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intern Marloes. Throughout the last couple of months, I have enjoyed enabling the delta together.

Finally, I would like to thank my family and friends who have shown their relentless support during my studies.
Peter and Greetje, I am grateful for the possibilities and support you offered me. Maartje, thank you for the
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worry but be happy. Floor, thank you for the motivating wie dan!’s and for challenging me in making this
project a little bit more comprehensible for medical students and the rest of the world. Next to that, I would
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46 and ’t Entresol for a wonderful experience over the last 7 (!) years.

Koen van Asselt
Delft, February 2024

i



Summary
Sandy coasts cover about 30% of the world’s coastline and offer several economic and ecological services.
Dunes are a typical feature of sandy coasts and offer natural protection from the sea. In extreme storm condi-
tions, the impact of the sea on these dunes results in sediment transport in seaward direction. To be able to
guarantee the protection service of dunes and prevent the hinterland from flooding, models are developed to
predict sediment transport processes at the dune (dune erosion).

Surrogate models, model of a model, have been developed to reduce computational times of dune erosion
calculation. The state of art surrogate models provide a prediction based on a parameterized input and out-
put (Athanasiou et al., 2022 and Gharagozlou et al., 2022). However, a desired surrogate model is able to deal
with spatial input and the prediction of the actual shape of the post-storm sandy profiles.

Initially, dune erosion processes and existing surrogate modelling techniques are explored. Through studying
theory on neural networks, U-Net, a CNN architecture developed for image segmentation, is chosen as a suit-
able convolutional neural network to process 1D pre-storm input profiles and predict 1D post-storm profiles.
The potential of using the U-Net architecture is explored with a simplified dataset with known morphological
dune response, stationary storm conditions and several performance metric. Through this exploration, the
goal is to replicate these dune erosion processes using a surrogate model. The gained insights are used to
scale up to a more realistic scenario for the Holland coast.

Parameter sensitivity analyses on the DEV showed that, in general, steeper slopes of submerged profile sec-
tions lead to an increase in DEV. Especially the beach- and nearshore slope have a large effect on the modelled
DEV.

In the exploration phase, several techniques to improve the U-Net architecture are presented. For pre-and
post-storm profiles, the signal of sediment transport is difficult to pick up for a U-Net architecture and it
needs guidance to localize this signal. Therefore, the input grid should highlight the area of interest. Next to
that, It was found that the network depth, network width and kernel size are crucial hyperparameters for the
interpretation of the data by U-Net and the performance of the surrogate model. A shallow U-Net architecture
is not able to gain an understanding of the processes of dune erosion and attempts to find the statistically op-
timal solution. In contrast, a deeper and more complex U-Net enables the surrogate model the mimic dune
erosion processes and catches a wider range of dune erosion volumes (DEVs). However, it is important to
note that due to the lack of alongshore variability in the test data, the improvements resulting from a deeper
architecture may not be fully reflected in the performance indicator.

In the upscaling phase, the results on a realistic training and test dataset confirm the trends found in the
exploration phase of this research. A multi-profile-based training dataset outperforms a single-profile-based
training dataset. Accuracy and skill in post-storm profile shape prediction are obtained through either deeper
networks or larger kernel sizes. However, it was found that the current surrogate model has trouble overcom-
ing spatial alterations at the location of erosion processes. .

All in all, it can be concluded that U-Net shows potential for post-storm profile predictions. Taking into ac-
count the original purpose of U-Net and the consequences of the network’s architecture on profile predic-
tions, an appropriate surrogate model can be set up. It is recommended to carefully proceed to the upscaling
phase and to include more realistic pre-storm profiles in the training dataset. This comes with a re-evaluation
of the hyperparameters and performance metrics.
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1
Introduction

1.1. Background
Coastal zones are the transition areas between sea and land. Sandy coasts cover about 30% of the world’s
coastline (Luijendijk et al., 2018). These dynamic areas offer numerous economic and ecological services.
Dunes are a typical feature of sandy coasts and offer natural protection from the sea. In extreme storm condi-
tions, these dunes are affected by the sea and sediment is transported from the dune to the sea. To be able to
guarantee this protection service of dunes and prevent flooding, models are developed to predict sediment
transport processes at the dune.

The concept of this research originates from the coastal defence system of the Netherlands. The coastline of
the Netherlands stretches from Zeeuws-Vlaanderen up to Rottermerplaat and covers around 432 km. This
coastline is typically divided into three districts with specific morphological features. From South to North,
The South-West Delta, a large river delta that originates from the interaction between the North Sea and the
outlets of the Meuse, Rhine and Scheldt rivers. The Holland Coast, a wave-dominated area with a few natural
disruptions. About 60% of the primary sea-defense consists of dunes with a grain size of fine to coarse sands.
In general, these dunes are fronted with a sub-aerial beach and a shallow foreshore.

Due to the low elevation and arising storm conditions, the Dutch hinterland is vulnerable to flooding. About
50% The Dutch hinterland, protected by these dune systems, is elevated below mean sea level. The poten-
tial hazard arising during floods are of enormous scales and bring along catastrophic consequences. Next to
that, the system should provide enough robustness to withstand extreme storm conditions. These conditions
come with an increase of the intensity of hydrodynamics (e.g. water level and wave height). These hydrody-
namics can lead to erosion of the beach and especially dunes. This dune erosion (Figure 1.1) is an important
aspect in the primary defense system and requires accurate warning system to forecast extreme conditions
and consequential morphological changes.

Throughout the years, several methods have been developed to accurately predict dune erosion volumes.
Currently, Rijkswaterstaat (RWS) is using a process-based model (XBeach) to predict dune erosion. These
predictions are used to do safety assessments of the coast. While post-storm profile predictions with XBeach
are accurate, they require a lot of computational effort for large areas.

1



1.2. Problem statement 2

Figure 1.1: Schematic illustration of dune erosion at a sandy coast (Flanders Marine Institute, 2022).

To reduce computational efforts, surrogate models have been developed for dune erosion prediction. A sur-
rogate model, a model from a model, can be used to describe the relationship between the input and output
of a simulation model. This technique can reduce the computational time of a dune erosion prediction sig-
nificantly (Athanasiou et al., 2022) and allows for a more in-depth exploration of uncertainty.

1.2. Problem statement
The state of art surrogate models for dune erosion provide a prediction of a morphological indicator based on
a parameterized input and output. While skillful predictions can be made for distinct indicators, this limits
the applicability of the surrogate model for other purposes. It would be favourable if the prediction of the
post-storm dune response is not limited to a single indicator. This allows for more flexibility for the end-user
of the model output and a wider range of post-processing possibilities. Therefore, a desired model is able
to deal with spatial input and the prediction of actual shape of the post-storm sandy profiles. Gharagozlou
et al. (2022) was able to make predictions of profile shapes using parameterized input (principal component
analyses) and output (power-law function). While predicting the shape, still, pre-processing efforts were
needed to reduce the dimensionality of the data. This research aims to limit the parameterization of the
input- and output shapes, such that actual pre- and post-storm elevation points can be used.

1.3. Objectives and Research Questions
Based on the problem statement defined above, a research objective is formulated. This objective intends to
describe the general purpose of this research and is supported by several sub-objectives. Each (sub-)objective
is backed up by a research question.

Main objective
The main objective of this research can be formulated as: Enabling fast prediction of actual post-storm
sandy profiles along the Holland Coast using neural networks and XBeach. State of art surrogate models
are able to predict morphological indicators or parameterized input, but do not utilize the actual bed eleva-
tion points and profile shapes. Thus, this research explores the use of neural networks to set-up surrogate
model and describe the relationship between modelled pre-storm and post-strom profiles. This method al-
lows for faster prediction than process-based models.

Sub-objectives
Driving mechanisms of Dune Erosion

Before surrogate modelling steps are taken, the processes captured in the issued synthetic dataset should be
properly understood. This synthetic dataset is supplied by the simulation model, the content of this dataset
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is of great importance. For this research, these data are supplied by the process-based model XBeach and
will include several pre- and post-storm profiles. To judge whether surrogate models would be able to predict
post-storm profiles and understand the dune erosion processes, the synthetic dataset is deliberately simpli-
fied to reduce its complexity. As a result, the pre-storm shape features in the input profiles can be isolated
and analyzed independently. The modelled morphological response of the dune with XBeach is derived from
the corresponding post-storm profiles. The shape features in the pre-storm profiles are characterized by the
slope of different profile sections and the morphological response of the dune is quantified using the dune
erosion volume (DEV). This is captured in the sub-objective: obtain an understanding of the effects of dif-
ferent simplified pre-storm sandy profiles shapes on post-storm eroded dune profiles.

Surrogate modelling

The input of the surrogate model originates from a synthetic dataset created with XBeach. This data should be
pre-processed such that it is suitable and fits the neural network structure. Several neural network structures
and set of hyperparameters can be applied for surrogate modelling. Each has its possibilities and limitations
with respect to data processing and learning efficiency. This research attempts to develop a neural network
structure that is able predict post-storm profile shapes for a simplified set of synthetic pre-storm input
profiles and stationary storm conditions. Besides that, a suitable standard performance metric should be
developed to evaluate several surrogate modelling alternatives.
Upscaling

After exploring the possibilities to predict post-storm profile shapes, the question arises whether the obtained
insights can also scale-up to a realistic situation. This can be achieved by adjusting both the training and test
data to a more adequate representation of the Holland Coast. Results obtained in the exploration phase of
this research are evaluated for this realistic scenario. Therefore, this research attempts to scale up findings
from simplified post-storm profiles to a realistic situation, covering a wider range of profile types repre-
senting the Holland Coast..

Research questions
All sub-objectives are provided with a single or multiple research question(s).

Driving mechanisms of Dune Erosion

1. What response in dune erosion volumes is found in the post-storm profiles as a result of slope changes of
sandy pre-storm profiles using a simplified dataset and XBeach?

Surrogate modelling

2. What performance metrics can be used to evaluate surrogate modelling using neural networks for post-
storm profile shape prediction?

3. To what extent are pre-processing tools and neural networks able to make post-storm profile shape predic-
tions for a simplified dataset?

Upscaling

4. Can the neural network structure, obtained in the exploration phase, be scaled-up to predict post-storm
profile shapes of actual Holland Coast profile shapes?

1.4. General framework
The objectives formulated in section 1.3 involve aspects from both hydraulic and data engineering. Whereas
the context is predominantly hydraulic engineering related, the proposed challenge and solution come with
challenges regarding data engineering. The presented research framework has been set up to capture both
facets but originates from a hydraulic engineering perspective.
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Dealing with the challenge of developing new insight with respect to reducing computational efforts comes
with a lot of possibilities (numerical schemes, machine learning, accuracy requirements, etc.). However, in
this research, only the possibilities of dealing with this issue by applying surrogate modelling are explored. As
described in section 1.2, one of the main challenges arising in this field is the embedding of the post-storm
cross-shore profile in storm erosion surrogate modelling. To deal with this challenge, initially, the situation
is simplified. Through this simplified situation, solutions to deal with this issue would not be limited by the
complexity of the data, but mostly by the core of the issue itself. Once several neural network alternatives
are explored, more complexity is introduced by considering a more realistic and wider range of profiles. This
should bring the modelled situation closer to reality.

The term "machine learning techniques" is very broad. To specify, this research focuses on applying neural
networks to set-up a surrogate model. This builds upon the work carried out by Athanasiou et al. (2022).

The general framework of this research is conceptually illustrated on the next page in Figure 1.2. The work-
flow throughout this thesis consists of two phases: (1) Exploration- and (2) Upscaling phase.

The exploration phase aims to understand the surrogate model’s performance, identify any limitations, and
gain valuable insights into the relationship between the input data and the predicted outcomes. The explo-
ration phase is initiated by a literature study. This literature study consists of two main parts, storm erosion
and neural networks. Based on this literature study, an initial synthetic dataset will be set-up with XBeach.
This initial dataset represents a simplified situation of the Holland coast and will serve as a tool to explore sur-
rogate modelling possibilities. Several neural network architectures will be evaluated and the performance
of these techniques are assessed through different indicators. Based on these indicators, three steps can be
taken: (1) Evaluate the neural network structure, (2) evaluate the training data or (3) proceed to the upscaling
phase.

Upscaling involves extending the model’s capabilities to handle larger and more diverse datasets. In general,
the data which the surrogate model is trained on is scaled-up to a realistic scenario. This includes a better rep-
resentation of the alongshore variability found a the Holland Coast. As the complexity of the dataset increases,
the performance of the established U-Net structure may vary. The upscaling phase provides an opportunity
to evaluate the model’s scalability, robustness, and ability to handle increased variability and complexity in
the input data.
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Figure 1.2: Flowchart of the general research framework indicating the two phases of the research. Different colours highlight the varying aspects of each phase and the arrows capture the direction of the
flow.



2
Literature review

2.1. Dune Erosion Modelling
2.1.1. Cross-shore profile
Before getting into the processes of storm erosion, some definitions are introduced. These definitions typ-
ically relate to the characteristics of a cross-shore profile that are used in this research. Figure 2.1 shows a
typical cross-shore profile in a dune system along with several characteristics. From sea to land, the profile
can be subdivided in the nearshore, inter-tidal area, beach and dune. This section defines these sections.

• Nearshore - The nearshore starts at the depth of closure (DoC) and ends at mean sea level (MSL). The
DoC is defined as the deepest elevation for which sediment transport is still dominated by surface
waves.

• Inter-tidal area - The inter-tidal area is bounded by the mean low water and mean high water. These
are the lowest and highest elevation reached by the tide.

• Beach - The beach is the first dry section that can be found on the cross-shore profile. This section starts
at MHW and ends at the dune toe. In normal, no storm, conditions, this profile section is not reached
by the water.

• Dune - The dune starts at the dune toe and proceeds towards the hinterland. The dune crest is the
highest point found in this area and (together with the dune toe) bounds the duneface.

Figure 2.1: Schematization of a typical cross-shore profile at the Holland Coast. Different colours indicate the different profile sections
along the profile.
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2.1. Dune Erosion Modelling 7

2.1.2. Storm erosion
Coastal erosion processes can be characterized based on several temporal and spatial scales. The scope of this
research is spatially bounded by the 1D cross-shore domain along the Dutch coast and considers the storm
timescale (several hours/days). This section elaborates on these boundaries and discussed the involved pro-
cesses.

In general, looking at the impact of a storm on a sandy coast, one finds a seaward transport of sediment and
complementary a retreat of the coastline. An undertow current, caused by waves reaching the beach and/or
dunes, in combination with the high suspended sediment concentration near the dune facilitates a large sed-
iment transport capacity (Bosboom & Stive, 2021). As these waves are damped through bed friction, both
the beach width and the storm surge level are found the be important parameters when considering coastal
erosion (Bosboom & Stive, 2021). The net sediment loss can be captured in several morphological parame-
ters such as the reduction of beach width, migration of the coastline and changes in beach volume. During
storms, waves and currents cause sediment to be displaced in alongshore direction (Bosboom & Stive, 2021)).
These, however, will not be taken into account for this 1D model study. Storm clusters, a sequence of several
storms, can also result in (additional) coastal erosion events compared to a single storm. (Karunarathna et al.,
2014).

Ruessink and Jeuken (2002) carried out data analyses to find trends in dunefoot dynamics along the Dutch
Coast. Using the JarKus dataset, the importance of the pre-storm beach width and storm surge-level for
dunefoot position were confirmed. Beuzen et al. (2019) carried out a study to identify controls of variability
in storm erosion along the Australian coast. A dataset of laser measurements over 1700 cross-shore profiles
enabled a data-driven Bayesian analysis to identify relationships between several morphological and hydro-
dynamic variables. Again, for dune erosion, the most important control variables were found to be wave
height, beach width and wave run-up.

As for alongshore uniform coastlines, dune erosion is majorly caused by cross-shore processes, assessment
of the storm impact can be done in 2D reference frame. A typical cross-shore pre- and post-storm profile as
defined by Vellinga (1982) is depicted in Figure 2.2.

Figure 2.2: Typical pre- and post-storm profile shape as presented by Vellinga (1982)

This figure shows the bed level elevation (y) over the cross-shore distance (x). The mean sea level and surge
level during storm conditions are illustrated as horizontal lines. In this case, the seaward transport of sedi-
ment results in erosion of the dune and deposition of sediment at the nearshore. As shown in the figure, the
post-storm profile picks up at the toe of the dune (x = 0, y = 0) and continues in a uniform erosion profile. The
mathematical expression (Equation 2.1) of this profile was derived by (physical) modelling attempts.

y = 0.415(x +4.5)0.5 −0.88 (2.1)
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This relatively simple equilibrium approach (commonly referred to as the Duros model), was supplemented
with additional variables on the significant wave height, wave peak period and grain size (Duros+) ((van Thiel
de Vries et al., 2008)). Using this method, a post-storm profile can be obtained.

Profile adjustment schemes and critical slopes used in process-based models (see subsection 2.1.3) are in line
with these expressions and show comparable geometrical features (Roelvink et al., 2009).

Sallenger (2000) developed a scale to categorize storms based on hydro/morphological impact. Recognizing
several morphological developments as a result of the elevation of the water level with respect to the impacted
beach profiles, four separate regimes can be distinguished:

• Swash regime

During the swash regime, wave run up does not reach the toe of the dune (Rhi g h < Dlow ) and is lim-
ited to the berm and beach face. As the dunes remain untouched by the hydrodynamic condition, the
sediment transport is limited to the lower sub-aerial beach. As stated by Sallenger (2000), this can be
compared to a typical winter storm with expected storm erosion on the foreshore and complete post
storm recovery.

• Collision regime

During the collision regime, wave run up exceeds the level of the dune toe and reaches the base of the
dune (Dlow < Rhi g h < Dhi g h). In addition to the transport the transport processes described for the
swash regime, this level of impact results in a net transport of sediment from the dune to the foreshore
(dune erosion). This sediment does not typically return to the re-established dune.

• Overwash regime

During the overwash regime, wave run-up exceeds the dune crest (Rhi g h > Dhi g h). Overtopping and
overwash of the dune top, results in placement of sediment over the top of the dune to a more landward
position. In general, this regimes comes with a net landward migration of the coastline and a substan-
tial loss of sediment.

• Inundation regime

During the inundation regime, the dune system is fully submerged during the lowest surge (Rlow >
Dhi g h . This results in breaching of the dune system and complete denudation of the beaches form
sand.

Figure 2.3: Storm impact regimes as defined by Sallenger, (2000), retrieved from Castelle and Harley (2020)

These regime are schematically illustrated in Figure 2.3. For the dune systems along Dutch coast, the swash
and collision regime are most likely to occur during extreme storm conditions. Therefore, the processes in-
volved in these regimes are studied in more detailed and are assumed to be dominant for the modelled sedi-
ment transport patterns.

During the collision regime, dune erosion is observed. According to experimental and mathematical mod-
elling research carried out by van Rijn 2009, the dominant driving mechanisms for dune erosion are:
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• The direct wave impact forces that act at a steep dune face. Generating high bed-shear stresses and
erosion of the sediment.

• Unbounded long waves that are able to penetrate further up the cross-shore profile and reach the dune
toe.

• Increased turbulence due to wave collision of incoming breaking waves and reflected broken waves

• Sliding of the duneface, known as avalanching, due to of the exceeding of critical bed slopes.

2.1.3. Modelling storm erosion
This section discusses the model that is currently used for strom erosion assessments along the Dutch coast.
After a generic introduction of the model flow, input and output parameters, the limitations will be high-
lighted and put into perspective of this research scope.

Initiated by USACE-ERDC after devastating effects of hurricanes along coastal areas, the eXtreme Beach be-
haviour (XBeach) model has been developed (Roelvink et al., 2009). XBeach allows for the modelling of
nearshore response of sandy coasts to extreme conditions. Since its development in 2009, the open-source
model has become widely used for coasts assessments around the globe. The model is suitable for all storm
regimes as defined by Sallenger (2000).

XBeach is a process-based model, meaning that it is the mathematical representation of several processes
characterizing the storm induced erosion. Within XBeach, the wave propagating and the flow field are solved
numerically. Allowing for examination of more complex coastal systems and the temporal behaviour of this
system over time. A coupled sediment balance equation is used to compute concentrations, resulting bed
level changes and bathymetry updates. The workflow of XBeach is illustrated below in Figure 2.4. All pro-
cesses are incorporated separately, this makes it possible to study the effect and importance of single process
on the total beach behaviour. All processes (waves, flow and sediment transport) are all computed online in
a loop through time. The model loop starts with a bathymetry (bed elevation). Next, the hydrodynamics are
computed, first the wave propagation in the domain is solved and subsequently the waves, tidal forcing and
wind are used to generate currents and waterlevel variations by using the non linear shallow water equations.
From the computed wave and flow field we can compute the sediment transport. Gradients in the sediment
transport as a result of the deviation from the equilibrium concentrations give bottom change, which then
can be used to update the bottom. This updated bottom morphology is provided to subsequent model loop
as the new bathymetry.

