im_i

/test_full_ t_vhd/uut/x1_re_i

/test_full_ t_vhd/uut/x1_im_i

/test_full_ t_vhd/uut/twiddle_re_i

/test_full_ t_vhd/uut/twiddle_im_i

/test_full_ t_vhd/uut/y0_re_i

/test_full_ t_vhd/uut/y0_im_i

/test_full_ t_vhd/uut/y1_re_i

/test_full_ t_vhd/uut/y1_im_i

Figure 4.3: The FFT calculation time

takes 32640 ns, which in turn is equivalent to 3264 cycles of our system clock. This
is more than our targeted 2083 cycles, so we lose 1 sample every 128 samples. Al-
though this could be countered using a pipelined structure, the loss of one sample
is so slight that the improvement in sound would not outweigh the effort needed
to change the structure of the FFT.

4.3.2 Frequency-based Effects

As discussed in Section 3.3, the final system poses many constraints on the number
of usable effects in the frequency domain. Nevertheless, several functions were
implemented that are discussed in this section, although most of them are now
implemented in the time domain. As with the time domain effects, implementing
these modules took a lot of tweaking the settings before they produced the desired
effect.

Filtering Frequency filtering is easy to implement when we have the FFT data
readily available. As discussed in Section 3.4, the interface was extended with the
sample number. Now that we know what sample, and therefore what frequency,
we are operating on, we can, for instance in the case of a LPF, simply discard this
data if its frequency is higher than the desired cut-off frequency, and pass through
any other data without modifying it. This yields the desired behavior, but due to
the smearing effect we also remove a part of the desired frequencies, as well as leave
in part of the unwanted signal, resulting in a messy sound. Further contributing
to a bad sound quality is the fact that a crisp cut-off is used instead of a gradual
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cut-off. The contribution of the latter effect, however, is small for this inaccurate
FFT, but will become more and more significant as a more accurate FFT is used.

Vibrato The vibrato effect was implemented in the time domain, for the men-
tioned reasons, as were the rest of the following effects. The attentive reader may
have noticed that the implementation of the chorus effect explained earlier was not
a pure chorus effect. As we can not really change the pitch continuously. As such,
the chorus effect is now built-up out of 4 vibrato effects. The vibrato effect itself
was implemented in a similar way. As yet there are no configurable parameters,
as the modulation of the clock is quite a delicate process.

Wah The wah effect has not (yet) been implemented. One would need a specific
time domain variable band-pass filter that is too much work to create at this time.

Phasing and Flanging The phaser and flanger were implemented using the
knowledge that they are variable all-pass and comb filters, respectively. As with
the vibrato, they are not currently tunable, as the clock modulation is a delicate
process that is too easy to unbalance.

4.4 Support Modules

This section describes the implementation process regarding the modules that are
not directly in the audio input/output datapath.

4.4.1 VGA Controller

In order to realize a clear interface to the device, as well as to visualize the effects
of the modules on the sound, a VGA interface is required to output the data on a
screen. A VGA interface operates based on several parameters listed in Table 4.4.

The basic operation is simple: at every clock pulse a pixel (R,G,B) is written
and the horizontal counter is incremented. If both the horizontal and the vertical
counters are within the active region the pixel is written to the screen. Once the
horizontal counter is outside the active region the blanking signal is asserted and
as a result the RGB values are overwritten with zeros. Once the horizontal front
porch has passed the horizontal synchronization signal is asserted and once the
horizontal back porch had expired the horizontal counter is reset to zero and the
vertical counter is incremented. Once the vertical counter moves out of the active
region the signal is once again blanked. Once the vertical front porch has passed
the vertical synchronization is asserted, which, after the vertical back porch has
passed, resets both the horizontal and the vertical counter, and the process starts
over.

Implementing the VGA interface is a straightforward task if all parameters
are readily available. Using the parameters from Table 4.5 [27], we can create a
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Table 4.4: The VGA parameters explained
R,G,B The amount of Red, Green or Blue used to define the

current pixel. Values range from [0 : 255].

Front Porch The number of pixels between the end of a line or
column and the start of the synchronization.

Active The number of pixels used to display all the pixel
data in the line or column.

Back Porch The number of pixels between the synchronization signal
and the start of a new line or column.

Total The total number of pixels in the line or column.

Synchronization The signal used to mark the end of a line or column.

Blanking The signal used to overwrite any data incoming with
blank data (all zeros).

simple VGA output without the use for a very fast clock, by using a low resolution.
We can obtain the desired 40 MHz frequency by placing a Digital Clock Manager
(DCM) in front of the module, using the parameters in this table.

Table 4.5: The VGA parameters for a resolution of 800x600@60Hz
Pixel DCM active front synch back total
clock settings porch porch

Mhz M D pixels pixels pixels pixels pixels

Horizontal 40.00 4 10 800 40 128 88 1056

Vertical 40.00 4 10 600 1 4 23 628

Once the structure described in the previous paragraphs was implemented, the
need for the creation of a process to generate pixel data in order to visualize the
data arose. To start out, the top right quarter of the screen was selected to function
as a character-written section. After that a 9x12 pixel font was defined, which used
the respective hexadecimal keyboard codes to refer to the different letters in this
font. Lines and columns were then defined, and as such, letters and punctuation
can be displayed quite easily on this part of the screen. Through the use of a
lookup function we can determine what the line sent to the screen should contain.

The next process draws axes on the screen and divides the incoming data up
into frequency bands. These frequency bands are then displayed on the screen,
both before the effects and after, in order to visualize the difference the effect has
created.

4.4.2 Keyboard Interface

The standard AT keyboard interface is a serial interface, sending over packets of 11
bits shown in Figure 4.4. When in idle state, both the clock and the data line are
high. When a key is pressed, the data stream is initiated with a start bit, which
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is always a logical 0. After the start bit 8 data bits are transmitted, followed by a
parity bit.

The keyboard uses odd parity, signifying that if the total number of ones trans-
mitted is even, the parity bit will be one (the total number of ones including the
parity bit itself will then be odd, hence the name), and zero otherwise. If the
parity bit does not match the calculated parity, the data has an error and should
be discarded. If, for some reason, there is more than one transmission error, the
parity check scheme might yield a false positive, for example when two errors occur
where a 1 is received as a 0 and another 0 is received as a 1. Despite this fact,
a 1 bit error check should be enough for the connection of a keyboard. Should
many errors occur, one should check the connection or replace the device. After
the parity bit, a logical 1 follows as the stop bit.

