
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2010

MSc THESIS

Low Power Evaluation for Arbitration and
MPSoC

Ruud Benjaminsen

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2010-14

This thesis presents a power analysis for various arbitration schemes.
We chose variations on the round-robin and time-division multiplex-
ing schemes as our arbiter configurations. The arbiters were imple-
mented with 90 nm low-power standard cell libraries from TSMC,
and gate-level power extraction was performed. Clock-gating was op-
tionally introduced during synthesis. We then contrasted the power
dissipation for the different arbiters and showed that no single arbi-
tration scheme performs well in terms of power dissipation under all
load conditions. We also analyzed why the power dissipation curve
of a round-robin arbiter shows a point of maximum inflection. This
thesis implements also a multiprocessor system-on-chip design. Such
designs can offer significant power savings over traditional uniproces-
sor designs. We analyzed the power of such a system, and showed
how it can be constructed in both hardware and software.

Low Power Evaluation for Arbitration and
MPSoC

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Ruud Benjaminsen
born in Hulst, The Netherlands

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Low Power Evaluation for Arbitration and
MPSoC

by Ruud Benjaminsen

Abstract

T
his thesis presents a power analysis for various arbitration schemes. We chose variations
on the round-robin and time-division multiplexing schemes as our arbiter configurations.
The arbiters were implemented with 90 nm low-power standard cell libraries from TSMC,

and gate-level power extraction was performed. Clock-gating was optionally introduced during
synthesis. We then contrasted the power dissipation for the different arbiters and showed that no
single arbitration scheme performs well in terms of power dissipation under all load conditions.
We also analyzed why the power dissipation curve of a round-robin arbiter shows a point of
maximum inflection. This thesis implements also a multiprocessor system-on-chip design. Such
designs can offer significant power savings over traditional uniprocessor designs. We analyzed the
power of such a system, and showed how it can be constructed in both hardware and software.

Laboratory : Computer Engineering
Codenumber : CE-MS-2010-14

Committee Members :

Advisor: Kees Goossens, CE, TU Delft

Advisor: Filipa Duarte, Holst Centre/IMEC-NL

Chairperson: Koen Bertels, CE, TU Delft

Member: Ioannis Sourdis, CE, TU Delft

Member: Nick van der Meijs, CAS, TU Delft

Member: Jos Huisken, Holst Centre/IMEC-NL

i

ii

Contents

List of Figures vii

List of Tables ix

List of Algorithms xi

Acknowledgements xiii

Motivation xv

Thesis Organization xvii

I Arbiters 1

1 Introduction 3

2 Related Work 5

3 Arbiter Functional Description 7
3.1 Arbitration Fairness . 7
3.2 Arbitration Timing . 7
3.3 Arbitration Schemes . 7

3.3.1 Fixed Priority . 8
3.3.2 Round-Robin . 8
3.3.3 Time-Division Multiplexing . 9
3.3.4 Mixed RR / TDM Configurations 10
3.3.5 TDM + RR Arbiter . 11
3.3.6 TDM + subset(RR) Arbiter . 12
3.3.7 Least-Recently Used . 12

4 Hardware Implementation & Test Setup 13
4.1 VHDL implementation . 13
4.2 Test Setup . 13

4.2.1 Test Bench Description . 16

5 Results 17
5.1 Results from Synthesis . 17
5.2 Power Results . 17

5.2.1 RR Arbiter . 18
5.2.2 TDM Arbiter . 19
5.2.3 TDM + RR Arbiter . 19
5.2.4 TDM+subset(RR) Arbiter . 19

iii

6 Discussion & Comparison 29
6.1 Discussion . 29

6.1.1 Carry Chain Analysis . 29
6.1.2 Ring Counter vs. Binary Counter 32

6.2 Comparison . 33

7 Conclusions 35

II Multiprocessor Systems-on-Chip 37

8 Introduction 39

9 Related Work 41

10 MPSoC Design 43

11 Implementation & Test Setup 45
11.1 Software . 45
11.2 Hardware . 46
11.3 Test Setup . 47

11.3.1 Test Bench Description . 47

12 Results 49
12.1 Results from Synthesis . 49
12.2 Power Results . 49

13 Conclusions 53

III Future Work 55

14 Future Work 57

Bibliography 61

A Background on Low Power 63
A.1 Power Dissipation . 63
A.2 Low Power Techniques . 64

B Hardware Design Flow 67
B.1 Synthesis . 67
B.2 Place and Route . 67
B.3 Timing Analysis . 67
B.4 Power Extraction . 68

C FIFO Design 69

iv

D Target Processor Design Tools 71
D.1 Base Processor Description . 71

v

vi

List of Figures

0.1 On-Chip Communication Infrastructure Arbitration xv

1.1 On-Chip Communication Infrastructure Arbitration 3

3.1 Arbiter Functionality . 8

4.1 Non-Gated Round-Robin Arbiter . 14
4.2 Clock-Gated Round-Robin Arbiter . 15

5.1 Arbiter Cell Area . 19
5.2 RR Arbiter Power . 20
5.3 RR Arbiter Power Difference . 21
5.4 TDM Arbiter Power . 22
5.5 TDM+RR Arbiter Power . 23
5.6 TDM+subset(RR) Arbiter Power (size 6) 24
5.7 TDM+subset(RR) Arbiter Power (size 8) 25
5.8 TDM+subset(RR) Arbiter Power (size 10) 26
5.9 TDM+subset(RR) Arbiter Power (size 12) 27

6.1 Carry Chain for High and Low Load . 29
6.2 Round-Robin Arbiter Accumulated Total 31
6.3 Weighted Carry Chain Length . 32
6.4 Ring and Binary Counter . 32

11.1 Producer/Consumer System . 45
11.2 Producer/Consumer Testbench . 47

A.1 Clock Gating . 65
A.2 Power Gating Power Profile . 65

B.1 Hardware Design Flow . 68

C.1 FIFO Block Diagram . 69

D.1 Base Processor Datapath . 72

vii

viii

List of Tables

5.1 RR Arbiter Cell Area (equivalent gates) 17
5.2 TDM Arbiter Cell Area (equivalent gates) 18
5.3 TDM+RR Arbiter Cell Area (equivalent gates) 18

6.1 RR-12 Accumulated Carry Totals . 30
6.2 Arbiter Power Dissipation (µW, full load) 33
6.3 Arbiter Power Dissipation (µW, high load) 34
6.4 Arbiter Power Dissipation (µW, mid load) 34
6.5 Arbiter Power Dissipation (µW, low load) 34

12.1 Producer-Consumer Cell Area (equivalent gates) 49
12.2 Producer-Consumer Power Dissipation . 50
12.3 Producer-Consumer Relative Power Dissipation 51

ix

x

List of Algorithms

1 Fixed Priority Arbiter . 9
2 Round-Robin Arbiter . 10
3 Time-Division Multiplexing Arbiter . 11
4 Arbiter Simulation Test Bench Pseudocode 16

xi

xii

Acknowledgements

I would like to thank Holst Centre/IMEC-NL for opening the world of low power to me.
This is an interesting field, where real technology improvements can still be made. My
thesis could not have been made possible without the keen guidance of Filipa Duarte and
Jos Huisken at IMEC-NL, and I am thankful to Kees Goossens for acting as my thesis
advisor from TU Delft. Furthermore, I would like to thank everyone in IMEC’s ULP-
DSP group for giving me advice from-to-time and giving me an enjoyable experience in
Eindhoven.

Ruud Benjaminsen
Delft, The Netherlands
June 14, 2010

xiii

xiv

Motivation

The Ultra Low Power DSP Group at Holst Centre/IMEC-NL carries out active research
towards low power signal processing techniques, architectures and devices. This research
is necessary to reduce the power dissipation in wireless sensor nodes, and increase their
autonomy. There is a focus on targeting applications from the domain of biomedical
signal processing and wireless baseband processing.

A typical node consists of sensors, a power manager, radio and digital processing
subsystem. The latter includes processors, memories and an on-chip communication
infrastructure. Therefore, an effort is required to study power efficient ways to develop
on-chip communication infrastructures, which not only includes identifying the basic
components required, but also ways to connect them together. The basic components
used in on-chip communication infrastructures include first-in first-out queues (FIFOs),
arbiters, interrupt controllers, semaphores, etc. Connections between external devices
(like sensors, programming or debug interfaces), memories and processors are made using
point-to-point links, buses or network-on-chips.

As mentioned, one the components identified for on-chip communication infrastruc-
tures is an arbiter, which provides a conflict resolution scheme for when multiple con-
tenders try to access a shared resource. An arbiter is needed, because the on-chip
communication infrastructure is likely to be shared by different processing and stor-
age elements, even more so when considering multiprocessor system-on-chip (MPSoC)
designs. This is depicted graphically in the figure below, where different processing ele-
ments (PEs) are trying to access a shared resource simultaneously through the on-chip
communication infrastructure:

PE

PE

PE

resource

on-chip communication infrastructure

arbitration

Figure 0.1: On-Chip Communication Infrastructure Arbitration

By analyzing the power characteristics of a variety of arbiters, an insight is gained
into the power trade-offs between them, and the consequences this has for on-chip com-
munication infrastructures.

Previous work in the Ultra Low Power DSP Group has also concentrated on
application-specific uniprocessor design [9]. For low power applications, (heterogeneous)

xv

MPSoC architectures are however preferred, as each processor can be optimized for a
specific task, minimizing communication between them by exploiting data-locality and
concurrency. There is a need to understand how the move towards such systems affects
the hardware implementation of the on-chip communication infrastructure, and how such
infrastructure can be supported in software. Therefore, a MPSoC system has been re-
alized, considering both the hardware and software side of such system, and inferences
are made from the extracted power dissipation measurements of the design.

Part of the results of this thesis have been presented at the ProRISC 2009 conference,
in Veldhoven, the Netherlands [3].

xvi

Thesis Organization

This thesis is organized as follows. The first section (Part I) deals with the design and
power analysis of various arbiter configurations. It is composed of an introduction and
related work chapter (Chapters 1 and 2), while Chapter 3 present the functional descrip-
tion of arbiters. The hardware implementation of the arbiter configurations chosen for
further power analysis is presented in Chapter 4, which includes a description of the test
setup for gate-level power extraction. Chapter 5 presents the results from synthesis and
power dissipation figures for the arbiters and Chapter 6 has some discussion on these
power figures, as well as a comparison. Part I is concluded with conclusions in Chapter 7.

Part II details the implementation of a multiprocessor system-on-chip system. It
also includes an introduction and related work section (Chapters 8 and 9). Chapter 10
discusses multiprocessor design, while Chapter 11 provides an overview of the on-chip
multiprocessor implementation and test setup. Results are presented in Chapter 12, and
conclusions are presented in Chapter 13.

Finally, Part III includes a chapter for future work considerations.

xvii

xviii

Part I

Arbiters

1

Introduction 1
In order to design power-efficient on-chip communication infrastructures, there is a need
to both look at the components needed for such a communication infrastructure, as
well as on ways one can tie those components together. The on-chip communication
infrastructure is likely to be shared by various processing and storage elements, even
more so when considering multiprocessor system-on-chip (MPSoC) designs. Access to
resources within the on-chip communication infrastructure is thus not limited to simply
one agent, and as such, a contention resolution scheme is necessary in the form of an
arbiter. This is graphically depicted in Figure 1.1, where multiple processing elements
(PEs) are contending for a shared resource reachable through an on-chip communication
infrastructure.

