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Summary. The uniqueness and mathematical stability of the Dirichlet boundary value problem of linear
elastostatics is studied. The problem is posed as a set of partial differential equations in terms of displacements
and Dirichlet-type of boundary conditions (displacements) for arbitrary bounded domains. Then for the circular
interior domain the closed form analytical solution is obtained, using an extended version of the method of
separation of variables. This method with corresponding complete solution allows for the derivation of a
necessary and sufficient condition for uniqueness. The results are compared with existing energy and uniqueness
criteria. A parametric study of the elastic characteristics is performed to investigate the behaviour of the
displacement field and the strain energy distribution, and to examine the mathematical stability of the solution. It
is found that the solution for the circular element with hourglass-like boundary conditions will be unique for all
v # 0.5, 0.75, 1.0 and will be mathematically stable for all v # 0.75. Locking of the circular element occurs for
v = 0.75 as the energy tends to infinity.

List of symbols

al™, b$™, ™, @i general integration coefficients
A acoustic tensor, Ay, = 71; Dyjiy 7y
o) eigenvectors of system of PDEs, Eq. (30)
Diju material tangent stiffness tensor
e; unit vectors (2 = 1,2, 3)
e magnitude of the prescribed enforced nodal displacement
S Jo functions for separation of variables depending only on radius »
Qi metric coefficients (2 = 1,2, 3), Eq. (10)
9 Jo functions for separation of variables depending only on polar angle 6
G shear modulus
h auxiliary function, h? = g11 = g for circular cylindrical coordinate system
H coordinate system coefficients, Eq. (11)
I identity tensor, I = d;e; ® e;
e integration constants, Eq. (35)
7; normal vector components on the discontinuity in the velocity gradient
.7 radius and dimensionless radius, 7 = /R
u displacement vector
(x1, X2, 23) Cartesian coordinates
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(r, 0,2) polar coordinates
Dy amplitude of localising velocity
W, Wisor We total strain energy, strain energy due to isotropic deformation,

strain energy due to deviatoric deformation

Greek letters

g (small) linear strain tensor

& strain increment

n, u separation constants

pr eigenvalues of the system of PDEs, Eq. (29)

\ Poisson’s ratio

& general curvilinear coordinates (¢ = 1,2, 3) in Euclidean 3-space
o Cauchy-stress tensor

Gjj stress increment

@,y Py radial and tangential displacement boundary conditions

auxiliary constant, Eq. (31)

Subscripts

7, k, 1 summation indices

7 referring to radial direction

0 referring to tangential direction

Other symbols

\v4 differential operator, V = Oe; /0x;
® dyadic or outer tensor product

. dot or inner tensor product

X curl

tr trace of a vector/tensor

1 Introduction

Yet, unexplained problems occur in finite element calculations of geomechanical problems. These
include numerical instabilities and non-convergence for frictional elasto-plastic material models with
large dilation angles, as indicated by for example Vermeer [1], De Borst [2] or Van der Veen [3]. To
begin to understand these numerical artefacts, Sellmeijer [4], Lewis [S5], and Molenkamp [6]
investigated the uniqueness and mathematical stability of a four-node plane finite element as a
displacement-type of boundary value problem for the simplified case of an equivalent elastic
material. By applying a numerical solution procedure for the so-called hourglass deformation mode
with non-uniform stress and strain fields no converging solutions were found in the approximate
parameter range of Poisson’s ratio 0.6 < v < 0.9. Furthermore, at both parameter limits locking of
the element mesh was reported due to the stresses at the corners becoming infinite. These results
were received with some reservations amongst others concerning the quality of the numerical
solution procedure, although Molenkamp [7] obtained the same results by considering the element
composed of small elements with the same properties (self-similar fractal).