Figure 2.4: A schematic representation of the XBeach model set-up

For this research, the storm induced changes of the elevation profiles are of great interest. Therefore, the
method used in XBeach to model these profile changes in a 1D environment is described more extensively.

Gradients in the sediment transport (δqx
δx ) are obtained through the depth-averaged advection diffusion equa-

tion and using the formulation of Soulsby and van Rijn for the sediment transport formulations. Such that
the sediment transport rates in a 1D situation are given by:

q(x, t ) = ∂hCuE

∂x
+ ∂

∂x

(
Dhh

∂C

∂x

)
(2.2)

The gradient in sediment transport rates obtained through this sediment transport formulations is used in
the bed updating scheme. This scheme is based on continuity and uses the porosity (p) and morphological
acceleration factor ( fmor ) to update the bed level elevation (zb):



2.1. Dune Erosion Modelling 10

∂zb

∂t
= − fmor

1−p

(∂qx

∂x

)
= 0 (2.3)

This formulation would be sufficient to describe bed elevation changes. However, within dune erosion pro-
cesses, avalanching (the slumping of sandy material when it becomes wet) is an important process. XBeach
solves this issue by locally looking at the slope of the profile and imposing a critical bed slope angle. Consis-
tent with the equilibrium profiles according to Vellinga (1982), this critical slope value is set on 1 (dry) and
0.15 (wet). ∣∣∣∣∂zb

∂x

∣∣∣∣> mcr (2.4)

This process is triggered as soon as infra gravity waves (long waves) reach the dune front. Exceedance of the
critical slope between two grid cells results in an exchange of sediment between the two cells to bring the
slope back to the critical slope. In the subsequent step, this might cause a chain reaction to higher up the
slope, such that sand is slumped from the full dunefront. This slumped sand is transported further seaward
by currents and waves.

XBeach takes pre-storm elevation and hydrodynamic boundary conditions as input and returns elevation
and hydrodynamic conditions during the storm. All these parameters are described extensively in the XBeach
user manual (Roelvink et al., 2010). In this section the input and output are described qualitatively and the
relevance for this research is considered. Bluntly, the input of XBeach consists of three main components: (1)
Initial conditions, which describe the wave and flow conditions which the beach is exposed to, (2) boundary
conditions that capture the bathymetry and sediment characteristics of the beach and (3) model parameteri-
zation coefficients. Within the 1D mode of XBeach, the input profile is defined as a set of elevation datapoints
with respect to MSL (zb) over a cross-shore distance (x). The output of the XBeach model is the evolution of
the elevation profile and water surface over time. Through further analyses of this output, several morpho-
logical parameters such as the dune erosion volume (DEV) and beach width can be obtained. A typical pre-
and post storm profile are shown in Figure 2.5. As you can see, the modelled profiles show resemblance to
the profiles defined by Vellinga (1982) (Figure 2.2). The post-storm shape is at its steepest at the dune and
flattens out towards MSL.

Figure 2.5: Example of a 1D XBeach profile. The initial (black) and post-storm (dotted) profile are illustrated. The blue line represents
the mean sea level

XBeach enables the robust and physics based assessment of the impact extreme storm conditions on sandy
coasts. Verification of XBeach with several field tests and real life observations confirmed the adequate per-
formance of the model. Naturally, numerical modelling introduces several errors by means of truncation,
roundoff and measurements (Zijlema, 2011). These introduced errors can be accounted for through cali-
bration and be taken into account when assessing the impact of the storm. However, the introduced error
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is usually a trade-off between accuracy (reducing the error) and computational effort. Consequently, high
fidelity numerical models come with large computational effort.

2.1.4. Surrogate models
This section briefly describes the general definition of a surrogate model. Subsequently, the recent develop-
ments of surrogate modelling in coastal/hydraulic engineering in considered. The developments on storm
erosion and profile adjustments are discussed in more detail.

A surrogate model can briefly be described as "a model of a model" and is a framework that allows for the
bypass of large computational efforts that are needed for the original model. A surrogate model describes
the relationship between inputs (i.e., model’s adjustable parameters) and outputs (i.e., the predictor of the
model). Surrogate modeling techniques are especially interesting for engineering purposes when computa-
tionally expensive numerical models are used (e.g. Computation Fluid Dynamics (CFD) or Computational
Structural Dynamics (CSD)). In order to train an accurate data-driven surrogate model, adequate input and
output data is required. This data is obtained by running the simulation model with different sets of parame-
ters selected in the feasible parameter space. When referring to a surrogate model in this research, the same
definition applies for response surface model, meta-model and emulator. A generic framework of a surrogate
model is illustrated in Figure 2.6.

Figure 2.6: Schematic framework of a surrogate model. First the adjustable parameters are defined, secondly the simulation model is
run with these parameters. The input and output of these runs is split into training and validation data. The training data is used for the

surrogate model to train. During training, the model is validated with the validation data. After training, the skill of the model is
assessed with test data. When the skill is not conforming to the pre-defined requirements, the parameter space and/or surrogate model

learning technique is adjusted.

Several surrogate modelling techniques can be used to connect the input to the output of the simulation
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model. Well-known techniques are: Response Surface Model (RSM), Kriging, Radial Basis Functions (RBF),
Multiple Linear Regression Model (MLRM). However, to proceed on findings by Athanasiou et al. and to be
able to deal with non-linearity’s, this research we will initially focus on artificial neural networks to be applied
for surrogate modelling. Artificial Neural networks come in different forms, but are essentially a network of
connected nodes that is based on the functionalities of the brain. Nodes are interconnected between layers
and can be activated through an activation function.

The following subjects have already been studied by using ANN in the field of coastal and hydraulic engineer-
ing: beach seasonal changes (Hashemi et al., 2010), longshore sediment transport (Kabiri-Samani et al., 2011),
sandbar characteristics (Kim et al., 2015) and (López et al., 2017), storm surge (Kim et al., 2015) and (Jia et al.,
2016), sater resources (Razavi et al., 2012), overtopping (van Gent et al., 2007), (Verhaeghe et al., 2008) and
(Chondros et al., 2021), dike breaching (Nourani et al., 2012), (Bomers, 2021) and (Serda et al., 2022).

Surrogate modelling for storm erosion processes
Santos et al. 2019 attempts to develop a meta-model for dune erosive processes. To explore possibilities to
account for this geometrical erosion variable, this article presents several statistical models (MLRM, MARS)
and machine learning tools (ANN, Random Forests) to develop a meta-model for Dauphin Island (USA). The
morphodynamics is modelled using the triangular approach to describe the storm’s temporal behaviour and
the input variables consisting of 100 parameterized synthetic storms (ηN T RF , ηA , Hs , TP , θ, and D (duration).
Although the transects are considered independent, the 2-D of XBeach was used for this meta-model to ac-
count for the alongshore processes.

Crest height of both the primary and highest dune is used as a metric to assess the model’s performance
compared to XBeach. Some major findings in the research:

• ANN and MARS are the best-performing learning algorithms.

• Due to larger dynamics, the characteristics of the post-storm primary dune were harder to model than
the highest dune.

• The best performance is achieved for dune toe elevation, dune crest elevation, area, and barrier island
width.

• Changes in dune base and crest position are poorly predicted by the surrogate models.

• It was found that all meta-models overpredict erosion during events with small erosive potential, lead-
ing to worse results for both swash and collision regimes. Although changes in dune geometry are not
that likely during these low-energy regimes, the model predicted a small morphological change.

It should be noted that the research carried out by Santos et al. (2019) was located in an area with other storm
impact regimes. At Dauphin Island, the overwash and inundation regimes are more likely to occur than at
the Dutch coast.

As described above, the model used by Santos et al. (2019) only used hydrodynamic input variables. Athana-
siou et al. (2022) attempts to also include the pre-storm profile characteristics as input for the surrogate model
to compute dune erosion volumes (DEV). The region considered in this article spans the total Dutch coast.
To reduce computational effort of the 1-D XBeach model, 100 typical coastal profiles (TCPs) were created
by using clustering techniques (Athanasiou et al., 2021). The profiles were parameterized through 10 mor-
phological variables, such as dune volume, beach width and nearshore slope. 100 storms per profile were
set-up to create a total of 10.000 XBeach runs that could be used as a training and validation dataset for the
meta-model. For input of the model, the storm conditions were parameterized through Hs (significant wave
height), Tp (peak wave period), SSL (sea surface elevation) and D (duration).

As Artificial Neural Networks (ANN) showed great potential to predict geometric erosion variables (Santos
et al., 2019), this machine learning tool was also used for this meta-model. In total, the ANN consists of 14
input variables (10 morphological and 4 hydrodynamic), 2 hidden layers and one output layer. Two different
ANNs were developed, one classification ANN to determine whether there would be any erosion at all (DEV =
0 or DEV > 0) and one regression ANN to quantify the DEV.
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With an accuracy of 94%, the classification ANN to identify dune erosion performed properly. While adding
more layers (deeper) did not result in a great increase of the performance, adding extra nodes in the layer
(wider) did have a positive impact. Eventually, after several computations, a structure of 2 hidden layers with
32 neurons each turned out to be most efficient. For the regression ANN, a more complex structure with a
higher number of neurons was required. Therefore, a regression ANN with 3 hidden layers and 32 neurons
was selected. This structure obtained an average skill score of 0.82.

The most important insights obtained by Athanasiou et al. (2022) can be summarized as followed: (1) By ap-
plying the permutation importance approach, is was found that the pre-storm beach characteristics (volume,
slope and width) is the most important input variable for predicting the DEV. This highlights the importance
of the buffer services of the beach fronting the dune. Important hydrodynamic variables for dune erosion
according to this technique are the SSL, TP and D . This is in line with the understanding that the wave run-
up above the dune toe and beach width are the most important drivers of observed dune erosion variability
during a single storm (Beuzen et al., 2019). Unexpectedly, the significant wave height (Hs ) has a small contri-
bution to the predicted DEV. A possible explanation for the small significance of this variable is the possible
correlation to other input variables (such as Tp ). (2) The obtained skill level of the ANN can also be reached
with half of the 10.000 scenarios that were included in this dataset. This could reduce the computational time
that was used to develop the dataset.

Limitations of the meta-model described in this article touched upon the predictive capabilities and upscal-
ing of the meta-model. In case of a meta-model, this capacity is greatly determined by the quality the syn-
thetic data created with the numerical model. Within this numerical model, certain assumptions and simpli-
fications have to be made to reduce the computational effort. These assumptions and simplifications include
shore normal incident waves (no obliquity), simplification of storm input parameters and triangular storm
evolution over time.

Concluding the article, the authors touch upon the applicability of the model and suggest that other erosion
indicators could be studied as possible predictors/impact indicators in the meta-model. Using the full pre-
storm and post-storm profile as input and output of the model could capture a variety of erosion indicators
with a single model.

Post-storm beach profile shapes
Gharagozlou et al. (2022) is the first to develop a surrogate model to predict the actual post-storm profile
shapes. Synthetic data created with 2D XBeach simulations spanning a total 18 km along the coastline of
North Carolina and 1250 storm scenarios were used to collect beach profile changes for 105 different transect.
The profiles were described using 9 empirical orthogonal functions (EOFs) obtained through Principal Com-
ponent Analysis (PCA), catching 97 percent of the total variance of the considered profiles. The simulated
sequential storms were described by 5 parameters (η, MSL, duration, Hs , Tp , θ). A simplified shape, defined
by a power function (z = A ·xB ) and the scarp distance (Ds ), was used to describe the post-storm profile. The
input (9 EOFs and 6 storm parameters) and output (A, B and Ds ) were used the train ANN.

The surrogate model was trained with 700 storm events and, compared to XBeach, could predict the dune
erosion volumes quite accurately (average error of about 11%). More importantly, the developed emulator
can account for pre- and post-storm beach profile changes in the subaerial beach and dune profile. The me-
dian absolute percent errors across the 105 considered profiles was 17.6%. Errors are largest because of the
assumptions that are made in the process-based model. Other contributions to the observed errors are (1)
the triangular distribution of the storm, (2) EOF parametrization and (3) the quality of the training.

Gharagozlou et al. (2022) is the first to attempt usage of the continuous elevation data of pre-storm profile
and post-storm. By parametrization of the profile shape through pre- and post-processing efforts (EOF and
power law function), it is possible to develop a surrogate for beach and profile shapes. It should be noted that
the considered profiles are very different from the Dutch Coast and storm regimes are more extreme.

Setting up a surrogate model/meta-model is a balancing act between solving the involved complexities and
preventing error development. Generally, an ANN is trained more efficiently when the amount of output pa-
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rameters is reduced. However, an increase in the number of parameters would increase the applicability of
the model. Gharagozlou et al. (2022) attempted to explore this aspect of surrogate modelling by varying in
predicted output variables.

This showed that solely predicting the loss in dune volume (1 variable) comes with a greater predictive skill
of the model than for three geometric variables. This one-dimensional framework for the output is similar to
the meta-model set up by Athanasiou et al. (2022). As stated in the article: "Although a direct prediction of
DEV is useful, it does not preserve the exact shape of the beach, preventing any prediction of where that volume
is lost along the profile and the associated geomorphic insights". Showing the need for a multi-dimensional
output framework.

Two other models were proposed. An emulator with (1) 9 EOF output variables for profile description. This
model performed relatively poor compared to the one and three-variable output models. This can possibly
be explained by the characteristics of the training dataset, containing little information on the sharp scarp
features that are present after some storms. Next to that, (2) 220 parameters for the elevation at all cross-
shore locations were used as output variables. While overall model skill was comparable to the three-variable
model, a detailed analysis of several results shows that the skill for single transects is far less for a 220-variable
model. This is shown by using the absolute error as an indicator, which resulted in a lower skill score (0.88)
for the 220-variable model. Finally, this article stresses the importance of direct simulation of elevation and
clustering techniques to create a surrogate model for specific event characteristics.
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2.2. Neural Networks
2.2.1. General
The concept of neural networks originates from the connection and interaction between neurons in the brain.
This connection was introduced in mathematics by McCulloch and Pitts (1943) in "A Logical Calculus Of The
Ideas Immanent in Nervous Activity". In this paper, the nervous activity is treated by means of proportional
logic, which allows for the conversion of continuous input to discrete output. This concept and its resem-
blance to a neural node are illustrated in Figure 2.7. The complex decision process in the brain (continu-
ous) is explained by using a linear threshold gate. This McCulloch-Pitts neuron takes inputs and calculates
the weighted sum, resulting in either an 0 or 1 as output. Donald Hebb (1949) build upon this idea in his
book "The Organization of Behaviour", by proposing that neural nodes are strengthened over successive use.
These two concepts, (1) Threshold Logic and (2) Hebbian Learning are considered the precursors to Neural
Networks.

Figure 2.7: Computational illustration of neural node as described by McCulloch and Pitts (1943)

Figure 2.7 displays a single neuron with several weighted inputs and a single output (ŷ). This individual neu-
ron is still the main component of all neural networks. The sum of all weighted inputs is calculated through:(

n∑
i=1

Wi j Ii

)
+b j

where n is number of layers in the previous layer, Wi j is the weight of the connection between the ith neuron
of the previous layer and the jth in the current layer. Ii represents the input of the previous layer and b j the
bias of the current layer. The trainable parameters in this weighted sum are the weight (W ) and bias (b). This
weighted sum is inputted in a activation function ( f ). Mathematically this can be described such that:

ŷ = f

((
n∑

i=1
Wi j Ii

)
+b j

)
This formulation of ŷ describes a forward pass for a single neuron. The activation function ( f ) can be chosen
based on the task at hand. Common activation function used in the field of machine learning (tanh, ReLU,
Sigmoid and Linear) are depicted below.
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Figure 2.8: Common activation functions used in forward pass within neural network retrieved from
machine-learning.paperspace.com, 2020

Frank Rosenblatt (1958), for his study on fly behaviour of flies, worked on the first network (Mark I Percep-
tron) for which the weights could be learned by successively passing inputs into the system and minimizing
the difference between desired and actual output. This knowledge was put into practice by Bernard Widrow
and Marcian E. Hoff (1962) for noise elimination in phone lines. The proposed ADALINE neuron, consists of
a set of variable weights, a threshold and adaptation machinery for automatically adjusting its weights. It has
analytically and empirically been demonstrated that a single ADALINE can be trained to recognize geomet-
ric patterns, perform logical functions, and store digital information to eliminate noise in phone lines. This
experiment showed proofs of convergence of the learning processes and derivations of learning rates have
been made.

However, as addressed by Minsky and Papert (1969), a single neuron cannot learn a simple but non-linear
exclusive or circuit (XOR). This limitation and others criticism on neural networks was documented in "Per-
ceptrons" and was the beginning of a period referred to as "the AI winter". During this period, little to no new
research was carried out in the field of Neural Networks.

In 1982 (!) the neural network community started building again. In his PhD. thesis, Paul Werbos (1994),
showed the potential of backward propagation for artificial neural networks. Backward propagation along
with gradient descent forms the backbone and powerhouse of neural networks. While Gradient Descent
constantly updates and moves the weights and bias towards the minimum of the cost function, backward
propagation evaluates the gradient of the cost w.r.t. weights and biases in the previous output layer. The
magnitude and direction of this derivative are used by gradient descent to evaluate the size and direction
of the corrections to weights and bias parameters. With respect to the original concept of neural networks
(forward propagation), which allows for the flow of information from input to output, backward propagation
allows for flow in the opposite direction. Through forward propagation, a prediction of variable (ŷ) is made.
The loss compared to the actual value of this variable (y) is captured in a cost function (E). This is defined as:

E(Θ) = 1

m

∑
L(y, ŷ)
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m is defined as the number of training samples and L is the loss sustained by between y and ŷ . The objective
is to minimize the cost E . This is achieved by differentiating E with respect to the parameters and adjusting
the parameters in the opposite direction of the computed gradient. This optimization effort is described as
gradient descent. The loss function L can be picked based on the task at hand. For regression tasks, the Mean
Squared Error (MSE) is a commonly used loss function. For a single training sample (m = 1), the cost function
will resemble this:

E(Θ) = (y − ŷ)2

The weight and biases within the network are updated with a certain learning rate (ϵ) through the scheme:

wt+1 = wt −ϵ
∂E(Θ)

∂w

bt+1 = bt −ϵ
∂E(Θ)

∂b

These update schemes require the computation of the derivatives of the current layer with respect to the
previous layer. To do so, the concept of chain rule differentiation is used. For a weight (j) in a neural network
this would appear in this form:

∂E

∂w2
i j

= ∂E

∂ŷ

∂ŷ

z2
i

∂z2
i

∂w2
i j

The principle of gradient descent is illustrated for a 2D situation in Figure 2.9. To determine the quantity
and direction of the gradient descent for each dot, backward propagation is continuously carried out in every
single black dot. After several iterations, the solution will converge towards a local minimum. There are
several types of gradient descent algorithms. These mainly differ in the data handling procedure before the
gradient is obtained.

Figure 2.9: A visualization of the gradient descent towards a minimum. The magnitude and direction of the derivative at each point are
calculated with backward propagation retrieved from machine-learning.paperspace.com, 2020

In the state of art neural networks, gradient descent has become a basic type of optimization procedure. More
advanced schemes such as the Momentum, Nesterov Accelerated Gradient, Adagrad and Adam have been
developed over the last years. These optimizers use addition characteristics, such as second-order derivative
and momentum of the loss function to find the appropriate minimum.
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Zooming out, there are two main types of machine learning; (1) supervised and (2) unsupervised learning.
These types of learning can be distinguished by the type of data that is provided to the neural network. For
supervised learning, the provided data contains both the input and the required output (labels). The goal
of supervised learning is to learn the network that, given a sample of data and desired outputs, best approx-
imates the relationship between input and labels provided by the data. For unsupervised learning, there is
no prior knowledge about the outcome of the learning process. The data consists solely of input variables,
without labels. This data can be clustered or explained by using machine learning techniques.

2.2.2. Convolutional Neural Networks
Essentially, neural networks assume linear independence of input features and low resolution of the input
space. For parameterized input, these assumptions are generally met. However, for raw input data such as
images, audio, timeseries and text these requirements are not accommodated. Convolutional neural net-
works (CNN) are a type of neural network which are specifically designed to deal with these kind of data.
While the input features can not be assumed independent in these can of data, the features extracted by the
CNN can. CNN can extract features from the data and decrease the dimensionality.