PE

PE

PE

resource

on-chip communication infrastructure

arbitration

Figure 1.1: On-Chip Communication Infrastructure Arbitration

Traditional small-scale system-on-chip (SoC) designs have a shared-medium archi-
tecture. In shared-medium architectures, only single communication instances are sup-
ported by the communication infrastructure. Its most common manifestation is in the
form of a backplane bus, supporting a couple of master devices (processors) that con-
nect to passive slave elements. Temporary ownership of the shared-medium (bus) can
be given to any master willing to communicate with a slave, provided there is contention
resolution scheme for when multiple masters try to access the shared-medium at the
same time: a bus arbiter. But the presence of the contention resolution indicates per-
formance loss in communication, in the form of extra control actions. And although
easily implemented and having low hardware overhead, shared-medium architectures are
not scalable. Furthermore, because the shared-medium connects all masters and slaves
together in a single transmission medium, these architectures can be power inefficient,
because masters and slaves not taking part in a communication instance will still receive
the transmission data of those that do take part [2].

Improved scalability over shared-medium architectures comes by using direct and
indirect networks. Direct networks are typically utilized in homogeneous SoC designs,

3

4 CHAPTER 1. INTRODUCTION

which consist of processing modules being replicated and placed in a regular topology.
These modules are connected together with a crossbar switch, which can be reconfigured
to offer different connection patterns between modules. Still, arbitration is needed when
the connection patterns required by one processing module conflict with those of another
module. As an alternative, indirect networks that switch communication packets can be
used: a network-on-chip (NoC). These are highly scalable, have well-defined performance
metrics and offer separation of communication from computation. The network consists
of routers, with some of the routers connected to processing modules. Each router has a
crossbar switch that connects input ports with output ports, and arbitration is needed
whenever the same output port is requested by a multitude of incoming packets [2] [39].

As such, arbitration takes on an important part of any on-chip communication in-
frastructure. By analyzing the power characteristics of a variety of arbiters, we gain
insight into the power trade-offs between them and the consequences this has for on-chip
communication infrastructures.

Related Work 2
Related work on arbiters has mostly focused on their performance and utility in on-chip
communication buses and network-on-chip router switches.

The authors of [30] analyzed round-robin, time-division multiplexing and slot reser-
vation arbitration policies in bus arbiters, and showed that different workloads give rise
to different optimal contention resolution schemes. By simulation of mutually depen-
dent tasks, independent tasks and pipelined tasks on a multiprocessor platform, they
proposed a set of principles for bus-based on-chip communication architectures. Firstly,
they show that there is no optimal arbitration policy irrespective of the task to be exe-
cuted. Tasks that are highly computation dependent benefit from a different arbitration
policy than tasks that are more communication centric. Secondly, the authors warn that
high-level software primitives can not always be matched efficiently to the underlying
hardware platform. Lastly, they note that although commercial bus protocols that of-
fer contention-resolution have some flexibility for the optimization of performance, not
all arbitration policies can be integrated easily within such a commercial protocol. In
applications where predictability is key (e.g. real-time computing), non-determinant ar-
bitration policies that usually perform well otherwise might become unsuitable for such
applications.

Many arbitration schemes cannot meet real-time requirements and bandwidth re-
quirements at the same time. In [5] and [24], the RT lottery and RB lottery schemes are
presented that meet hard real-time requirements and perform well in bandwidth alloca-
tion within an on-chip bus, and use the lottery scheme presented in [22]. In the RT and
RB lottery schemes, the weight of each bus contender is continuously finetuned according
to bandwidth requirements. Only at really high bus workloads do these schemes fail to
meet (hard) real-time requirements.

In [21], the power dissipation of an AMBA on-chip communication bus was estimated
in 150 nm low-power standard cell libraries from NEC, where the fixed-priority arbiter
contributed 18% to the total power of 12 mW. The authors further looked at possible
ways to reduce power in such a commercial communication architecture, and found
that their evaluated techniques only helped to reduce the power dissipation in seperate
segments (logic, bus lines, bus interfaces, etc.) of the communication architecture.

The authors of [6] simulated the performance of different AMBA bus arbitration
schemes and their switching activity, and estimated that the bus switching activity could
be reduced by 22% when using a short job first arbitration scheme.

An energy-efficient network-on-chip was designed in [23], which included a crossbar
switch based upon mux-tree round-robin arbiters. A 8-input port implementation at 100
MHz in 180 nm CMOS was found to dissipate 136 µW of power at 50% of load.

The Orion power and performance simulator for on-chip interconnects includes mod-
els for various arbitration schemes [19]. Version 2.0 of the simulator was validated within

5

6 CHAPTER 2. RELATED WORK

7% and 11% of the total power dissipation in the Intel Teraflops Research Chip and Intel
Scalable Communications Core, respectively. The authors claim that the deviations in
power dissipation with the Teraflops core could be attributed to the use of different stan-
dard cell libraries, memory buffers and arbitration scheme in the model used for Orion.
However, version 2.0 significantly improved the accuracy of the power models over the
1.0 version, which had a 85% difference in estimated power dissipation compared with
the 80-core Teraflops chip.

Arbiter Functional
Description 3
Arbiters are needed in order to resolve conflicts arising from multiple contenders trying
to access a shared resource simultaneously. These resources can be storage elements
(memories), buses, buffers, data channels, etc. Different conflict resolution schemes are
possible, each with its advantages and disadvantages. One import measure for arbiters
has to do with fairness: how can we make sure that one contender cannot lock out
another contender’s ability to access the shared resource. Another issue has to do with
timing, or how long contenders are granted access to a resource before a new arbitration
is performed.

3.1 Arbitration Fairness

There are several ways on how to look at the concept of fairness for arbiters. The first
way has to do with starvation (deadlock): how can we make sure that each contender will
eventually have access to the shared resource. An arbitration scheme without starvation
has a worst-case time period in which a shared resource can be accessed by a contender.

Secondly, there can be a notion of fairness that stipulates that each contender shall
have an equal amount of relative accesses to the shared resource. When looking over a
long number of performed arbitrations, each contender will than have obtained access to
the shared resource according to the number of requests it has put in.

3.2 Arbitration Timing

The requirements for arbitrating timing is largely determined by external factors. Some
software applications have real-time requirements that need access to a shared resource
ever so often, or require that once access to a resource has been granted, a fixed time
period (a number of clock cycles perhaps) is needed before the resource can be accessed
again by other contenders, which results in grants with variable time duration.

3.3 Arbitration Schemes

We will look at synchronous arbitration schemes that perform arbitration every clock
cycle, although there is no reason why they cannot be extended to grant access to shared
resources for longer time periods, if application or external requirements require it. Since
the round-robin scheme and time-division multiplexing schemes both have a regular
structure and provide each contender with equal opportunity to access a shared resource,
we will use these schemes later on for a more detailed study in order to understand
their power dissipation characteristics. For a short overview of the power dissipation in

7

8 CHAPTER 3. ARBITER FUNCTIONAL DESCRIPTION

CMOS digital circuits and techniques for low-power design, such as power-gating and
clock-gating, the reader is referred to Appendix A.

The functionality of an arbiter can be described by a number of contender request
lines (R), the corresponding priorities for each contender (P), and a couple of output
grant lines (G) which denote which contender was granted access [8].

arbiter
priorities (P)

requests (R)

grants (G)

Figure 3.1: Arbiter Functionality

3.3.1 Fixed Priority

The simplest arbitration scheme is one where each contender has a fixed priority (FP)
for accessing the shared resource, which is consequently also it biggest drawback. If a
high priority contender is continously trying to access the resource, all lower priority
contenders are blocked and are not be able to access the resource at all, a situation
described previously as starvation. Only when priorities are changed between arbitration
cycles one can expect a resolution scheme which is fair, although this is not a minimum
requirement. Because the hardware implementation of a fixed priority arbiter is quite
straightforward, and contender priorities do not have to updated between arbitration
cycles, it will also be the scheme with the lowest power dissipation, although there might
be few occassions when such an arbiter can actually be used in an on-chip communication
infrastructure. Because of this specificity, we will not take the fixed priority arbiter into
account for further analysis. For completeness, we do present a descripion of the fixed
priority arbiter below (Algorithm 1).

3.3.2 Round-Robin

A round-robin (RR) arbitration scheme operates on the principle that the contender
which was granted access to the shared resource, should have the lowest priority in the
next round of arbitration. The contenders can be pictured as being placed in a ring,
where the priority of each contender decreases linearly from the contender with highest
priority (Algorithm 2). A large part of the dynamic power dissipation of this arbiter will
be due to the updating of contender priorities between arbitration cycles.

In terms of performance (latency) - in the best case - a contender which puts in a
request will be granted access immediately. The worst case situation happens when the
lowest priority contender puts in a request, but all other contenders as well. The lowest
priority contender will then have to wait before the higher priority contenders have been
served, which can take as long as n− 1 arbitration cycles.

3.3. ARBITRATION SCHEMES 9

Algorithm 1 Fixed Priority Arbiter

Require: A sequence of contender requests, R(t)
i ; A corresponding initial set of con-

tender priorities, P (1)
i = {n− 1, n− 2, . . . , 0}; 0 ≤ i ≤ n− 1, where n is the number of

contenders, and 1 ≤ t <∞, where t is a time index
Ensure: A corresponding sequence of contender grants, G(t)

i

t← 1
loop
{assume no grant initially}
for i = 0 to n - 1 do
G

(t)
i ← false

end for
{start scanning for a contender request from contender with highest priority}
i← 0, j ← 0
while j = 0 and i < n do

if R(t)
i = true then

j ← i
end if
i← i+ 1

end while
{update grants}
if R(t)

j = true then

G
(t)
j ← true

end if
{update priorities}
for i = 0 to n− 1 do
P

(t+1)
i ← P

(t)
i

end for
t← t+ 1

end loop

3.3.3 Time-Division Multiplexing

A time-division multiplexing (TDM) scheme can also be used to resolve access conflicts:
a fixed cycle - or time slot - is assigned to each contender in which it can try to access
the shared resource. If a contender does not put in a request in its time slot, the slot is
wasted for other contenders trying to access the resource (Algorithm 3). A large part of
the dynamic power dissipation of this arbiter will be due to the updating of contender
priorities between arbitration cycles, but less so than for the RR arbiter. In a TDM
arbiter, the priority is only shifted to the next contender, although this happens even for
arbitration cycles where a contender does not put in a request in its assigned time slot.

In terms of performance, the TDM arbiter will do as well (or badly) as the RR arbiter
in the worst-case and best-case. In the best-case for TDM, a contender puts in a request
in the same cycle as it has been assigned a time slot. The worst-case happens when a

10 CHAPTER 3. ARBITER FUNCTIONAL DESCRIPTION

Algorithm 2 Round-Robin Arbiter

Require: A sequence of contender requests, R(t)
i ; A corresponding initial set of con-

tender priorities, P (1)
i = {n− 1, n− 2, . . . , 0}; 0 ≤ i ≤ n− 1, where n is the number of

contenders, and 1 ≤ t <∞, where t is a time index
Ensure: A corresponding sequence of contender grants, G(t)

i

t← 1
loop
{assume no grant initially}
for i = 0 to n− 1 do
G

(t)
i ← false

end for
{find contender with highest priority}
j ← 0
for i = 1 to n− 1 do

if P (t)
i > P

(t)
j then

j ← i
end if

end for
{start scanning for contender request from contender with highest priority}
i← 0, k ← j

while R(t)
j 6= true and i < n do

i← i+ 1
j ← (j + i) mod n

end while
{update grants and priorities}
if R(t)

j = true then

G
(t)
j ← true

for i = 0 to n− 1 do
P

(t+1)
i ← (P (t)

i + 1 + j − k) mod n
end for

end if
t← t+ 1

end loop

contender puts in a request in the arbitration cycle just after it was assigned a time slot,
but it is independent of the requests put in by the remainder of the contenders.