To arrive at a generally convincing answer on the uniqueness and mathematical stability of a
displacement-type of boundary value problem, in this paper the relatively simple problem of a
circular element subjected to an hourglass-like boundary displacement is solved completely
analytically. Preferably for the simulation of dilative material behaviour in the analysis a realistic
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elasto-plastic model should be used. However, such an analytical approach seems quite
formidable. Therefore, in this paper, for simplicity, the simplest possible linear comparison solid,
namely equivalent isotropic linear elasticity, is applied in a first attempt to clarify the underlying
phenomena. Molenkamp [6] showed, that in order to represent the major aspects of dilative
material behaviour the equivalent Poisson’s ratio v must take a larger range of values than
normally considered in classical linear elasticity, namely larger than 0.5. As a result for a standard
drained triaxial compression test on dense sand volume dilation can occur for increasing applied
pressure.

In this study, first the existing uniqueness and stability criteria are briefly reviewed, in order to
compare them with the uniqueness criterion derived for the circular interior domain here. Then, for
isotropic linear elastic material behaviour the equilibrium equations based on the conservation of
linear momentum are derived for a continuum. They are elaborated for a 2-dimensional cylindrical
coordinate system, assuming plane strain conditions and using polar coordinates for the circular
domain. The general closed form analytical solution is then obtained using an extended version of
the method of separation of variables developed by Van Horssen [8], [9]. The uniqueness criterion is
derived for the Dirichlet-type of boundary conditions. For hourglass-like boundary conditions the
resulting displacement, strain and stress fields are elaborated. Using this complete solution
its mathematical stability is examined in a parametrical study for the elastic parameter, Poisson’s
ratio v.

The main difference between this work and the earlier ones [4]-[6] is that here a completely
analytical solution procedure has been developed and applied, enabling the uniqueness criterion to
be necessary and being based on the complete general solution of the underlying basic boundary
value problem.

2 Existing uniqueness and stability criteria

The properties of materials, concerning local criteria of uniqueness and stability on the one hand and
concerning the well-posedness of boundary value problems on the other, have been considered
extensively during the past 150 years. The first approach was by Kirchhoff [10], [11] who derived a
sufficient energy criterion, applied to an elastic material within a bounded 3-dimensional domain.
Later, Cosserat [12] gave a condition for uniqueness of the solution for an ellipsoidal elastic solid.
The next steps in describing the properties of the solution of the elastic problem were done by
Ericksen [13], [14] with a mathematical approach, Gurtin [15] and Bramble [16] with a mechanical
approach and Hill [17]-[19] investigating material stability including localisation. Recent work on
localisation and failure is done by, e.g., Vardoulakis [20] or Chambon [21].

2.1 Local uniqueness criterion by Kirchhoff

The classical result of the uniqueness question is due to Kirchhoff [10], [11]. He considered
3-dimensional regions of homogeneous isotropic linear elastic materials. Modified for the plane
strain situation, he proved that at most one solution exists if shear modulus G and Poisson’s ratio v
obey at least the inequalities

G>0 and -—oco<v<0.5. (1)

Equation (1) is sufficient to guarantee uniqueness. These inequalities correspond to the criterion
providing positive generated energy.
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2.2 Local material stability and positive-definiteness

Closely associated with the concept of uniqueness is that of material stability. Stable material
behaviour is locally defined as the positiveness of the product of the stress increment ¢;; and the total
strain increment &; [18],

GyE5 >0, (2)

known as Hill’s condition for material stability, where the equal sign marks the onset of instability.
For uniaxial loading and deformation, Eq. (2) becomes negative when the slope of the stress-strain
curve is negative, the so-called strain softening regime. For incrementally linear stress-strain
relations for which 6;; = Dyjyiéy, involving the material tangent stiffness tensor Dy, Eq. (2) can be
reformulated as

&iDijraéig > 0. (3)

Material instability therefore can occur only if at least one of the eigenvalues of D;j; is negative.
Mathematically, this is associated with loss of positive-definiteness of the material tangent stiffness
tensor. In case of plane strain isotropic linear elasticity positive-definiteness and therefore material
stability is sufficiently guaranteed for

G>0 and —oco<v<0.5. (4)

For the plane strain situation of isotropic linear elasticity the local material stability criterion due to
Hill (4) is equal to Kirchhoff’s uniqueness and energy criterion (1).