Introduced as a promising network structure (LeNet-5) for standard handwritten digit recognition tasks by
Lecun et al. (1998), CNNs showed great skill in dealing with pattern recognition for several other applica-
tions. The convolutional layers applied in these networks, find their origins in the field of computer vision.
In computer vision, a set of weights (filter) is systematically multiplied with the input by taking the dot prod-
uct. While shifting the filter over the two-dimensional input, the output of this dot product (scalar product)
is stored in the next layer (feature map). The filter is designed to detect a specific type of feature in the input,
such that the application of that filter systematically across the entire input image allows the filter an oppor-
tunity to discover that feature anywhere in the image. This concept to discover features in a 2D input layer is
schematized in Figure 2.10 and is also applied in CNNs.

Figure 2.10: Schematized principle of computer vision and convolution

The filter is smaller than the input data and the type of multiplication applied between a filter-sized patch of
the input and the filter is a dot product. A dot product is an element-wise multiplication between the filter-
sized patch of the input and filter, which is then summed, always resulting in a single value. Because it results
in a single value, the operation is often referred to as the scalar product. A typical dot product operation is
depicted in Figure 2.11.

Using a smaller filter layer then the input matrix, allows for the shifting of the filter layer over the input matrix.
By systematically carrying out his act and calculating the dot product, patterns and characteristics within
the input layer can be signalized and/or adjusted. This capability is known as the translation invariance (the
general interest in whether the feature is present rather than where it was present). This makes the systematic
application of the same filter across an image a powerful concept. Common operations in computer vision
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are the sharpening, blurring and detection of edges of images.

Figure 2.11: Typical dot product operation that is the base of every convolution. The kernel is systematically shifted over the input and
multiplied with the values covered by the filter.

This operation is frequently used in convolutional neural networks to deal with 2D input and detect patterns
within this input. Patterns regularly present in the input layer can be detected with filters and result in higher
translation invariance after performing a computer vision operation. To make the process of pattern recogni-
tion more striking and efficient, pooling layers are applied to synthesize the "most important" patterns that
are found in the image. In practice, this results in the downscaling the dimensions of the feature maps, which
accelerates the performance of the neural network. A frequently used type of pooling is the max pooling tech-
nique, a technique that computes the largest value in a patch of the considered matrix. This can be illustrated
in matrix form (Figure 2.12). The max pooling operation does not need any assigned weights, but solely ap-
plies an aggregation function. Although information about certain patches of the matrix might get lost, the
pooling layer can significantly reduce the computational load and limits the risk of overfitting.

Figure 2.12: Maximum pooling operation to reduce the size of the input. Each colour represents a different patch.

Other tools to either avoid or promote downsampling of the input data are padding and striding. With
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padding, the boundaries of the input data are supplied with artificial data (zeros), to avoid loss of information.
Adapting the stride of a convolutional operation, implies that the shifting of the filter over the input layer is
done with less detail. With a larger stride, larger parts of the input data are skipped between two successive
dot products.

As discussed above, computer vision is an interesting tool to detect patterns in an input matrix. However, the
design of an appropriate filter layer for signalizing trends can be very time-consuming. Besides that, these
patterns will probably appear in different forms for different inputs. This makes a single filter layer unsuitable
for the detection of patterns in different input layers. This is where the potential of neural networks come in.

Essentially, the filter layer applied to the input matrix is a matrix of weights. These weights indicate whether
a certain pattern (described by the filter layer) is present in the input layer. However, before training a CNN,
the filters do "not know" which feature they should detect. The weights in the filters are chosen randomly
and trained through backpropagation. Through training, the set of weights is assigned to a filter. This set of
weights contains visual information of the input matrix.

Multiple filters can be applied to the same input matrix. All these filters can be trained by neural network
to a set of weights with their own feature maps and visual information. The amount of applied filters layers
determines the channel size of a convolutional layer. This channel size is considered as the "width" of a neu-
ral network. The depth of a CNN is determined by the number of convolutional layers present in the neural
network.

Originally, CNN was introduced for classification tasks. The convolutional layers were followed up by a fully
connected part which was able to make the classification of the image. This structure was also proposed by
Lecun et al. (1998) for digit recognition:

Figure 2.13: Original LeNet-5 structure as proposed by Lecun et al. (1998)

Throughout the depth of this network, the input layer is encoded and considered in more detail while los-
ing the spatial information. Hence, more is learned about the features (what) and information about the
locations (where) of these features is lost. This characteristic is easiest explained by means of an illustration
(Figure 2.14).
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Figure 2.14: Hierarchical structure simple CNN. Feature maps in deeper parts of NN detect more detailed features of the input.
Retrieved from Sun et al., 2021

As shown in the illustration, kernels in the deeper convolutional layers focus on detecting small-scale fea-
tures while kernels in the shallow convolutional layers focus on detecting large-scale features. As you travel
towards the deeper layers of the network, each pixel has more and more information about the input image
encoded in it. In this way, the structure of CNNs is described as hierarchical. The CNN uses this hierarchical
structure to learn information that is captured in the input layer. Weights in the filters in shallow parts of the
neural network are trained by the composition of deeper-level features.

Throughout the depth of a CNN, the receptive field of neurons increases. The receptive field is the region
of the input that a particular neuron or layer in a neural network "sees" or is influenced by. In CNNs, the
receptive field is determined by the size of the filters or kernels used in the convolutional layers and the stride.
The receptive field size is important because it determines the spatial context that a neuron can capture and
process. Neurons with small receptive fields focus on local details and low-level features, while neurons with
larger receptive fields capture more global patterns and high-level features.

When it comes down to activation function, CNNs require some specification. As introduced earlier, several
activation function can be applied within neural network (Figure 2.8). However, the sigmoidal functions such
as the tanh and sigmoid function both reach into the negative domain IR−. For unseen data, this would result
in negative contribution to the output of the network if feature turns out to be irrelevant. However, since we
assume independence between obtained features, a feature being irrelevant does not imply that other fea-
tures also less relevant. Therefor, it is preferable for CNN’s to use non-negative activation functions. Next to
that, ReLU requires less computational load since it only involves a comparison between its input and the
value 0 and it also has a derivative of either 0 or 1. This makes the gradient descent functions involved in the
backpropagation easier to compute.

When training a (convolutional) neural network, the parameters whose values control the learning process
are defined as the hyperparameters. The prefix hyper- indicates the more top-level character of these param-
eters. This includes parameters such as the earlier addressed learning rate in optimization algorithms, choice
of optimization algorithm, choice loss function, number layers, number of iterations (epochs), kernel or filter
size, pooling size and batch size (Nyuytiymbiy, 2020).

In the training procedure of a neural network, a dataset can splitted into a training and validation dataset.
Backward propagation, optimization and actual training of the model only takes place for the training data.
While, for each iteration, the established model parameters are also validated without being adjusted. This
validation helps to tune the model hyperparameters.
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When testing a model, the model is confronted with a dataset that is completely unknown. This is where a
judgement of the performance is carried out.

2.2.3. Image segmentation and CNN
The problem at hand described in chapter 1 requires the prediction of the post-storm profile shape, indicat-
ing that the requested outcome of the model has spatial features that describe the morphological changes of
the dune. As the input of XBeach is also a 1D profile (x,z), both the input and output of surrogate model have
the same reference frame. Looking into other applications of convolutional neural networks, the operation
of image segmentation shows similar requirements. Briefly, image segmentation is a function that takes an
image as input and produces a masked image as output. Through encoding of the image important features
are extracted. These features are decoded into the original image and presented in their original form. It can
be compared to a simple coloring page that your parents gave you as a child. Pixels with the same label will
get the same colour.

Figure 2.15: Segmentation applied on several types of medical images. From left to right: (a) dermoscopy, (b) electron microscope, (c)
histopathology, (d) MRI and (e) nuclei microscopy and corresponding segmented images. retrieved from GUDHE 2021

A well-known application of image segmentation is the identification of deformations in medical pictures.
Biomedical image segmentation takes a plain medical picture as input and produces an output image with a
highlighted deformation or hazardous tissue. This can help medics to diagnose patients and make trustwor-
thy judgements on their health. Typical biomedical image segmentation cases are presented in Figure 2.15.
The profile shape prediction task is from a similar nature. Based on a certain input (pre-storm profile), an
output in an identical reference frame (post-storm profile) should be predicted.

The encoding branch of the UNet architecture pursues the traditional structure of a convolutional neural
network. It consists of several blocks connected with max pooling layers (2x2 and stride = 2) to downsample
the input. Each individual block consists of two subsequent convolutional layers with a 3x3 filter and rectified
linear unit (ReLU). At each downsampling, the number of feature channels is doubled. The decoding branch
of the network consists of the same type of blocks as the encoding branch. However, to allow for upsampling,
the blocks are connected with transverse convolutional layers which decrease the number of feature channels
by half it’s size. After the upsampling, the resulting feature map is concatenated with the corresponding
feature map from the encoding branch (skip connection). At the final layer, a convolution layer with filter
size 1 is used to map each feature vector that originates from the network to the desired number of classes.
The number of blocks and channels considered in the network can differ, but the original network structure
as proposed by Ronneberger et al. (2015) has 23 convolutional layers. The symmetrical characteristics of
the network’s architecture shows similarities to the letter U, thus given the name: UNet. The original UNet-
structure proposed by Ronneberger et al. (2015) can be found in Figure 2.16.
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Figure 2.16: Proposed UNet-structure by Ronneberger et al. (2015). The U-shape is clearly visible. Several convolutional blocks are
connected with max pooling (red arrow) and transverse convolutional operation (green arrow). Skip connections are depicted as grey

arrows connecting the encoding and decoding branches.

Since the development of the U-Net architecture, it has been applied and reviewed for many purposes. Next
to extensive use for biomedical segmentation, U-Net has also proven its value for analysing satellite imagery
with respect to glacier retreat (Baumhoer et al., 2019), road extraction (Yang et al., 2019) and deforestation
(Maretto et al., 2021). Next to that, it has been applied to predicting landslides (Prakash et al., 2020), ultra-
sound segmentation (Amiri et al., 2020), thermal crack detection (A et al., 2021) and fluid dynamic simula-
tions (Eichinger et al., 2022).

2.2.4. Model performance
The performance of a model is typically judged based on comparison between the model predictions and
the known/target responses. Performance metrics for regression tasks are typically based on the error be-
tween the modelled and known response values. Popular metrics include the mean absolute error (MAE),
mean squared error (MSE), root mean squared error (RMSE) and coefficient of determination (r 2) (Beuzen
& Splinter, 2020). These metrics were also applied by Gharagozlou et al. (2022) to compare surrogate model
predictions of erosion profile shapes.

As discussed by Gharagozlou et al. (2022), applying these metrics for geometric assessment of prediction is a
delicate process. The RMSE is always positive and prevents that overpredictions and underpredictions cancel
each other out in this cumulative metric. However, when interested in positive or negative contributions, the
RMSE might not be the most suitable option. The mean error (ME) does include the sign of the error.

Besides that, the RMSE and MSE are a cumulative error metric. This is required to carry out bulk performance
evaluation of models. However, for spatial data, it might be required to look into the spatial distribution of
the error. In this case, the squared error (SE) can be used at individual gridpoints.



3
Methods

3.1. XBeach Dataset
This section describes the experimental setup of the XBeach runs that are carried out to create a synthetic
dataset. This data set will subsequently be used for surrogate modelling purposes. First, the data pre-processing
efforts to establish a simplified situation are highlighted. This includes modification and simplification of ex-
isting JarKus profiles. Second, the model set-up of XBeach will be discussed. This includes the characterization
of the underlying assumptions and resulting boundary conditions.

3.1.1. Data Pre-Processing
JarKus
The cross-shore profiles used in this research are taken from the JarKus (Jaarlijkse kustmetingen) dataset.
This dataset was set up to monitor the morphological changes along the Dutch Coast. Starting in the 1960s,
yearly elevation measurements have been carried out. These measurements are taken from the primary dune
up to 1000 m seaward at a perpendicular angle to the coastline with a separation of about 250 m. Measure-
ments take place after the stormy winter period around April and are archived in the database (Rijkswater-
staat, 2021). Generally, all transects consist of a terrestrial (dry) and a submerged (wet) area, which are mea-
sured by laser altimetry from aircraft and soundings from vessels respectively. Timing these measurements
such that the former is carried out during low tide and the latter during high tide enables the merging of the
two datatypes. The cross-shore data resolution varies between 5 m on the beach and 20 m further offshore
and the elevation is taken with respect to the NAP (Normaal Amsterdams Peil). In total, the Jarkus dataset
consists of 2178 transects located in 15 different bounded regions (kustvakken). As this research is focused
on sandy dune beaches, the dataset can be reduced to 1430 transect by taking out the locations that include
hard structures or show extremely dynamic behaviour (Athanasiou et al., 2021).

Modifications
For the exploration phase, a dataset with known and fundamental dune erosion patterns should be set up.
This makes the interpretation of the surrogate modelling efforts more straightforward. Therefore, initially,
one cross-shore profile is selected and subsequently modified to simulate different morphological responses.
These profiles are selected based on several requirements to standardize the modification operation. (1) The
profile should be a typical dune-beach system, (2) the profile should have a smooth nearshore surface with-
out any major disturbances besides the regularly appearing sandbars, (3) the primary dune should be the
highest dune in the system. Based on visual inspection, using the Jarkus Analysis Toolbox (van IJzendoorn,
2021) and "De Kustlijnenkaart 2022" (Rijkswaterstaat, 2021), profile with transect ID 7200 (kustvak 8) was cho-
sen.

Unique profiles will be created by modifying the original profile presented in Figure D.1. To simulate a differ-
ent morphological response, the morphological features of the profile are altered. This is done by changing
the width or height of specific profile sections. As introduced in subsection 2.1.2, the changes in bathymetry
should result in different morphological responses. These imposed changes in bathymetry are illustrated in
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Figure 3.3 and quantified in Table 3.1.

Applying this set of single modifications to a single transect would result in a dataset of around 60 unique
profiles. However, based on other examples of surrogate models, this won’t be enough to train a neural net-
work and prevent overfitting (Santos et al., 2019). More profiles and variance are generated by imposing a
set of second modifications (right column in Table 3.1) to several profiles. Profiles undergoing an additional
second modification are printed boldly in the first column Table 3.1). These second modification factors are
collected from a smaller range and are identical for all profile parameters. For example, a profile with a 1.25
beach width extension undergoes a second modification on all other profile sections, creating another 24
profiles. Note that the first and second modifications are never carried out on the same profile section.

Finally, to secure sediment availability, these profiles are extended landward from the crest of the dune. The
workflow of a double profile modification is schematized in Figure 3.1.

Figure 3.1: Scheme of modification of a single profile with two modifications. First, the height of the dune is increased with a certain
factor. Subsequently, a second modification in the nearshore width is applied. Finally, the dune top is extended.

Profile parameter Modification factors Second modification factor

Beach width 0.1, 0.2, 0.5, 0.75, 0.9, 1, 1.1, 1.25, 1.5, 2, 5 0.5, 0.75, 0.9, 1.1, 1.25, 1.5
Inter-tidal area width 0.5, 0.6, 0.75, 0.9, 1, 1.1, 1.25, 1.4, 1.5, 2 0.5, 0.75, 0.9, 1.1, 1.25, 1.5
Nearshore width 0.5, 0.6, 0.75, 0.9, 1, 1.1, 1.25, 1.4, 1.5, 2 0.5, 0.75, 0.9, 1.1, 1.25, 1.5
Dune width 0.5, 0.75, 0.9, 1, 1.1, 1.25, 1.5, 2, 5 0.5, 0.75, 0.9, 1.1, 1.25, 1.5
Dune height 0.5, 0.75, 0.9, 1, 1.1, 1.25, 1.5 0.5, 0.75, 0.9, 1.1, 1.25, 1.5
Dunecrest height 0.5, 0.75, 0.9, 1, 1.1, 1.25, 1.5

Table 3.1: Profile parameters and imposed modification factors. The bold values in the modification factor columns represent the
profiles which undergo a second modification.

The original length and height of these profile sections are defined by means of the definitions presented in
subsection 2.1.1. The methods used to compute these profile characteristics are listed below.

• Depth of Closure (DoC) - For the Dutch coast, the DoC is around a depth of 9 m and can be obtained by
using different methods. The Hallermeier formulation (Hallermeier, 1981) is widely used to determine
the DoC and based on the wave height. For this research, the DoC is extracted from a dataset set-up for
global nearshore slope distributions (Athanasiou et al., 2019)

• Mean Low Water (MLW) and Mean High Water (MHW) - These elevations are measured for the Dutch
coast and labelled to profiles in the JarKus dataset.

• Dune toe - There are several methods available to methods to determine the dune toe of a cross-shore
profile. The method used in this research uses a fixed elevation of NAP + 3 m for the dune toe. Using a
fixed value for the dune toe elevation allows for the observation of trends in the cross-shore location of
the dune toe. This point marks the end of the beach and the beginning of the dune section.
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• Dune crest - This point is determined by using the find.peaks function of the scipy package. From the
range of points that is returned by this function, the first value is chosen. This point marks the end of
the dune section.

For all profile parameters, the zero-crossing method is applied to find the intersection of the profile with the
highlighted elevations. This results in the characterization of a profile as illustrated in Figure 2.1.

Figure 3.3: Several modifications of Jarkus profile 8007200. A blue colour indicates a reduction of a certain feature, while a red colour
indicates an increase of that same feature. For some modifications, the scale on the x-axis is changed to make the alternations visible

Dataset of input profiles
This section presents the different datasets used in this research. As explained in subsection 2.2.2, datasets
considered for neural networks can serve different purposes (training, validation and testing). For all pur-
poses and research phases, a different dataset is generated.

Exploration
To make sure that modifications and imposed scaling factors are realistic to the Dutch coastal system, the
profile parameters found in the created dataset are compared to the parameters observed along the Holland
coast (Rijkswaterstaat, 2021). The boxplot used for this comparison can be found in Appendix D. Outliers
exceeding the ranges found on the Holland coast are excluded from the dataset. Next to that, profiles exceed-
ing physical limits, such as the maximum dry slope of sand, are also eliminated. Therefore, not all beach
parameters have the same range and density of modification factors. Hence, a dataset of 502 unique profiles
is set up (Figure 3.4). All these profiles originate from a single profile (transect 8007200) and are used for the
exploration phase of this research.
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Figure 3.4: All input profiles in the single-profile-based dataset as inputted to XBeach

It should be stressed that the dataset highlighted above is used for training and validation during the explo-
ration phase of this research. The test dataset to judge the performance of several surrogate modelling alter-
natives is generated by applying the same type of modification on a different JarKus profile (transect 7004250).
These modifications also differ in scale compared to the ones used for the training dataset. The specifics of
the test data can be found in Appendix F. The content of both datasets is briefly described in Table 3.2.

Upscaling
To gain further insight into the requirements for upscaling, the training and test data to set-up a surrogate
model are upgraded. Based on the insights obtained in the exploration phase, different pre-storm profiles
datasets are created for training, validation and testing purposes.

For the training dataset, this includes the consideration of multiple original profiles in the dataset. Instead of
considering a single original profile, four profiles will be incorporated as the base of the dataset. The specifics
of this data is highlighted in Appendix D.

Next to an enlarged training dataset, the test dataset will also be scaled up. For this test dataset, 21 profiles are
extracted along the stretch of the Holland coast. These profiles will solely be extended in duneward direction,
but not modified with respect to the profile parameters. This is the final test to analyse by which extent the
U-Net is capable of making predictions for the Holland Coast. The specifics of this test dataset are presented
in Appendix F.

An overview of the different datasets used in this thesis are presented in Table 3.2.

Dataset Description
Exploration Single profile Based on a single JarKus profile 8007200, 550 modifications

Training 80% random samples of single profile dataset
Validation 20% random samples of single profile dataset
Test Based on a single JarKus profile 7004250, 78 modifications

Upscaling Multi profile Based on four JarKus profiles, 440 sampled modifications
Training 80% random samples of multi profile dataset
Validation 20% random samples of multi profile dataset
Test 21 actual profiles along stretch of the Holland Coast

Table 3.2: Datasets of input profiles used in different stages of this research.
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3.1.2. XBeach Modelling
The input profiles for the XBeach simulations have been established. XBeach also requires the specification
of the storm conditions and other boundary conditions to model extreme storm behaviour. Initially, to con-
trol the amount of input parameters in the surrogate model, one single storm for all 500 profiles is chosen.
Such that, in the orientation stage of this research, we can solely focus on the pre-storm profiles shape.

Most importantly, to train a surrogate model on dune erosion, the hydrodynamic conditions imposed on the
cross-shore profiles should be sufficient to enforce significant transport at the dune. In this case, the waves
and waterlevel simulated in XBeach should have significant impact on the dunes, such that dune erosion
takes place. Throughout the range of profiles, the collision scheme, as introduced by Sallenger (2000), should
be reached and different quantities of dune erosion volume should be observed.