3.3.4 Mixed RR / TDM Configurations

We also looked at mixed configurations of the RR and TDM arbiter, to see if these
arbiters can perform better in terms of power dissipation over the regular schemes, and
under which conditions.

3.3. ARBITRATION SCHEMES 11

Algorithm 3 Time-Division Multiplexing Arbiter

Require: A sequence of contender requests, R(t)
i ; A corresponding initial set of con-

tender priorities, P (1)
i = {n− 1, n− 2, . . . , 0}; 0 ≤ i ≤ n− 1, where n is the number of

contenders, and 1 ≤ t <∞, where t is a time index
Ensure: A corresponding sequence of contender grants, G(t)

i

t← 1
loop
{assume no grant initially}
for i = 0 to n− 1 do
G

(t)
i ← false

end for
{find contender with highest priority}
j ← 0
for i = 1 to n− 1 do

if P (t)
i > P

(t)
j then

j ← i
end if

end for
{start scanning for contender request from contender with highest priority}
i← 0, k ← j

while R(t)
j 6= true and i < n do

i← i+ 1
j ← (j + i) mod n

end while
{update grants and priorities}
if R(t)

j = true then

G
(t)
j ← true

for i = 0 to n− 1 do
P

(t+1)
i ← (P (t)

i + 1) mod n
end for

end if
t← t+ 1

end loop

3.3.5 TDM + RR Arbiter

The TDM + RR arbiter configuration uses a two-step arbitration scheme. Since in TDM
a time slot is wasted when no contender puts in a request in its assigned time slot, we can
still do RR arbitration amongst the other contenders. When the contenders are putting
in a lot of requests, the arbitration will then be largely limited to the first step (TDM),
while at a reduced number of contender requests, the contribution of the second step
(RR) will increase.

12 CHAPTER 3. ARBITER FUNCTIONAL DESCRIPTION

3.3.6 TDM + subset(RR) Arbiter

The average-case performance of the TDM arbiter can be improved by not fixed a time
slot for a single contender, but for multiple contenders (a frame of contenders). This
should give the arbiter more opportunities to serve contender requests. Within a frame,
we can choose to perform RR arbitration between the contenders assigned to the frame,
which will reduce the number of wasted time slots we have seen in the TDM arbiter.
In terms of best-case and worst-case performance, this configuration still has the same
latency characteristics of the TMD and RR arbiters.

3.3.7 Least-Recently Used

In a least-recently used (LRU) scheme the contender which waited the longest before
trying to access the shared resource will win the arbitration. Because this scheme requires
the arbiter to keep track of relative priorities between each contender, it is only practical
for a small number of contenders. The updating of priorities in each round of arbitration
will incur a large power dissipation overhead. As such, we will not further analyze this
arbiter configuration.

Hardware Implementation
& Test Setup 4
The different variations of the RR & TDM arbitration schemes are implemented in
hardware and used for further power analysis.

4.1 VHDL implementation

We describe the different arbiter configurations hardware description language VHDL.
For the RR arbiter, we keep track of the contender priorities with a one-hot encoded

state vector, where the contender with highest priority is one corresponding with the sole
bit set in the state vector. We follow the architecture given in [8], which works as follows:
Each arbitration cycle, the state vector will be updated according to the contender which
received a grant from the arbiter. If no grant is given (because there are no contender
input requests), the priorities remain the same. This also denotes the condition necessary
for succesful clock-gating of the design. The arbiter issues grants in the cycle next to the
one in which it arbitrated between the contenders, but the contender which received the
grant is free to issue another request in the cycle in was granted its previous request.

For the TDM arbiter, there is no need to keep track of priorities, instead a counter is
used to keep track of which contender is able to use the time slot, although a shift-register
implementation is also possible.

In the mixed TDM and RR arbitration combinations, additional multiplexing work
has to be done so that the right set of contenders is arbitrated upon in the each step of
the arbitration.

The tool flow used for the physical implementation of the arbiter configurations is
described in Appendix B.

For the hardware implementation of the arbiters we used 90 nm low-power high-
threshold voltage standard cell libraries from TSMC [36]. We synthesized the designs
with a target clock frequency of 100 MHz, with optional clock-gating insertion. The
high-threshold voltage standard cell libraries will reduce the leakage power of the designs,
although the effect of clock-gating on the power dissipation is highly data dependent. The
generated hardware for a RR arbiter of 6 contenders after RTL synthesis with optional
clock-gating can be found in Figures 4.1 and 4.2, respectively.

4.2 Test Setup

After we have synthesized the arbiter hardware implementations, we use gate-level power
extraction and gate-level power simulation to obtained comparable power dissipation
numbers for the different arbiter configurations.

We made sure that that simulation time was long enough in order for the power
dissipation numbers to converge (on the order of 2000 clock cycles). Random requests

13

14 CHAPTER 4. HARDWARE IMPLEMENTATION & TEST SETUP

c
lo

c
k

re
s
e

t

e
n

a
b

le

rr_
re

q
u

e
s
ts

[5
:0

]

rr_
g

ra
n

ts
[5

:0
]

...

IA
O

2
...

IN
R

4
D

0

N
...

A
O

2
1

...

A
O

2
1

...

A
O

2
1

...

A
O

2
1

...

A
O

2
1

...

A
O

2
1

...
S

...

S
...

S
...

S
...

S
...

S
...

...

A
O

I2
...

IA
O

2
...

IA
O

2
...

IA
O

2
...

N
...

IN
R

2
...

O
A

3
1

...
O

A
2

1
...

IN
R

2
...

IA
O

2
...

IN
R

2
...

IA
O

2
...

N
...

IN
R

2
...

O
A

2
1

...

...

F
igure

4.1:
N

on-G
ated

R
ound-R

obin
A

rbiter

4.2. TEST SETUP 15

c
lo

c
k

re
s
e
t

e
n

a
b
le

rr
_

re
q

u
e

s
ts

[5
:0

]
rr

_
g
ra

n
ts

[5
:0

]
..

.

I.
..

A
O

2
1
H

V
T

D
0

A
O

2
1
H

V
T

D
0

A
O

2
1
H

V
T

D
0

A
O

2
1
H

V
T

D
0

A
O

2
1

H
V

T
D

0

A
O

2
1
H

V
T

D
0

D
F

..
.

D
F

..
.

D
F

..
.

D
F

..
.

D
F

..
.

D
F

..
.

IN
D

2
H

V
T

D
0

N
R

..
.

IN
R

2
H

V
T

D
0

IA
O

2
1

H
..
.

A
N

..
.

I.
..

O
R

..
.

IN
R

2
H

V
T

D
0

N
R

..
.

A
O

I2
1
H

..
.

A
O

I2
1
1
..

.

O
A

2
1
H

V
T

D
0

IA
O

2
1

H
..
.

A
O

I2
2

1
..

.

IN
D

2
H

V
T

D
0

N
R

..
.

IN
R

2
H

V
T

D
0

O
A

I2
1

H
..

.

C
K

..
.

O
A

2
1

H
V

T
D

0

IN
R

2
H

V
T

D
0

A
N

..
.

C
K

..
.

O
A

2
1

H
V

T
D

0

A
O

2
1

1
H

..
.

R
C

_
C

G
_
M

O
D

F
ig

ur
e

4.
2:

C
lo

ck
-G

at
ed

R
ou

nd
-R

ob
in

A
rb

it
er

16 CHAPTER 4. HARDWARE IMPLEMENTATION & TEST SETUP

were generated for each contender. By varying the request rate, the behavior of the
arbiters under different load conditions becomes apparent.

4.2.1 Test Bench Description

In the simulation test bench, we generate random requests for each contender separately.
In VHDL, we can make use of GENERATE statement to instantiate a PROCESS for
each contender. Within each contender PROCESS, we then implement the contender
request functionality based upon a random number generator (RNG). The RNG gener-
ates a number between 0 and 1, which gets converted to a number of cycles between 0
and Maximum Contender Wait Time, which is basically the time out period for each
contender between the points where it was last granted a request and when it puts in a
new request. See Algorithm 4 for the pseudocode of contender PROCESS.

Algorithm 4 Arbiter Simulation Test Bench Pseudocode

Request(i) ← low
Wait for reset to go low
Randomly wait for upto Maximum Contender Wait Time cycles
Request(i) ← high
loop

loop
Wait for Grant(i) to go high
Request(i) ← low

end loop
Randomly wait for upto Maximum Contender Wait Time cycles
Request(i) ← high

end loop

Results 5
5.1 Results from Synthesis

The area results from synthesis for the RR, TDM+RR and TDM arbiters are summarized
in Tables 5.1, 5.2 and 5.3 respectively, while Figure 5.1 shows a graphical depiction of the
results. For the combined TDM+RR arbiter, the results are shown for a shift-registered
version of the TDM arbiter.

Clock-gating the RR arbiter reduced the area for arbiters of size 6 and larger, because
the clock-gating circuitry could optimize some equivalent combinational logic away in
the clock-gating circuitry, which also occurs in the TDM+RR arbiter. Comparatively
speaking, the TDM arbiter configuration has the lowest cell area, for all arbiter sizes.
We also see that the cell area for the arbiters largely scales linearly with the arbiter size,
irrespective of the arbiter configuration used. Finally, for the TDM arbiter, a counter
implementation has a small area advantage over the shift-registered version, but its area
jumps irregularly between arbiter sizes.

Table 5.1: RR Arbiter Cell Area (equivalent gates)

Arbiter Size Non-Gated Area Clock-Gated Area

2 106 116

4 229 254

6 320 300

8 430 397

10 543 500

12 665 612

5.2 Power Results

Next, the power dissipation results are summarized for the different arbiter configura-
tions, with and without clock-gating. As well as changing the arbiter size (number of
contenders), we also vary arbiter load conditions by changing the Maximum Contender
Wait Time. A high arbiter load occurs when the wait time is small, while low load has
a wait time that is large. At full load, each contender will immediately put in a new
request after its last request was served by the arbiter.

17

18 CHAPTER 5. RESULTS

Table 5.2: TDM Arbiter Cell Area (equivalent gates)

Arbiter Size Counter Area Shift-Register Area

2 54 66

4 113 133

6 193 199

8 226 265

10 318 332

12 339 398

Table 5.3: TDM+RR Arbiter Cell Area (equivalent gates)

Arbiter Size Non-Gated Area Clock-Gated Area

2 152 179

4 344 375

6 541 510

8 711 676

10 916 876

12 1021 986

5.2.1 RR Arbiter

For the RR arbiter, we see that except for an arbiter with two contenders, the power
dissipation first increases when going from full load to lower loads, reaches a maximum
at a certain point, and then starts decreasing until it reaches a asymptotic boundary
(Figure 5.2).

The effect of clock-gating is different for when load conditions are changed. At high
loads, the number of grants is sufficiently large so that the clock-gating circuitry serves no
purpose at all. By decreasing the load, the clock-gating circuitry has more opportunities
to disable the clock to the registers holding the contender priorities. Because the number
of arbiter grants decreases, the number of times the contender priorities need to be
updated decreases as well.

The point at which clock-gating becomes useful varies for different arbiter sizes, which
is shown in Figure 5.3. The synthesis tool implemented a wasteful implementation of
clock-gating for arbiters of size 2 and 4, which therefore have a relative large positive
power difference at high load, whilst the clock-gated arbiter of size 6 was actually per-
forming better under all load conditions, because the synthesis tool found it necessary to
insert a clock tree buffer in the non-gated version. If we look at even larger arbiters, the
benefits of clock-gating can appear at higher loads for an arbiter of size 8 than for arbiters
of size 10 and 12, respectively. However, when load conditions are reduced even more,
eventually, the higher sized arbiter will enjoy the largest benefits from clock-gating.