2.3 Local criterion for localisation of deformation and ellipticity

A second local condition limiting the uniqueness of material behaviour concerns the possibility of a
discontinuity surface that does not travel relatively to the material, i.e., a plane standing wave
(discontinuity in the velocity gradient or localisation of deformation) [22]. For incrementally linear
stress-strain relations for which ¢;; = Dyjiiéx, the local stability condition reads

Dq-jkmjm@k = 0, (5)

in which 7, are the normal vector components on the discontinuity and 9y, are the vector components
of the localising velocity. The analysis then reduces to an eigenvalue problem concerning the
acoustic tensor A;, = 1; Dy 1. Eigenvectors 9y, that generate a discontinuity in the velocity field
can occur only if the determinant of the acoustic tensor vanishes. Thus the condition for instability
then reads

det (njDijkml) =0. (6)

Mathematically, this is associated with the ellipticity of the governing set of partial differential
equations. Loss of ellipticity occurs if (6) holds. For plane strain isotropic linear elastic materials,
following from (6), localisation of deformation does not occur if

G>0 and —oco<v<0b or l<v<oo. (7)

Both (3) and (6) are local conditions, where (3) concerns uniform deformation and (6) localised
deformation. From (4) and (7) it can been seen that for isotropic linear elasticity localisation of
deformation (loss of ellipticity), for 0.5 < v < 1, can only occur if there is loss of material stability
(loss of positive-definiteness), for v > 0.5.
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2.4 Uniqueness criterion by Cosserat for bounded domains

In the preceding local conditions of material stability and uniqueness were reviewed. Cosserat [12]
was the first to consider bounded domains. The boundary value problem of homogeneous isotropic
elasticity, consisting of the field equations of equilibrium and appropriate displacement boundary
conditions as derived in detail in the following section by the authors, was investigated by Cosserat
for particular domains. An analytical solution based on harmonic functions was assumed to derive
the displacement field. As a sufficient condition for uniqueness of the solution in bounded domains
the inequalities

G#0 and —oco<v<05 or l<v<oo, (8)

were derived. Then, as a counter-example to uniqueness in the range 0.5 < v < 1.0, Cosserat [12]
showed for the circular domain, that a non-unique solution for the displacement boundary value
problem of homogeneous isotropic elasticity exists for v = 0.75.

2.5 Well-posedness of the boundary value problem

In extension to the preceding, the (global) boundary value problem will be taken into consideration.
A boundary value problem, consisting of a set of field equations and appropriate boundary
conditions, is called well-posed if the problem has at least one solution (existence) and the problem
has at most one solution (uniqueness) and the solution depends continuously on the input-data
(mathematical stability).

In the case of a displacement boundary value problem, the implied conditions on the
displacements on the boundary can restrain the existing sufficient local criteria for uniqueness and
stability (Egs. (1), (4) and (7)), leading to a stronger criterion, that will be necessary for the
uniqueness of the solution of the global problem under consideration. Local discontinuities are
constrained to propagate to the boundary. The uniqueness criterion as given in (7) has then to be
reviewed. The question arises whether or not internal localisation can occur spontaneously in the
particular range of Poisson’s ratio between 0.5 and 1.0, while the displacements on the boundary still
satisfy the implied conditions. For this reason consider a homogeneous (zero) implied boundary
displacement. The homogeneous solution, i.e., zero displacements in the whole field, is always
satisfying the boundary value problem. An internal localisation can occur if and only if a second
displacement field coexists, that means only if the solution is non-unique. Therefore the problem
involving the potential occurrence of internal localisation would be solved if a necessary condition
for uniqueness could be established.

It should be noted that in the case of the traction boundary value problem local discontinuities can
propagate to the boundary as no restrictions are imposed with respect to the displacements on the
boundary. This case is not treated further in this paper.

