

1

Object Oriented Modeling

A method for combining model and software development

Wouter van Lelyveld

October 2010

Delft University of Technology

Faculty of Technology, Policy and Management

ABSTRACT

When requirements for a new model cannot be met by available modeling software, new software can be

developed for a specific model. Methods for the development of both model and software exist, but a method

for combined development has not been found. A compatible way of thinking is required to combine modeling

and software development into a single method. This paper will discuss six methods from which the strengths

will be combined in the Object Oriented Modeling (OOM) method. After a description of the basis of the OOM

method, the possible applications of the model are discussed.

Keywords: Modeling, model development, software development,

methodology, Object Oriented Programming

1. INTRODUCTION

The economy, transportation and health care are all

complex manmade systems with increasingly hard to

understand relationships. In order to understand

complex systems, models can be used to understand

how they work and can be controlled. Using

experience from model development, methods have

been developed on how models can be created in the

correct fashion.

Also, the use of computers and software has become

customary over the last decades. This has resulted in

exponential increase of computer software for which

development methods have been introduced as well,

to help create software that meets its requirements.

With the use of computer software, it became

possible to model more complex systems, as the

software can be used to quickly compute model

results and generate visualizations of the outcomes.

This helps the user of the model to understand the

relationships in the system more easily, and makes it

possible to quickly compute the effects of changed

variables in the system, creating scenarios.

Modeling software development

Because of this, various modeling software packages

have been developed that make it possible to quickly

create a working model, like Vissim
1
 and Powersim

2

for continuous modeling or Rockwell’s Arena
3
, for

discrete modeling. All these modeling packages have

a wide range of possibilities, but it is usually not

possible for the modeler to develop the software

further to meet specific demands he might have that

are not available with standard functions of the

software. Also, as the software packages have been

developed as a commercial product, users have to

purchase these packages in order to use them. Some

software does have the option to create runtime

versions so users do not require the original software,

but these usually have limited options. For

development of models that are made publicly

available, it may therefore preferable to develop own

software.

Next to these arguments, other reasons may exist to

develop software to facilitate one specific model as

well. When software is developed specifically for one

model, methods for both model and software

development can be helpful in the development of

the application. Software development methods have

useful steps that can prevent difficulties in software

development, model development methods help to

create a useful model. However, for the development

1
 http://www.vissim.com/

2
 http://www.powersim.com/

3
 http://www.arenasimulation.com/

http://www.vissim.com/
http://www.powersim.com/
http://www.arenasimulation.com/

2

of software designed to facilitate a model the two

developments coincide. When the steps in the two

development methods are not compatible, it can be

hard to use them simultaneously.

That is why it would be useful to have a method that

combines both features of the model and software

development methods. Because a method that

specifically focuses on the development of modeling

software has not been found, this paper will

introduce such a method, named the Object Oriented

Modeling (OOM) method. This method combines the

useful development aspects of both existing model

and software development methods into one

method, and includes steps for both types of

development.

First, the difference between a method and

methodology is explained, after which some model

and software development methods will be

discussed. From this a number of useful features are

derived that are basis for the OOM method. Finally

the steps of the OOM method will be described and

its possible uses are discussed.

Method versus methodology

To clearly define the meaning of the word method,

the definition is used as given by Brinkkemper [1996].

In the context of information systems development,

he defines a method as ‘an approach to perform a

systems development project, based on a specific

way of thinking, consisting of directions and rules,

structured in a systematic way in development

activities with corresponding development products’

[Brinkkemper, 1996]. Despite the different context,

this definition is still useful. The article states that

methodology is a larger concept which includes a way

of thinking. This definition is in line with the different

aspects of methodologies that Wijers and Heijes

[1990] describe in a framework for modeling

methodologies. Wijers and Heijes distinguish a way of

thinking, a way of modeling, a way of working, a way

of control and a way of support. They also state the

way of thinking is often overshadowed by or implicit

in the techniques and methods embedded in that

methodology, but is of great influence on the

ultimate appropriateness of methodologies because

important features of the method often depend on

the underlying way of thinking [Wijers and Heijes,

1990].

For combining both model and software

development methods into one, it is therefore

important that the way of thinking that is used for the

methods is described as well. As the way of thinking

in methods needs to be compatible in order for them

to be combined in a new method, a proper

description of the way of thinking is required to find

common ground between the ways of thinking if

these are not the same. This common ground in the

way of thinking needs to be basis for the new method

in which both methods are integrated.