In reality, a storm has a certain build-up and breakdown phase. Peak conditions are observed during a rel-
atively short duration within the overall storm event (Tijssen & Diermanse, 2010). Due to the unavailability
of continuous storm timeseries stormhydrographs must be described by means of a synthetic shape. For
example, the temporal evolution of storms at the Holland coast can be characterized as a triangular shape
(Athanasiou et al., 2021). For this research, stationary conditions at the offshore boundary are assumed. This
simplifies the storm input for later stages of this research. The conditions throughout the duration of the
storm result from the same forcing. Since the tide is also stationary and no build-up of the storm conditions
is involved, this is a highly unrealistic situation. However, the obtained data will be suitable to explore the
possibilities of setting up a surrogate model for predicting profile shapes.

To simulate sufficient dune erosion, extreme hydrodynamic conditions should be imposed. To provide guid-
ance in the process of modelling the appropriate storm, the 1953 storm is adopted as a starting point. How-
ever, using stationary conditions would result in unrealistic dune erosion quantities (DEV 400 m2). There-
fore, a smaller storm (1976) is used as a reference instead. Hydrodynamic input parameters for this storm are
deducted from Athanasiou et al. (2022) and tweaked such that realistic dune erosion processes are modelled.
Characteristics of this stationary storm are presented in Table 3.3 and illustrated in Figure 3.5.

SSL (m) M HW (m) Hs (m) Tp (s) Duration (h)
Observed 1976 2.2 1.0 6.1 10.8 30
Modelled 1.5 1.0 5.5 9 32

Table 3.3: Observed storm conditions during 1976 storm and used storm conditions for surrogate model.
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Figure 3.5: Modelled stationary storm conditions for XBeach runs

Next to sufficiently a large signal, the data supplied to the surrogate model should involve a certain range
of variability. Data with a lack of variability would result in a surrogate model with limited applicability and
potential overfitting issues. This variability is secured for the input (500 unique profiles) but does not neces-
sarily imply that the simulated storm behaviour also shows this variability. The DEV is a suitable indicator
of the impact of a storm on a dune system. Calculating this variable for each individual profile should give
insight into the modelled storm behaviour within the dataset.

These hydrodynamic parameters are used to set-up a sea state by means of a Jonswap-type wave spectrum.
This wave-spectrum summarizes intensities for several wave frequencies that frequently occur at the North
Sea. This method has the advantage that the modelled wave field is more realistic and contains varying wave
groups resulting in variation of hydrodynamic conditions. To set-up such a spectrum, next to the parameters
listed in Table 3.3, a wave angle (α= 270◦ , peak enhancement factor (γ= 3.3), directional spreading (s = 6.3 )
and timestep (1 s) need to be specified.

Already, some assumptions have been made with respect to the storm conditions. The 1D version of XBeach
is used, this comes with the assumption of no alongshore processes and shore-normal waves. Any 2D or 3D
processes are excluded. Next to that, the grain size of the sediment is assumed uniform along the profile. In
reality, these differ along the cross-shore profile due to variations in dynamics (Bosboom & Stive, 2021).

XBeach grid
As discussed before, the 1D version of is used. Therefore, the model bathymetry input requires a definition
of the x-grid and depth. As illustrated in Figure 3.6, the x-grid makes an orthogonal angle with the coastline
and is drawn on both land and sea. To ensure offshore conditions and deep water, the depth of the profile
is extended to -30 with a slope of 0.01. This allows the waves to build up to intermediate and shallow water.
Finally, the grid is refined on certain, more dynamic, sections of the cross-shore profiles. The artificially
extended part of the profile has a gridsize of 6 m and above +0 m NAP a gridsize of 1 is set. In between, the
grid ranges from 5 to 6 meters. The refinement at the dune is in place to capture the high dynamics in the
section of the grid (dune erosion).
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Figure 3.6: Illustration of grid reference frame (right) and grid spacing (left)

XBeach parameters
The XBeach model was set up with several other parameters. The parameters changed with respect to the
regular settings are printed in Appendix A. Some tuned parameters in more detail:

• Physical processes

XBeach is ran in the "surfbeat" mode. This mode indicates that both short waves and infragravity waves
are resolved. These infragravity waves cause cyclonic patterns of run-up at the beach and are crucial in
resolving the dune erosion patterns.

• Wave breaking

Wave breaking is defined with the formulation as discussed by Daly et al. (2011), with γ and γ2 defining
the moment where waves start and stop breaking (H > γ∗h). α defines the intensity of dissipation
along the wave-breaking track. All values are based on combined empirical and modelling studies.

• Sediment transport

One of the most important modelling choices within the sediment transport formulations is the defini-
tion of the equilibrium concentration. For this model, the formulations of van Rijn, with modifications
by Van Thiel-de Vries (van Thiel-De Vries, 2009) are used:

Ceq = Asb
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(3.1)

In this formulation, the equilibrium sediment concentration depends on the depth-averaged velocities.

• Morphology

The update of the bed due to the hydrodynamics is accelerated in the model with a factor 5 (morpho-
logical acceleration factor). This results in a lower computational time. The process of bed updating is
started after a certain running time (morstart). Finally, the critical slope for avalanching in wet parts of
the profile is set at 0.15.

Using the pre-storm profiles, one single storm event and the boundary conditions described above, 1D
extreme storm behaviour pre-storm profile can be modelled over the full duration of the storm.
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Post-processing
To explore the driving mechanisms of dune erosion, several morphological indicators describing the sedi-
ment transport processes can be retrieved from the model output. For example, the post-storm location of
the dune toe, the location of the dune crest and the slope of the duneface would be suitable indicators to
demonstrate the response of the dune. In this research, the dune erosion volume (DEV) is chosen as the only
morphological indicator to capture dune erosion. This is done to maintain simplicity and build upon the ex-
isting body of research (Athanasiou et al., 2022 and Gharagozlou et al., 2022). The DEV describes the volume
that is eroded from the dune as a response to the storm.

The DEV is calculated by subtracting the area (1D) underneath the inputted pre-storm profiles and computed
post-storm profiles. To compute these areas, the trapezoidal rule for integration is applied on a refined grid
(cross-shore spacing = 1 m). These areas are bounded by two thresholds: 1) cross-shore boundary (cross-
shore location of MHW) and 2) an elevation boundary (max surge + tide). The results of a typical DEV calcu-
lation are illustrated in Figure 3.7

Figure 3.7: Typical DEV calculation for a post-storm profile. The blue area indicates the eroded volume from the dune, bounded by the
elevation (Max surge + Tide).

In order to examine the influence of various input shapes on dune erosion, the previously discussed DEV
metric is related to the slope of the profile sections that have been highlighted Figure 2.1. The slope of these
sections are calculated by means of a linear fit of the endpoints of a section. This calculation is illustrated
in Figure 3.8. As presented, the calculated slope is an approximation for the actual inputted bathymetry.
Especially for profile sections with a non-linear trend, the endpoints calculation gives a highly consolidated
result.
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Figure 3.8: Slope calculation for profile sections, using the endpoint method. The computed slopes are illustrated in different colors.
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3.2. Surrogate modelling
In this section the experimental set-up of the surrogate model will be discussed. Using the synthetic dataset, set-
up in section 3.1, a surrogate model can be trained. This surrogate model uses the convolutional neural network
theory and U-Net structure as discussed in section 2.2. This type of neural network can be established with
different pre-processing methods, network architectures, training algorithms and hyperparameter alternatives.
The methods and tools to set up these alternatives will be discussed in this chapter. Next to that, several erosion
scenarios will be highlighted. These scenarios differ in forcing severity. Finally, the methods to validate and
judge the performance of the surrogate model are specified.

3.2.1. Exploration
Input data
Grid
As discussed before, the input data and output data of XBeach runs are one-dimensional. For the U-Net struc-
ture to capture the same information for each input profile, the x-grid should be identical for all input profiles.
Each gridpoint in this x-grid should contain the same spatial information for each profile. Therefore, the in-
put processing start by defining a uniform grid that captures the range and characteristics of all input profiles.

The process of grid definition starts with the operation of getting all profiles in the same reference frame. As
illustrated in Figure 3.4, the input profiles in the XBeach runs differ in length. Next to that, to reduce compu-
tational efforts, the profile has a varying grid spacing along its length (Figure 3.6). To secure uniformity along
the cross-shore grid, both the length of the profiles and the spacing should be taken care of to set up a 1D
U-Net architecture.

To obtain this uniformity, first, the cross-shore coordinates of the profiles are subtracted with cross-shore lo-
cation MSL (+ 0m NAP). Second, a cross-shore value of a minimum bed elevation (zmi n) is sought. To capture
this minimum elevation of the profile with the gentlest slope, the minimum cross-shore value of this profile
is employed as the baseline value for the uniform grid. Applying the same approach for the maximum value,
a uniform cross-shore grid is set-up that fits all profiles in the dataset.

Next, a fixed elevation (z f i x ) is chosen as a point on the grid where all profiles intersect at the same height
and the grid is re-interpolated on a constant spacing (∆x). All grid parameters are illustrated in Figure 3.9.

Figure 3.9: Grid standardization for pre-and post-storm profiles. Defined by zmi n , z f i x and ∆x. The orange colour indicates the
section for which the MSEdune is calculated.

Whereas, these grid parameters secure a uniform cross-shore grid, they are also important parameters that
can influence the performance of the U-Net structure. For example, the zmi n determines which part of the
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profile is observed by the model. Therefore, optimization of these parameters will be needed. Different grid
alternatives are inputted in the same U-Net network. This process is referred to as grid optimization.

Figure 3.10: Input and outputs profiles in standard grid configuration. The left figure indicates the post-storm difference, middle and
right indicate the representative pre- and post-storm profiles.

Difference
As described in section 2.1, dune erosion, as modelled by XBeach, is a local process that occurs only at a

certain section of the profile. This is also found when computing the difference between pre- and post-storm
profiles (Figure 4.9). Whereas the difference between the pre- and post-storm profiles is hard to spot based
on the absolute values it becomes clear when considering the differences between the two. Essentially, the
human eye is able to pick up the signal better when looking at differences instead of absolute values. Based
on this analogy, U-Net will be trained on both the absolute elevation values and the differences between the
elevation values. By training it on the differences, it is expected that the signal is easier picked up by U-Net.

Normalization
Normalization of the input data is a tool frequently used in the field of machine learning (section 2.2). By
normalizing all input parameters, the model will be less sensitive to scale differences between the parame-
ters. For the problem at hand, normalization might not be needed. Since the input data solely consists of
elevation data in the same reference frame, normalization will not be needed to account for scale differences.
However, it could be beneficial when other parameters are introduced and interesting to observe how the
model responds to normalized data. The normalization is carried out by scaling and translating the bed el-
evation of each profile on a scale of 0 to 1, by the minimum and maximum elevation found in the dataset.
The pre-processing module of scikit learn (Pedregosa et al., 2011) is used to normalize the data. The resulting
input and output data can be found in Figure 3.11
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Figure 3.11: Normalized input and outputs profiles in standard grid configuration. The left figure indicates the post-storm difference,
middle and right indicate the representative pre- and post-storm profiles.

Network structure
Internally, within the neural network, the structure and its hyperparameters can be optimized. This implies
the optimization of several features of the neural network. Whereas the last section was dedicated to the input
of the neural network, this section focuses on the parameters that regulate the overall outlook and internal
processes of the neural network.

Based on findings in the literature review (section 2.2), the U-Net architecture is chosen as a suitable neural
network architecture for the issued datatype. As discussed before, U-Net has been applied in the field of im-
age segmentation and shows great potential in trend detection for linear dependent input types. Besides that,
U-Net has previously been trained for issues that deal with input and output data having the same reference
frame.

The original U-Net structure (Figure 2.16) was set-up for image segmentation (2D input and output). While
the problem of predicting post-storm profiles can be formulated as a one-dimensional (1D) task. For the net-
work architecture, this does not result in drastic changes. The 2D convolutional layers and pooling layers are
replaced with 1D adaptations. These 1D variants use 1D filters and operations, but the underlying processes
remain the same. Applying the same network depth and channel size as the original U-Net structure, the
network will have the structure illustrated in Figure 3.12.

The 1D version of U-Net does not reform the network’s architecture drastically, the major difference is found
in the input and output size. The channel sizes are highlighted in grey underneath the respective layer. The
input size depends on the data pre-processing operations, as defined in subsection 3.2.1 this will vary sub-
stantially. In general, no padding is applied, so the convolutional operations with filter size 3x1 (blue) come
with a size reduction of two pixels. Besides that, the max pooling operation (size = 2) reduces the size of the in-
put by half its size. These operations will result in a reduction in the size of the data throughout the network.
This output can be rescaled to its original size. It should be noted that changing around hyperparameters
such as the kernel size, stride and pooling size will result in different dimensions throughout the network.

The U-Net architecture is set up and trained in PyTorch (Paszke et al., 2019). PyTorch is an optimized tensor
library for deep learning using GPUs and CPUs. This deep learning research platform provides maximum
flexibility and speed. The python code for U-Net is documented in Appendix B and is an adapted version of
an example provided by Arora (2020). The code is structured in classes, defining several parts of the network
(Blocks, Encoder, Decoder and U-Net).
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Figure 3.12: U-Net structure applied for 1D input profile data. The structure consists of two branches (encoding and decoding), which
are built up from blocks of convolutional layers and connected with either pooling layers or transverse convolutional layers. The dotted

red lines indicate the different layer depths

Network depth
The depth of a neural network is defined by the number of layers that the neural network is composed of.
Generally, as addressed in section 2.2, this is a standard for the network’s ability to capture greater detail
and extract features from the data. This, however, comes with a loss of spatial information that is present in
the data. The boundaries ranging from one to five as illustrated in Figure 3.12 indicate the considered layer
depths in this analysis.

Skip-connections
U-Net architectures are characterized by skip-connections, whereas conventional CNN’s do not have this fea-
ture. It is studied whether these skip-connections are needed and what the result on the predicted profiles
might be. The skip-connections are indicated in gray in Figure 3.12

Network width
Another important parameter in the network architecture is the number of channels that is considered in the
first layer. The amount of channels account for the number of filters/kernels that are considered in the first
convolution. In Figure 3.12, 64 channels are used in the first layer, but for this analysis, other sizes in the
geometric sequence of 2 will be applied. Starting with 8 and proceeding to 64 for the first channel size. As the
next layer in the neural network is always the next doubling of this number, this requires the specification of
the first channel size.
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Kernel size
For the original U-Net architecture, a kernel size of 3 is used. This size has been used frequently in other
U-Net applications. This choice is validated for the storm profile data that is dealt with here by applying dif-
ferent kernel size: 1, 2, 3, 4 and 5.

Pooling size
For the original U-Net architecture, the pooling operation downscales the dimension of the feature maps by
two. In other words, this pooling size (2), halves the size of the input by taking the maximum on a patch of 2.
The size of this patch in an important parameter for what resolution the encoder is picking up. The pooling
sizes considered are: 1, 2, 3 and 4.

Figure 3.14: Illustration of parameters that determine the architecture of U-Net. (1) Skip connections, (2) First channel size, (3) Kernel
size and (4) Pooling size

Hyperparameters

• Batch size

The batch size that is used to train the neural network, implies the size of the batches for which the
data is inputted into the neural network. To train the model, the profiles are inputted into the neural
network in batches of profiles. The weights in the neural network are updated after each batch. The
batch size should be considered as a fraction of the training dataset. The batch size, therefore, relies
partly on the size of the dataset.
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• Epoch size

The epoch size is the equivalent for the number of times that the total dataset is inputted to the neural
network. Basically, the epoch size determines the number of iterations that is used to train the neural
network. Too few epochs might result in inaccurate model, while too many epochs might result in over-
fitting. As discussed in section 2.2, an increasing validation loss is a common indicator for overfitting
processes. Therefore, an early stopping tool is applied to stop the training of the model when the vali-
dation loss has not decreased over a span of 7 epochs.

• Learning rate

The learning rate determines the step size to reach the global minimum that is illustrated in Figure 2.9.
The evaluated learning rates, range between 0.01 and 0.0001.

Loss functions
Alongside pre-processing the input data and designing the neural network architecture, the selection of loss
functions for computing gradients during backpropagation is an important aspect of the neural network. To
investigate the potential of such a loss function several alternatives are highlighted. All alternatives will be
computed by computing the mean square error as shown in subsection 2.2.1.

Elevation error
This loss function has the most straightforward form. The loss is calculated by taking the mean square error
on the full profile. There is no induced amplification or weights on specific parts or variables. The loss is an
averaged value over a batch (m profiles), the calculated values for these profiles are the MSE over all elevation
points (yn) on the profile.

E = MSEelevati on = 1

m

∑
(yn − ŷn)2 (3.2)

Elevation error with target section
This loss function is similar to the previous one, however, the errors computed from the dune toe to the
dunecrest are amplified. By applying a weight to the errors occurring on this section, they are prioritised over
the others. This technique is referred to as targeting and is outlined in the equation below. The subscript r
and s refer to the points on the regular profile and section respectively. The latter is multiplied with a weight
(W ). To clarify, this method is illustrated in Figure 3.15.

E = MSEelevati on,wei g hted = 1

m

(∑
(yr − ŷr )2 +W ∗

(
1

m

∑
(ys − ŷs )2

))
(3.3)
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Figure 3.15: Example of weighted MSE for dune section. The dune section for this profile is highlighted in light green. At this section
the MSE is multiplied by a weight, resulting in a weighted MSE (green).

Surrogate model applicability
To test the applicability and predictive skill of the model, the DEV and other beach characteristics will be ex-
tracted from the predicted profiles and compared to the target profiles. Next to comparative scatter plots of
the extracted parameters, the skill parameter (subsection 3.2.3) will be an important indicator for the predic-
tive skill.

Data quantity
The surrogate model will be tested for several quantaties of profiles. A subset of the training data is taken
based on a certain percentage. The selection process of the subset of profiles included in the dataset will be
done at random. It will be analysed at which data quantity the result converges towards a stable result as
found for the complete data.

3.2.2. Upscaling
Considering a surrogate model is established, capable of predicting profile shapes for a simplified scenario,
the next phase in the research process involves upscaling these outcomes. As previously mentioned, this is
accomplished by setting-up a multi-profile training dataset and a realistic test dataset. This set-up is high-
lighted in Figure 3.1.1. Building upon findings in the exploration phase, additional performance metric are
incorporated into the testing process. Besides that, sampling methods are explored to reduce the size of
dataset and prevent overfitting issues.

Throughout this upscaling phase, all model alternatives are tested on a realistic test case. Initially, the per-
formance of both the single- and multi-profile-based datasets are compared. This comparison aims to verify
whether the process of upscaling the training dataset is indeed beneficial for post-storm profile prediction.
Next, the multi-profile dataset is utilized to analyse several U-Net structures. Analyses on the network depth,
network width and kernel size are carried out for a selected profile in the test data. These analyses are again
carried out on the applicability of the surrogate model to extract the DEV, but also include a visual inspection.
Finally, a selected U-Net structure is evaluated based on the capability to mimic dune erosion processes as
captured in the full test dataset and highlighted in Equation 3.1.2. These different stages of the upscaling
phase are illustrated in Figure 3.16.
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Figure 3.16: Different stages of the upscaling phase. Start with a comparative study of two training dataset (single- and multi-profile
based) on a realistic test cast. Next, several U-Net structures are evaluated for a selected test profile. Finally, a selected U-Net profile is

evaluated for the dune erosion processes captured in the full test dataset.

3.2.3. Testing
Data
To be able to test the neural network performance, a test dataset is set-up. In the orientation phase, this test
dataset is based on a different JarKus profile and has also been modified to generate multiple pre-strom pro-
files. The specifics of this test dataset can be found in Appendix F.

As explained before, in the upscaling phase, the test dataset consists of actual profiles along the Holland coast.
These profiles have solely been extended at the dunecrest to secure sediment availability.

Metric
To judge the performance of the Neural Network, an appropriate testing scheme is needed. As discussed in
subsection 2.2.4, several tools are available. For the goodness of the fit, the Mean Square Error (MSE) is an ap-
propriate indicator. However, it comes with some shortcomings that should be taken care of through another
metric.

To make sure that all grid alternatives are judged correctly, grids need to be re-interpolated on a fixed amount
of points. This is done for the full profile (MSEpr o f i le ) and for the dune (MSEdune ). The boundaries of
both ranges are indicated in Figure 3.9 The amount of points on this interpolated grid is based on the largest
amount of points found in the computed grids. Next to the MSE, to account for the sign of the error, the Mean
Error (ME) is computed for the full profile (MEpr o f i le ) and the dune (MEdune ).