1 2 3 4 5 6 7 8 Pstart stop

CLOCK

DATA

Figure 4.4: The layout of a PS2 keyboard packet

The keyboard sends its clock over one line and the serial data over another.
The clock is generated by the keyboard itself, and is generally between 20 and 30
kHz. As can be seen in Figure 4.4, the keyboard data should always be read on
the negative clock edge.

When the 8 bits from the keyboard have been read, they can be interpreted.
Every key on the keyboard has a ‘make’ and a ‘break’ code. The make code signifies
that a key has been pressed, while the break code indicates a key release. In most
cases the break code of a key is the make code preceded by the hexadecimal number
F0. Examples of several make and break codes are displayed in Table 4.6. The
full table of scancodes is too large to display here, however it can easily be found
on the Internet [28]. We can see here that there are several composite keys. These
keys have a make code that is preceded by E0 and a break code that is preceded by
F0, E0. The two keys that have a different control sequence are PRNT SCRN and
PAUSE and are listed in the table in a special section. The Pause key is unique in
that it has no break code, and is the only key that uses E1 in its make sequence.

The keyboard interface was designed and implemented in the fashion the theory
suggests. 11 bits are read serially based on the keyboard clock. The parity check
is done by using solely XOR gates in the following fashion:

(b0) XOR (b1) XOR (b2) . . .XOR (b7) XOR P = C

If the parity check succeeds, C should be 1. If, at any point, the transmission has
corrupted one of the bits, C will be 0, and the result should be discarded.

Once the 8 bit vector has been verified it is transferred to the 100 MHz clock
domain and put on the output of the module for 3 100 MHz clock cycles. The
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Table 4.6: Several examples of keyboard scancodes
Key Make Break

A 1C F0, 1C

B 32 F0, 32

C 21 F0, 21

- 4E F0, 4E

R CTRL E0, 14 F0, E0, 14

R ALT E0, 11 F0, E0, 11

PRNT E0, 12, E0, F0, 7C,
SCRN E0, 7C E0, F0, 12

E1,14,77,
PAUSE E1,F0,14,

F0,77

system then goes into a wait state, awaiting the next keystroke or key release.
A wrapper is built around this structure to control the main device. The

keyboard input is handled according to the state machine depicted in Figure 4.5.
What happens is: When a key gets pressed the state machine will get data valid
= 1, and will therefore move to state 1. In state 1 the key data will be read and
assumed to be a basic key. If at this point a different key is pressed before the first
one is released, the machine will go back to state 0 and start over with the new
key. As only single keys should be pressed to control the device, this should not be
a problem. Now, assuming no additional keys have been pressed, the machine will
wait in state 1 for the key to be released. Once the key is released the machine
will pick up the break code and move to state 2. The process will hold here until
the previous break code is done. Now if the same key identifier does not follow,
another key has been pressed in the mean time, and we return to state 0. If we
do find the valid key identifier, we move to state 3 where we output the found key,
and we then wait for a data to become unready. Once the data is unready, we
return to state 0.

The remainder of the wrapper checks the key identifiers coming out of the
previously described process. If the keystroke matches one if the controls in use,
the predefined control activity, such as toggling or incrementing a control signal,
is executed and the process will wait for the next input.

4.5 Conclusion

This chapter described all the steps taken in implementing the the various modules
that this design comprises. The system was implemented using Xilinx PlanAhead,
for which it had to comply to several strict requirements. All requirements were
met and the implementation of the system using a single partial reconfiguration
region was successful.
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Figure 4.5: The keyboard state machine

Initially, FFT cores provided by Xilinx were used in this project. However,
there were several reasons why this approach did not suffice. This resulted in
the design and implementation of a custom FFT. Although this FFT is not able
to finish all required processing within the single sample boundary, it is deemed
sufficient for the current implementation.

Of all the proposed effects, there were several modules that were not imple-
mented. The repeater module needs a buffer that is too large to realize on-chip,
and the wah effect was left out because the variable band-pass filter proved to be
too difficult to build in the time domain. Furthermore, all effects apart from the
filtering module were implemented in the time domain, due to several unforeseen
constraints discussed in earlier chapters. All other effects have been implemented
successfully.

The effects that were initially intended to be implemented in the frequency do-
main are static, i.e. there are no control parameters available to change the effect,
due to the fragile nature of the implementation used. The effects implemented in
the time domain are customizable within certain bounds, either restricted by the
hardware or manually restricted to operate within the bounds set by the theory.
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This chapter contains all the results of the system’s final test phase. Please note
that all data acquired in the implementation phase that was used to improve and
modify the modules in this system is conveyed in Chapter 4, and will not be
discussed further in this chapter.

First, the results regarding partial reconfiguration that were measured and
deduced by implementing this project will be discussed in Section 5.1. Section 5.2
will then discuss the remaining test results from the FFT that were not directly
used in the implementation phase. Consequently, Section 5.3 will discuss the test
methods and results for the effect modules. The results regarding the support
modules of this project are mentioned in Section 5.4, after which Section 5.5 will
recapitulate the final results of this project.

5.1 Partial Reconfiguration

One of the goals of this project was to investigate the feasibility of partial re-
configuration. Throughout this thesis, the advantages and drawbacks of partial
reconfiguration, whether theoretical, technology bound, considering the toolchain
or otherwise, have been thoroughly discussed. Is this section the feasibility of
partial reconfiguration in regard to this project will be discussed.

Table 5.1: The configuration time for the Virtex-II Pro (XC2VP30)
No. of Frame Configuration Total no. Download Time (ms)
Frames Length Bits of Bits SelectMap Serial JTAG

(bits) (incl. header)

1,756 6,592 11,575,552 11,589,984 28.97 231.80 351.21

Table 5.1 [29], shows the size of the configuration file and the time it takes to
configure the device via several interfaces. The most notable fact in this table is the
difference between the configuration times for the various interfaces. The JTAG
port is used to configure the device from a PC USB interface, while the SelectMap
interface can be used to configure the device internally, either by using a Xilinx
built-in function such as the PROM memory or the SystemACE Compact Flash
device. We can verify the file size shown in the table (11, 589, 984 bits or 1, 448, 748
bytes) with the size of the actual merged full bitfile generated by PlanAhead, being
1, 448, 817, ignoring the small size variation.