2. MODEL DEVELOPMENT METHODS

In this paper two different model development

methods and four different software development

methods will be discussed. As mentioned in the

previous section, it is important to note the

underlying way of thinking as well. This will be done

after discussion of both types of methods to see if a

common ground can be found. The two development

methods were the only methods found in a brief

search for modeling methods. The methods are the

model cycle [van Daalen et al, 1999] and the “Co-

Evolutionary Method for Modeling Large Scale Socio-

Technical System Evolution” [Nigolic, 2009].

The model cycle

The model cycle is an important development

method that can be used to create a model and has

been created to develop models that can effectively

help solve complex problems. There are different

versions of the model cycle that have slight

differences, but most consist of the following basic

steps [van Daalen et al, 1999]:

 Defining goal and function

 Conceptualization

 Model construction

 Model assessment

 Model use/ experimentation

The method suggests that the steps may have to be

revisited when the result does not satisfy the

requirements. Feedback from the users can then be

used as input for a new cycle in the method. This can

be visualized as follows:

3

Figure 1: The model cycle [van Daalen et al, 1999]

Co-Evolutionary Method

The second method described is made by Nikolic,

who describes a co-evolutionary method for

modeling Large Scale Socio-Technical System

Evolution, or λ-systems. The method is made

specifically for a larger group that collaborates to

create a model collectively. Because the goal is to

create an evolutionary model with both social and

technical aspects, parts of the model are made by

people with different specialties. The different steps

of the method that Nikolic describes are [Nikolic,

2009]:

 Create the collaboration conditions

 Collect and formalize knowledge

 Collect facts

 Implement the model

 Verify the model implementation

 Analyze the model outcomes

 Validate the model

In the dissertation Nikolic specifically mentions the

importance of validation. As evolutionary systems can

have unpredictable outcomes, validation of this type

of model can be hard. This is especially true if the

model includes simulation of social behavior, which

evolutionary systems often do [Nikolic, 2009].

Key features model development methods

The model development methods have very similar

steps. Both methods basically describe planning,

conceptualization, implementation and testing of the

model. As the combined method will also be used for

model development, these steps will have to be

integrated. With this in mind, the software

development methods are discussed.

3. SOFTWARE DEVELOPMENT METHODS

Separately from the model development methods,

various software development methods have been

developed over the years. As computers and software

became increasingly more advanced the

development methods evolved as well. In discussing

the software development methods, it can be noted

that the methods do have similarities with the model

development methods. The four methods described

result from quick research into influential software

development methods. Various other methods were

found, but these four seemed to have had the most

influence in software development. The methods are

ordered from the oldest to the youngest, so the

evolution over the years can be recognized. The

oldest development method with significant influence

was the waterfall model, first introduced by Royce in

1970.

The waterfall model

The sequential steps from the waterfall development

method originate from the manufacturing industries

where changes after the initial design were costly.

Therefore the method has sequential steps that are

not revisited once they are completed, avoiding

expensive redesign. Although different versions exist,

the basic different steps in the waterfall model are

[Royce, 1970];

 Determine requirements

 Analysis and design

 Implementation

 Verification

 Maintenance

The approach is document driven, which means that

it makes it easy for the manager to track the project’s

progress [Martin, 1999]. Although the waterfall

4

model is still well known in software development,

the strict separation between different phases often

makes it an example of how software development

should not be managed. This is because requirements

and the design are never perfectly described the first

time around, and phases must be frequently revisited

with new-found perspectives from the

implementation phase. Like the basic steps, different

variations of the visualization of the waterfall model

are known. In figure 2 Royce’s original depiction of

the method is shown.

Figure 2: The waterfall model [Royce, 1970]

The V-model

Recognizing the need to look back at the initial

requirements, the V-model was developed in

Germany in 1986 [Boehm, 1988]. The V-model is

similar to the waterfall model, as the basic steps are

the same. The difference between the V-model and

the waterfall model is that after the implementation

step, the following steps look back at the design to

test if it fulfills the initial requirements. The process of

looking back to the requirements is a first step

towards the loop that is created in Boehm’s spiral

model.

The different steps in the V model are [FHWA, 2005];

 Concept of operations

 Requirements and architecture

 Detailed design

 Implementation

 Integration, test and verification

 System verification and validation

 Operations and maintenance

These different steps can be visualized as follows;

Figure 3: The V-model [FHWA, 2005]

5

Boehm's Spiral model

Boehm’s spiral model [Boehm, 1988] is designed for

large software development projects, where large

risks are involved if the wrong choices are made in

the development of the software. Boehm recognized

the risks of development using the waterfall method,

and tried to combine the advantages of several

development theories into his development method

[Boehm, 1988].