Since the computed profiles should be useful for the extraction of morphological parameters, this will be
tested by calculating the dune erosion volume (DEV ). The quality of the prediction for the DEV will be as-
sessed using a skill score (Murphy, 1988)

Finally, to interpret the quantitative metrics introduced above, a visual inspection of the computed profiles
will be carried out. This detailed analysis of the profile shapes is introduced to overcome spatial averaging
and include the shape of the predicted profile. To reduce the amount of profiles that need visual inspection,
a subset of the original training dataset is taken. This subset is selected by carrying out a Maximum Dissimi-
larity Algorithm (MDA) on the elevation data.
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Metric Purpose Equation Range Best value

MSEsect i on
General fit on profile section
(profile and dune)

1
m

∑
(yn − ŷn)2 0− inf 0

MEsect i on
General fit on profile section
(profile and dune) with sign

1
m

∑
(yn − ŷn) −∞−∞ 0

ski l lDEV
Extraction of morphological
parameter

1− MSEDEV
σDEVt ar g et

−∞−1 1

Visual inspection Spatial distribution of error - - -

Table 3.4: Used metric to judge model performance.



4
Results

4.1. Driving mechanisms of dune erosion
This section gives further insight into the modelled storm behaviour in the synthetic dataset set up with
XBeach (section 3.1). To find out what morphological response is found in dune profiles as an effect of impos-
ing storm conditions, several analyses are carried out.

4.1.1. Post storm profile
Figure 4.1 illustrates a typical pre- and post-storm profile that has been modelled with XBeach. The Dune
Erosion Volume is highlighted in blue. A shown in the figure, the DEV is calculated above the threshold of the
maximum water level. In the initial training dataset, the dune erosion remains in the collision scheme and
therefore never reaches the top of the dune. The temporal evolution of the DEV in somewhat linear, but tends
to decrease in trend over the duration of the storm.

Figure 4.1: Example of the modelled DEV using XBeach. The solid line indicates the pre-storm profile and the dotted line the
post-storm profile. The eroded volume from the dune is highlighted in dark blue (DEV). The figure at the right indicates the temporal

evolution of the DEV over the duration of the storm.

4.1.2. Variability in storm response
To show the modelled signal and variability, the calculated DEV with respect to the index of the profiles is
illustrated in Figure F.6. Next to that, a histogram plot of the same data is shown.

42
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Figure 4.2: The variability of DEV captured in the dataset. The DEV per profile id (left) and a histogram plot of the DEV data (right)

In both figures, a variability in DEV can be observed. The quantities of DEV are ranging between 0 and 110
m2 and have an average of 67 m2 and a standard deviation of 12.6 m2. Next to that, it can be seen that the
variability in DEV is quite small for the last profile IDs in the dataset. This can be explained by the fact that
these indices represent profiles with modifications of the dune height. As discussed in the next section, the
DEV is not that sensitive to this parameter.

The same analysis has been carried out for the test dataset. This can be found in Appendix F.

4.1.3. Parameter sensitivity
To obtain an understanding of the sensitivity of the model to different input profile shapes, a parameter sen-
sitivity analysis on the morphological change is carried out. To do so, profiles with a single modification are
isolated and will be analysed. This allows for the required isolation of the adjusted parameter. The modelled
dune erosion volume is used as an indicator for morphological change to carry out this parameter sensitivity
analysis.

The sensitivity of the DEV to the slope of the studied parameters (profile modification) is printed in the same
figure. Note that the values represented on both axes are changes in percentage compared to the reference
situation (no modifications). The results are shown in Figure 4.3

At first, it should be noted that the ranges for which the different parameters are analysed are different. To
keep the modifications in between the physical and realistic boundaries of the Holland coast, different ranges
of modification factors have been applied. This is explained in more detail in subsection 3.1.1.

Figure 4.3 shows the sensitivity of the model to different slope parameters. As shown in the figure, the refer-
ence profile is (logically) found at the point where no change is observed. In general, a steep line in this figure
suggests a higher sensitivity to this parameter and a gentle line suggests a lower sensitivity. It can be seen that,
for all parameters, a steeper slope leads to a higher DEV. This effect is of different severity for the analysed pa-
rameters. The smallest change in DEV is observed for the changes in dune slope. The sensitivity of the DEV
to the beach- and inter-tidal slope is of the same order for slope increases. While, for slope decreases, the
nearshore and beach show a similar trend.
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Figure 4.3: Sensitivity of the DEV for different beach profile modifications. Both the change in DEV and slope are indicated in
percentage. Varying colors represent different profile sections.

The trends for the inter-tidal and nearshore slope seems more or less linear on the analysed range. The
nearshore slope, however, shows a sudden decrease in DEV around a slope change of +60% and a sudden
increase around -35%. These sudden changes are not in line with the expected dune erosion behaviour. The
dune- and beach slope show a more logarithmic trend. Because of its larger range and high sensitivity this is
especially clear for the beach slope.

Analysing the DEV for profiles with modified dune crest height in Figure 4.4, the sensitivity is much smaller.
Small changes in DEV are only observed for the first method of dune height modification. This method comes
with a change in dune slope and therefore influences the DEV the same as the dune width modification. The
profiles that undergo modifications solely in the dune crest height while keeping the dune slope unchanged
do not induce any changes in DEV. This indicates that the dune erosion events do not reach the crest of the
dune and is therefore not driven by dune crest height.
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Figure 4.4: All analysed beach parameter (beach, dune, dunecrest, inter-tidal, nearshore) vs the DEV on the same y-scale.
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4.2. Surrogate modelling
This section presents the results of the experiments highlighted in chapter 3. These results should give fur-
ther insight into the performance of several convolutional neural network alternatives. The results will be
presented in the corresponding sequence and performance metrics as introduced in the methodology chap-
ter. To provide clarity and additional information, some sections are provided with more detailed analyses.

4.2.1. Exploration
Input data
Difference
Experiments for predicting the absolute elevation points and the difference between elevation points as dis-
cussed in Figure 3.2.1 are presented below. The "difference model" is outperforming the "absolute model"
for almost every model run. This illustrated with a scatter plot of the MSEdune and MSEpr o f i le

Figure 4.5: Computed MSE for training U-Net on absolute- (red) and difference (green) elevation points.

Grid
Using a U-Net structure with standard parameter settings (Appendix C) and trained on the difference, the op-
timal input grid for the cross-shore profiles is sought. This is achieved by varying between three parameter as
presented in subsection 3.2.1. 4.6 demonstrates the disparity in MSE at the dune, resulting from differences
in the cross-shore point spacing. Particularly, two extremes (∆x = 1 and ∆x = 10 show higher errors. Visually
inspection of these results (Appendix I) indicate the grid size of 5 and 10 m are too coarse to correctly interpret
the dune shapes.

Figure 4.6: Computed MSE at the dune for different grid compositions. The left figure illustrates the results for zmi n . The left figure
illustrates the results for z f i x . Different ∆X are indicated by the colors.
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Using ∆x = 2, the minimal (Zmi n) and fixed (Z f i x ) elevation are inspected with more detail. After increasing
Zmi n above a value of -5 m, the observed errors start to become higher and more variable (Figure 4.7). For
the fixed elevation for all profiles, the most promising results occur for an elevation of around MSL.

Figure 4.7: MSE at the dune as a result of minimal elevation values in the grid.

Figure 4.8: MSE at the dune as a result of fixed elevation values of the grid.

Based on these results, a cross-shore grid spacing of 2 m is chosen for the continuation of this analysis. Be-
sides that, the minimal elevation (Zmi n) is set at -5 m and for the fixed elevation (Z f i x ) a value of 0 m is used.
This representation of the profiles in this grid is shown in Figure 4.9. As depicted, the profile characterized by
the gentlest slope serves as the reference for extending the remaining profiles. Moreover, all profiles intersect
at the fixed point of z = 0.
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Figure 4.9: Input and outputs profiles in standard grid configuration. The left figure indicates the post-storm difference, middle and
right indicate the representative pre- and post-storm profiles.

Network structure
Next, the network structure and hyperparameters in the training process are considered. All results are repre-
sented by means of the MSE Dune.

Network depth and width

First results of the optimization study showed that the data at hand (500 profiles) does not require a deep
network structure to account for the modelled elevation changes. Figure 4.10 shows that the models perform
best for a network depth of 2 and first channel size of 32. Using these results, other hyperparameters have
been tuned. In Figure 4.19, the depth and width of the network are revised again.

Figure 4.10: Initial results for U-Net depth and width. The x-axis represents an increasing network depth. The varying colors indicate
different network depths (first channel size).

Skip connections

This section presents the results for a distinction between two different model types: with and without
skip connections. Clearly, the predicted dune shapes are better for U-Net structures with skip-connections.
This is found in both the mean square error (Figure 4.11) and the visual inspection (Figure 4.12). Without
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applying skip connections, the predicted profile shows oscillations at the dune. This does not occur for alter-
natives that do use skip connections. These results are discussed in subsection 5.2.4.

Figure 4.11: MSE at the dune as a results of usage of (no) skip-connection

Figure 4.12: Example with and without skip connections of a predicted profile

Other hyperparameters
The results for several hyperparameters (1) kernel size, (2) pooling size, (3) learning rate and (4) batch are

illustrated in Figure 4.19. The results for the kernel and pooling size are in line with the results found in other
U-Net optimization schemes. The learning rate seems to be optimal at a value of 0.00075. This can also be
found when analysing different loss curves (Appendix H). The loss curve for a learning rate of 0.00075, gen-
erally, shows the most optimal shape. For the batch size, it is hard to find a particular trend. While the error
seems to be constantly increasing for larger batch sizes, this trend is disrupted by the batch size of 10.
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Figure 4.13: MSE at the dune for several hyperparameter alternatives. Kernel size (top left), Pooling size (top right), Learning rate
(bottom left) and Batch size (bottom right)

Epoch size

A discussed in Figure 3.2.1, the optimization is carried out with an early stopping tool. This tool uses a pa-
tience of 7 epochs for the validation loss to increase. As described in Figure 4.19, the number of epochs that
is reached ranges between 5 and 30 epochs and the average epoch that is marked as a checkpoint is 14.

Evaluation: Network depth and width
Since appropriate values for the hyperparameters are obtained and more stable results can be generated, the
depth and the width of the neural network can be further analysed. The chosen values for the U-Net version
1 are presented in Table C.2). The results of this analysis are presented in Figure 4.14.

Some interesting trends can be observed in this analysis. In line with the initial results, the network depth of
2, seems like the most suitable network structure. On average, the error for a network depth of 3 and 4 are
higher. However, when considering the size of the first channel in the network per different trends can be ob-
served. For shallow networks (network depth = 2), a larger channel size seems beneficial. On the contrary, for
a deeper network (network depth = 4), a smaller first channel leads to a smaller error. It seems that, for this
dataset, the network only needs a certain amount of complexity (either through network depth or channel
size). These results are discussed in subsection 5.2.2.
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Figure 4.14: Final optimization results for U-Net depth and width in the exploration phase. Varying colors indicate the different
channel sizes.

While not used for this research, Appendix K contains the feature maps that are found in the channels of differ-
ent layers in a 2-layer U-Net structure. It is noticeable that oscillations emerge as the input progresses towards
the decoding branch of the neural network structure.

Training algorithm
Loss Function: Targeting

So far, the neural network has been trained on the difference (Equation 3.3) for the full profile. By ampli-
fying the computed error for a certain profile section (dune), it is attempted to target this part of the profile.
However, for the actual difference, this amplification already exists naturally. To show the importance/rel-
evance of this targeting principle, the data is normalized such that this natural weight in the difference is
reduced.

Figure 4.15: Resulting MSE of applying a weight on the MSE at the dune section for the full profile (left) and dune (right)

Figure 4.15 shows the MSE as a result of applying a weight (W) to the duneface of the profile. The computed
MSE for the full profile does not differ for different weights. For the dune, however, the MSE reduces signif-
icantly when a larger weight is applied. In other words, the amplification of the error on a certain profile
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section has the expected result.

Surrogate model applicability
To test the applicability of the surrogate model to extract morphological parameters, the predicted DEVs are
compared to the target DEVs. This is done for a single training run of U-Net.
Although there will be some natural variability in found in the predictions of U-Net (Appendix H, Figure H.6),
the findings presented below are consistently found for the U-Net model presented above.

Dune Erosion Volumes

Plotting the predicted DEV (DEVpr ed ) over the target DEV (DEVt ar g et ) for each profile in the test dataset (Fig-
ure 4.16), the best possible fit for each profile is located at the line DEVpr ed = DEVt ar g et (red line). For the
U-Net architecture with a depth of 2 layers and a kernel size of 3, the results of such an analysis are presented
in Figure 4.16 (left). As shown, the predictions are centred around the red line but show a distinct horizontal
alignment. This horizontal alignment can be vertically separated by means of the height of the dune (Zdune ).

Figure 4.16: Target DEV vs Predicted DEV (left). The red line indicates the situation for which the target DEV is predicted perfectly
(DEVpr ed = DEVt ar g et ). Mean Error at Dune vs Dune height (right).

Note: It is important to stress that the U-Net profile predictions have a slight elevation difference on top of the
dune ( 0.01 m). This is accounted for by initializing an upper threshold for the calculation of the DEV at the
dunecrest (Appendix J).

Observing these results, it is suggested that U-Net is predicting one typical post-storm profile and is scaling
that profile by means of the height of the dune. Statistically, this makes sense, physically, however, it is not
in line with the modelled driving mechanisms of dune erosion. As highlighted in subsection 4.1.3, the dune
height is not at all an important profile parameter for the modelled DEV in this dataset. While for this U-Net
structure, there seems to be a significant relation between the two. This relation is illustrated in Figure 4.16
(right), showing an increase in predicted DEV for a larger dune height. Besides that, judging from the colour-
ing, large mean errors occur for profiles that are on the boundaries of the variability in the test data. Such that
the outliers in the dataset, which suppose to have large and small DEVs, have a larger error on the dune for
the prediction. These results suggest that, for the single-profile-based training dataset and network structure,
the surrogate model is predicting one profile shape and is scaling this prediction to the inputted pre-storm
profile.

More detailed analyses of the predictions of U-Net for specific profiles are presented in Figure 4.17. For this
plot, pre-storm profiles (training data) which have solely been modified for the nearshore slope (top left) are
isolated. As indicated in the top right figure, the pre-storm dune shape is identical for all input profiles. Dif-
ferent dune erosion quantities and dune shapes are modelled with XBeach (bottom left). The prediction of
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U-Net (bottom right), however, does not show these different dune shapes. Instead, only one dune shape
is modelled for all pre-storm profile shapes. This indicates that the current U-Net architecture is unable to
correctly interpret pre-storm profile characteristics to predict erosion processes at the dune.

Figure 4.17: Computed and target dune shapes for different nearshore slopes. The top figures show the pre-storm profiles with
different limits on the axis. The bottom figures present the target and predicted post-storm dune shapes. The predicted dune shapes by

U-Net are exactly the same and overlap.

Similar analyses have been carried out for profiles which were solely modified on beach slope (Appendix I).

Evaluation: Network depth and kernel size

Studying the effect of altering the network structure on DEV predictions, it was discovered that implementing
a network depth of 3 layers and a kernel size of 10, the aforementioned issues become less distinguished. The
predicted DEV does not rely on the dune height anymore and the different nearshore modifications lead to
a different morphological response. U-Net is able to transfer information from deep nearshore areas to the
dune (Appendix I, Figure I.2).

When plotting the DEV prediction for several network structures (Figure 4.18), a similar trend is found. Using
deeper networks and larger kernel sizes, U-Net is able to interpret the morphological change. The model is no
longer predicting scaled post-storm profiles and is able to capture the variations of DEV in the data. The hor-
izontal alignment vanishes for deeper networks and larger kernel sizes. However, the surrogate model is un-
able to assess the scale of the dune erosion. Thus, an increases of the MSEdune and reduction of ski l l −DEV
is observed. These results are discussed in subsection 5.2.2.

Analysing the results for the training data (Appendix H, Figure H.7), these observation are confirmed. Surro-
gate models using more layers and increased kernel sizes are able to capture the variability in the data. On the
contrary, as indicated by the improved error statistics (MSEdune and ski l lDEV ), the scale of the dune erosion
is also interpreted correctly.
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Figure 4.18: Predicted DEVs vs target DEVs for different U-Net structures trained on a single-profile-based dataset. The
best-performing network structure is highlighted in bold.

Data quantity
As addressed in Figure 3.2.1, the surrogate model will be tested for several quantities of profiles. A subset of
the training data is taken based on a certain percentage. The results for this analysis are presented in Fig-
ure 4.19. This graph indicates that using 100 to 200 profiles is enough for convergence of the surrogate model
towards a comparable performance as with the full dataset. This is about 20 - 40% of the original dataset.
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Figure 4.19: Amount of profiles in train dataset and obtained MSE error

4.2.2. Upscaling
This section describes the results that were found in the upscaling phase of this project. To be able to judge the
performance of the model in a realistic situation and varying input space, a test dataset with actual profiles
along the Holland Coast is used (Appendix F).
To set up a realistic training dataset and varying input space, the original profile of the dataset is expanded
from 1 to 4 profiles. These 4 profiles (a single profile from the exploration phase and 3 additional ones) along
the Holland coast are illustrated in section D.2. These profiles are again modified with the same modifications
as described in subsection 3.1.1. Resulting in a new set of 2000 profiles, with a mean DEV of 49.6 m2 and DEV
standard deviation of 18.0 m2 . The specifics of this dataset are illustrated in Figure 4.20.

Figure 4.20: The DEV calculated for the enlarged dataset. Each color represents a different original profile.

As presented in Appendix E, overfitting issues arise when 2000 profiles are used in the training dataset. To mit-
igate these overfitting concerns, the sampling density of the modification factors is reduced. Consequently,
an updated set of modification factors is generated, resulting in a dataset comprising 404 input profiles. Fur-
ther details regarding this dataset are presented in Figure 4.21.
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Figure 4.21: The DEV calculated for the enlarged dataset. Each color represents a different original profile.

Single- vs Multi-profile-based training dataset
This section presents the performance of the surrogate model when trained on the single- or multi-profile-
based dataset for various network depths, widths (first channel size) and kernel sizes. Both these analyses will
be carried out based on the MSEdune and the ski l lDEV to indicate both the performance and applicability of
the U-Net structure.

Network depth and network width

Figure 4.22 shows the MSE on the dune for the single- and multi-profile-based training dataset. For the
dataset with a single profile, a network depth of 3 or 4 layers yield the best results. For a network depth of
2, a reduction in errors for increasing channel sizes can be observed. However, for deep networks and large
channel sizes, this trend disappears and the performance for larger channels decreases. For a network depth
of 4, the performance of the surrogate model blows up for large channels. This also goes for the dataset with
multiple profiles. Although, the MSE for different network depths seems to be more stable, this blow-up al-
ready occurs at a network depth of 3. The best results is obtained for a network depth of 4 and channel size of
32.

Figure 4.23 illustrates the skill of the U-Net in predicting DEVs (a skill of 1 indicates the best performance).
The y-axis for the skill is ranging from -1 to 1, models with a skill below -1 do not show any significant skill.
It can be seen that the skill improves for deeper networks and even some network architectures incidentally
reach a skill above 0. While showing a similar trend, the skill for the multiple profile dataset does frequently
reach above 0. Especially deep networks with smaller channel sizes perform relatively favourable. With this
analysis the predictive capability between the two different training datasets becomes quite clear. The higher
variability in the training data becomes more applicable for this realistic test data.

Figure 4.22: Depth and width of U-Net architecture vs MSEdune for a single- and multi-profile-based training dataset.
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Figure 4.23: Depth and width of U-Net architecture vs ski l lDEV for a single- and multi-profile-based training dataset.

Network depth and kernel size
As addressed in Appendix E, kernel size can be an important parameter for the interpretation of profile

shapes and resulting dune erosion. While this was not found for the previous test data, the results for re-
alistic test case do show significant trends.

All in all, the dataset with multiple profiles yields better results compared to the single-profile-based dataset.
The obtained error (Figure 4.24) is smaller and skill (Figure 4.25) is higher for the multi-profile dataset. Study-
ing the effect of different kernel sizes, a larger kernel size yields positive results. For both training datasets,
the larger kernel size of 10 outperforms the kernel size of 3. This difference is especially pronounced for shal-
low networks of 2 layers. When examining the skill for deeper networks (3 or 4 layers), it is shown that larger
kernels are also beneficial for deeper networks, but the gain is less pronounced. Interestingly, the same skill
level is achieved for a small kernel size in the 4-layer model as for a large kernel size in 3-layer model.

Figure 4.24: Depth and width of U-Net architecture vs MSEdune for a single- and multi-profile-based training dataset. The presented
results are carried out for a constant first channel size of 32.