For finite element meshes it is required that either no localised modes occur inside the finite
elements (or if they could occur that they would be neglected). Consequently, a localisation would
occur (or be allowed) at the scale of the elements, involving continuous deformation within the
elements and along their boundaries. In such case the minimum thickness of the shear band would be
described by the width of the element itself as a minimum. Therefore in the following the non-
occurrence of element-internal instabilities will not be investigated as yet. Instead the analysis will
focus on the well-posedness of the boundary value problem with continuous deformation within the
elements and along their boundaries.
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3 Formulation of the problem

The problem is formulated as a boundary value problem (BVP) in terms of displacements consisting
of a system of partial differential equations (PDEs) and the appropriate number of boundary
conditions. First, the system of PDEs is derived in tensor notation for a continuum before it is
reduced to the plane strain situation and then elaborated in polar coordinates for the circular domain.
Finally, the set of boundary conditions is stated to complete the BVP.

3.1 Definition of the basic equilibrium equations in a continuum

The system of PDEs is based on the field equation of linear elasticity for small strains. It can be
derived by substituting Hooke’s law for isotropic linear elastic material behaviour,
6 =2Gle+v/(1 —2v)Itr(¢)], and the kinematic equation under the assumption of small
displacements, ¢ = 1/2(V @ u + u ® V), into the equation of conservation of linear momentum
in the static case assuming zero body force, V. ¢ = 0. After some simplification it follows for G # 0,

2(1 =v)V(V.u) — (1 - 2v)V x (V xu) =0, 9)

describing the equilibrium equation in a continuum in terms of displacements in the most general
form without being coupled to any coordinate system. In the constitutive equations, & is the Cauchy-
stress tensor, ¢ the (small) linear strain tensor, u the displacement vector, and the constant material
parameters: Poisson’s ratio v and shear modulus G. In tensor notation, ® denotes the dyadic or outer
tensor product, while + denotes the dot or inner product of two tensors. I is the second order isotropic
identity tensor, tr(g) is the trace of the strain, and \/ the differential operator.

3.2 Derivation of the PDE for the plane strain situation

Consider now the general orthogonal curvilinear coordinates (¢, &, &3 ) in Euclidean 3-space with
unit vectors {e;, ez, es}. Each coordinate system can be characterised by metric coefficients g;1, gas,
033, defined as [24], [25]

6951)2 (6x2>2 <6x3)2 ,
i= () +(22) +(=2), (=1,23), 10
gii <5Ci o¢; o¢; ( ) ( )

in which (x;, %9, x3) are rectangular Cartesian coordinates. In the plane strain situation u is

independent of the third coordinate direction &3, and the displacements in this direction are fixed to
be zero, i.e. ug = 0. A cylindrical coordinate system can be used for the description of the plane
strain case. The first and second metric coefficient can be shown to be equal [23], g1; = g2z = he.
They define the function (&, &) # 0, depending on the first two coordinate directions only. The
third metric coefficient is constant and reads gss = 1. A set of coordinate system coefficients
H(&q, &) can be defined as

1% 2 /on\? 1|*h 2 /0n\?2
Hi=-|—72 -7l |, H2=7|zm—7|\z) |
hlog h\3& hodg  h\0&
1| &®n  20h on 10n 10h
Hio — — =__" =__ 11
12 h|: :|7 1 ha£17 2 hafg ( )

08,08, h0&; 08,y

Using (11), the system of PDEs (9) can then be simplified for a general cylindrical coordinate system
to
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o? o
2(1 = v) ol (1= 2v) 2l 2(1 = v)Hyyouy + (1 — 2v)Hoguy +
o0& 0
2 dus o o
0“u. U2
H 3 — 4v)H. 3 — 4v)H
+aéla, + IZU/Z"_( V) 2651 ( V) 1662
%us s
(1-2v) é‘; +2(1—v) %; + (1 = 2v)Hy s + 2(1 — v)Hosus+
+ , ! 2 e;=0. (12)
o“u ou U1 6u1
+——+4+Hippu 3 —4v —+ 3 —-4vH
651662 141 = ( o g+ 5,

Note that the coordinate system coefficients H(¢;, &) can be determined for each curvilinear,
orthogonal, cylindrical coordinate system and are therefore known but variable coefficients, being
functions of the coordinates (£, &;). For the circular cylinder system they will be elaborated in the
next section.