If we now assume that the programming time scales linearly with the bitfile
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size, we can deduct some indication of the configuration time of the partial recon-
figurable units in this project. The largest partial bitfile in this project is 82, 350
bytes, which coincidentally corresponds to exactly 100 frames, resulting in a scaling
factor of about 17 compared to the full size FPGA. If we scale the configuration
time accordingly, we end up with 1, 7 ms for the SelectMap and 20 ms for the
JTAG.

Unfortunately, a 20 ms delay, resulting in an audible silence, is quite resource
expensive to hide completely. Since we are dealing with a direct input/output
model, buffering can never continuously solve this problem. Although we could
build a buffer that fills when the device is initially programmed, we can not refill
this buffer when a partial reconfiguration is performed, and the delay will per-
sist once the buffer is emptied, while initially adding an unwanted delay. For the
SelectMap, the story is somewhat different. While 20 ms is a noticeable delay,
roughly 2 ms should not be audible to the general listener. This adds another ar-
gument in favor of implementing this project as a self-contained platform, using the
SystemACE Compact Flash interface to store and load the partial reconfigurable
units.

In order to measure the reconfiguration time, we need to connect to the DONE
signal of the FPGA. This signal, however, does not behave as the theory suggests.
In fact, it stays in the high state throughout the reconfiguration. As such, we need
a different method to measure the time it takes to write a different module to the
partial reconfiguration region on the FPGA. We know that the output bus macros
behave erratically throughout the reconfiguration. Since there is no direct use for
the control outputs of the effect modules and they should remain low during normal
operation, we can check these outputs for changes. As soon as one of the control
outputs becomes high, a counter is started with a grace period of 1000 cycles,
meaning the counter will continue while there are at most 1000 cycles between two
high pulses. We can then read out this counter and relate it to a reconfiguration
time. Although this is not an air tight method, it provides us with an indication of
the reconfiguration time. The averaged measurement of this reconfiguration time
resulted in a value of 27.8 ms. This value is conform the order of magnitude of the
theoretical estimate of 20 ms.

This last paragraph is dedicated to an idea to solve the problem of hiding
the reconfiguration time in this project, although this was not implemented in
this project. According to the Xilinx Partial Reconfiguration User Guide [10],
there should be a signal that is deasserted when configuration is in progress and
asserted when finished. However, this guide does not provide any information on
which signal or pin this is. The Virtex-II User Guide [29] mentions a ‘done’ signal
that functions like this, that is bit 12 of the STAT register, but during this project
it was not discovered how to acquire this signal (“[the STAT register] can be read
using the JTAG or SelectMAP port for debugging purposes”). However, if one
manages to read this signal, there could be another use for it other than using it to
disable the Bus Macros. We could use this signal to enable and disable a ‘shortcut’,
as shown in Figure 5.1, thereby bypassing the PRR during configuration time, and
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ensuring a continuous sound output. In this figure, the done signal is used as an
enable on the bus macros and as a select signal for the multiplexers. In the current
version of the system, the counter mentioned in the last paragraph also functions
as the bypass enable. Although this does not completely hide the reconfiguration
process, it softens the distortion caused by reconfiguration.

8

8

8

8

16

16

done

PRR

BM

BM

BM

BM

Figure 5.1: Creating a PRR bypass. Blocks marked ‘BM’ are Bus Macros

5.2 Fast Fourier Transform

There are several results related to the FFT that have not had a place in this
thesis, the first of which is the impact of the fixed point strategy on the on the
accuracy of the result. At every single one of the seven stages of the FFT, the
calculated values from the multiplication are truncated. This leads to a worst case
error of 0.999 repetitive being rounded down to 0. Since we then add two numbers,
both carrying a worst case error of approximately 1, the worst case error per stage
is 2. Chaining seven stages then yields a worst case error of 14 on one transform.
The multiplication does not yield a multiplicative error, as any multiplication done
within the FFT is done with a twiddle factor, which is always smaller then or equal
to one. The same holds for the reverse transform.

Given that we do not know what is in between the forward and the reverse
transform, we can only obtain a worst case error for both transforms. Adding all
numbers, the worst case error is:

eworst case = 2 per stage ∗ 7 stages ∗ 2 transforms = 28

This is equivalent to 28
215 ∗ 100% = 0.0854% of the full dynamic range of the 16

bit two’s complement (15 bits were used for the calculation as the error can occur
with both positive and negative numbers). MATLAB tests of several real songs,
scaled to full range, yield a maximum error of 23, indicating that the found worst
case number of 28 is viable.

Table 5.2 presents the amount of resources of the device that are used by a
single instance of the FFT module.
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Table 5.2: FFT device utilization
Logic Utilization Used Available Utilization

Number of Slices 622 13696 4%

Number of Slice Flip Flops 804 27392 2%

Number of 4 input LUTs 894 27392 3%

Number of BRAMs 6 136 4%

Number of MULT18X18s 8 136 5%

0 ns 100000000 ns 200000000 

clk_48k

pcm_data_in

pcm_data_out

data_count

Figure 5.2: the output of the pitch modulation testbench

5.3 Effects

Since all but one of the effects were implemented in the time domain, They will
be summed up here, ending with the filtering effect, being the only one left in the
frequency domain. The effects that were not implemented will –of course– be left
out. As all effect modules are capable of running at speeds greater than the system
clock of 100 MHz, the maximum clock cycle statistics will be left out as they pose
no constraint.

Pitch Modulation Several effects depend on the notion of pitch modulation.
Figure 5.2 demonstrates the performance of the pitch modulation scheme explained
in Chapter 4. The graph marked ‘data count’ represents the number of values in
the FIFO. When this graph shows an upwards ramp, the output of the FIFO
is read back at a slower rate than the sample frequency, lowering the pitch. The
downwards ramp results in an increase in the pitch, after which the FIFO is empty.
The cycle then restarts.