One of the most important aspects is that it is risk-

driven, as each iteration contains a risk analysis to

make sure the correct alternative is chosen. This

emphasis on risk management has to do with the

magnitude of the projects involved. One iteration was

originally suggested to be six months to two years, so

an extra iteration due to incorrect risk-analysis could

result in very high costs. The different steps of the

development method are [Boehm, 1988];

 Determine objectives, alternatives,

constraints

 Evaluate alternatives, identify & resolve

risks

 Develop, verify next level product

 Plan next phases

In Boehm’s original paper, the development process

is visualized as follows;

Figure 4: The Spiral model [Boehm, 1988]

Iterative and Incremental Development (IID)

The basic idea of IID is similar to that of Boehm’s

spiral model; the design cannot be correctly specified

directly at the start of the process. IID really is a

combination of two concepts that have become

accepted in software development over the years;

iterative and incremental development. In iterative

development preliminary versions of the product are

released to get feedback early in the design process.

With incremental development separate pieces of the

software are developed simultaneously. Although the

concept IID is commonly known and accepted, the

individual steps cannot been traced back to one

specific piece of literature or year. This suggests IID is

6

more of a concept than a method. Still, for iterative

design Hung defined different steps as follows [Hung,

2007]:

 Planning

 Requirements

 Analysis & Design

 Implementation

 Testing

 Evaluation

The different steps of iterative development are

visualized by Hung as follows:

Figure 5: Visualization of iterative development [Hung, 2007]

Key features software development methods

Although the software development methods have

changed significantly over the years, some key

elements can be recognized in each of the methods.

In each of the methods the requirements of the

software are determined in one of the first steps,

before the analysis and design. Subsequently, the

software is developed, and finally tested. In most of

the methods, the developed software is compared

with the original requirements, which can lead to a

new round through the different steps of the method

if it does not match the initial requirements or new

requirements have been identified. This cyclical

aspect is an important feature that was introduced by

Boehm, which should be considered in every new

software development method.

In a combination of model and software development

it would be best to include key features of both

model and software development methods. Still, in

order for the methods to be combined, a common

way of thinking needs to be applied. This will be

discussed in the next section.

4. THE WAY OF THINKING

When developing software specifically for one model,

the primary way of thinking should be that of the

model development, as the final purpose of the

application is to provide a useful model. That is why

the software has to ‘fit’ the way of thinking of the

model development. Therefore, the way of thinking

in the model development will be discussed first. Still,

the way of thinking that is applied in model

development should keep the way of thinking of the

software development in mind, as incompatibility of

the two ways of thinking will not result a successful

product.

Way of thinking in model development

An underlying principle that can be seen as basis for

both modeling methods is that of systems thinking. In

systems thinking the system is considered as part of a

larger system, rather than as an isolated entity. A

systems thinking approach is systemic (holistic

instead of in pieces) and/ or rational systematic

(stepwise instead of intuitive) [Flood and Carson,

1988].

With a systems thinking approach the problem is

always addressed within the context of its

environment. Each system has its own characteristics

which determines its behavior, but is also dependent

on the interaction with other systems. When the

relationship between variables in the system can be

quantified, a model can simulate the system response

to changes in variables in reality.

Table 1: Useful features of the development methods

Development
method

Useful features

Model cycle

 Gives specific steps for model
development

Co-evolutionary
method

 Breaks the project down into
small pieces

 Creates user feedback early in
the process

The Waterfall
model

 Delivers easy to manage
milestones

 Creates a clear distinction
between processes

The V model

 Reflects on the initial
requirements

Boehm’s spiral
model

 Fosters development with
unclear specifications

 Incorporates prototyping
Iterative and
Incremental
Development

 Provides output early in the
process

 Able to deal with changing goals
and requirements

7

Way of thinking in software development

The underlying way of thinking in the software

development has to be compatible with the way of

thinking in the model development. Looking at the

description of the way of thinking in the model

development, a relevant way of thinking in software

development is the object oriented thought process.

 This way of thinking is basis to modern software that

uses Object Oriented Programming (OOP) [Weisfeld,

2008]. OOP entails that all data is stored in objects,

which belong to a certain class. The object class can

be used to define the different attributes that the

objects have. A classic practical example that is used

in OOP is a library; Books, shelves and authors can be

defined as classes, where the individual books are

seen as objects in the book class [Frishberg, 2001].

The OOP principle is not used in all software, so the

choice for this way of thinking limits the number of

options for the software. As in this new method the

OOP principle is used in modeling, the method is

named Object Oriented Modeling (OOM).

5. COMBINING THE METHODS INTO OOM

With the way of thinking aligned, useful features of

the methods can be combined into one new method.

Table 1 provides an overview the useful features of

the discussed development methods.

From this overview, the features of iterative and

incremental development will be integrated.