5.2. POWER RESULTS 19

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10 12 14

E
qu

iv
al

en
t A

re
a

Arbiter Size

Arbiter Cell Area

RR non-gated area
RR clock-gated area
TDM counter area
TDM shift-register area
TDM+RR non-gated area
TDM+RR clock-gated area

Figure 5.1: Arbiter Cell Area

For a further discussion on why there is point of maximum inflection in the power
dissipation curve for a RR arbiter, the reader is referred to section 6.1.1.

5.2.2 TDM Arbiter

The results for a non-gated version of doing TDM exclusively is shown in Figure 5.4.
Because initially a binary counter was used for the TDM implementation, the power
dissipation jumps irregularly between different arbiter sizes, because the optimal binary
counter implementation occur when the arbiter size is a power of two. We can overcome
this behaviour by using a shift-register implementation (ring counter), which result is
also shown. See section 6.1.2 for a comparison of binary and ring counters.

No TDM arbiters were implemented using clock-gating, because after each arbitration
cycle, the contender priority is simply shifted to the next contender.

5.2.3 TDM + RR Arbiter

From the results for doing a two-step arbitration of TDM and RR (Figure 5.5), there is
a clear benefit in doing a clock-gated design at high loads, because then there is almost
no RR arbitration. The dramatic jump in power dissipation is the point at which the
RR arbiter kicks in. This jump is larger for the clock-gated design because of the power
benefit of clock-gating at higher loads, but overall, clock-gating remains beneficial.

5.2.4 TDM+subset(RR) Arbiter

When a time slot is fixed in TDM for a multitude of contenders, and RR arbitration
is performed between them, the average-case latency of the arbiter can be improved
with respect to plain TDM arbitration. The power dissipation for different frame size

20 CHAPTER 5. RESULTS

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30 35 40 45

T
ot

al
 P

ow
er

 (
µW

)

Maximum Contender Wait Time (clock cycles)

Non-Gated RR Arbiter Power

12 contenders
10 contenders
 8 contenders
 6 contenders
 4 contenders
 2 contenders

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30 35 40 45

T
ot

al
 P

ow
er

 (
µW

)

Maximum Contender Wait Time (clock cycles)

Clock-Gated RR Arbiter Power

12 contenders
10 contenders

8 contenders
6 contenders
4 contenders
2 contenders

Figure 5.2: RR Arbiter Power

under changing load conditions for arbiters of size 6, 8, 10 and 12 are shown in Fig-
ures 5.6, 5.7, 5.8 and 5.9 respectively. With a frame size of 1, we get back to doing plain
TDM arbitration, while a frame size corresponding to the arbiter size corresponds to
plain RR arbitration. In between, both TDM and RR is performed every arbitration
cycle.

Although the average-case latency might be improved, the trade-off comes in terms
of higher power dissipation.

5.2. POWER RESULTS 21

-16

-14

-12

-10

-8

-6

-4

-2

 0

 2

 4

 0 5 10 15 20 25 30 35 40 45

∆T
ot

al
 P

ow
er

 (
µW

)

Maximum Contender Wait Time (clock cycles)

Power Difference Gated/Non-Gated RR Arbiter

12 contenders
10 contenders

8 contenders
6 contenders
4 contenders
2 contenders

Figure 5.3: RR Arbiter Power Difference

22 CHAPTER 5. RESULTS

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25 30 35 40 45

T
ot

al
 P

ow
er

 (
µW

)

Maximum Contender Wait Time (clock cycles)

Non-Gated TDM Arbiter Power

12 contenders
10 contenders
 8 contenders
 6 contenders
 4 contenders
 2 contenders

(a) Counter Version

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25 30 35 40 45

T
ot

al
 P

ow
er

 (
µW

)

Maximum Contender Wait Time (clock cycles)

Non-Gated TDM Arbiter Power

12 contenders
10 contenders
 8 contenders
 6 contenders
 4 contenders
 2 contenders

(b) Shift-Register Version

Figure 5.4: TDM Arbiter Power

5.2. POWER RESULTS 23

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5 10 15 20 25 30 35 40 45

T
ot

al
 P

ow
er

 (
µW

)

Maximum Contender Wait Time (clock cycles)

Non-Gated TDM+RR Arbiter Power

12 contenders
10 contenders
 8 contenders
 6 contenders
 4 contenders
 2 contenders

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5 10 15 20 25 30 35 40 45

T
ot

al
 P

ow
er

 (
µW

)

Maximum Contender Wait Time (clock cycles)

Clock-Gated TDM+RR Arbiter Power

12 contenders
10 contenders
 8 contenders
 6 contenders
 4 contenders
 2 contenders

Figure 5.5: TDM+RR Arbiter Power

24 CHAPTER 5. RESULTS

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45

T
ot

al
 P

ow
er

 (
µW

)

Maximum Contender Wait Time (clock cycles)

Non-Gated TDM+subset(RR) Arbiter Power

frame size 6
frame size 3
frame size 2
frame size 1

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45

T
ot

al
 P

ow
er

 (
µW

)

Maximum Contender Wait Time (clock cycles)

Clock-Gated TDM+subset(RR) Arbiter Power

frame size 6
frame size 3
frame size 2
frame size 1

Figure 5.6: TDM+subset(RR) Arbiter Power (size 6)

5.2. POWER RESULTS 25

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45

T
ot

al
 P

ow
er

 (
µW

)

Maximum Contender Wait Time (clock cycles)

Non-Gated TDM+subset(RR) Arbiter Power

frame size 8
frame size 4
frame size 2
frame size 1

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45

T
ot

al
 P

ow
er

 (
µW

)

Maximum Contender Wait Time (clock cycles)

Clock-Gated TDM+subset(RR) Arbiter Power

frame size 8
frame size 4
frame size 2
frame size 1

Figure 5.7: TDM+subset(RR) Arbiter Power (size 8)

26 CHAPTER 5. RESULTS

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45

T
ot

al
 P

ow
er

 (
µW

)

Maximum Contender Wait Time (clock cycles)

Non-Gated TDM+subset(RR) Arbiter Power

frame size 10
frame size 5
frame size 2
frame size 1

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45

T
ot

al
 P

ow
er

 (
µW

)

Maximum Contender Wait Time (clock cycles)

Clock-Gated TDM+subset(RR) Arbiter Power

frame size 10
frame size 5
frame size 2
frame size 1

Figure 5.8: TDM+subset(RR) Arbiter Power (size 10)

5.2. POWER RESULTS 27

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45

T
ot

al
 P

ow
er

 (
µW

)

Maximum Contender Wait Time (clock cycles)

Non-Gated TDM+subset(RR) Arbiter Power

frame size 12
frame size 6
frame size 4
frame size 3
frame size 2
frame size 1

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45

T
ot

al
 P

ow
er

 (
µW

)

Maximum Contender Wait Time (clock cycles)

Clock-Gated TDM+subset(RR) Arbiter Power

frame size 12
frame size 6
frame size 4
frame size 3
frame size 2
frame size 1

Figure 5.9: TDM+subset(RR) Arbiter Power (size 12)

28 CHAPTER 5. RESULTS

Discussion & Comparison 6
Some space is provided here to further discuss some peculiarities to the arbiter power
dissipation results, as well as a brief comparison between the arbiter configurations.

6.1 Discussion

6.1.1 Carry Chain Analysis

p0

r0

g0

p1

r1

g1

p2

r2

g2

p3

r3

g3

p4

r4

g4

p5

r5

g5

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

1

1

(a) high load

p0

r0

g0

p1

r1

g1

p2

r2

g2

p3

r3

g3

p4

r4

g4

p5

r5

g5

0

0

0

0

0

0

0

0

0

0

0

1

1

0

1

0

0

0

0

0

1

1

1

1

0

(b) low load

Figure 6.1: Carry Chain for High and Low Load

To understand why the power dissipation of a RR arbiter first increases when going
from full load to lower loads, peaks at a certain midpoint and then starts to decrease,
it is necessary to look more closely to the hardware implementation. The architecture
of the carry chain is like the one given in [8], but we had to replicate the carry chain in

29

30 CHAPTER 6. DISCUSSION & COMPARISON

order to avoid a combinational loop. The arbiter starts scanning at the contender with
highest priority, until it finds a contender with a request. The distance of this scan varies
with the load condition. At high loads, the arbiter is likely to find a contender with a
request close to the contender which currently has highest priority (if not the contender
with highest priority itself). At lower loads, the arbiter is less likely to find a contender
next to the one which currently has highest priority, and thus the distance the carry
propagates through the chain increases (Figure 6.1). At the same time, decreasing the
load also means the number of contenders that put in requests decreases. Larger carry
propagations suffer from more power dissipation, but a decreasing number of contenders
putting in requests lowers the number of requests the arbiter has to service, and thus
its power dissipation. The peak in the power dissipation for a RR arbiter then appears
at the load where the power dissipation contributed by all carry propagations is largest
relative to the power dissipation contributed by each contender request.

Wait Time
Carry Distance Totals Accumulated Total

1 2 3 4 5 6 7 8 9 10 11

0cc 1999 0 0 0 0 0 0 0 0 0 0 1999
5cc 1994 0 0 0 0 0 0 0 0 0 0 1994
10cc 1959 0 0 0 0 0 0 0 0 0 0 1959
11cc 1785 141 38 9 9 2 1 1 1 0 0 1987
12cc 1532 329 85 24 6 3 1 3 0 0 2 1985
13cc 1425 363 118 32 20 12 2 3 2 3 1 1981
14cc 1264 418 153 57 31 13 12 6 5 4 8 1971
15cc 1109 416 203 83 54 35 16 8 12 11 6 1953
20cc 617 385 264 136 110 87 64 31 38 24 26 1782
25cc 412 285 203 142 120 88 78 53 58 55 39 1533
30cc 343 235 173 121 82 79 86 61 61 49 39 1329
35cc 238 188 156 107 97 81 80 63 58 50 46 1164
40cc 196 130 136 106 97 90 70 62 59 50 36 1032
45cc 167 124 119 80 87 70 63 60 51 56 40 917

Table 6.1: RR-12 Accumulated Carry Totals

During simulation of the RR arbiter, we checked how long the distance of the carry
propagation was for every round of arbitration. The carry distance totals for a RR
arbiter of size 12 is given in Table 6.1, where you can see a gradual increase in the carry
distance but a concurrent decrease in the accumulated total (or number of arbitrations)
when the arbiter load decreases. Figure 6.2 shows the comparable carry distance totals
for arbiters of size 2, 4, 6, 8, 10 and 12, where the increase in carry distances becomes
apparent for increasing arbiter sizes.

By linearly weighing the carry distance totals, we get a rough estimate of the power
dissipation contributed by all carry propagations. The results of the weighing is shown in
Figure 6.3, which confirms our expectations, although a scaling factor should be applied
according to the arbiter size.