Delay Being one of the easier effects to implement, this effect achieves a good
performance without introducing any unwanted effects. The downside to this effect
is that it requires 2 out of 8 full columns of BRAMs in order to buffer 500 ms of
audio for a single channel. Although this amount is available, using 2 channels
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0 ns 50000000 ns 100000000 ns 150000000 ns 200000000 n

clk_48k

control_in 00001111

pcm_data_in_left

pcm_data_out_left

Figure 5.3: the output of the delay testbench

would exceed the available memory. If at some point in the future dual channel
audio is required, the buffers should be moved to the DDR RAM.

Figure 5.3 shows the output of the testbench of the delay effect. The test bench
excites the input signal for several clock cycles, after which the input is reset to
zero. Both the time delay (43 seconds in this test) and the gradual decay are
clearly visible in the output.

The number of device resources used by the module are presented in Table 5.3.

Table 5.3: Delay device utilization
Logic Utilization Used Available Utilization

Number of Slices 187 13696 1%

Number of Slice Flip Flops 193 27392 0%

Number of 4 input LUTs 293 27392 2%

Number of BRAMs 30 136 22%

Number of MULT18X18s 1 136 0%

Chorus The behavior of the chorus testbench is demonstrated in Figure 5.4. We
see the three different phase modulators and the sum of all signals in the output.

As mentioned before, the chorus effect is not as easy to implement, because it
requires a continuously lowered or raised pitch, which we can not achieve. As such,
this effect does not perform as well as we would like it to. Although the effect is
still audible, it is hard to recognize as a chorus effect.

Table 5.4 shows the device utilization of the chorus module.

Table 5.4: Chorus device utilization
Logic Utilization Used Available Utilization

Number of Slices 493 13696 3%

Number of Slice Flip Flops 524 27392 1%

Number of 4 input LUTs 852 27392 3%

Number of BRAMs 3 136 2%
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0 ns 100000000 ns 200000000 ns

clk_48k

pcm_data_in_left

pcm_data_out_left

pm_data_0

pm_data_1

pm_data_2

Figure 5.4: the output of the chorus testbench

Reverb The implementation of the Schroeder reverberator is quite complex. As
such, Figure 5.5 shows several intermediate signals besides the input and output.
The signals labeled pm_data_[0:3] are the outputs of the 4 comb filters, combed
is the composite comb filter output and allpass_in is the rescaled version of
combed. trimmed is then the output of the first all-pass filter and allpassed the
output of the second all-pass filter. The output is a mixed signal of the input and
the allpassed signal.

Table 5.5 displays the FPGA usage results of the implementation.

Table 5.5: Reverb device utilization
Logic Utilization Used Available Utilization

Number of Slices 627 13696 4%

Number of Slice Flip Flops 914 27392 3%

Number of 4 input LUTs 856 27392 3%

Number of BRAMs 24 136 17%

Number of MULT18X18s 3 136 2%

The reverb effect is quite hard to control correctly. As we need to mix several
signals together, we get an averaged volume for the composite signal, which can
differ quite strongly from the original volume. We can see in the figure that after
the direct sound, we get a small composite sound that is slightly delayed. This is
the effect of reverberation.

Volume Control Adjusting the volume is one of the easier effects, and as such
functions very well. Considering everybody would know what a change in volume
sounds like, there is little more to say here.

Figure 5.6 shows the testbench behavior of the volume controller. We can see
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0 ns 100000000 ns 200000000 ns
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pcm_data_out_left

pm_data_0

pm_data_1

pm_data_2
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combed

allpass_in

trimmed
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Figure 5.5: the output of the reverb testbench

in the first have of the figure that when we try to amplify a signal that already has
a large amplitude that the module shows erratic behavior. The second half shows
the attenuation property.

In Table 5.6 the device usage statistics are presented.

Table 5.6: Volume controller device utilization
Logic Utilization Used Available Utilization

Number of Slices 16 13696 0%

Number of Slice Flip Flops 16 27392 0%

Number of 4 input LUTs 33 27392 0%

Number of MULT18X18s 2 136 1%

Tremolo The testbench result of the tremolo effect can be seen in Figure 5.7. The
waveform clearly shows the sine wave superposed on the input constant. When
the value of the input changes, the amplitude of the sine wave adjusts accordingly.
The full period of the sine corresponds to approximately 70 ms, which translates
to the intended 15 Hz tremolo.

The amount of device resources used by this module are shown in Table 5.7.

By creating an obvious vibrating effect, the tremolo is one of the most notable
and successful effects in this library.
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0 ns 50000000 ns 100000000 ns 150000000 ns 200000000 n

clk_48k

control_in 10010001 01100001

pcm_data_in_left

pcm_data_out_left

Figure 5.6: the output of the volume control testbench

Table 5.7: Tremolo device utilization
Logic Utilization Used Available Utilization

Number of Slices 167 13696 1%

Number of Slice Flip Flops 130 27392 0%

Number of 4 input LUTs 315 27392 1%

Number of MULT18X18s 2 136 1%

Distortion The distortion effect may be the easiest effect in this series to identify.
Most people recognize the sound as belonging to any form of rock music, in which
is finds an extensive use. The drawback if this effect is that when used on multiple
instruments at once, such as a finalized song, distortion will start to sound as
an unpleasant static effect. Heavier settings of the distortion effect are best when
combined with an amplification effect, as a low boundary will diminish the average
amplitude of the output.

The output of the testbench of the distortion effect is visualized in Figure 5.8.
In the second half of the plot the threshold is lowered and we see that the low
amplitude signal which remained unchanged before is now clipped as well.

Table 5.8 shows the number of device resources used by this module.

0 ns 40000000 ns 80000000 ns 120000000 ns

clk_48k

control_in 10100011

pcm_data_in_left

pcm_data_out_left

Figure 5.7: the output of the tremolo testbench
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Table 5.8: Distortion device utilization
Logic Utilization Used Available Utilization

Number of Slices 80 13696 0%

Number of Slice Flip Flops 32 27392 0%

Number of 4 input LUTs 161 27392 0%

0 ns 50000000 ns 100000000 ns 150000000 ns 200000000 n

clk_48k

control_in 11100001 11000001

pcm_data_in_left

pcm_data_out_left

clipping_value 16384 4096

Figure 5.8: the output of the distortion testbench

Compression/Expansion Compression has a soothing effect on any sound, di-
minishing loud components, thereby making room for the softer noises to be heard
clearly. Expansion, on the other hand, increases the gap between soft and loud
sections, creating a sense of a screaming person in a room of whispers. Both effects
function correctly, although expansion creates an imbalance in the sound that is
unpleasant to hear in its current form.