Figure 4.25: Depth and kernel size of U-Net architecture vs ski l lDEV for a single- and multi-profile-based training dataset. The
presented results are carried out for a constant first channel size of 32.
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U-Net structures
Given a training dataset with multiple profiles improves the model accuracy and skill, more detailed analy-
ses can be carried out. This is initiated with similar analyses as presented earlier in Figure 4.18, but for the
multi-profile training dataset and realistic test data. Subsequently, a visual inspection is carried out on the
predicted post-storm profile shapes as a result of the induced network changes.

Figure 4.26 presents the predicted DEV vs the target DEV for several network structures. In general, as U-Net
structures transition from shallow to deep, the quality of the predictions is increased. Especially for small
kernel sizes this behaviour is quite clear, while for larger kernel size the trend is less pronounced. Besides
that, the increase in kernel size is most beneficial for shallow networks.

The bottom right plot shows a complete collapse of the predictive capability of the surrogate model. Using a
network depth of 4 and kernel size of 10, the input dimension is significantly reduced, resulting in inadequate
predictive capability. The interpretation of these results is discussed in subsection 5.2.2.

Figure 4.26: Predicted DEV vs the target DEV for several network structures. Increasing network depth over the y-axis and increaing
kernel size over the x-axis. The MSEdune and ski l lDEV are printed in each figure and the best performing structure are printed in bold.



4.2. Surrogate modelling 59

Network depth

In Figure 4.27, the effects of increasing the network depth is illustrated for a single profile. In this case, the
deepening of the U-Net architecture leads to a reduction of the error at the dune. From left to right, the
post-storm shape profile is simulated more accurately.

Figure 4.27: Predicted and target differences and dune shapes for profile in test data

For a large kernel size (Figure 4.28), the error also reduces over the course of deeper networks. However,
examining the shape of the dune, the alignment with the actual post-storm profile is worse for a deep network.
The prediction shows a small distortion at the eroded duneface. This distortion has the shape of the pre-storm
profile.

Figure 4.28: Predicted and target differences and dune shapes for profile in test data

Kernel size

For this analysis, the results of two kernel sizes are presented. Figure 4.29 shows that an expansion of the
kernel size results to a better fit of the post-storm profile. For a shallow and wide network (network depth =
2, channel size = 64), the predicted profile becomes smoother for larger kernel sizes. Note that the error that
occurs for the calculation of the DEV does not represent the quality of the shape. For the left plot, the shape
of dune overestimates the amount of erosion for higher elevations, but underestimates for lower elevations
on the dune. Because these volumes cancel each other out, this is not found in the DEV error statistic.
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The opposite trend is observed when a deep network (network depth = 4, channel size = 32) is applied (Fig-
ure 4.30). While the goodness of the fit increases, while the shape seems to follow the shape of the input-
profile. The distinct post-storm profile shape as computed by XBeach is not present.

Figure 4.29: Predicted and target differences and dune shapes for profile in test data

Figure 4.30: Predicted and target differences and dune shapes for profile in test data

Channel size

Altering the channel size does not lead to a significant change to the general appearance of the predicted
post-storm profile. In general, the influence of the channel size depends on the depth of network. As shown
in Figure 4.31, the error at the duneface can be reduced for shallow networks (network depth = 2, kernel size
= 10). While for deeper networks (Figure 4.32), the error on the duneface increases for larger channel sizes.

The common shape of the post-storm profile prediction does not change too much and follows the shape of
the pre-storm profile. Next to that, for large channel sizes the predictive capability of U-Net vanishes. The
results blow up and the predicted pre-storm profile hardly differs from the pre-storm profile. For all predic-
tions in a deep network and large kernel size, the predicted post-storm profile shape has similar features as
the pre-storm profile shape.
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Figure 4.31: Predicted and target differences and dune shapes for profile in test data

Figure 4.32: Predicted and target differences and dune shapes for profile in test data

Note: These results are an example of how the U-Net architecture affects the predicted profiles. Visual inspec-
tion of other profiles led to similar overall trends, but each has its complications concerning the influence of the
pre-storm profile shape.

Model performance for selected network structure
To assess the performance of U-Net in modelling dune erosion processes, a specific U-Net structure is se-
lected. Based on findings from the previous section, a surrogate model using a U-Net structure with a depth
of 3 layers, first channel size of 32 and kernel size of 10 is set up. Initially, the capability of U-Net to capture
dune erosion processes is assessed. Subsequently, some specific profiles are highlighted in more detail.

Dune erosion processes
Judging from Figure 4.33, U-Net is able to mimic the positive relationship between the beach slope of the
input profiles and the resulting dune erosion. Although errors occur for individual profiles, the trend between
the target and prediction shows similarities. In fact, both the XBeach predictions and U-Net predictions show
an increase in DEV for steeper beaches. This relation is also highlighted in the parameter sensitivity analyses
(subsection 4.1.3). It is remarkable to observe that the relationship between beach slope and DEV seems to
be more pronounced for the U-Net prediction than for the XBeach target. This is confirmed by the computed
pearson coefficients (ρ).
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Figure 4.33: The target DEV using XBeach (left) for different beach slopes and predicted DEV using a surrogate model (U-Net) for
different beach slopes. The strength of the relationship between the beach slope and DEV is expressed by the pearson correlation

coefficient (ρ)

Predicted profiles
The results for all profiles in the test dataset are highlighted in Appendix I. Some predictions worth mention-
ing are presented in this section. Briefly, a relatively good profile fit is followed by two poor predictions (over-
and underprediction).

For the good prediction (Figure 4.34), the post-storm difference is approached relatively accurate. Although
the prediction is oscillating a little, it has a similar shape and amplitude as the actual difference. Although,
unlike the training data, the dune area has multiple features behind the eroded area, the shape of the post-
storm profile is predicted accurately.

A profile for which an underprediction of the DEV was found is illustrated in Figure 4.35. This can already be
seen in the illustration of the difference. The prediction is constantly lower than the actual values. Analysing
the actual elevation plots, it can be seen that U-Net falsely projects the pre-storm shape of the dune on the
post-storm profile. In this case, this is a small elevation difference at the end of the erosion areas. This small
alternation on the foredune leads to an overestimation of the sediment that remains on the dune after the
storm. In Figure 4.36, an overprediction of the DEV is presented. The impact of the storm is overpredicted
and the dune shape is affected too severely. This results in a large MSE at the dune and a mismatch of the
actual and predicted profile shapes. These results are discussed in subsection 5.2.4.

Good fit
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Figure 4.34: Good prediction of DEV: Predicted and target differences and dune shapes for profile in test data

Poor fit, underprediction

Figure 4.35: Underprediction of DEV: Predicted and target differences and dune shapes for profile in test data

Poor fit, overprediction

Figure 4.36: Overprediction of DEV: Predicted and target differences and dune shapes for profile in test data
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Discussion

5.1. XBeach
By isolating the modifications to the original profile and analysing modelled DEV, the expected erosion re-
sponse was recorded. In general, steep slopes in submerged profile sections lead to larger erosion quantities
due to decreased dissipation of wave heights. This effect was recorded on a large range for the beach section.
Within this large range, a decay in the impact of the storm for gentle slopes can be found. This trend was also
found in literature (subsection 2.1.2).

All modelled post-storm profiles in the simplified dataset remain in the collision regime. Therefore, dune
erosion does not reach above the dunecrest and the modifications of the dunecrest height do not influence
the DEV. The induced modifications yield an appropriate variability of DEV to train the neural network. Note
that the dunecrest height is a large signal in the input data (Figure D.2), but that this hardly influences the
modelled DEV. For this project, no issues were raised, but for future research this should be treated with care
to prevent fitting of the model to input without a change of signal in the output.

As presented in Figure 3.8, the endpoints method for slope calculation can result in an oversimplification of
the calculated slope for a profile section. While giving a suitable indication of the slope this should be taken
into account when assessing the results. Especially for the duneface, due to its non-linear trend, significantly
higher values could be observed than indicated by the endpoints method.

Throughout this research, the storm conditions remained unchanged. These conditions are assumed sta-
tionary over the full duration of the storm. No variation in tide and build-up of the surge was modelled. This
highly simplified situation would never occur at the actual Holland coast system. Using realistic storm shapes
would result in different temporal evolution of the dune erosion pattern and the modelled post-storm differ-
ence would likely be less drastic compared to stationary conditions. As for the essence of this research, pre-
dicting post-storm profile shapes, realistic storm shapes (results as long as a certain signal is present) would
not influence the presented results.

5.2. Surrogate modelling
5.2.1. Scale of coastal erosion processes
In the exploration phase of this research it became clear that the scale of the input (bed elevation) and the
modelled signal (sediment transport) are from different orders of magnitude. While the bed elevation reaches
from -30 m to 20 m for several full input profiles, the signal of the observed erosion at the dune is on average
about 5 m. Therefore, detecting this signal poses a challenge for a U-Net architecture and it needs assistance
to identify these dune erosion processes. This is achieved through several techniques.

The first technique issued in this report is the standardization of the cross-shore grid. This grid should solely
include the areas of interest of the modeller. This can be obtained by inducing a minimal elevation (zmi n) that

64
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limits the considered range of the input. Next to that, the input profiles can be fixed on a certain elevation
(z f i x ). This isolates the location of the erosion processes at a certain point in the 1D input and helps U-Net
to interpret the modelled changes.

Next to standardization of the cross-shore grid, the input data can also be pre-processed. As shown in Fig-
ure 4.5, training U-Net to predict the difference between the pre- and post-storm profiles instead of the abso-
lute post-storm elevation is beneficial for the performance of the surrogate model. Through this technique,
the signal of erosion processes becomes more detectable for U-Net. Due to the large differences in dynamic
areas of the profile, a natural weight is present at these profiles section. The mean square error computed for
this area is significantly higher and is recognized by U-Net.

This weight can also be forced upon the input by applying a mask over the input. This, however, only shows
an increase in performance when this weight is not present in the original input. Therefore, the gain in per-
formance for the difference model is little. On the contrary, for normalized elevation data, the natural weight
in the difference is not present. This facilitates the application of forced weights on the input and enables
improvement of the model performance in the areas of interest.

5.2.2. U-Net structure complexity
In general, the complexity of the U-Net structure should align with the complexity captured in the training
data. As indicated by the results, the complexity of the U-Net structure can be derived from the resolution of
the input, network depth, network width and kernel size. The complexity captured in the data relies on the
alongshore variability that is captured in the training data. These differ between the exploration- (low com-
plexity) and upscaling phase (high complexity). This section discusses the results for the network structure.
subsection 5.2.3 issues the results with respect to the applied data.

The resolution of the input determines the number of datapoints present in the 1D input. For pre- and post-
storm profiles this is accounted for by minimum elevation (zmi n) and the spacing (∆x) in the input grid. For
the spacing, the obtained dune shapes for coarse grids (∆x = 10 and ∆x = 5) were simply too crude to correctly
extract the erosion processes. When applying a fine grid size of ∆x = 1 (grid size used in XBeach), the results
show overfitting issues. Especially when smaller elevation ranges (higher zmi n), U-Net post-storm profile pre-
dictions start showing oscillations.

Eventually, a grid spacing of 2 m and minimum elevation of -5 m was employed to standardize the data. This
grid is not re-evaluated for new U-Net alternatives in later stages of the research. Using a larger variability
of input profiles in the training data, might require a more flexible grid standardization. For example, cross-
shore profiles that do not comply with the standard Holland Coast profile outlook would require more detail.
This should be taken into account when proceeding with the U-Net architecture.

Exploration
Based on results presented in Figure 4.10 and Figure 4.14 it can be stated that the network depth is a crucial
hyperparameter for the performance of U-Net. Especially to reduce the MSE on the dune section of the pro-
file for the exploration training and test dataset, a relatively shallow network is favourable. The complexity
captured in this training/test dataset does not require deep U-Net architecture. The combination of the data
and network structure does lead to a simplification of the training process and physically undesired profile
predictions Figure 4.16.

Another parameter to tune the complexity of the model is the width (channel size) of the U-Net structure.
Figure 4.14 illustrates that this feature shows contrasting trends for different network depths. Whereas more
channels seem favourable for shallow networks, it seems disadvantageous for deeper channels. The channel
size could be interpreted as an extra stimulus for the extracted complexity. This is beneficial for shallow
networks, but not needed for deeper architectures. It is important to stress that the network depth and width
both influence the amount of features extracted from the data and should be balanced out according to the
format of the inputted data.
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Exploration: Shallow U-Net structure
In the exploration phase, when studying the applicability of the U-Net profile predictions by extracting the
DEV, the statistical interpretation of U-Net and lack of physical knowledge becomes clear. Judging from Fig-
ure 4.16, the predicted DEV and mean errors on the dune can be categorized based on dune crest height.
However, as presented in subsection 4.1.3, the dune erosion processes do not rely on the height of the dune.
These results suggest that U-Net is incorrectly interpreting the single-profile training and test data and not
linking the input data to the modelled erosion processes.

Instead, a 2-layer U-Net model is completely relying on statistics when finding relationships between the
input and output. For a single profile dataset and a shallow network depth U-Net is able to predict one single
profile and scale that to the supplied input profiles. Through a shallow network, the U-Net structure is unable
to simulate dune erosion processes and attempts to find the statistically optimal solution. Due to the similar
shape of the post-storm dune, this shape is approached relatively good.

Exploration: Deep and increased complexity U-Net structure
As discussed before, shallow U-Net architectures are good at interpreting local shape changes of the dune,
but lack the capability to link these local changes to pre-storm profile characteristics. This issue raises ques-
tions about the adjustments that could be made to the U-Net architecture and improves the capabilities to
simulate coastal processes. As presented in the results (Figure 4.18), this can be achieved by increasing the
network depth and kernel size.

Increasing the network depth allows for the extraction of high-level features. Especially in deeper parts of the
CNN, the original spatial structure is abandoned and features are able to interact. For example, in case of
a pre-storm profile, for the features found nearshore to be able to interact with the erosion processes at the
dune a sufficient network depth and kernel size should be provided. In case of a shallow network (network
depth = 2 and kernel size = 3), this capability of CNN is not provided (Figure 4.17).

Increasing the kernel size is particularly beneficial for shallow networks. As explained in subsection 2.2.2,
a convolutional layer extracts several features from the input with a certain range of pixels (kernel size).
Throughout the depth of the network, extracted features start to interact. With fewer layers, the receptive
field of each layer remains limited even when using larger kernel sizes. This helps in preserving finer spatial
details and allows for interactions between those. For deeper network structures this changes. Large kernels
result in an increase in the receptive field and potential loss of fine-grained spatial details.

Reflecting on these insights for the profile prediction for one single profile, trends found in the optimization
results (Figure 4.2.2 and Figure 4.2.2) are confirmed. Deeper network and large kernel sizes can reduce the
computed error for post-storm profile prediction. Together, however, they lead to incorrect post-storm pro-
file shapes. Whereas, the kernel size results in an improvement in performance for shallow networks, this
effect is smaller for deeper networks. The kernel size should therefore be treated with great care.

Upscaling
The issues raised during the exploration are confirmed during the upscaling phase of this research. The ability
to correctly interpret dune erosion processes in pre- and post-storm profiles comes in for more complex U-
Net structures. This claim has been confirmed through analyses on the training data during the exploration
phase, as illustrated in Appendix H (Figure H.7). The obtained skill and accuracy further validate this claim
for the realistic test data.

As observed in Figure 4.26, increasing the complexity of the U-Net structure, characterized by the network
depth, network width, and kernel size improves the performance of the surrogate model. Shallow networks
benefit more from larger kernel sizes than channel sizes than deep networks.

The improvement of the performance is limited to a certain complexity. As discussed before, adding too many
parameters in the U-Net architecture leads to diminished prediction capability. U-Net starts overfitting and
oscillations occur at the predicted profiles. Besides that, for deep networks with very large kernels (bottom
right in Figure 4.26), the surrogate model prediction takes the original shape of the pre-storm profile. This
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confirms the discussion points presented in the previous section on large kernel sizes for shallow and deep
network structures.

5.2.3. Training and test data
Exploration
For the exploration phase of this research, the single-profile-based test and training dataset have shown their
potential to explore the possibilities for post-storm profile predictions. Insights were gained about the driving
mechanisms of dune erosion. Subsequently, these insights were used to evaluate the performance of U-Net
and its ability to replicate coastal processes.

The understanding gained about the influence of U-Net structure on the simulating dune erosion processes
(subsection 5.2.2) does not correspond with the results gained for the test case in the exploration phase. When
testing on a dataset which is based on a single profile, shallow networks are favourable. Projecting these re-
sults on the training data, U-Net is able to mimic coastal processes better for larger network depth and kernel
sizes, but the bias on the test dataset predictions is increased.

Due to the lack of alongshore variability in profiles, the process captured in the training dataset are 1D. There-
fore, the optimal post-storm profile is a single profile scaled by means of the pre-storm input profile. Adjust-
ing the network architecture allows for the interpretation of the training data by U-Net, but does not show
improved performance for the test data. This can be explained by the fact that the test data in the exploration
phase does not capture the same variability in the input space as present in the training dataset. The accuracy
for the test dataset is better represented by a shallow network, but for upscaling purposes, this test data and
performance metric do not give an adequate performance indication.

Upscaling
In the upscaling phases of this research, an enlarged training dataset based on four different profiles is set up.
This introduces a cross-shore diversity and a larger range of erosion events. Next to that, the performance of
the surrogate model is tested on a dataset of actual Holland Coast profiles and two performance indicators
(MSEdune and ski l lDEV ).

Using these training and test cases, the performance of the surrogate model showed significant improvement
compared to the single-profile-based training dataset. The potential of deeper networks and increased kernel
size are also reflected upon the test data and have a positive influence on the U-Net predictions.

To prevent overfitting and reduce the size of the training dataset, the originally obtained multi-profile training
data was sampled on a smaller density to reduce the size of the dataset (Appendix E). This was accomplished
by excluding input profiles that were generated using specific modification factors. Hence, the resulting sam-
pled dataset consisted of fewer modifications per original profile. This method of sampling could be replaced
by clustering techniques. Techniques, such as the Maximum Dissimilarity Analysis (MDA) and k-means, can
be used to reduce the size of an original dataset by generating a representative subset. This subset consists of
profiles, which embody a cluster of profiles within the original dataset. This way, the size of the dataset is re-
duced while keeping the variability of the input space intact. Using this technique, a smaller training dataset
could be used to capture the same (or greater) variability.

The difference between the exploration- and upscaling phase is illustrated in Figure 5.1. The applied test data
directly influences the required network complexity of U-Net.
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Figure 5.1: Overview of the required network depth of U-Net for the exploration and upscaling phase. In the exploration phase, the test data is an incorrect representation of the training data. Resulting in
the requirement of shallow network depths and a lack of predictive capability. In the upscaling phase, a better understanding of the training data by U-Net is reflected upon the test data. This confirms the

need for a deeper network structure to capture coastal processes with U-Net. The favourable network depth for both the training and test data is indicated by a green square.
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5.2.4. Profile shape prediction
Findings in the exploration phase revealed the feasibility of predicting profile shapes using U-Net architec-
tures. While this does not directly measure the predictive skill of the network, it demonstrates the potential
to predict post-storm profile shapes based on the pre-storm profiles. The correlation between the elevation
datapoints and high input resolution that come with pre-storm profile input, is captured correctly by the con-
volutional neural network. Using skip-connections proves advantageous in preventing oscillations and reduc-
ing errors on the dune. In general, post-storm profile predictions are of better quality when high-resolution
information from the encoder pathway is transferred to low-resolution information from the decoder path-
way. This preserves the original spatial information captured in the input data. However, it is worth noting
that apart from the removal of skip-connections, other CNN architectures were not subjected to testing in
this study.

While the overall shape of a post-storm profile is captured correctly, the severity of the dune erosion is not.
Using the single-profile training dataset and shallow networks, the pre-storm profile shapes cannot be linked
to the dune erosion processes. Suggestions such as increasing the network depth and kernel size to overcome
this issue are addressed in subsection 5.2.2.

It was found that U-Net has trouble overcoming spatial alterations at the location of erosion processes. The
spatial alterations at the dune are projected on the pre-storm profile. For deep network structures and large
kernel sizes, U-Net is able to overcome these alterations on a larger scale, but not at a smaller scale. When
using a large kernel, the receptive field of each convolutional layer increases, potentially leading to a loss of
fine-grained spatial details. The model may become less sensitive to local patterns and fail to capture small,
intricate features in the input. That is why these shortcomings are less distinct when applying smaller kernels.

Besides that, the issue could be overcome by adding profiles with these kinds of alternations at the foredune
will likely increase the understanding of U-Net. These results will be of great interest when other dune erosion
regimes are considered to see if U-Net is able to make correct interpretations for large changes in the dune
geometry.