6.1. DISCUSSION 31

11 10

9 8 7 6 5 4 3 2 1

 0

 2
00

 4
00

 6
00

 8
00

 1
,0

00

 1
,2

00

 1
,4

00

 1
,6

00

 1
,8

00

 2
,0

00

R
R

2
R

R
4

R
R

6
R

R
8

R
R

10
R

R
12

Accumulated Total

A
rb

ite
r

C
on

fi
gu

ra
tio

n

0
45

0
45

0
45

0
45

0
45

0
45

C
ar

ry
 D

is
ta

nc
e

F
ig

ur
e

6.
2:

R
ou

nd
-R

ob
in

A
rb

it
er

A
cc

um
ul

at
ed

T
ot

al

32 CHAPTER 6. DISCUSSION & COMPARISON

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 5 10 15 20 25 30 35 40 45

W
ei

gh
te

d
A

cc
um

ul
at

ed
 T

ot
al

Maximum Contender Wait Time (clock cycles)

RR Weighted Accumulated Total

12 contenders
10 contenders

8 contenders
6 contenders
4 contenders
2 contenders

Figure 6.3: Weighted Carry Chain Length

6.1.2 Ring Counter vs. Binary Counter

CLK

P0 P1 P3P2

(a) ring counter

P0 P1 P3P2

2 x 4 decoder

2-bit counter
CLK

(b) binary counter

Figure 6.4: Ring and Binary Counter

There are two main advantages in using a ring counter over a binary counter to
generate the TDM priority signals. If we compare a 4-bit ring counter and binary counter
(Figure 6.4), we see that a ring counter does not need any extra state decoding logic to
generate the priority signals (P0, P1, P2, P3). The binary counter however, needs a 2
x 4 decoder in addition to the 2-bit counter. The binary counter implementation needs
even more decoding logic when the number of priority signals to be generated is not a
power of two.

6.2. COMPARISON 33

6.2 Comparison

To compare the different arbiter configurations (RR, TDM, TDM+RR), we will look at
their power dissipation at full load, high load, mid load and low load, which correspond
to a maximum contender wait time of 0 clock cycles, 5 clock cycles, 25 clock cycles and
45 clock cycles respectively. These results are summarized in Tables 6.2, 6.3, 6.4 and
6.5, where in each individual load table, the arbiter configurations that performed best
and worst in terms of power dissipation for each arbiter size are highlighted in green and
red respectively.

For full load, we see that the TDM arbiter has the lowest power dissipation, and that
its counter-version is more beneficial than a shift-registered one, except for an arbiter of
size 6 (which has a wasteful binary counter implementation). For small arbiter sizes, we
get the worst power dissipation with a RR arbiter, but starting from an arbiter size of
6, the non-gated TDM+RR arbiter takes over as worst configuration.

When we look at high load conditions, we see that the non-gated TDM-RR arbiter
has the worst power dissipation for all arbiter sizes. The TDM configuration again has
the lowest power dissipation.

The TDM+RR arbiter also has the worst power dissipation for a mid load and
low load. At mid load, a clock-gated RR arbiter nearly edges out a shift-registered
version of the TDM arbiter in terms of power dissipation, but for other arbiter sizes, a
counter-version of the TDM arbiter has the lowest power dissipation. For low load, a
clock-gated RR arbiter has the lowest power dissipation for arbiter sizes 2, 4 and 6. But
at higher arbiter sizes, the TDM arbiter will take over as the arbiter with the lowest
power dissipation.

Arbiter Size
Arbiter Configurations at Full Load (0cc)

RR TDM TDM+RR
non-gated clock-gated counter version shift-register version non-gated clock-gated

2 21.2 22.0 12.8 16.1 18.8 17.6
4 26.6 29.7 20.5 21.8 27.2 22.8
6 35.5 34.5 28.7 26.7 37.7 29.1
8 40.0 41.3 29.3 32.6 59.3 42.5
10 45.5 46.5 35.7 38.5 69.1 53.8
12 51.3 52.8 37.9 44.0 65.1 50.2

Table 6.2: Arbiter Power Dissipation (µW, full load)

34 CHAPTER 6. DISCUSSION & COMPARISON

Arbiter Size
Arbiter Configurations at High Load (5cc)

RR TDM TDM+RR
non-gated clock-gated counter version shift-register version non-gated clock-gated

2 14.5 12.9 9.1 12.1 16.3 15.7
4 27.1 28.1 18.4 20.0 39.8 41.0
6 37.4 35.6 28.2 26.3 49.6 44.9
8 40.1 41.3 29.1 32.6 56.4 43.9
10 45.5 46.5 35.6 38.5 67.5 51.8
12 51.3 52.7 37.9 44.0 65.1 49.5

Table 6.3: Arbiter Power Dissipation (µW, high load)

Arbiter Size
Arbiter Configurations at Mid Load (25cc)

RR TDM TDM+RR
non-gated clock-gated counter version shift-register version non-gated clock-gated

2 8.8 7.3 7.1 9.9 11.6 10.5
4 18.6 15.8 15.3 17.3 27.2 24.6
6 29.2 22.7 24.5 22.8 43.4 35.1
8 40.3 32.4 25.5 29.1 57.0 49.2
10 50.7 42.1 32.7 35.4 75.0 62.2
12 61.9 52.1 35.5 41.4 84.6 72.2

Table 6.4: Arbiter Power Dissipation (µW, mid load)

Arbiter Size
Arbiter Configurations at Low Load (45cc)

RR TDM TDM+RR
non-gated clock-gated counter version shift-register version non-gated clock-gated

2 7.6 6.2 6.7 9.5 10.6 9.4
4 15.8 12.3 14.4 16.6 23.8 20.6
6 24.7 17.4 23.5 21.9 37.9 29.1
8 34.8 24.6 24.4 28.1 49.2 40.0
10 44.8 32.4 31.6 34.2 64.8 50.6
12 56.2 40.7 34.3 40.2 76.3 59.9

Table 6.5: Arbiter Power Dissipation (µW, low load)

Conclusions 7
Various arbiter configuration have been presented and implemented, for which we char-
acterized their power dissipation behavior, under varying load conditions and arbiter
sizes. The effect of the power reduction technique of clock-gating was studied as well.

It has been clearly shown that there is no single arbitration scheme that will perform
well in terms of power dissipation under all load conditions. We showed that for a round-
robin arbiter, the power dissipation does not vary linearly with load. We studied the
effect of applying clock-gating to the designs, and saw that the benefit of clock-gating
largely depends on the load conditions.

The power dissipation of performing time-division multiplexing was shown to be
lower than in the case of performing round-robin, except when we considered a clock-
gated round-robin implementation at very low loads.

A two-step arbitration of time-division multiplexing and round-robin was largely
found to be beneficial over plain round-robin arbitration when considering clock-gated
implementations, or for small arbiter sizes.

When we tried to improve the average-case latency of time-division multiplexing by
arbitrating in each time slot between multiple contenders in round-robin fashion, we saw
a clear trade-off in terms of increased power dissipation.

We also analysed the behavior of why the round-robin arbiter power dissipation first
increases when going from full load to lower loads, then peaks at a certain midpoint and
then starts to decrease. We found that there were two opposing forces at work when the
load was reduced: a gradual increase of the carry distance, but a decrease in the total
number of accumulated carries. The inflection point in the power dissipation curve was
then found by weighing the carry distance totals.

35

36 CHAPTER 7. CONCLUSIONS

Part II

Multiprocessor Systems-on-Chip

37

Introduction 8
The use of application-specific instruction-set processors (ASIP)s has been succesfully
applied towards the implementation of ultra low power wireless sensor nodes [9]. In ASIP
design, the instruction-set architecture (ISA) of the processor is specifically tailored to
optimize the performance and related metrics of applications. Those designs offer more
flexibility over full-custom integrated circuit designs and are more efficient than digital
signal processors. And although power savings can be realized in ASIPs, further gains
will have to come from exploiting bit-level, instruction-level and task-level parallelism of
applications in the form of (heterogeneous) multiprocessor systems-on-chips (MPSoC)s.
Using data-locality and concurrency, highly power efficient systems can then be realized.

The challenges of MPSoC design have been described previously in [25], where it
is explained that MPSoC design is motivated by time-to-market considerations, design
reuse, the simplification of system verification, and to offer programming flexibility after
manufacturing. Finding the right programming models that allow for easy application
mapping is considered to be the main challenge for these designs, because of the con-
currency present in these applications. Tasks on different processors have varying ways
to communicate with each other, and the avoidance of deadlock and starvation in the
system is key. In embedded MPSoCs, parts of the system might be shut down or run on
a lower clock frequency in order to save energy, in addition to the presence of real-time
requirements; but how the right system balance can be found between the requirements
of a multitude of tasks running on separate processors remains an open question. The
debugging of MPSoC designs is another challenge, and it is suggested that the debugging
across different models of computation is a necessary requirement for any debugger. The
next challenge comes from the fact that individual processors in a MPSoC design can be
heterogeneous to each other, with designs not only limited to a small amount of proces-
sors. The design space for finding a correct MPSoC architecture has thereby becoming
intractably large, while system design exploration for MPSoC is still in its infancy.

MPSoCs can be classified in two classes. Homogeneous MPSoCs consist of the
same processing cores being replicated multiple times, where each processing core of-
fers general-purpose computing. In heterogeneous MPSoC designs on the other hand,
a multide of separately optimized processing cores are used to implement the system
functionality, and although more complex, these designs offer also more performance
gains. Processing and storage elements (that are either locally or globally visible to the
processor cores) are connected together using an on-chip communication infrastructure.

In terms of power dissipation, homogenous MPSoC designs are likely to suffer from
a mismatch between computation and communication, when a system’s functionality
is partitioned across processing cores. In heterogeneous designs however, because of
utilizing data-locality and concurrency, the power dissipation of the individual processing
cores and on-chip interconnect can be separately optimized, and low-power techniques

39

40 CHAPTER 8. INTRODUCTION

such as power gating (Appendix A) can be readily applied to the each separate core [11].
In the following chapters, a sample MPSoC system is implemented using a producer

and consumer process on separate processors that communicate with each other via
a hardware FIFO, while in software, synchronization is considered using polling and
interrupt mechanisms, and its power dissipation is analyzed.

Related Work 9
There is a rich literature on multiprocessor systems-on-chips, of which only a selection
can be provided here, indicative of current trends in research.

In [31], an overview is given on energy-efficient programming models for multiproces-
sor systems-on-chips and the coupling thereof on hardware architectures. Both shared
memory and message passing are considered as target models. The authors point out
that the choice for one programming model over the other is not clearly delineated, and
thus analysis is needed to find out if a certain programming model can outperform the
other for a given application. Using applications from the domain of multimedia and
signal processing, they show that the performance and power dissipation of the mes-
sage passing and shared memory programming models differ largely when considering
the splitting of data across different processor tasks, the degree of data sharing between
the processor tasks, data remaining local the processor tasks, and the time spend in
computation/communication in processor tasks. Accordingly, a set of MPSoC design
guidelines was proposed by the authors for discriminating between message passing and
shared-memory programming models.

The authors of [14] implemented an on-chip interconnect and protocol stack that
support multiple programming models and communication paradigms for MPSoC sys-
tems. In a sample design, the interconnect was only found to occupy 4% of the total chip
area, while offering high performancy and low latency. A template for MPSoC platform
design has been introduced that allows for the independent development and verifica-
tion of applications, possibly using different programming models and communication
paradigms for each separate application [15]. Previously, a scalable multiprocessor tem-
plate for applications described by synchronous data flow graphs had been introduced.
A network-on-chip was used for the communication between processors, which allows for
the inference of the timing behaviour of the MPSoC system [1].

Kahn process networks are regularly used to describe MPSoC applications, whereby
processor tasks communicate via unbounded FIFOs. The authors of [16] introduce the
concept of windowed FIFOs, which allows for the reordering of data, non-destructive
reads and skipping of data in the communication channels between processor tasks, while
still keeping the important properties from (determinate) Kahn process networks. Com-
bining windowed FIFOs and Protothreads in a Cell Broadband Engine based MPSoC
system, a considerable speedup was measured, without the need to write architecture-
specific programming code [13].