Figure 5.9 demonstrates the functionality of the compressor/expander. The
first half of the graph the compression effect is selected. We can see that the
effect turns on after 21 ms of high amplitude sound, which is equivalent to 1023
samples at 48 kHz. Once the amplitude of the input signal is lower than the
threshold for 1023 samples, the effect turns off. The second half of the plot shows
the expansion behavior, exhibiting the exact opposite effect: diminishing the low
amplitude sound, while leaving the high amplitude sound intact.

The device utilization values are shown in Table 5.9.

Table 5.9: Compression / Expansion device utilization

Logic Utilization Used Available Utilization

Number of Slices 100 13696 0%

Number of Slice Flip Flops 97 27392 0%

Number of 4 input LUTs 191 27392 0%

Number of MULT18X18s 1 136 0%

Octaver As mentioned in the theory, the octaver introduces a distorting effect
apart from its intended use. Knowing in advance that this effect will occur, this
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0 ns 50000000 ns 100000000 ns 150000000 ns 200000000 

clk_48k

control_in 11000011 01000011

pcm_data_in_left

pcm_data_out_left

threshold 16384

Figure 5.9: the output of the compression/expansion testbench

0 ns 4000000 ns 8000000 ns

clk_48k

control_in 10001011

pcm_data_in_left

pcm_data_out_left

Figure 5.10: the output of the octaver testbench

effect functions very well, as is to be expected from such a straightforward im-
plementation. As with the distortion effect, this effect is best used on a single
instrument source.

The behavior of the module, depicted in Figure 5.10, is clear and correct. In
order to best visualize the functionality, this testbench uses a sine input.

Table 5.10 presents the device resource utilization.

Table 5.10: Octaver device utilization
Logic Utilization Used Available Utilization

Number of Slices 25 13696 0%

Number of Slice Flip Flops 32 27392 0%

Number of 4 input LUTs 40 27392 0%

Vibrato Although the implementation of this effect is quite successful, it is very
hard to distinguish from the much easier to implement more tremolo effect.

The amount of device resources used by this module are shown in Table 5.11.

Phasing and Flanging Since these effects were constructed with an experimental
approach, they do not function as well as we would want them to. Although the
effects are in fact distinguishable, further tweaking will be required to bring out
the full potential of this approach.
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Table 5.11: Vibrato device utilization
Logic Utilization Used Available Utilization

Number of Slices 162 13696 1%

Number of Slice Flip Flops 162 27392 0%

Number of 4 input LUTs 173 27392 0%

Number of BRAMs 1 136 0%

Filtering The filtering effect is functional for every setting. However, due to the
smearing effect explained in the theory, it introduces quite a lot of static. Where
the low-pass setting negates most of this static, the band-pass and especially the
high-pass filters are susceptible to this effect and are as such of less use. The effects
are, however, still quite usable to demonstrate the relation between the sounds and
the visual output of the FFT.

Table 5.12 shows the FPGA resource usage of the filtering module.

Table 5.12: Filter device utilization
Logic Utilization Used Available Utilization

Number of Slices 70 13696 0%

Number of Slice Flip Flops 55 27392 0%

Number of 4 input LUTs 110 27392 0%

Minimum PRR size Is this section, all device resource usage statistics were
presented. As all modules are mandated to fit within the PRR, the final size of
the PRR should exceed the values stated in Table 5.13. Since we already need to
use 22% of the available BRAM units, the remainder of the constraints are of little
importance, as spanning enough columns to facilitate all the BRAMs automatically
provides enough of the other resources.

Table 5.13: Minimum PRR size
Logic Utilization Used Available Utilization

Number of Slices 627 13696 4%

Number of Slice Flip Flops 914 27392 3%

Number of 4 input LUTs 856 27392 3%

Number of BRAMs 30 136 22%

Number of MULT18X18s 3 136 2%

5.4 Support Modules

The statement that holds for the sound effects largely holds for the video output
and the keyboard input as well. As most modules in this project communicate
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with outside peripherals, it is quite difficult to obtain data that can be visualized
easily, and the data that can be visualized is hard to interpret. As such, only the
verification procedure and its results for both modules will be described here.

VGA interface Although it is quite time-consuming to verify the VGA interface
in this fashion, this interface was verified by synthesizing the VHDL and program-
ming it to the board. The big advantage of this method is that once programmed,
one can see immediately if the made changes had the desired effect. The first
implementation, resulting in a functioning blank screen, was working correctly at
the first attempt, making it unnecessary to apply any other verification method,
as any further work was comprised of displaying information on that blank screen.

The device usage of the VGA module is presented in Table 5.14. We can see
that the VGA interface unit is very large. This is due to the fact that many
conditions to write to the correct section of the screen are required. Furthermore,
an extra column has been added to the table, as this module does not comply
to the 100 MHz system clock frequency. As such, this entire module runs on the
40 MHz pixel clock that is used to generate the correct frame rate for the VGA
display.

Table 5.14: VGA module device resource usage
Logic Utilization Used Available Utilization

Number of Slices 1532 13696 11%

Number of Slice Flip Flops 693 27392 2%

Number of 4 input LUTs 2828 27392 10%

Number of BRAMs 1 136 0%

Number of MULT18X18s 4 136 2%

Maximum Clock Frequency 84.729 MHz

Keyboard Interface The verification method that was used to test the keyboard
interface was similar to the one used for the VGA interface. Once the VHDL file
was synthesizing correctly, the FPGA was programmed with this core and the on-
board LEDS were used to display the state of the module. From this state one can
derive any errors present in the keyboard interface, and the corresponding section
of code could be analyzed further for errors. Any errors present were eliminated
using this method.

Table 5.15 presents the amount of resources in the device used by the keyboard
interface.

5.5 Conclusion

The baseline of this project was to create a device not only capable of partial
reconfiguration, but able to effectively make use of this strategy. When researching
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Table 5.15: VGA module device resource usage
Logic Utilization Used Available Utilization

Number of Slices 210 13696 1%

Number of Slice Flip Flops 112 27392 0%

Number of 4 input LUTs 394 27392 1%

the effectiveness of partial reconfiguration in this project, it was discovered that in
the context of sound, the delay of a full reconfiguration of the device would produce
a disturbing silence, while the configuration of a partial module, that takes in the
order of ten times less time, only causes a small disturbance. In this case, The
SelectMap device, that handles internal reprogramming, again performs about ten
times better still, making the effect of a partial reconfiguration completely inaudible
in contrast to the JTAG interface. The reconfiguration time was measured and
amounted to 27.8 ms, confirming the theoretical estimate.