5.2.5. Performance metric
Reflecting on the results of the exploration phase of this research, it becomes evident that relying solely on
the mean square error of the dune profile may not suffice as the sole indicator of the model’s performance,
particularly when considering the upscaling objectives of the surrogate model. This aspect was previously
acknowledged in the methodology, and the insights gained in the preceding section further reinforce this
consideration. As a result, emphasis is placed on the skill of predicting DEVs during the upscaling phase of
this research.

Nevertheless, these two metrics fail to provide a comprehensive indication of the quality of the post-storm
profile shape. Visual inspections are required to provide insight into the actual shape of the post-storm profile.
However, visual inspections can not serve as a quantifiable means to optimize modelling results. Therefore,
the inclusion of additional metrics is necessary to accurately evaluate the shape of the post-storm profile in
optimization schemes.

The root mean squared transport error (RMSTE) developed by Bosboom (2019) to evaluate sediment trans-
port processes could be integrated into the validation metric to correctly interpret the fit of predicted profiles.
This error metric is defined as the root-mean-square of the optimal transport field. The RMSTE takes into ac-
count both the quantity of misplaced sediment and the distance over which this sediment needs to be trans-
ported. This sensitivity of the RMSTE enables a more comprehensive evaluation of the model’s performance
in capturing the spatial characteristics of sediment transport. This could be a valuable metric to capture the
shape features of the predicted profile.

Besides that, additional morphological parameters could be extracted from the post-storm profile prediction.
Currently, the analyses on the skill of the surrogate model are solely carried out on the DEV. This establishes
simplicity and allows for comparative studies, but could be supplemented with other metrics such as the
post-storm location of the dune toe, location of dune crest and slope of the duneface. This would provide
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supplementary support to strengthen the assessment of the model’s performance. These metrics could also
be evaluated based on the same skill indicator (Murphy, 1988), as showcased by Gharagozlou et al. (2022).
Since the DEV is a volume representing a certain area, these additional metrics could help to specify the
actual location of predicted elevation points. This way, the shape of the post-storm dune is captured in more
detail.

5.3. U-Net evaluation
As presented in Figure 4.33, U-Net is able to correctly simulate the relationship between the beach slope and
DEV. For steep slopes, large DEV are modelled. This is in agreement with the results presented in subsec-
tion 4.1.3. While the trend is harder to detect for this data, a positive relationship can be observed. This trend
is more pronounced for U-Net predictions than for XBeach predictions.

It should be stressed that the other hyperparameters (pooling size, learning rate, activation function, etc.)
used for U-Net and the multi-profile dataset are similar to the results obtained in Figure 4.2.1 and have not
been re-evaluated. Tuning your neural network structure and adjusting the training dataset should be carried
out in parallel. Therefore, the currently used hyperparameters should be re-evaluated in further stages of this
research.

Lastly, it is important to emphasize that U-Net was originally designed for image segmentation tasks. Hence,
the generated output is an encoded and decoded representation of the input. Consequently, the predicted
post-storm profiles may exhibit similar characteristics to the input pre-storm profiles. This characteristic is
spotted for deep network structures and large kernel sizes (Figure 4.32. It is important to emphasize that this
underlying principle of U-Net can be overcome by selecting a suitable network architecture. Furthermore,
incorporating greater diversity in the input space of the training data would result in improved performance
on outliers within the data.
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Conclusion

This chapter attempts to answer the research questions proposed in section 1.3 to reach the main objective of
enabling fast prediction of actual post-storm sandy profiles along the Holland Coast using neural networks
and XBeach.

1. What response in dune erosion volumes is found in the post-storm profiles as a result of slope changes
of sandy pre-storm profiles using a simplified dataset and XBeach?

Using a dataset of simplified profiles, a large variety of DEVs is captured in the corresponding post-storm
profiles. In general, a steeper slope of a certain profile section leads to a larger impact on the dune. For the
considered simplified set of cross-shore profiles, the beach and nearshore slope show the highest sensitivity
to the modelled DEV. The dune response remains in the collision regime and does not reach the top of the
dune. Therefore, the height of the dunecrest of the pre-storm profiles has a low impact on the storm response
at the dune.

2. What performance metrics can be used to evaluate surrogate modelling using neural networks for post-
storm profile shape prediction?

The exploration phase of this research showed that the MSE can not be the only performance metric in evalu-
ating surrogate models. Additional metrics such as the skill on extracted variables are therefore incorporated
in this research. These metrics should always be provided with visual inspections of surrogate model pre-
dictions. As the surrogate model tends to rely on statistics instead of physics, a miss match between the
modeller’s and model’s understanding can only be overcome if predictions are visually inspected.

However, in the next stages of this research, additional performance metrics, such as the root-mean-square
transport error, should be introduced. Next to that, the skill metric should also be applied to other morpho-
logical parameters that define the post-storm profile. This allows for a better representation of the actual
shape of the predicted post-storm profile.

3. To what extent are pre-processing tools and neural networks able to make post-storm profile shape pre-
dictions for a simplified dataset?

Notably, using a simplified dataset, convolutional neural network and a U-Net architecture, shapes of post-
storm profiles can be reproduced. The quality of the prediction strongly relies on pre-processing tools, the
neural network structure and the training/test data.

For a neural network to process, the pre- and post-storm profiles should be presented in a fixed grid with
constant spacing. The active section of the profile should be highlighted by means of a minimum value and
a fixed elevation. This active profile section can also be accentuated by training the neural network on the
post-storm difference or applying a weight to this profile section.
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It can be concluded that the U-Net architecture is a suitable neural network to predict post-storm profile
shapes. The performance of U-Net and introduced errors predominantly rely on the network depth, network
width and kernel size. In general, the complexity of the U-Net structure should simultaneously match the
complexity found in the data and allow for enough depth to facilitate interactions between different profile
sections. Detailed analyses of the network depth and kernel size showed the effect of different U-Net struc-
tures on the interpretation of coastal processes by the neural network.

The exploration phase showed the importance of an appropriate test dataset. While being suitable for the ex-
ploration of several U-Net alternatives, it lacked the capability to judge the interpretation of coastal processes
by U-Net. Eventually, a more detailed analysis of the interpretation of specific profiles in the training data by
U-Net turned out to be crucial to understand the interpretation of coastal processes by U-Net.

4. Can the neural network structure, obtained in the exploration phase, be scaled-up to predict post-storm
profile shapes of actual Holland Coast profile shapes?

Applying the obtained U-Net structure for a realistic training and test dataset allowed for the prediction of ac-
tual post-storm profiles along the Holland Coast. Results on the network structure and model performance
showed similar trends as was found in the exploration phase. All in all, a U-Net-based surrogate model suc-
ceeds in describing the positive relationship between the beach slope and dune erosion volumes.

The multi-profile training dataset outperformed the single-profile training dataset for all network structures.
It can be concluded that including more alongshore variability in the training data is beneficial for the sur-
rogate model performance. Using additional performance metrics, these trends could be quantified. An
average skill of 0.51 for predicting DEVs of 21 pre-storm profiles at the Holland Coast for stationary storm
conditions was achieved.

The results in the upscaling phase confirmed the insights gained in the exploration phase. More complexity
in the U-Net structure allows for a better understanding of dune erosion processes by U-Net. Again, the net-
work depth and kernel size proved to be crucial components of the U-Net structure. Using a shallow network,
more predictive capability can be obtained by increasing the kernel size. The effect of large kernels vanishes
for deep networks.

Concluding from the visual inspections of the predicted post-storm profiles, U-Net is an appropriate tool to
describe cross-shore profile changes. However, having an encoding/decoding structure, predictions made
with U-Net originate from the original input structure. This becomes clear when features in the dynamic
areas are present in the test data but absent in the training dataset.
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Recommendations

This chapter describes recommendations arising from this study. This includes practical implications of the
acquired knowledge of this research and possible further research.

Practical implications
In its current state, the U-Net model for post-storm profile predictions does not have a significant practical
implication. While this research showed many possibilities and shortcomings of a U-Net surrogate modelling
strategy, the obtained skill and consistency do not yet allow for sufficient confidence in the model predictions.
Using this model for quick assessments and preliminary studies, it needs improvement in several aspects.

This application of U-Net would be a suitable showcase for data-driven modelling in hydraulic engineering.
As a result of the simplicity captured in the input and output data, this research presents a case that is un-
derstandable for every hydraulic engineer and mathematician. This simplicity allows for the trace down of
interaction between U-Net structure and morphological storm response. This promotes understanding of
U-Net’s interpretation of spatial data.

Hyperparameters
When proceeding with the results obtained in this research, it is important to stress that the hyperparameters
should be constantly re-evaluated. In this research, hyperparameters such as the pooling size, learning rate
and batch size have had a fixed value throughout the continuation and improvement of the model. This fixed
value originates from the first model version. For future research, these hyperparameters should be evaluated
in parallel to other modifications of the model. Next to that, the considered range for the hyperparameters
should not be too narrow. The kernel size is a good example of such a parameter. Initially, for the first opti-
mization scheme, a range up to a size of 5 was considered. While in later stages with new training and test
dataset, a kernel size of 10 turned out to be beneficial.

Training data
Currently, the model is trained on a multi-profile dataset of 404 profiles originating from a set of four profiles
along the Holland coast. This showed improved results compared to a single-profile dataset. The training
data could be upscaled to a realistic scenario for which a larger variety of the Holland coast is captured. In-
cluding more variety in the input space can be achieved through several techniques.

Using more than four profiles as the base of your training dataset. This would be a more suitable representa-
tion of the Holland Coast test dataset. Through this technique, there would be the possibility to include more
alongshore variability and a wider range of input shapes. This way, the cross-shore profiles on the Holland
coast are better represented.
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Increasing the number of base profiles can come with a reduction of the amount of applied modifications. To
account for enough variability in the input space, selecting the base profiles should be done carefully. Several
clustering techniques could be applied to make sure the Holland Coast is adequately represented. The meth-
ods presented by Athanasiou et al. (2021) would be a suitable reference point for this analysis.

Note: Evaluation of the U-Net architecture would be required for a new training dataset.

Performance metric
For future research, performance metric should be revised. The currently applied MSE and skill give a good
indication of the model performance. However, applying visual inspections, it was found that the shapes of
the predicted post-storm profile are not correctly represented by these metric.

This issue is addressed by Bosboom and taken care of by introducing the root-mean-square transport error
(RMSTE). This metric accounts for the optimal transport process and is able to deal with spatial characteris-
tics of sediment transport. For future research, it is advised to include this metric to judge the performance
of the surrogate model.

Currently, the skill of the surrogate model is solely calculated for the dune erosion volume. In next steps, other
morphological indicators could be used to give a more comprehensive indication of the shape representation.
For example. calculating the skill on beach width reduction, dune toe- or dune crest displacement could turn
out the be a valuable metric.

For this research, these metrics are only used in the post-training performance judgement. However, these
could also be used in the actual training of the U-Net structure. This method could be similar to physics-
informed neural networks (PINNs). For PINNs, the loss function is supplied with an additional variable and
this variable supplies additional information which is used during training of the model. In this case, the
morphological parameter extracted from the predicted profiles, such as the DEV, can be added to the loss
function. Since it is expected that this variable will be of different importance than the elevation point, the
computed error is multiplied with a weight (W ). This could be integrated into a loss function (Equation 7.1).

E = MSEelevati on +MSEDEV = 1

m

(∑
(yr − ŷr )2 +W

(
1

m

∑
(DEV − ˆDEV )2

))
(7.1)

Storm conditions
Currently the surrogate model is trained for a single stationary storm and only takes pre-storm profile input.
To improve the resilience and broaden the applicability of the model, the incorporation of storm conditions
would be favourable. When including storm conditions, the model could be used for a wider variety of storm
scenarios.

A major point of attention for including storm conditions in a U-Net architecture, is the difference in the
reference frame of storms compared to the 1D profile data. This could be accounted for by "injecting" the
storm conditions at the deepest layer of the network’s architecture. Deeper into the network, the spatial
reference frame of the input has been reduced the most. Therefore, it makes sense to introduce the storm
conditions in the deepest part of the neural network. This was attempted by Löwe et al. (2021) for urban
pluvial flood events. Showing that introduction of weather conditions is possible for 3D flood maps.

Other erosion/restoration regimes
The current model is trained on profiles and a single storm that remain in the collision regime. This is typical
for the Holland coast and prevailing storm conditions in this area. However, looking at other sandy coasts, a
wider range of erosion regimes is observed. Overwash and inundation regimes, for example, introduce dras-
tic morphological changes at the dune. It would be interesting to analyse if U-Net is capable to represent
these regimes.

Next to dune erosion, dune restoration is also a widely observed sediment transport process. Generally, after
storm erosion, dunes restore to their pre-storm equilibrium situation. Restoration processes take place on
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a significantly larger timescale than erosion processes. In theory, U-Net should also be able to predict the
restoration shape changes. However, the variability in the output space will likely be larger due to the longer
duration of this process and the absence of a distinct post-restoration profile shape.
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an existing database of synthetic storms. Natural Hazards, 81, 909–938. https://doi.org/10.1007/
S11069-015-2111-1

Kabiri-Samani, A. R., Aghaee-Tarazjani, J., Borghei, S. M., & Jeng, D. S. (2011). Application of neural networks
and fuzzy logic models to long-shore sediment transport. Applied Soft Computing, 11, 2880–2887.
https://doi.org/10.1016/J.ASOC.2010.11.021

Karunarathna, H., Pender, D., Ranasinghe, R., Short, A. D., & Reeve, D. E. (2014). The effects of storm clustering
on beach profile variability. Marine Geology, 348, 103–112. https://doi.org/10.1016/J.MARGEO.2013.
12.007

Kim, S. W., Melby, J. A., Nadal-Caraballo, N. C., & Ratcliff, J. (2015). A time-dependent surrogate model for
storm surge prediction based on an artificial neural network using high-fidelity synthetic hurricane
modeling. Natural Hazards, 76, 565–585. https://doi.org/10.1007/S11069-014-1508-6/FIGURES/9

Lecun, Y., Bottou, L. E., Bengio, Y., & Abstract|, P. H. (1998). Gradient-based learning applied to document
recognition.

López, I., Aragonés, L., Villacampa, Y., & Serra, J. C. (2017). Neural network for determining the characteristic
points of the bars. Ocean Engineering, 136, 141–151. https://doi.org/10.1016/J.OCEANENG.2017.03.
033

Löwe, R., Böhm, J., Jensen, D. G., Leandro, J., & Rasmussen, S. H. (2021). U-flood topographic deep learning
for predicting urban pluvial flood water depth. Journal of Hydrology, 603. https://doi.org/10.1016/j.
jhydrol.2021.126898

Luijendijk, A., Hagenaars, G., Ranasinghe, R., Baart, F., Donchyts, G., & Aarninkhof, S. (2018). The state of the
world’s beaches. Scientific Reports, 8. https://doi.org/10.1038/s41598-018-24630-6

machine-learning.paperspace.com. (2020). Activation function. https://machine-learning.paperspace.com/
wiki/activation-function

Maretto, R. V., Fonseca, L. M., Jacobs, N., Körting, T. S., Bendini, H. N., & Parente, L. L. (2021). Spatio-temporal
deep learning approach to map deforestation in amazon rainforest. IEEE Geoscience and Remote
Sensing Letters, 18, 771–775. https://doi.org/10.1109/LGRS.2020.2986407

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin
of mathematical biophysics 1943 5:4, 5, 115–133. https://doi.org/10.1007/BF02478259

Minsky, M., & Papert, S. A. (1969). Perceptrons. https://mitpress.mit.edu/9780262630221/perceptrons/
Murphy, A. (1988). Skill scores based on the mean square error and their relationships to the correlation coef-

ficient.
Nourani, V., Hakimzadeh, H., Amini, A. B., Lab, S. A. F., & Amini, H. H. A. B. (2012). Implementation of artificial

neural network technique in the simulation of dam breach hydrograph. Journal of Hydroinformatics,
14, 478–496. https://doi.org/10.2166/HYDRO.2011.114

Nyuytiymbiy, K. (2020). Parameters and hyperparameters in machine learning and deep learning. https://
towardsdatascience.com/parameters-and-hyperparameters-aa609601a9ac

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L.,
Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., . . . Chintala, S. (2019). Pytorch: An imperative style, high-performance deep learning library. In
Advances in neural information processing systems 32 (pp. 8024–8035). Curran Associates, Inc. http:
//papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-
library.pdf

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss,
R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E.
(2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–
2830.

Prakash, N., Manconi, A., & Loew, S. (2020). Mapping landslides on eo data: Performance of deep learning
models vs. traditional machine learning models. Remote Sensing, 12. https : / / doi . org / 10 . 3390 /
RS12030346

Razavi, S., Tolson, B. A., & Burn, D. H. (2012). Review of surrogate modeling in water resources. Water Re-
sources Research, 48, 7401. https://doi.org/10.1029/2011WR011527

Rijkswaterstaat. (2021). Kustlijnkaarten 2022.
Roelvink, D., Reniers, A., Dongeren, A. V., Vries, J. V. T. D., Lescinski, J., & Report, R. M. (2010). Xbeach model

description and manual version 6 xbeach model description and manual.

https://doi.org/10.1007/S11069-015-2111-1
https://doi.org/10.1007/S11069-015-2111-1
https://doi.org/10.1016/J.ASOC.2010.11.021
https://doi.org/10.1016/J.MARGEO.2013.12.007
https://doi.org/10.1016/J.MARGEO.2013.12.007
https://doi.org/10.1007/S11069-014-1508-6/FIGURES/9
https://doi.org/10.1016/J.OCEANENG.2017.03.033
https://doi.org/10.1016/J.OCEANENG.2017.03.033
https://doi.org/10.1016/j.jhydrol.2021.126898
https://doi.org/10.1016/j.jhydrol.2021.126898
https://doi.org/10.1038/s41598-018-24630-6
https://machine-learning.paperspace.com/wiki/activation-function
https://machine-learning.paperspace.com/wiki/activation-function
https://doi.org/10.1109/LGRS.2020.2986407
https://doi.org/10.1007/BF02478259
https://mitpress.mit.edu/9780262630221/perceptrons/
https://doi.org/10.2166/HYDRO.2011.114
https://towardsdatascience.com/parameters-and-hyperparameters-aa609601a9ac
https://towardsdatascience.com/parameters-and-hyperparameters-aa609601a9ac
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.3390/RS12030346
https://doi.org/10.3390/RS12030346
https://doi.org/10.1029/2011WR011527


Bibliography 78

Roelvink, D., Reniers, A., van Dongeren, A., van Thiel de Vries, J., McCall, R., & Lescinski, J. (2009). Modelling
storm impacts on beaches, dunes and barrier islands. Coastal Engineering, 56, 1133–1152. https://
doi.org/10.1016/j.coastaleng.2009.08.006

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmen-
tation. http://arxiv.org/abs/1505.04597

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the
brain. Psychological Review, 65, 386–408. https://doi.org/10.1037/H0042519

Ruessink, B. G., & Jeuken, M. C. (2002). Dunefoot dynamics along the dutch coast. Earth Surface Processes and
Landforms, 27, 1043–1056. https://doi.org/10.1002/ESP.391

Sallenger, A. H. (2000). Storm impact scale for barrier islands (3).
Santos, V. M., Wahl, T., W.Long, J., Passeri, D. L., & Plant, N. G. (2019). Combining numerical and statistical

models to predict storm-induced dune erosion. https://doi.org/10.1029/2019JF005016
Serda, M., Becker, F. G., Cleary, M., Team, R. M., Holtermann, H., The, D., Agenda, N., Science, P., Sk, S. K.,

Hinnebusch, R., A, R. H., Rabinovich, I., Olmert, Y., Uld, D. Q. G. L. Q., Ri, W. K. H. U., Lq, V., Frxqwu,
W. K. H., Zklfk, E., Edvhg, L. V., . . .,. (2022). The development of a fast-computing emulator to predict
dike failure during severe flood events (G. Balint, B. Antala, C. Carty, J.-M. A. Mabieme, I. B. Amar, &
A. Kaplanova, Eds.). Uniwersytet lski, 7, 343–354. https://doi.org/10.2/JQUERY.MIN.JS

Sun, S., Bhirangi, R., & Vogler, N. (2021). Lecture 16: Building blocks of deep learning. https : / / sailinglab .
github.io/pgm-spring-2019/notes/lecture-16/