41

42 CHAPTER 9. RELATED WORK

MPSoC Design 10
A multiprocessor system-on-chip (MPSoC) is a system-on-chip (SoC) integrated cir-
cuit with multiple processing cores working together in parallel. It combines various
processing and storage elements on a single chip, connected together with an on-chip
communication infrastructure. A homogeneous MPSoC architecture replicates the same
processing core a multitude of times, meaning that each processor will have the same soft-
ware system. In heterogenous architectures on the other hand, different processor cores
are combined together, each with its own software system [32]. And although more com-
plex to design, heterogeneous MPSoCs can offer improvements in performance and show
lower power dissipation, because each processor core can be optimized separately [11].

MPSoC architectures can be further divided in two classes, based on the commu-
nication abstraction between the processing and storage elements: shared memory and
message passing [32] [7].

In shared memory architectures, a global memory space is visible to all processors,
addressed implicitly by using the load and store instructions of the individual processor
cores. These instructions are close to the actual hardware, and as such, the benefits of a
shared memory architecture are dependent on the latency of these instructions and the
amount of data that can be moved in a single load/store operation. By using a memory
hierarchy (like caches), (shared) data can be moved closer to the processor that uses the
data, however, special care is needed to make sure data remains consistent across all
processors.

With message passing, each processor core has its own address space. Communi-
cation is made through special input and output operations, typically send and receive
instructions, instead of being implicitly available via the memory system. These send and
receive instructions also include some form of tag, so that processes on individual proces-
sors have a notion of each other. The synchronization of processors executing these send
and receive instructions can happen in two ways: either synchronous or asynchronous.
When a processor initiates a send operation towards a particular processor and has to
wait until the receiving processor initiates a receive operation, we call the communi-
cation synchronous. If a sending processor can immediately continue after initiating a
send operation, without having to wait for the receiving processor, the communication is
asynchronous, and usually involves buffering the sending data in some storage location
close the sending processor. The usage of direct memory access (DMA) transfers allows
for non-blocking sends, it is an hardware feature that can access the local storage of a
processor independent of the instructions the processor is currently executing. At the
end of a DMA transfer, data available at a buffer at the receiving processor, which is
then free to initiate a receive instruction to move the data into its own address space.
The cost to setup a DMA transfer has to be carefully weighted against the type of data
that is to be transmitted: for short messages between processors the overhead of a DMA

43

44 CHAPTER 10. MPSOC DESIGN

transfer can be too large. Alternatively, and simpler, FIFO buffers in hardware can aid
with the data transfers. A sending and receiving processor could directly address the
hardware buffer using send and receive instructions, however, if the FIFO buffer were
too small, it could easily mean that a sending processor would have to block until a
receiving processor has removed data from the FIFO [7].

On the software side, traditional application programming interfaces (APIs) for par-
allel computers that mimic the hardware architecture, are available: OpenMP [28] for
shared memory and MPI [27] for message passing. However, with advent of heterege-
nous MPSoC systems, there is a move towards concurrent hardware and software design.
There are two key requirements for programming these systems [18]. Firstly, to reduce
the software development cycle in both cost and time, a high-level programming model
is needed, so that software developers are not encumbered with lower level architectural
details. On the other hand, to optimize the performance and power dissipation of the
system, it is necessary to customize the software and hardware layers for a specific appli-
cation, requiring programming changes on a lower level. Programming hetereogeneous
MPSoC platforms can only be successful when the communication overhead between
the application tasks running on the different processors is taken into account in the
programming model [26]. Although the classical programming interfaces eases the syn-
thesis of software, automatic design space exploration requires the use of a model of
computation [12].

A model of computation is an abstract representation of a computing system [17]. It
captures the essentials of a computation: how one state of a computation moves to the
next state, what operations are necessary to make such moves possible, and how infor-
mation about the state of a computation is used within those operations. By restricting
the kind of computations that can take place, the complexity of system design is greatly
reduced. Example model of computations are Petri nets, finite state machines, discrete
event models and Kahn process networks, the latter being frequently used for signal
processing applications. The semantics of the Kahn process network model of computa-
tion stipulate that these functional kernels communicate by unbounded FIFO channels,
where kernels can only be blocked when a FIFO channel is empty [26]. And although
unbounded FIFO channels cannot be realized physically, kernels that use blocking read
and write functionality can preserve the semantics of the Kahn process network [13].

For the implementation of our system, we resort to message passing, since a
shared memory architecture would implicitly bound the communication model by us-
ing load/store instructions. We also want to stay close to the hardware for performance
and power dissipation reasons, therefore, no higher level abstraction is necessary at this
point in time. If need be, the software side can be extended to support a more layered
based approach. We resort to a two processor system, one with a producing process
and one with a consumer process. Interprocess communication and event handling in
software is explained in detail in [34], we consider both interrupts and polling, as they
are readily supported by the processor core we had at our disposal.

Implementation & Test
Setup 11
We implemented a producer/consumer system using a hardware FIFO as communication
mechanism. The overall system picture is given in Figure 11.1, where the data and
program memories of the individual processor cores are depicted as well. A sample 16-
bit processor core generated and designed with the Target processor tools [35] were used
for both the producer and consumer cores. See Appendix D for a description of the
Target tool flow used and of the sample processor core. The hardware design of FIFOs
is discussed in Appendix C.

producer fifo

dmem

pmem

consumer

dmem

pmem

Figure 11.1: Producer/Consumer System

11.1 Software

Using the FIFO as communication mechanism, the synchronization of the producer and
consumer processors in software boils downs to using the supplied FIFO primitives,
namely that it is either full or empty, but an extra half-full primitive for the FIFO was
introduced as well.

To handle external events like a change in the state of the FIFO primitives, there are
two software options: polling and interrupts. With polling, ever so often the processor
checks if the FIFO primitives have been changed, and will produce and consume data
items if the conditions of the FIFO primitives allow that. With interrupts on the other
hand, a change in the FIFO primitives is signaled to a special software routine setup in
the processor, which then can execute the production and consumption of data items.
If the FIFO primitives are not changing, the processor is left free to do other work.

During instruction set simulation with the Target processor tools it became apparent
however that a interrupt based configuration suffered too much overhead from context
switching. During context switching, the processor state is saved on the stack (which
is located in the data memory) so that a interrupt service routine (ISR) can be called.

45

46 CHAPTER 11. IMPLEMENTATION & TEST SETUP

After the ISR has finished the handling of an interrupt, the processor state is restored
from the information saved on the stack. But both the saving and restoring of this
information need quite a few memory accesses, which tend to be costly in terms of
power dissipation. And although an interrupt-based system can still prove benefitial in
terms of power dissipation for a system that remains largely idle and includes features to
turn on and off the power to the individual processor cores, only the polling configuration
was ultimately considered for further hardware implementation. Its software description
follows next.

The C language code for both the producer and consumer processor cores consists
of a loop where we either time out for certain period, or poll the FIFO flags to see
if we can produce or consume some data. By changing the timeout period, we can
change the overal duty cycle of the producer/consumer system. In software, this timeout
period can be controlled by executing a nop instruction for a set number of times. The
Target design tools include an option to convert this into a zero-overhead hardware loop
(Appendix D). The FIFO register is memory-mapped into the IO space of both the
producer and consumer core. The producer polls by checking the FIFO is empty or
is half full flags locations in the register, while the consumer polls the is half full and
is full flags. Because we want the number of instruction cycles to be same no matter
which flag we are polling, we had to convert a conditional statement into a corresponding
arithmetical operation. A normal conditional statement would not evaluate the second
expression when the first expression in the statement evaluates to true.

The producer will produce 16 data items when the polling check evaluates to true,
reading the values from an area reserved in its data memory and moving them to memory-
mapped FIFO, similarly, when the consumer polling check evaluates to true, it will
consume 16 data items by moving them from the memory-mapped FIFO to its data
memory. The FIFO depth chosen as such was 32 items, with a data-width of 16 bits,
and includes a extra half full flag that signals when the FIFO is filled with half of
possible data values, next to empty and full flags. The area reserved for data items in
the producer and consumer data memories had a size of 8192, implemented as circular
buffer in software, whereby the producing and consuming of data values wraps around
when the end of the buffer is reached. The total program size of the producer and
consumer was less than 256 words.

11.2 Hardware

Using the Target design tools, we generate the VHDL description of the producer and
consumer processor cores.

For the hardware implementation of the producer/consumer system we used 90 nm
low-power high-threshold voltage standard cell libraries from TSMC [36]. We synthesized
the design with a target clock frequency of 100 MHz, together with clock-gating insertion.
The individual data and program memories were generated with the Virage logic memory
compiler [38], but only 16k memories were available for measurement, with a data width
of 16 bits.

The tool flow uses for the physical implementation of the system is described in
Appendix B.

11.3. TEST SETUP 47

11.3 Test Setup

After we have synthesized the producer/consumer system, we use gate-level power ex-
traction and gate-level power simulation to obtain power dissipation numbers. We will
look at duty cycles with periods of 1024, 2048, 3094 and 4092 clock cycles.

The testbench was simulated through Cadence NC-sim [4]. We made sure that the
simulation time was long enough in order for the power dissipation number to converge
(on the order of 750,000 clock cycles). In NC-sim, we have the option to initialize the
data and program memories of the producer and consumer processor cores. The data
memory of the producer was initialized with linearly increasing sample data items.

11.3.1 Test Bench Description

The top entity of the producer/consumer system includes input signals to wake and halt
the processors, as well as processor halted output signal (Figure 11.2).

producer_core testbench consumer_core

halted halted

halt halt

wake wake

Figure 11.2: Producer/Consumer Testbench

In theory, we could thus externally control when want to wake up and halt the
processor cores. However, in the case of the polling configuration, each individual core
is really controlled by software, and thus the only thing the testbench needs to do is to
initially wake up the processors, as they are initially not clocked. The wake up signal
is internally tied to an individual interrupt line of the producer and consumer processor
cores, and interrupt service routine will subsequently change the processor states to
executing (polling). Afterwards, interrupts are disabled for further use.

48 CHAPTER 11. IMPLEMENTATION & TEST SETUP

Results 12
12.1 Results from Synthesis

The area results from synthesis are summarized in Table 12.1. We see that a large part
of the area is composed of the data and program memories, but should note that smaller
sized memories could have been used when they were available (a 256x16 memory would
have sufficed already for the program memories).

Table 12.1: Producer-Consumer Cell Area (equivalent gates)

Component Instance Cell Area

producer dmem cell 488733

consumer dmem cell 488733

producer pmem cell 488733

consumer pmem cell 488733

producer cell 37965

consumer cell 37438

fifo cell 11097

producer core gate cell 12

consumer core gate cell 12

fifo gate cell 12

producer pmem gate cell 12

producer dmem gate cell 12

consumer pmem gate cell 12

consumer dmem gate cell 12

12.2 Power Results

Next, the power dissipation result for the producer/consumer system are summarized in
Table 12.2 for four duty cycles: of periods 1024, 2048, 3096 and 4092 respectively.

We see a small reduction in power dissipation when the duty cycle is lowered. This
is expected, as a lower duty cycle means that the processor cores are polling less when
looking over the same (simulation) time period, and thus the associated power dissipation

49

50 CHAPTER 12. RESULTS

Table 12.2: Producer-Consumer Power Dissipation

Configuration Total Power (mW)

producer/consumer period 1024 4.05

producer/consumer period 2048 3.88

producer/consumer period 3096 3.82

producer/consumer period 4092 3.78

is reduced. At the same time, the power dissipation for setting up a timeout loop of
different lengths is alleviated by using zero-overhead hardware loops.

More interesting is the breakdown of the power dissipation over the various com-
ponents. In table 12.3, this is summarized for producer/consumer system with period
of 4092. We see that a large part of the power dissipation comes from the producer
and consumer program memories, about 65%. This while the power dissipation of the
data memories is negligible in comparison, because the number of data movements is
relatively small to the number of instructions that need to be fetched from the program
memories.