Additionally, a strategy where the partial reconfiguration delay could be masked
completely, by bypassing the module that is to be reconfigured at configuration
time was proposed. Although this has not yet been implemented due to some
complications, this could be a feasible way of masking the configuration delay.

Analyzing the FFT, it became clear that the chosen fixed point strategy intro-
duces a maximum error of one tenth of a percent, making it a viable and accurate
implementation.

When discussing the impact on the sound of all the effects, it became clear
that most effects function correctly, although a few effects are difficult to identify
or tell apart. Several modules were implemented with an experimental technique,
making them unable to reach their full potential at this point. When this technique
is fine-tuned correctly, it has the potential to add a new dimension to the available
effects in this project.
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This chapter will review everything that was done in the course of this project.
Section 6.1 will review all conclusions, and is divided into the different chapters.
Section 6.2 will summarize the main contributions of this project to the field of
engineering. Finally, Section 6.3 will discuss any future work that can be performed
based on the current state of the project.

6.1 Summary

In Chapter 2, all the information required to understand the work done during
this project, and the processes and functions described in this thesis, is contained.

A short history of reconfigurable computing shows us that FPGAs populate a
region in hardware in between the fast but rigid ASIC and the slow but flexible
GPP. Rather than excelling at either speed or flexibility only, the FPGA can be
designed to fit a large region of this trade-off, sacrificing speed for flexibility or
vice versa. Along with the description of how an FPGA works and how it is
(re)configured, the notion of partial reconfigurability is introduced, referring to
a technique where only a small portion of the FPGA is configured, leaving the
remainder intact. Partial reconfiguration can be divided into static and dynamic
partial reconfiguration, where the former means the FPGA does not operate while
it is partially reconfigured, whereas the with the latter strategy the remainder of
the FPGA will continue to function whilst partially reconfiguring.

We continue by discussing several pieces of work directly related to this project.
Despite the fact that there are many papers regarding partial reconfiguration, few
hold a direct relation to this project. As such, several colleagues that have compiled
other related work were cited, in order to form a complete picture of this field of
work. Furthermore, there have been many publications by Xilinx that are relevant
to what this thesis is proposing to do, as this project is implemented using their
product, and therefore the majority of the citations have direct tie-ins with this
company.

Apart from taking in a sounds signal and sending out a sounds signal, this
project incorporates additional input and output. The input is in the form of
a keyboard, allowing us to control the processes existing within the FPGA. The
additional output is a visual output to a screen, displaying the sounds time or
frequency spectrum, enabling us to visually analyse the sound and the difference
between the unaltered and the altered sound.

As this project is for the most part built up out of custom made blocks, a large
section of this chapter is dedicated to explaining the workings of these modules.
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The most notable part covers the functionality of the Fourier Transform and its
derivatives. The Fourier Transform is used to derive the relative frequencies from
a signal. In the case of sound, the extraction of the frequency pattern provides us
with a good insight into the frequency composition of the sounds, and enables us
to extract certain frequencies from the signal, in order to process them separately.
The remainder of this chapter handles the functionality contained within the effect
modules, designed to alter the sound stream running through the system.

In Chapter 3, the design steps taken to form the final version of this project,
based on the project goals, were discussed. The goal of this project is to create
an audio manipulation platform using partial reconfiguration. In order to best
visualize the effect a system was designed that has both an audio output and a video
output. The initial system is built up out of several partial reconfigurable time
domain effects, followed by a frequency transform, several partial reconfigurable
frequency domain effects and a transform back to the time domain. Apart from
this main path, video data is gathered from several points in this path, feeding
information to the VGA output.

Due to several unforeseen constraints, the initial system was reduced to a single
partial reconfigurable region, only able to reconfigure a single module partially,
leaving the rest fixed. Furthermore, multiple effect previously scheduled for the
frequency domain were moved to the time domain or left out completely.

In order to create the possibility for partial reconfiguration, a special interface
was defined. At a later stage of the project, this standard was divided into a time
domain standard and a separate frequency domain standard.

The possibility for implementing this project in the MOLEN polymorphic pro-
cessor was investigated. Using the technology this project is based on, however,
does not seem to be a feasible approach to accomplish this. First, the implementa-
tion of the MOLEN processor would have to be adapted to the required version of
Xilinx ISE 9.3iPR8, which is a time consuming project. Once this is complete, the
MOLEN implementation would have to be redesigned in order to fit the constraints
posed by Xilinx PlanAhead.

Chapter 4 described all the steps taken in implementing the the various modules
that this design comprises. The system was implemented using Xilinx PlanAhead,
for which it had to comply to several strict requirements. All requirements were
met and the implementation of the system using a single partial reconfiguration
region was successful.

Initially, FFT cores provided by Xilinx were used in this project. However,
there were several reasons why this approach did not suffice. This resulted in
the design and implementation of a custom FFT. Although this FFT is not able
to finish all required processing within the single sample boundary, it is deemed
sufficient for the current implementation.

Of all the proposed effects, there were several modules that were not imple-
mented. The repeater module needs a buffer that is too large to realize on-chip,
and the wah effect was left out because the variable band-pass filter proved to be
too difficult to build in the time domain. Furthermore, all effects apart from the
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filtering module were implemented in the time domain, due to several unforeseen
constraints discussed in earlier chapters. All other effects have been implemented
successfully.

The effects that were initially intended to be implemented in the frequency do-
main are static, i.e. there are no control parameters available to change the effect,
due to the fragile nature of the implementation used. The effects implemented in
the time domain are customizable within certain bounds, either restricted by the
hardware or manually restricted to operate within the bounds set by the theory.

Chapter 5 discussed the results regarding the implementation of the project.
The baseline of this project was to create a device not only capable of partial
reconfiguration, but able to effectively make use of this strategy. When researching
the effectiveness of partial reconfiguration in this project, it was discovered that in
the context of sound, the delay of a full reconfiguration of the device would produce
a disturbing silence, while the configuration of a partial module, that takes in the
order of ten times less time, only causes a small disturbance. In this case, The
SelectMap device, that handles internal reprogramming, again performs about ten
times better still, making the effect of a partial reconfiguration completely inaudible
in contrast to the JTAG interface. The reconfiguration time was measured and
amounted to 27.8 ms, confirming the theoretical estimate.