For the classification of a system of PDEs only the second order derivatives are of importance. In
system (12) it can be seen that the second order derivatives are not influenced by the choice of the
cylindrical coordinate system as their preceding coefficients are constant with respect to the
coordinate axes and depend only on the material parameter Poisson’s ratio v and not on
the coordinate system coefficients /1. Therefore the transformation of the coordinate system and the
domain to be studied is not changing the type of the PDE. However, it is not possible to give an
exhaustive classification of the system of PDEs for this case as it is of a mixed type.

3.3 Reformulation of the PDE for the circular domain

In first instance a domain with a simple geometric configuration will be studied. That is the circle
with its smooth boundary and its symmetrical properties. No problems with respect to corner points
(e.g., discontinuities) will occur as for example in rectangular or triangular domains which are
common in finite element calculations. Furthermore, for the circle only one single boundary
condition at the outer boundary has to be applied without having to superpose different functions for
each boundary edge.

For the circular domain and plane strain conditions the most suitable coordinate system is
the circular-cylinder system with & =7 (0<r<R), & =0 (0<0<2n), and &3 =<2
(=00 <2 < +00), in which 7 is the radius of the circle and 6 the polar angle, see Fig. 1. The first
and second metric coefficient are not equal anymore in this description, but they still define the
auxiliary function 7 = 7. Substitution of the preceding into (11) and the result into (12) gives the
system of plane strain equilibrium equations for the circular domain as

azuy 1 a% 10w, 1
2(1 — 1-2v)— 2(1 —v)— —2(1 —v)=u,
( V)@z +( V)Vz 692+ ( v)rﬁr ( v)72u+
lazug 1 au@
raron G Mg =0 (13)
aZUQ 1 azll,(; 16%9

1

162u, 1 du,
traae TG ETg

:O’

where u, and uy are the radial and tangential displacements respectively, see Fig. 1.
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Fig. 1. Hourglass-like displacement boundary
value problem in the circular domain Q with
boundary 0Q described by polar coordinates
(7, 0); e is the magnitude of the prescribed nodal
displacement

3.4 Definition of boundary conditions

To complete the boundary value problem a set of boundary conditions has to be defined for the
2-dimensional situation. For physical reasons the displacements and their derivatives with respect to
7 have to be bounded for all » and 0 under consideration. Mathematically this is related to the
assumption that the functions u, and wy have to be twice continuously differentiable. Inside
the circle Q and on its boundary 0Q the displacements and their derivatives with respect to 0 have to
be periodic to guarantee continuity of displacements and strains,

ou,(r,0)  Ou,(r,2n)

wn(r,0) =, (r,2m), o) S SUEDT,

Oug(r,0)  Oug(r,2n)
o0 20

(14)
wp(r,0) = ug(r,2m),

At the circle boundary 0Q the displacements in both the radial and tangential directions will be
prescribed functions in 0:

U,y("", 9) = 907(9)7 uH(Vv 0) = 900(0)- (15)

Equations (13), (14) and (15) together with the assumption of boundedness form the complete
boundary value problem, as illustrated in Fig. 1. In this figure the polar coordinate system (7, ) as
well as an example of the prescribed boundary conditions (15) are indicated. The displacement at the
boundary is based on the magnitude of the nodal displacements e. The different possible deformation
modes are indicated in Table 1.

4 Solution of the problem

Consider the general form of the equilibrium equations as given in (9). They are valid for G # 0.
The solution is then independent of the shear modulus G. For G = 0 the set of equations has
infinitely many solutions.