Another large contribution to the power dissipation are the clock tree networks for
the different components. In total, around 11% of the total power is dissipated in the
clock tree buffers. Lastly, we see a reasonable sized contribution of both the producer and
consumer processor cores, which is largely due to their respective instruction decoders.
The instruction decoder is active anytime an instruction is fetched from program memory,
and the decoding of different instructions is by design going to activate different parts
of the instruction decoder, so that the operation of the processor between cycles can
be controlled. Therefore, a reasonable amount of switching activity is expected in the
instruction decoder, which is reflected in the power dissipation numbers.

The contribution of the interconnect (FIFO) is low, at less than 2% of the total
power. But we should note that neither the producer and consumer processor cores and
memories are in any way optimized, which could make the interconnect power dissipation
more relevant for study.

12.2. POWER RESULTS 51

Table 12.3: Producer-Consumer Relative Power Dissipation

Component Relative Power (%)

main clock tree 3.3

consumer clock tree 3.0

fifo clock tree 1.5

producer clock tree 3.1

consumer core 9.9

consumer core gate 0.1

consumer dmem 0.6

consumer dmem gate 0.3

consumer pmem 31.9

consumer pmem gate 0.3

fifo 1.6

fifo gate 0.1

producer core 10.1

producer core gate 0.1

producer dmem 0.6

producer dmem gate 0.3

producer pmem 31.9

producer pmem gate 0.3

52 CHAPTER 12. RESULTS

Conclusions 13
The design of a producer/consumer MPSoC system has been presented, and implemented
in hardware. For hardware synchronization, a FIFO was used, for which we considered
supporting in software both by interrupts and polling.

During software simulation it was found however an interrupt-based system would
incur too much overhead from context switching, thus only a system based on polling
was used for further power analysis.

We analyzed the producer/consumer system for various duty cycles, and looked at
the power dissipation breakdown of the various constituent components. It was found
that the contribution of the interconnect on the total power dissipation was relatively
low, and that most of the power dissipation came from the (non-optimized) program
memories, clock-tree buffers and the instruction decoders of the individual processors.

Because, both the memories and processors were largely left unoptimized for power
dissipation, it is unclear if the power dissipation in the interconnect becomes more im-
portant for study in an optimized system.

53

54 CHAPTER 13. CONCLUSIONS

Part III

Future Work

55

Future Work 14
There are several considerations for future work. Currently, the software API for
the MPSoC system does not support inter-process communication where processes
or processors are tagged, so that communication at this point in time is limited to
producer-consumer pairs. Furthermore, the processor design tool used in this thesis has
no support to simulate a multiprocessing system on the software level, meaning that an
application using multiple threads on a uniprocessor was needed to mimic the behavior
of the producer and consumer process that should actually have run on different proces-
sors. Likewise, there is no tool support yet for modelling the interconnect between those
processors, therefore it is advised that a software-level description of elements used in
the interconnect, such as arbiters and FIFOs, is developed so that full simulation and
verification is not only possible when performing hardware synthesis, but even earlier
in the design process. This would also help early design space exploration, as trade-offs
between using different arbitration schemes or FIFO sizes can be taken into account,
perhaps using some (mathematical) power model of these elements.

In this thesis, clock-gating was chiefly used a power dissipation reduction method.
However, in a MPSoC system, other methods, such as frequency scaling and power
gating, could also provide for large benefits in power reduction. Similarly, we did not
optimize the processor and memories for our MPSoC design, which might skew the power
dissipation results favorably towards the interconnect. Optimizing the processors and
memories, even for a producer-consumer type of system, could provide for more definitive
conclusions.

Lastly, there is more work to be done on the kind of applications for which (heteroge-
nous) multiprocessing makes sense, and under which circumstances. One interesting ap-
plication for wireless sensor nodes is electroencephalography (EEG), which registers the
electrical activity in the human brain. There are different algorithms for EEG signal
analysis, but can they also be effectively mapped to a multiprocessing architecture, us-
ing optimized processors, memories and communication infrastructures, as well as power
reduction techniques?

57

58 CHAPTER 14. FUTURE WORK

Bibliography

[1] Marco Bekooij, Orlando Moreira, Peter Poplavko, Bart Mesman, Milan Pastrnak,
and Jef Van Meerbergen, Predictable embedded multiprocessor system design, In
Proc. Intl Workshop on Software and Compilers for Embedded Systems (SCOPES),
LNCS 3199, Springer, 2004.

[2] Luca Benini and Giovanni De Micheli, Networks on chips: A new SoC paradigm,
Computer 35 (2002), 70–78.

[3] R. Benjaminsen, F. Duarte, J. Huisken, and K. Goossens, Gate-level power analysis
of on-chip communication infrastructures for biomedicial applications, Proceedings
of ProRISC 2009 (Veldhoven, The Netherlands), November 2009.

[4] Cadence Design Systems, www.cadence.com.

[5] Chien-Hua Chen, Geeng-Wei Lee, Juinn-Dar Huang, and Jing-Yang Jou, A real-
time and bandwidth guaranteed arbitration algorithm for SoC bus communication,
Design Automation, 2006. Asia and South Pacific Conference on, Jan. 2006.

[6] Massimo Conti, Marco Caldari, Giovanni B. Vece, Simone Orcioni, and Claudio
Turchetti, Performance analysis of different arbitration algorithms of the AMBA
AHB bus, DAC ’04: Proceedings of the 41st annual Design Automation Conference
(New York, NY, USA), ACM, 2004, pp. 618–621.

[7] David E. Culler, Anoop Gupta, and Jaswinder Pal Singh, Parallel Computer Archi-
tecture: A Hardware/Software Approach, Morgan Kaufmann Publishers, 1997.

[8] William Dally and Brian Towles, Principles and Practices of Interconnection Net-
works, Morgan Kaufmann Publishers, 2003.

[9] M. De Nil, L. Yseboodt, F. Bouwens, J. Hulzink, M. Berekovic, J. Huisken, and
J. van Meerbergen, Ultra low power ASIP design for wireless sensor nodes, Electron-
ics, Circuits and Systems, 2007. ICECS 2007. 14th IEEE International Conference
on, Dec. 2007, pp. 1352–1355.

[10] F. Duarte, Technical Note TN-08-WATS-TP1-016: Low Power FIFO, Tech. report,
”Technology Program 1 - ULP DSP”, Holst Centre / IMEC-NL, 2008.

[11] Gert Goossens, Johan Van Praet, Dirk Lanneer, and Werner Geurts, Ultra-Low
Power? Think Multi-ASIP SoC!, IP 07 Conference, 2007.

[12] Wolfgang Haid, Kai Huang, Iuliana Bacivarov, and Lothar Thiele, Multiprocessor
SoC software design flows, IEEE Signal Processing Magazine 26 (2009), no. 6, 64–
71.

[13] Wolfgang Haid, Lars Schor, Kai Huang, Iuliana Bacivarov, and Lothar Thiele, Ef-
ficient execution of Kahn process networks on multi-processor systems using Pro-
tothreads and windowed FIFOs, ESTImedia, 2009, pp. 35–44.

59

60 BIBLIOGRAPHY

[14] Andreas Hansson and Kees Goossens, An on-chip interconnect and protocol stack
for multiple communication paradigms and programming models, CODES+ISSS ’09:
Proceedings of the 7th IEEE/ACM international conference on Hardware/software
codesign and system synthesis (New York, NY, USA), ACM, 2009, pp. 99–108.

[15] Andreas Hansson, Kees Goossens, Marco Bekooij, and Jos Huisken, CoMPSoC:
A template for composable and predictable multi-processor system on chips, ACM
Trans. Des. Autom. Electron. Syst. 14 (2009), no. 1, 1–24.

[16] Kai Huang, D. Grunert, and Lothar Thiele, Windowed FIFOs for FPGA-based
multiprocessor systems, ASAP, 2007, pp. 36–41.

[17] Ahmed Jerraya and Wayne Wolf, Multiprocessor Systems-on-Chips, Morgan Kauf-
mann Publishers, 2005.

[18] Ahmed A. Jerraya, Aimen Bouchhima, and Frédéric Pétrot, Programming models
and HW-SW interfaces abstraction for multi-processor SoC, DAC ’06: Proceedings
of the 43rd annual Design Automation Conference (New York, NY, USA), ACM,
2006, pp. 280–285.

[19] A.B. Kahng, Bin Li, Li-Shiuan Peh, and K. Samadi, ORION 2.0: A fast and ac-
curate NoC power and area model for early-stage design space exploration, Design,
Automation & Test in Europe Conference & Exhibition, 2009. DATE ’09., April
2009, pp. 423–428.

[20] Michael Keating, David Flynn, Rob Aitken, Alan Gibbons, and Kaijian Shi, Low
Power Methodology Manual: For System-on-Chip Design, Springer, 2007.

[21] K. Lahiri and A. Raghunathan, Power analysis of system-level on-chip commu-
nication architectures, Hardware/Software Codesign and System Synthesis, 2004.
CODES + ISSS 2004. International Conference on, Sept. 2004, pp. 236–241.

[22] K. Lahiri, A. Raghunathan, and G. Lakshminarayana, The LOTTERYBUS on-chip
communication architecture, Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on 14 (2006), no. 6, 596–608.

[23] Kangmin Lee, Se-Joong Lee, and Hoi-Jun Yoo, Low-power network-on-chip for high-
performance SoC design, Very Large Scale Integration (VLSI) Systems, IEEE Trans-
actions on 14 (2006), no. 2, 148–160.

[24] Bu-Ching Lin, Geeng-Wei Lee, Juinn-Dar Huang, and Jing-Yang Jou, A precise
bandwidth control arbitration algorithm for hard real-time SoC buses, Design Au-
tomation Conference, 2007. ASP-DAC ’07. Asia and South Pacific, Jan. 2007,
pp. 165–170.

[25] Grant Martin, Overview of the MPSoC design challenge, DAC ’06: Proceedings of
the 43rd annual Design Automation Conference (New York, NY, USA), ACM, 2006,
pp. 274–279.

BIBLIOGRAPHY 61

[26] Giovanni De Micheli and Luca Benini, Networks on Chips: Technology and Tools
(Systems on Silicon), Morgan Kaufmann Publishers, 2006.

[27] MPI Forum, www.mpi-forum.org.

[28] OpenMP, www.openmp.org.

[29] Christian Piguet, Low-Power CMOS Circuits: Technology, Logic Sesign and CAD
Tools, CRC Press, 2005.

[30] Francesco Poletti, Davide Bertozzi, Luca Benini, and Alessandro Bogliolo, Perfor-
mance analysis of arbitration policies for SoC communication architectures, Design
Automation for Embedded Systems 8 (2003), 189–210.

[31] Francesco Poletti, Antonio Poggiali, Davide Bertozzi, Luca Benini, Pol Marchal,
Mirko Loghi, and Massimo Poncino, Energy-efficient multiprocessor systems-on-
chip for embedded computing: Exploring programming models and their architectural
support, IEEE Trans. Comput. 56 (2007), no. 5, 606–621.

[32] Katalin Popovici, Frederic Rousseau, Ahmed Jerraya, and Marilyn Wolf, Embed-
ded Software Design and Programming of Multiprocessor System-on-Chip, Springer,
2010.

[33] Synopsys, www.synopsys.com.

[34] Andrew S. Tanenbaum, Modern Operating Systems, Prentice Hall PTR, 2001.

[35] Target Compiler Technologies, www.retarget.com.

[36] TSMC, www.tsmc.com.

[37] Harry Veendrick, Nanometer CMOS ICs, Springer, 2008.

[38] Virage Logic, www.viragelogic.com.