Additionally, a strategy where the partial reconfiguration delay could be masked
completely, by bypassing the module that is to be reconfigured at configuration
time was proposed. Although this has not yet been implemented due to some
complications, this could be a feasible way of masking the configuration delay.

Analyzing the FFT, it became clear that the chosen fixed point strategy intro-
duces a maximum error of one tenth of a percent, making it a viable and accurate
implementation.

When discussing the impact on the sound of all the effects, it became clear
that most effects function correctly, although a few effects are difficult to identify
or tell apart. Several modules were implemented with an experimental technique,
making them unable to reach their full potential at this point. When this technique
is fine-tuned correctly, it has the potential to add a new dimension to the available
effects in this project.

6.2 Main Contributions

Goals In the introduction of this thesis, the main goal of this project was formu-
lated as follows:

• To design and implement an audio processor making use of the partial recon-
figuration technique.

Additionally, several secondary goals were defined:

1. To research partial reconfiguration and select the most feasible implementa-
tion to incorporate in this project.
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2. To design and implement an audio processor making use of the selected partial
reconfiguration technique.

3. The to be designed system is to feature a clear user interface as well as be as
autonomous as possible.

4. To investigate the possibility of implementing this project on the available
implementation of the MOLEN polymorphic processor.

These goals will be revisited in this section, discussing them one by one.
ad 1. At the start of this project, extensive research into partial reconfiguration

was done in order to select the suitable candidate to include in the implementation.
Although there are many publications regarding partial reconfiguration, there are
few working, ready to use ways of implementation. As such, the method used by
Xilinx was used, deeming this the most feasible approach.

ad 2. The design and implementation was successful. Additionally, partial
reconfiguration was proven to be a sensible addition to this implementation.

ad 3. The implementation features a clear interface for both output and control.
At this stage, however, the configuration of the system is done using a computer.
An on-board configuration solution should be added in order to achieve full auton-
omy.

ad 4. The possibility to incorporate this project in MOLEN was studied, but
deemed impossible, at least in the scope of this project.

Main Contributions The main contributions of this project are the following:

1. Partial Reconfiguration This project has added to the field of dynamic
partial reconfiguration by summarizing the current status of the subject as
well as by realizing a large proof-of-concept.

2. MOLEN By investigating the possibilities of including an approach of par-
tial reconfiguration in the MOLEN polymorphic processor, this project has
contributed knowledge to the MOLEN project.

3. Audio platform framework By designing and implementing this audio
processor, a framework was created, upon which new audio effects can be
easily implemented. Additionally, this framework has been clearly structured
and designed, facilitating easy extensibility and enhancement.

4. Demonstration platform Because of the appeal of a sound generating and
manipulation platform, this project can be used to demonstrate state of the
art technology in a way that can be grasped by the general interested public.

5. Integration in other projects This proof-of-concept implementation was
used by another project to realize and demonstrate remote partial reconfigu-
ration over IP.
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6.3 Future Work

There are several recommendation for someone who decides to improve this project.
The recommendations are divided into several sections of the project.

Partial Reconfiguration The partial reconfigurability of this project can be im-
proved in several ways:

• Investigate and implement a partial reconfiguration approach different from
the approach used by Xilinx PlanAhead. This could improve the project by
opening up multiple regions for partial reconfiguration or remove restrictions
posed by the PlanAhead approach.

• Re-implement this project with an improved version of PlanAhead. At the
time of implementation, PlanAhead 10.1.8 has several bugs preventing full
implementation of the various features, among which is using multiple regions
for partial reconfiguration. Future versions could have these bugs removed,
opening up new features to improve this project.

• Make the platform independent. There are several option to achieve a plat-
form that is not dependent on a computer for configuration. A practical
suggestion is implementing a module that communicates with a mass storage
device, such as the Compact Flash, through the SelectMap interface. This
would not only remove the need for external reconfiguration, but also speed
up the reconfiguration.

• Implement the partial reconfiguration region bypass. Adding a bypass for a
PRR will guarantee a continuous sound output, negating the reconfiguration
time.

Fourier Transform

• Improve the speed of the FFT implementation. At this time, the FFT imple-
mentation is quite straightforward. No optimisations have been performed
and there are redundant waiting cycles to guarantee correct processing of the
samples. Improving either or both of these point could result in the FFT
being able to complete within one cycle of the sample clock.

• Redesign the FFT by splitting it into several sub-FFTs. By performing a split
of the FFT, the local resolution can be improved, and several effects can be
improved as a result.

Effects

• Build additional effects. This platform provides an easy, well defined structure
for building, testing and tuning effects. As long as the added effect complies
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with the set rules and template, there are no limitations other than an upper
bound on the usable physical area.

• Improve the current effects. Although the existing effects were designed with
care, there is always room for improvement. Several modules have yet to
reach their full potential, for instance by opening up additional settings.

• Implement frequency estimation. Many effects can benefit from knowing the
exact frequency of their input. Through the use of frequency estimation,
this exact frequency can be approximated, providing the effects room for
improvement, as well as open up opportunities for new effects to be created.
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List of Abbreviations

ADC Analog to Digital Converter

ASIC Application-Specific Integrated Circuits

BLE Basic Logic Element

BPF Band Pass Filter

BRAM Block Random Access Memory

BSF Band Stop Filter

CLB Configurable Logic Block

DAC Digital to Analog Converter

DCM Digital Clock Manager

DFT Discrete Fourier Transform

DIF Decimation-In-Frequency

DIT Decimation-In-Time

FFT Fast Fourier Transform

FPGA Field Programmable Gate Array

GCLK Global CLocK

GPP General Purpose Processor

HPF High Pass Filter

IDFT Inverse Discrete Fourier Transform

IFFT Inverse Fast Fourier Transform

IOB Input/Output Block

IOI Input/Output Interconnect

LFO Low Frequency Oscillator

LPF Low Pass Filter

LUT Lookup Table

PRAGMA a Partially Reconfigurable Audio Generation and Manipulation Ap-
plication

PRR Partial Reconfiguration Region

PRU Partial Reconfigurable Unit

SNR Signal to Noise Ratio

SRAM Static Random Access Memory

STDFT Short-Time Discrete Fourier Transform

XPART Xilinx Partial Reconfiguration Toolkit

M.Sc. Thesis Siebe Krijgsman B.Sc.