Tijssen, A., & Diermanse, F. (2010). Storm surge duration and storm duration at hoek van holland sbw-belastingen.
van Gent, M. R., van den Boogaard, H. F., Pozueta, B., & Medina, J. R. (2007). Neural network modelling of

wave overtopping at coastal structures. Coastal Engineering, 54, 586–593. https://doi.org/10.1016/J.
COASTALENG.2006.12.001

van IJzendoorn, C. (2021). Jarkus analysis toolbox (jat). https://jarkus-analysis-toolbox.readthedocs.io/en/
latest/#

van Rijn, L. C. (2009). Prediction of dune erosion due to storms. Coastal Engineering, 56, 441–457. https://doi.
org/10.1016/J.COASTALENG.2008.10.006

van Thiel de Vries, J. S., van Gent, M. R., Walstra, D. J., & Reniers, A. J. (2008). Analysis of dune erosion processes
in large-scale flume experiments. Coastal Engineering, 55, 1028–1040. https://doi.org/10.1016/J.
COASTALENG.2008.04.004

van Thiel-De Vries, J. (2009). Dune erosion during storm surges.
Vellinga, P. (1982). Beach and dune erosion during storm surges. Coastal Engineering, 6, 361–387. https://doi.

org/10.1016/0378-3839(82)90007-2
Verhaeghe, H., Rouck, J. D., & van der Meer, J. (2008). Combined classifierquantifier model: A 2-phases neural

model for prediction of wave overtopping at coastal structures. Coastal Engineering, 55, 357–374.
https://doi.org/10.1016/J.COASTALENG.2007.12.002

Werbos, P. (1994). The roots of backpropagation: From ordered derivatives to neural networks ... - paul john
werbos - google boeken. https://books.google.nl/books?hl=nl&lr=&id=WdR3OOM2gBwC&oi=fnd&
pg=PA1&dq=paul+werbos+1974&ots=M6ow2XP1- 0&sig=oEKOBHEqw69uho6k1EfqAu_vZv0#v=
onepage&q=paul20werbos201974&f=false

Widrow, B., & Hoff, M. E. (1962). Associative storage and retrieval of digital information in networks of adap-
tive neurons. Biological Prototypes and Synthetic Systems, 160–160. https://doi.org/10.1007/978-1-
4684-1716-6_25

Yang, X., Li, X., Ye, Y., Lau, R. Y., Zhang, X., & Huang, X. (2019). Road detection and centerline extraction via
deep recurrent convolutional neural network u-net. IEEE Transactions on Geoscience and Remote
Sensing, 57, 7209–7220. https://doi.org/10.1109/TGRS.2019.2912301

Zijlema, M. (2011). Cie4340 computational modelling of flow and transport. http://fluidmechanics.tudelft.nl

https://doi.org/10.1016/j.coastaleng.2009.08.006
https://doi.org/10.1016/j.coastaleng.2009.08.006
http://arxiv.org/abs/1505.04597
https://doi.org/10.1037/H0042519
https://doi.org/10.1002/ESP.391
https://doi.org/10.1029/2019JF005016
https://doi.org/10.2/JQUERY.MIN.JS
https://sailinglab.github.io/pgm-spring-2019/notes/lecture-16/
https://sailinglab.github.io/pgm-spring-2019/notes/lecture-16/
https://doi.org/10.1016/J.COASTALENG.2006.12.001
https://doi.org/10.1016/J.COASTALENG.2006.12.001
https://jarkus-analysis-toolbox.readthedocs.io/en/latest/#
https://jarkus-analysis-toolbox.readthedocs.io/en/latest/#
https://doi.org/10.1016/J.COASTALENG.2008.10.006
https://doi.org/10.1016/J.COASTALENG.2008.10.006
https://doi.org/10.1016/J.COASTALENG.2008.04.004
https://doi.org/10.1016/J.COASTALENG.2008.04.004
https://doi.org/10.1016/0378-3839(82)90007-2
https://doi.org/10.1016/0378-3839(82)90007-2
https://doi.org/10.1016/J.COASTALENG.2007.12.002
https://books.google.nl/books?hl=nl&lr=&id=WdR3OOM2gBwC&oi=fnd&pg=PA1&dq=paul+werbos+1974&ots=M6ow2XP1-0&sig=oEKOBHEqw69uho6k1EfqAu_vZv0#v=onepage&q=paul20werbos201974&f=false
https://books.google.nl/books?hl=nl&lr=&id=WdR3OOM2gBwC&oi=fnd&pg=PA1&dq=paul+werbos+1974&ots=M6ow2XP1-0&sig=oEKOBHEqw69uho6k1EfqAu_vZv0#v=onepage&q=paul20werbos201974&f=false
https://books.google.nl/books?hl=nl&lr=&id=WdR3OOM2gBwC&oi=fnd&pg=PA1&dq=paul+werbos+1974&ots=M6ow2XP1-0&sig=oEKOBHEqw69uho6k1EfqAu_vZv0#v=onepage&q=paul20werbos201974&f=false
https://doi.org/10.1007/978-1-4684-1716-6_25
https://doi.org/10.1007/978-1-4684-1716-6_25
https://doi.org/10.1109/TGRS.2019.2912301
http://fluidmechanics.tudelft.nl


A
XBeach set-up

XBeach parameter Definition Value

Physical processes wavemodel
determines what kind of waves
are included in model

surfbeat

Grid parameters nx number of grid point in x 1085
ny number of grid point in y 0
vardx option of variable grid size 1 (True)
alfa angle of grid 0.0
thetamin lower directional limit -90
thetamax upper directional limit -90
dtheta directional resolution 180

Model time parameters CFL courant number 0.9
Wave boundary conditions wbctype file type wave boundary conditions jonstable
Wave-spectrum boundary conditions random random generator 0 (off)

Flow boundary conditions epsi
weighted factor between steady flow
and particle velocity

-1.0

tidetype interpretation of the tide velocity
Wave breaking parameters break option breaker model roelvink_daly

gamma breaking parameter 0.46
gamma2 end of breaking 0.34
alpha wave dissipation coefficient 1.38

Flow parameters bedfriction bed friction model manning
bedfriccoef bed friction coefficient 0.02

Sediment transport parameters form waveshape model vanthiel

waveform
equilibrium sediment concentration
formulation

vanthiel_vanrijn

Morphology parameters morfac morphological acceleration factor 5.0
morstart time start of morphological updates 6000
wetslp critical avalanching slope underwater 0.15

Table A.1: XBeach parameters with definition obtained from XBeach manual (Roelvink et al., 2009))
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B
U-Net python code

1 # −∗− coding: utf−8 −∗−
2 """
3 Created on Thu Nov 24 10:38:47 2022
4

5 @author: asselt
6 """
7

8 import numpy as np # this module is useful to work with numerical arrays
9 import torch

10 import torchvision
11 from torch import nn
12 import torch.nn.functional as F
13

14

15 class Block(nn.Module):
16 def __init__(self, in_ch, out_ch):
17 super().__init__()
18 self.conv1 = nn.Conv1d(in_ch, out_ch, 3)
19 self.relu = nn.ReLU()
20 self.conv2 = nn.Conv1d(out_ch, out_ch, 3)
21

22 def forward(self, x):
23 x = self.conv1(x)
24 x = self.relu(x)
25 x = self.conv2(x)
26 return x
27

28

29 class Encoder(nn.Module):
30 def __init__(self, chs):
31 super().__init__()
32 self.enc_blocks = nn.ModuleList([Block(chs[i], chs[i+1]) for i in range(len(chs)−1)])
33 self.pool = nn.MaxPool1d(2)
34

35 def forward(self, x):
36 ftrs = []
37 for block in self.enc_blocks:
38 x = block(x)
39 ftrs.append(x)
40 x = self.pool(x)
41 return ftrs
42

43

44 class Decoder(nn.Module):
45 def __init__(self, chs):
46 super().__init__()
47 self.chs = chs
48 self.upconvs = nn.ModuleList([nn.ConvTranspose1d(chs[i], chs[i+1], 3, 2) for i in range(len(chs

)−1)])
49 self.dec_blocks = nn.ModuleList([Block(chs[i], chs[i+1]) for i in range(len(chs)−1)])
50

51 def forward(self, x, encoder_features):
52 for i in range(len(self.chs)−1):
53 x = self.upconvs[i](x)
54 enc_ftrs = self.crop(encoder_features[i], x)
55 x = torch.cat([x, enc_ftrs], dim=1)
56 x = self.dec_blocks[i](x)
57

58 return x
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59

60 def crop(self, enc_ftrs, x): #To get encoding feature maps into the right size
61 _, H, W = x.shape
62 enc_ftrs = torchvision.transforms.CenterCrop([H, W])(enc_ftrs)
63 return enc_ftrs
64

65

66

67 class UNet(nn.Module):
68 def __init__(self, enc_chs=(1, 16, 32,64,128,256), dec_chs=(256, 128, 64, 32, 16), num_class=1,

retain_dim=True, out_sz=[290]):
69 super().__init__()
70 self.encoder = Encoder(enc_chs)
71 self.decoder = Decoder(dec_chs)
72 self.head = nn.Conv1d(dec_chs[−1], num_class, 1)
73 self.retain_dim = retain_dim
74 self.out_sz = out_sz
75

76

77 def forward(self, x):
78 enc_ftrs = self.encoder(x)
79 out = self.decoder(enc_ftrs[−1], enc_ftrs[::−1][1:])
80 out = self.head(out)
81 if self.retain_dim:
82 out = F.interpolate(out, self.out_sz)
83 return out



C
U-Net structures

C.1. Initial U-Net settings

Parameter Value
Model type Diff.
Network depth 2
Channel size 32
Kernel size 3
Pooling size 2
Learning rate 0.0001
Batch size 15
Validation percentage 0.2
Optimizer Adam
Loss function MSE
Activation function ReLu

Table C.1: Initial U-Net settings

C.2. U-Net version 1

Parameter Value
Model type Diff.
Network depth -
Channel size -
Kernel size 3
Pooling size 2
Learning rate 0.0075
Batch size 15
Validation percentage 0.2
Optimizer Adam
Loss function MSE
Activation function ReLu

Table C.2: U-Net v1 settings
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D
Training datasets

D.1. Single-profile-based training dataset
D.1.1. Dataset base

Figure D.1: The profile which is used to set-up the single-profile-based training dataset.

83



D.1. Single-profile-based training dataset 84

D.1.2. Modification factors

Profile parameter Modification factors Second modification factor

Beach width 0.1, 0.2, 0.5, 0.75, 0.9, 1, 1.1, 1.25, 1.5, 2, 5 0.5, 0.75, 0.9, 1.1, 1.25, 1.5
Inter-tidal area width 0.5, 0.6, 0.75, 0.9, 1, 1.1, 1.25, 1.4, 1.5, 2 0.5, 0.75, 0.9, 1.1, 1.25, 1.5
Nearshore width 0.5, 0.6, 0.75, 0.9, 1, 1.1, 1.25, 1.4, 1.5, 2 0.5, 0.75, 0.9, 1.1, 1.25, 1.5
Dune width 0.5, 0.75, 0.9, 1, 1.1, 1.25, 1.5, 2, 5 0.5, 0.75, 0.9, 1.1, 1.25, 1.5
Dune height 0.5, 0.75, 0.9, 1, 1.1, 1.25, 1.5 0.5, 0.75, 0.9, 1.1, 1.25, 1.5
Dunecrest height 0.5, 0.75, 0.9, 1, 1.1, 1.25, 1.5

Table D.1: Profile parameters and imposed modification factors. The bold values in the modification factor columns represent the
profiles which undergo a second modification.

D.1.3. Dataset in standard cross-shore grid

Figure D.2: Input and outputs profiles in standard grid configuration. The left figure indicates the post-storm difference, middle and
right indicate the representative pre- and post-storm profiles.
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D.1.4. DEV variability in dataset
D.1.5. Comparison training dataset and Holland Coast

Figure D.3: Boxplots for coastal parameter at the Holland Coast and Synthetic Training dataset.
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D.2. Multi-profile-based training dataset
D.2.1. Dataset base

Figure D.4: The 4 profiles which are used to set-up the multi profile dataset.

D.2.2. Modification factors

Profile parameter Modification factors Second modification factor

Beach width 0.1, 0.2, 0.5, 0.75, 1, 1.25, 1.5, 2, 5 0.5, 0.75, 0.9, 1.1, 1.25, 1.5
Inter-tidal area width 0.5, 0.6, 0.75, 1, 1.25, 1.4, 1.5, 2 0.5, 0.9, 1.1, 1.5
Nearshore width 0.5, 0.6, 0.75, 1, 1.25, 1.4, 1.5, 2 0.5, 0.9, 1.1, 1.5
Dune width 0.5, 0.75, 1, 1.25, 1.5, 2, 5 0.5, 0.9, 1.1, 1.5
Dune height 0.5, 0.75, 1, 1.25, 1.5 0.5, 0.9, 1.1, 1.5
Dunecrest height 0.5, 0.75, 1, 1.25, 1.5 0.5, 0.9, 1.1, 1.5

Table D.2: Profile parameters and imposed modification factors
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D.2.3. Dataset in standard cross-shore grid

Figure D.5: Input and outputs profiles in standard grid configuration. The left figure indicates the post-storm difference, middle and
right indicate the representative pre- and post-storm profiles.

D.2.4. DEV variability in dataset

Figure D.6: The variability of DEV captured in the dataset. The DEV per profile id (left) and a histogram plot of the DEV data (right)



E
Data quantity multi-profile dataset

Network structure
Initially, the previously obtained U-Net structure is evaluated for both training datasets (single- and multi-
ple original profiles). When testing on the exploration single-profile test dataset, the results presented in
Figure E.1 look different from Figure 4.14. Whereas the results for a training dataset with a single profile
showed a significantly better performance for a network depth of 2, this seems to be less distinct for a multi
profile training dataset. U-Net can predict with a similar accuracy for all network depths. However, the the
computed MSE error for all network depths remains above the previously obtained lowest MSE for the single
profile dataset (red line).

Figure E.1: Network depth and width for dataset with multiple profiles

This lower accuracy might be caused by (1) overfitting and (2) less appropriate test data. These issues are
addressed is next sections.

Sampling density
When carrying out the same data quantity analyses for the new dataset, the MSE error converges around a
stable value around 200 - 300 profiles. After 500 - 600 profiles the error actually starts increasing again and
overfitting issues start to arise Figure E.2a.

To get rid of these overfitting issues, the sampling density of the modification factors is reduced. The updated
modification factors compile a dataset of 404 and can be found in section D.2. To clarify, this dataset still
consists of four original profiles, but is sampled on different set of modification. The plot below shows the
updated plot for the sampled data. Still, the model shows convergence towards a certain error but does not
show an increase for larger profile quantities (Figure E.2b).
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(a) Amount of profiles in train dataset and obtained MSE error (b) Amount of profiles in sampled train dataset and obtained MSE error

Figure E.2: Data quantity analyses of multi-profile training data with and without sampling



F
Test datasets

F.1. Single-profile-based test dataset
F.1.1. Dataset base

Figure F.1: Original profile for test dataset in exploration phase
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F.1. Single-profile-based test dataset 91

F.1.2. Modification factors

Profile parameter Modification factors Second modification factor

Beach width 0.75, 0.9, 1, 1.1, 1.25 0.75, 1.25
Inter-tidal area width 0.75, 0.9, 1.1, 1.25 0.75, 1.25
Nearshore width 0.75, 0.9, 1.1, 1.25 0.75, 1.25
Dune width 0.75, 0.9, 1.1, 1.25 -
Dune height 0.75, 0.9, 1.1, 1.25 0.75, 1.25

Table F.1: Profile parameters and imposed modification factors

F.1.3. Dataset in standard cross-shore grid

Figure F.2: Input and outputs profiles in standard grid configuration. The left figure indicates the post-storm difference, middle and
right indicate the representative pre- and post-storm profiles.

F.1.4. DEV variability in dataset

Figure F.3: The variability of DEV captured in the exploration test dataset. The DEV per profile id (left) and a histogram plot of the DEV
data (right)
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F.2. Holland coast test transects
F.2.1. Dataset base

Figure F.4: Profiles in Holland Coast test dataset

F.2.2. Dataset in standard cross-shore grid

Figure F.5: The test dataset with actual profiles along the Holland Coast in the U-Net grid.
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F.2.3. DEV variability in dataset

Figure F.6: The variability of DEV captured in the dataset. The DEV per profile id (left) and a histogram plot of the DEV data (right)
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G
Parameter sensitivity analysis

Figure G.1: Sensitivity of the DEV for different beach profile modification



H
Hyperparameters U-Net

H.1. Learning rate

(a) Learning curve for LR = 0.1 (b) Learning curve for LR = 0.01

(a) Learning curve for LR = 0.001 (b) Learning curve for LR = 0.00075
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H.2. Epoch size 97

(a) Learning curve for LR = 0.0005 (b) Learning curve for LR = 0.00025

(a) Learning curve for LR = 0.0001 (b) Learning curve for LR = 0.00001

H.2. Epoch size

Figure H.5: Number of epochs before early stopping is induced
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H.3. Variability in U-Net predictions

Figure H.6: Variability in U-Net predictions with a fixed U-Net structure.
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H.4. Network depth and Kernel size for training dataset

Figure H.7: Caption
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Figure H.8: Caption



I
Profile predictions U-Net

Dune shape with different x-grid spacing

See next page
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Figure I.1: Dune shape for different ∆x
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Nearshore modifications, dataset single profile, Network depth = 3, Kernel size = 10

Figure I.2: Actual and target dune shapes for different nearshore slopes for increased kernel size and network depth

Beach modifications, dataset single profile, Network depth = 2, Kernel size = 3

Figure I.3: Actual and target dune shapes for different beach slopes for a shallow U-Net structure

Beach modifications, dataset single profile, Network depth = 3, Kernel size = 10
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Figure I.4: Actual and target dune shapes for different beach slopes for for increased kernel size and network depth

Double penalty effect

Figure I.5: Predicted and target differences and dune shapes for profile in test data showing the double penalty effect that comes with
the MSE.

U-Net (ND3, CS32, KS10), multiple profiles in training data, actual profiles in test data

Figure I.6: Predicted and target differences and dune shapes for profile in test data
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Figure I.7: Predicted and target differences and dune shapes for profile in test data

Figure I.8: Predicted and target differences and dune shapes for profile in test data

Figure I.9: Predicted and target differences and dune shapes for profile in test data
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Figure I.10: Predicted and target differences and dune shapes for profile in test data

Figure I.11: Predicted and target differences and dune shapes for profile in test data

Figure I.12: Predicted and target differences and dune shapes for profile in test data
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Figure I.13: Predicted and target differences and dune shapes for profile in test data

Figure I.14: Predicted and target differences and dune shapes for profile in test data

Figure I.15: Predicted and target differences and dune shapes for profile in test data
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Figure I.16: Predicted and target differences and dune shapes for profile in test data

Figure I.17: Predicted and target differences and dune shapes for profile in test data

Figure I.18: Predicted and target differences and dune shapes for profile in test data
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Figure I.19: Predicted and target differences and dune shapes for profile in test data

Figure I.20: Predicted and target differences and dune shapes for profile in test data

Figure I.21: Predicted and target differences and dune shapes for profile in test data



110

Figure I.22: Predicted and target differences and dune shapes for profile in test data

Figure I.23: Predicted and target differences and dune shapes for profile in test data

Figure I.24: Predicted and target differences and dune shapes for profile in test data
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Figure I.25: Predicted and target differences and dune shapes for profile in test data

Figure I.26: Predicted and target differences and dune shapes for profile in test data

Figure I.27: Predicted and target differences and dune shapes for profile in test data
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Figure I.28: Predicted and target differences and dune shapes for profile in test data

Figure I.29: Predicted and target differences and dune shapes for profile in test data

Figure I.30: Predicted and target differences and dune shapes for profile in test data



J
Calculation of DEV

Figure J.1: Difference at the dune top
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Figure J.2: DEV with regular method

Figure J.3: DEV with cross-shore boundary
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Feature maps U-Net

115



116



117



118



119



120



121



122



123


	Preface
	Summary
	Introduction
	Background
	Problem statement
	Objectives and Research Questions
	General framework

	Literature review
	Dune Erosion Modelling
	Neural Networks

	Methods
	XBeach Dataset
	Surrogate modelling

	Results
	Driving mechanisms of dune erosion
	Surrogate modelling

	Discussion
	XBeach
	Surrogate modelling
	U-Net evaluation

	Conclusion
	Recommendations
	References
	Appendix
	XBeach set-up
	U-Net python code
	U-Net structures
	Initial U-Net settings
	U-Net version 1

	Training datasets
	Single-profile-based training dataset
	Multi-profile-based training dataset

	Data quantity multi-profile dataset
	Test datasets
	Single-profile-based test dataset
	Holland coast test transects

	Parameter sensitivity analysis
	Hyperparameters U-Net
	Learning rate
	Epoch size
	Variability in U-Net predictions
	Network depth and Kernel size for training dataset

	Profile predictions U-Net
	Calculation of DEV
	Feature maps U-Net