With respect to Poisson’s ratio v two special cases can be distinguished. The first case is related to
v = 0.5. The field equations (9) simplify in tensor and index notation to V(V.u) = 0orwu;; =0,
or elaborated for the circular domain
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Table 1. Eight deformation modes of the circular domain with associated boundary conditions, calculated
displacements and integrated strain energy, according to Rohe [30]

Deformation ~ Boundary Displacements (7, 0) Strain energy
mode condition ¢ (6) w
1-hor. @, = ecosl), py = —esinf u, = ecosl, uy = —esinf w=0
translation
2-vert. @, = esinb, ¢y = ecosd u, = esinl, uy = ecosd W=0
translation
3-rotation ¢,=0, pg=¢e u, =0, wug=er w=0
4-stretching @, = ecos20, pg = —esin20  u, = ercos26, ug = —ersin20 W = 2r Gé*IR
5-shearing @, = esin20, @y = ecos20 u, = ersin20, uy = ercos20 W=2n GQZ/R
6-compression ¢, = —e, @y =0 U = —er, ug =0 W = %
7-hor. @, = £(sin 0 + sin 30) w, = (272 4 220)2sin 0 + 577 sin 30 W= %
hourglass @9 = %(— cos 0 + cos 30) 7 — 20) Scos 0 + 57 cos 30
8-vert. @, =% (cos 0 — cos 30) = (07 4 20) gcos 0 — §7P cos30 W = %
hourglass = £(sin 0 + sin 30) up = (327 — 525) §sin 0 + 57 sin 30
9 *u, ou, Puy  duy
+r——U,+r———=0,
or? or oro0 00
u, ou, u
ettt =0 (16)
orod 00 o0

The second case is related to v = 1.0. The field equations (9) simplify in tensor and index notation to
V x (V xu)=0oru;; — u;; =0, or elaborated for the circular domain
62u7 o Ug  Ouyg
— —+—=—=0
o a0t 0
aZu,, ou, 9 62ue Qug
r—— —rt———r—
oro0 00 or? or

(17)

+UQ:O.

To prove non-uniqueness it is sufficient to consider homogeneous boundary conditions # = 0 on 0€Q,
and to show that more than one solution exists in the field. Clearly, one solution is the homogenous
solution, # = 0 in €, as it satisfies the homogeneous boundary conditions and the field equations
(16) and (17), respectively. For v = 0.5 a second solution is for example

- (2)-(:2)

as it vanishes on the boundary for the unit circle and it satisfies the field equations (16). Forv =1 a
second solution is for example

() (%)

as it vanishes on the boundary for the unit circle and it satisfies the field equations (17). Note that the
solutions (18) and (19) can be found by trial and error, but are initiated by the work of Cosserat [12].
To summarise, for G = 0 or v = 0.5 or v = 1.0 the solution is non-unique as at least two solutions
exist. The proof above can be converted and applied to other domains and the condition of non-
uniqueness for G = 0, or for v = 0.5 or for v = 1.0 is valid for arbitrary domains.
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4.1 Derivation of the general solution

In the following the solution for the case G # 0, and v # 0.5 and v # 1.0 will be derived. Consider
the system of PDEs (13). It can be solved using an extended version of the method of separation of
variables. A description can be found in [8], and an application can be found in [9], [26]. First,
suppose a separated product form of the solution of (13) as

ur(r,0) =fr(r) 9-(0),  uo(r,0) =1o(r) go(0), (20)

where the functions f;- and fy depend only on the radius 7, and the functions g,- and gy depend only on
the polar angle 0. Substitution of (20) into the system of PDEs (13) leads after some rearrangement
to a system of equations,

21 —v) [P rf! L gy [rf) Sol g7 2(1-v)
e A e CUS R Bt #L1)
1-2v [7%) rf;,] 1 4 [Tf'n f,,} gy 1—2v

0 Zr |2 4 (3 gyt = — 28 21.2
2(1—"){f0 +f9 +2(1—V)Qe Jo * v)fo Qe+2(1—")’ (212)

in which the ordinary derivatives are defined as f’ = df/dr, /" = d?f/dr* g’ = dg/df, and
g" =d%g / de”. System (21) is generally supposed to be not separable due to the mixed terms. The
extension of the method of separation of variables is based on the introduction of an additional
differentiation step. Here, Eq. (21.1) is differentiated with respect to 7. This equation then is reduced
to the separable form,