76 List of Abbreviations

Siebe Krijgsman B.Sc. M.Sc. Thesis



About The Title A
PRAGMA stands for ’a Partially Reconfigurable Audio Generation and Manip-
ulation Application’. This title, however, has a direct meaning in the English
language that has a direct reflection on how I view this project. John Lee de-
scribes PRAGMA as one form of love. More specifically: ”Pragma : love that is
driven by the head, not the heart; undemonstrative”[30]. I think this quite strik-
ingly describes my view towards this project, and engineering in general. Although
I love engineering, it always has been, and always will be a rational, realistic and
controllable love, driven by a desire for knowledge.

Figure A.1: The PRAGMA logo
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Implementation in PlanAhead B
In order to successfully create a partial-reconfigurable design, many strict rules
have to be followed. First of all, only very specific versions of the Xilinx toolkit
can be used. At the time of writing this is ISE 9.2i04PR8 where PR8 is the toolkit
for partial design, obtainable from [31] (special clearance is required to access this
site, and can be requested on the Xilinx website itself). A version of PlanAhead
later than the mentioned 9.2i is also required, however, as PlanAhead was only
officially released in Xilinx suite 10.1, this is the version used to build this project
(to be specific PlanAhead 10.1.08).

The design format guidelines are as follows: We need a design where there is
a static part (non-reconfigurable hardware), serveral reconfigurable parts (known
as a Partial Reconfigurable Units or PRUs), and a top-level entity. The top level
entity should only contain black-boxed instances of the aforementioned units and
Bus Macros to connect the static region to the reconfigurable region. Bus Macros
(BMs) (available from [31]) are small buses, designed to tunnel the signals from and
to the partial reconfiguration region (PRR). All signals, except global clocks, com-
ing from and going into the reconfigurable portion of the design have to be routed
through instantiated bus macros. The choice of the correct Bus Macro depends on
the board on which the design will be implemented (in this case a xc2vp30 p:ff896
s:−6) and the direction in which the data will flow once implemented.

For the next phase we need to seperately synthesise all reconfigurable modules
and the static part of the design. It is vital that neither the static region nor any of
the reconfigurable instances contain IOBs, as only the top level entity can contain
IOBs. Having synthesised the entire design it is time to start PlanAhead.

When starting PlanAhead we start a new project and we specify the synthe-
sised top level design and the directories where the synthesised versions of the
static part and the PRUs can be found. Next we need to let PlanAhead know
that this project is to become a partial reconfigurable project. For this we type
the command ‘hdi::pr setProject -name ¡project name¿’ into the PlanAhead con-
sole. Now we can flag the reconfigurable modules as reconfigurable using the ‘set
Reconfigurable’ command. To add multiple modules to a single PRR, we can use
the ‘add Reconfigurable Module’ command from the dropdown menu of a module
marked as Reconfigurable. Marking a module as reconfigurable will also create a
PRR in PlanAhead, that we now have to place on the device. When placing the
PRR on a Virtex-II Pro device we have to keep in mind that only entire vertical
strips can be reconfigured at the same time, so our PRR has to span the entire
height of the device. Be sure to check the resources located inside the PRR are
sufficient for every individial reconfigurable module in this PRR. Finally, the BMs
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have to be placed on the device. This has to be done on the correct side of the
PRR, meaning that if we have used a left-to-right (L2R) BM and the data stream
direction is into the PRR, we have to place the BM on the left side of the PRR.
Furthermore, the BM has to be placed in such a location, that one side is inside
the PRR and the other side is located outside the PRR.

Since we should not place the static region on the device we are now ready to
start testing the reconfigurable design. Running DRC will point out any violations
regarding both regular and reconfigurable design. When DRC runs without errors
we can continue to implement our design. First we have to execute a PlanAhead
run for the static logic. Make sure that the used BMs (the .nmc files) are located in
the <project name>.runs/<floorplan name> directory. Once completed, do the
same for the reconfigurable portion of the design. Finally, when all previous steps
have completed without errors, selecting ‘Run PR Assemble’ from the ‘PlanAhead
runs ¿ static’ dropdown will finalise the design. The generated bitfile can be found
as ‘<project name>.runs/<floorplan name>/merge/static_full.bit’.
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Project Directory Structure C
\-ISE

| \-busmacro

| \-reconfig

| | \-frequency

| | | \-freq_PR_bandpass

| | \-time

| | | \-pitch_modulator

| | | \-time_PR_chorus

| | | \-time_PR_comp_exp

| | | \-time_PR_delay

| | | \-time_PR_distortion

| | | \-time_PR_empty

| | | \-time_pr_octaver

| | | \-time_PR_reverb

| | | \-time_PR_tremolo

| | | \-time_PR_vibrato

| | | \-time_PR_volume

| \-static

| | \-ac97

| | \-clk_48k

| | \-dcm_40

| | \-fft_PR

| | \-keyboard_interface

| | \-reset_unit

| | \-VGA_interface_PR_BRAM

| \-top_level
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\-PlanAhead

| \-full_time_only_juni_2009

| | \-full_time_only_juni_2009.runs

| | | \-floorplan_1

| | | | \-merge

| | | | \-pr_modules

| | | | | \-PR_time_1

| | | | | | \-chorus

| | | | | | \-comp_exp

| | | | | | \-delay

| | | | | | \-distortion

| | | | | | \-octaver

| | | | | | \-reverb

| | | | | | \-tremolo

| | | | | | \-vibrato

| | | | | | \-volumizer

| | | | \-static

| | \-full_time_only_juni_2009.data

| | | \-floorplan_1

| | | | \-earuns

| | | \-netlist

| | | | \-pr_modules

| | | | | \-PR_time_1

| | | | | | \-chorus

| | | | | | \-comp_exp

| | | | | | \-delay

| | | | | | \-distortion

| | | | | | \-octaver

| | | | | | \-reverb

| | | | | | \-tremolo

| | | | | | \-vibrato

| | | | | | \-volumizer
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