Iterations will be kept short, which has the advantage

that feedback is acquired fast and possible changes to

the design requirements can be processed more

quickly. This also breaks the project down into

smaller pieces that are easier to manage. By revisiting

the process steps frequently, unclear requirements

can gradually become clearer, and prototypes can be

released early. This is visualized in a spiral, just like in

Boehm’s spiral model.

Developments steps

Both parts of the model development do still have

the development steps. The steps for model

iterations in the OOM are based on the steps in the

model cycle, as these are best compatible with the

iterative character of the spiral. With the steps from

the model cycle added, the model iteration of the

OOM method can be visualized in figure 6.

Figure 6: Visualization of a model iteration in the OOM method

The software development steps are not taken

directly from one specific method, but are a

combination of the different software development

methods described.

The planning phase for both development types

remains the same, as here the required development

type can be determined. Based on the requirements,

it can be chosen to further develop the model, the

software, or both. Multiple iterations can therefore

run simultaneously, making use of incremental

development.

8

For further development of the software, the OOM

method is visualized in a similar spiral, but uses steps

based on the software development methods. With

these steps placed in the spiral, the OOM method for

software development is shown in figure 7.

Figure 7: Visualization of a software iteration in the OOM

method.

6. APPLICATION OF THE OOM METHOD

As the OOM method is created for the purpose of

structuring synchronous development of model and

software, the application of the method is limited to

just these cases. Furthermore, as a result of aligning

the way of thinking in the software development with

that of model development, the type of software that

is suitable in this method is also limited to software

which uses OOP.

As a result, the method can only be applied when a

model is being developed in OOP software. In this

case however, the method can contribute to a correct

development process, which is hard to accomplish

using model and software development methods

separately.

The usability of OOM method has been validated in

the development of the Energy Transition Model
4

(ETM), where it has resulted in a model that satisfied

the requirements. Here, the combination of systems

thinking from model development with the object

oriented thought process from software development

has led to a model which is more transparent and

more flexible than the original version of the ETM

which was built in Microsoft Excel.

4
 http://www.EnergyTransitionModel.com

7. CONCLUSIONS

A new method for the simultaneous development of

a model and the software has been developed. The

object oriented method is a common way of thinking

that is suitable for model and software development

methodology. The method comprises a spiral with 4

phases. The first phase (planning) is identical for

software and model development. The following 3

phases have a branch for software and a branch for

model development that follow a similar way of

thinking.

The new method is tailored to models that are

developed in Object Oriented software. The method

has been applied in the development of an online

Energy Transition Model where it has proven valuable

in providing a higher level of transparency and

flexibility.

8. REFERENCES

Boehm, B.W., 1988, A Spiral Model of Software

Development and Enhancement, IEEE Computer,

Vol. 21, No. 5, 1988, pp. 61-72

Brinkkemper, S., 1996, Method engineering:

engineering of information systems development

methods and tools, Department of Computer

Science, University of Twente

van Daalen, C., Thissen, W, and Verbraeck, A, 1999,

Methods for the Modeling and Analysis of

Alternatives, Handbook of Systems engineering

http://www.energytransitionmodel.com/

9

and Management , John Wiley & Sons, New York,

page 1037-1076

van Daalen, C., Thissen, W., 2001, Continue Modellen

Deel A – System Dynamics, reader TB231, TU

Delft, TPM

Federal Highway Administration (FHWA), 2005, Clarus

Concept of Operations, US department of

Transportation, Publication No. FHWA-JPO-05-072

Flood, R.L. and E.R. Carson, 1988, Dealing with

Complexity: an Introduction to the Theory and

Application of Systems Science. Plenum Press,

New York

Frishberg, R., 2001, JavaScript Object-Oriented

Programming,

http://articles.sitepoint.com/article/oriented-

programming-2, last visited August 22, 2010

Hung, T., 2007, Software development process,

Connexions module: m14619,

http://cnx.org/content/m14619/latest/, last

visited October 18, 2010

Martin, 1999, Iterative and Incremental Development

(IID), C++, http://www.objectmentor.com/

publications/IIDII.pdf last visited August 26, 2010

Nikolic, I., 2009, Co-evolutionary method for modeling

large scale socio-technical systems evolution, Next

Generation Infrastructure Foundation, TU Delft

Royce, W., 1970, Managing the development of large

software systems, Proceedings of the 9th

International Conference on Software Engineering

1987, page 328-338

Weisfeld, M., 2008, The Object-Oriented Thought

Process, Third Edition, Addison-Wesley, USA

Wijers, G., Heijes, H., 1990, Automated Support of the

Modelling Process: A view based on experiments

with expert information engineers, Advanced

Information Systems Engineering, Springer Berlin /

Heidelberg