[39] Hoi-Jun Yoo, Kangmin Lee, and Jun Kyoung Kim, Low-Power NoC for High-
Performance SoC Design, CRC Press, 2008.

62 BIBLIOGRAPHY

Background on Low Power A
Here, we give a brief summary on low power: the sources of power dissipation in CMOS
circuits, and techniques on how power dissipation in CMOS circuits can be reduced. The
reader is referred to [37], [29] or [20] for a comprehensive discussion.

A.1 Power Dissipation

For digital circuits implemented with CMOS technology, the total power dissipation is
calculated as follows:

Ptotal = Pdynamic + Pstatic + Pshort + Pleakage (A.1)

where Pdynamic is the dynamic power dissipation contributed by the charging and dis-
charging of the gate capacitances, Pstatic the power associated with the current drawn
from supply to ground under non-transient operation of the gates, Pshort the power dissi-
pation due to the short-circuit currents from supply to ground under transient operation
of the gates, and Pleakage the power dissipation associated with subthreshold and reverse-
bias leakage currents. The contribution of the static power and leakage power has been
relatively small for large technology nodes, but they are expected to rise significantly
when moving into deep submicron regions.

The dynamic power dissipation for a circuit node is given by:

Pdynamic = α · C · V 2 · f (A.2)

where α is representative of a node’s transient activity, C the (effective) load capacitance
of a node, V the supply voltage of a node and f the operating clock frequency. Hence,
the dynamic power dissipation over time is largely data dependent.

During transient operation, a brief short-circuit current exists when both NMOS and
PMOS transistors are on, between the supply voltage and ground. As well, there is a
current charging the internal node capacitances. We can then calculate the short-circuit
power dissipation as follows:

Pshort = tshort · V · Ipeak · f (A.3)

where tshort is the time duration of the short-circuit current, V the supply voltage of a
node, Ipeak the combined switching current (short-circuit current and internal charging
current) and f the operating clock frequency. Since the short-circuit current is only
likely to occur for a brief time during transients, the transient power dissipation will be
dominated by Pdynamic [20].

The static power dissipation in CMOS circuits is negligible, because ideally, there is
no direct path between the supply voltage and ground under non-transient operation.

63

64 APPENDIX A. BACKGROUND ON LOW POWER

Thus, Pstatic, like Pshort, is most of the time eliminated from the total power dissipation
calculation for CMOS circuits. However, considerable leakage currents can be present,
especially when using deep submicron technology.

We can separate the contribution to Pleakage into two main sources. First of all, there
is subthreshold leakage current, which flows from drain to source of a transistor operating
in subthreshold mode, that is, when the transistor is not completely turned off. There is a
exponential dependency of the subthreshold leakage current on the difference between the
gate-source voltage VGS and the threshold voltage VT , so that when the supply voltage of
a node and the threshold voltage are decreased to reduce the dynamic power dissipation,
the subthreshold leakage power increases rapidly in the other direction. Secondly, there
are substrate leakage currents that flow either from the gate or drain of a transistor to
the substrate, but these have been relatively small compared to the subthreshold leakage
current [20].

A.2 Low Power Techniques

Both technology choices and design implementations might affect the different compo-
nents of the total power dissipation. For example, the short-circuit power Pshort of a
buffer can be reduced by using a tapered design, which is a design measure. On the
other hand, we can use high threshold voltages – a technology measure – to reduce the
leakage power dissipation [37].

Techniques for low-power design can be applied at various levels in the design space:
from the system and chip level all the way down to the gate and layout level. The
effects of techniques applied at a higher level can have more effect in reducing power. If
a section of a chip can be powered off cheaply when not needed, the gains in reduced
power dissipation will be larger than if one was to try to minimize the leakage power in
that same section at the gate level by using multi-threshold voltage standard cells, for
example.

A popular technique to reduce the dynamic power dissipation at the RTL level of a
design is clock-gating (Figure A.1). The synchronous components in a design continue
to be clocked even though the input data to a component might not be changing. With
clock-gating, the clock to these components is selectively disabled, thereby reducing the
power dissipation associated with unneccesary clock toggling, but at a cost of increased
hardware which will also slightly increase leakage power.

With power-gating a reduction in leakage power is targetted. The idea is to switch
off sections of the chip that are not currently in use. If a system has long period in
which it is idle, the power dissipation will be largely dominated by leakage power. But
switching on and off chip sections cannot be done in zero time, and thus power-gating
introduces additional timing delays in a design, as well as some extra hardware overhead
in the form of control circuitry. Figure A.2 shows the power profile of a system that
includes sections that are power gated, not taking the hardware overhead into account,
and assuming clock-gating is used. In the idle mode, the design will only dissipate leakage
power (because of clock-gating), but because power gating is used for certain sections,
the leakage power will be less than for the active mode.

A.2. LOW POWER TECHNIQUES 65

D Q
DATA

ENABLE

CLOCK

high activity

(a) Before Clock-Gating

D QDATA

ENABLE

CLOCK
Clock-Gating

Logic

low activity

(b) After Clock-Gating

Figure A.1: Clock Gating

dynamic
power

leakage
power leakage power

dynamic
power

leakage
power leakage power

time

power

Active mode Idle mode Idle modeActive mode

Figure A.2: Power Gating Power Profile

For more power-reduction techniques, the reader is referred to the sources mentioned
at the start of this appendix.

66 APPENDIX A. BACKGROUND ON LOW POWER

Hardware Design Flow B
Here, we briefly report on the tool flow used to implement the designs and to obtain
power dissipation numbers. See Figure B.1 for a combined illustration of the individual
steps.

B.1 Synthesis

The designs are described in the hardware language VHDL, giving us a register-transfer
level description (RTL). After error-checking the VHDL code, the first step of the syn-
thesis consists of elaborating the design and setting timing constraints, as well as the
optional insertion of the clock-gating circuitry. Then, the design is mapped to standard
cells from a target technology library, assuring that the giving timing constraints are
met. When timing closure is possible, an intermediate netlist is generated, as well as a
corresponding design constraints (SDC) file that will help in the next step of the flow.
We use RTL Compiler from Cadence [4] to complete this step of the flow.

B.2 Place and Route

In this step of the flow, the design is physically implemented. To the synthesized netlist
and SDC file we attach new constraints, such as the size of the design floorplan and the
number of metal layers for power routing. The standard cells are placed on the floorplan,
whilst assuring that timing requirements are still met. Then the design clock tree is
generated, with multiple optimization iterations necessary if timing is not immediately
met at this point in time. Finally, everything is connected together, and a new netlist
is generated, as well as information on the parasitics present in the design. This step of
the flow is completed using SoC Encounter from Cadence.[4]

B.3 Timing Analysis

We use timing analysis to annotate the netlist created by the place and route step,
combining the timing details of the standard cells and interconnect, so that consequently,
reliable power dissipation numbers can be generated. Synopsys Primetime [33] is used
to complete this step, with a resultant SDF (Standard Delay Format) file containing the
results from timing analysis.

67

68 APPENDIX B. HARDWARE DESIGN FLOW

B.4 Power Extraction

The final step of the flow consists of obtaining power dissipation numbers for the de-
sign. We simulate the design using Cadence NC-Sim [4] in order to generate switching
data, which also requires the timing analysis data from the post layout netlist. Power
extraction is then performed, using Synopsys Primepower.[33]

TSMC 90nm libraries

Cadence
RTL Compiler

Cadence
NC-Sim

Synopsys
Primetime

Cadence
SoC Encounter

Synopsys
Primepower

RTL

Power Numbers

VCD

SDF

Netlist

Figure B.1: Hardware Design Flow

FIFO Design C
A FIFO is an abstract way of data organization and manipulation, both temporally
and presendence-wise. Data is processed as in a queue: data that comes in first, is
handled first, data that comes in second waits until the first data is processed, and
so on. Eventually, every data is processed in the order that it arrived. FIFOs are
commonly used for buffering and flow control (synchronization), both in software and
hardware applications.

In hardware, FIFOs are customarily implemented using a set of read and write point-
ers, some storage logic where data values are buffered, and control logic. With the read
and write pointers, we can basically implement a circular queue over the storage area.
Initially, both read and write pointers locate to the first storage location, denoting that
the FIFO is empty. The read pointer will be incremented when we write to the FIFO,
while the write pointer is incremented when read from. If after we increment the read
pointer we find that it again points to the same location as the write pointer, the FIFO
can signal it is empty again. The FIFO will signal that is full when after the write
pointer is incremented, it points to same location as the read pointer.

The storage area in a FIFO can be constructed in various ways. Any hardware
element that can store some binary information can be used, but typically random access
memory (RAM), flip-flops (FF) and latches are used. RAM optionally has dual-port
implementations, which allow us to write to one port, and read from the other. For the
read and write pointers we also have several options for how they address the storage
area: binary encoding, one-hot encoding or Gray encoding, so that internally to the
FIFO, a address generation unit (AGU) might be required. See Figure C.1 for a basic
outline of a FIFO implementation in hardware.

agu control

storage
Data_In

Write_Enable

Read_Enable

WE

RE

Write_Address

Read_Address

Data_Out

Empty

Full

M_WE M_RE

Figure C.1: FIFO Block Diagram

Previous work at IMEC-NL [10] has focused on the power dissipation results for
different FIFO implementations. It showed that for the address encoding, there was

69

70 APPENDIX C. FIFO DESIGN

no benefit on using one-hot encoding over binary encoding, and that for small FIFO
sizes, latch-based implementations have lower active and leakage power dissipation than
flip-flop based FIFOs. Furthermore, it was shown that the situation for random-access
memory was even worse in terms of power dissipation, both active and leakage. There-
fore, for lower power designs (that have no high speed requirements) random-access
memory should not be used as FIFO storage area.

Target Processor Design
Tools D
This appendix briefly summarizes the Target processor design tools. The tools from
Target Compiler Technologies allow for the design, programming and verification of
retargetable application-specific instruction set processors (ASIPs) [35].

The processors are designed with a markup-language, with which one can define for
example the processor instruction set, instruction set encoding as well as the mapping of
instructions to specific functional units. Software for the processors are described with C
programming language. The Target tools can automatically generate the instruction-set
simulator for the designed processor, as well as a compiler that allows the generation
of machine code for the specific processor. From the processor model, a synthesizable
hardware description in VHDL is generated.

D.1 Base Processor Description

Target delivers a sample 16-bit processor core than can be used as starting point for
ASIP design, the ”base” processor. The base processor features a set of general purpose
instructions, as well as 16-bit arithmetical, logical and comparison instructions, inte-
ger multiplication and shift operations. It offers load/store instruction to 16-bit data
memory, with a 64k address space using indirect addressing. Address computations are
executed on a 16-bit address generation unit. Furthermore, the processor can be config-
ured for the use of interrupts, on-chip debugging and zero-overhead loops. The datapath
of the processor is depicted in Figure D.1, and includes a register file and data memory
(dm), an adress generation unit (agu), an arithmetic logic unit (alu), shifter and finally
a multiplier-accumulator.

For the processor implementation of interrupts, several instructions are provided, as
well as a halt instruction, which can disable program execution on the processor, which
then asserts a halted output signal that can notify external components of the processor
state.

The zero-overhead loops allow for fast looping over a block of instructions. It is setup
by do instruction, with no additional execution cycles needed to perform the looping
tasks. The loop is executed a predetermined number of iterations, and controlled by a
dedicated hardware block.

71

72 APPENDIX D. TARGET PROCESSOR DESIGN TOOLS

agu
alu

m
ult-acc

shift

ph
pl

register
file

dm

offset

F
igure

D
.1:

B
ase

P
rocessor

D
atapath