2 ¢l !
20-NEE+E 4
- el = = u, 1 € (Ca (22)
a [rf(, _ (3 _ 4‘))?@} 9r

ar | fr

in which the complex valued separation constant yu is introduced. Equation (22) is separable as the
left hand side depends only on # and the right hand side depends only on 6.
Substituting the right hand side of (22) into Eq. (21.2) for gj leads to the separable form
?,f/r f/
(1—2v)[%+%—1} e

21— +i[L+ -t

n, neC, (23)

in which the complex valued separation constant # is introduced. The periodic boundary conditions
(14) are used to solve the eigenvalue problem on the right hand side of (23). Solutions exist only for
real eigenvalues n = n? with n = 1, 2, 3, ..., and are given by

a\(0) = ¢\ cos (n0) + i sin (n0), (24)

with so far undetermined coefficients ¢{'*. Substituting the result (24) into the right hand side of (22)
then gives, depending on the separation constant y, the solutions for g, for each n = 1, 2, 3, ... as

>

() (9) :% [cgm cos (n0) — c{" sin (n@)] (25)

Substitution of the solutions (24) and (25) into the separated form of the system of PDEs (21) results
in a 2-dimensional system of second order ordinary differential equations of the Euler-type for the
functions f, and fj, reading after some elaboration
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{ 20 =) [P +0f)] = [Q=2v)n® +2(1 = )]f; + u[rfy — (3 — 4v)fy] =0,
, (26)
(L=20) [ +7fy] = [2(1 = v)n? + (1 = 2v)]fo = % [rf] + (3 — 4v)f,] =0,
System (26) can be solved by looking for solutions for f, and fj of the form
(n) (n)
fr=adlr, fo = dl)r 27)

where /l;n) € C are eigenvalues, and where the constants d'Y and d{’5 are components of the

corresponding eigenvectors d\'”. Substituting the solutions (27) into (26), the characteristic system
can be derived as

(n) . (n)
{2(1 -v) 0 ] di (/1@)2 N { 0 ﬂ] @1 20
0 1—2v d%) ! —n?/u 0 d%) ‘
A1-0+ -2 G- ai _ () (28)
(3 —4v)n?/u (1=2v) +2(1 —v)r? | \ g ~\o/)’

Eigenvalues 2{ and eigenvectors d'” can be determined by solving the characteristic equation of
system (28). For the eigenvalues it follows, for 7 = 0, 1, 2, ..., that
AN =nv1, A =n-1, "=-n+1, =-n-1 (29)

Note that the eigenvalues are real and do not depend on the separation constant u. For the
eigenvectors it then follows for 7z # 0

(7}) —_ —_— (77’)
d(ln) (w 1:“/”) 5(1”)’ l(;) ( lul/n) 5;”)’ léﬂ) < @ l,u/n) ~(377,)7 lin) (,U{TL) 54(1”)7
(30)

in which 6{" are remaining constants to satisfy the boundary conditions and an auxiliary constant,

(n) :2(1—2v)—n. (31)
41—v)+n

Functions f,- and fy can now be composed by substituting (29) and (30) into the supposed general

form of the solution (27). Then, by using the fact that the solutions should be bounded at the origin,

the functions f, and f can be determined for each n = 1, 2, 3, ... as
f}E’ﬂ) (/}/-) — 7% ((U(n)d(lw)Tz _ dén)),’,.’nfl : (82)
00 = (@ + "), (33)

After substitution of (24), (25) and (32), (33) into the supposed separated product form of the
solution (20), the general solution of the displacement field is determined as

OFIRS (n) () (n) ()
ur(r,0) = 0Oar + 3 1 [(w‘”')%" r: —ay" ) cos (nf)— (w(”)bln’ r: — by ) sin (n@)},
n=1

up(r,0) =7+ 3 1 Kb(lmrz + bgz)> cos (n0) + (agn)VZ + a;")) sin (n@)}
n=1

(34)
In (34), coefficients a{’”, b{"” are combinations of the former coefficients c{® and d'™. This

solution satisfies the system of PDEs (13), the periodic boundary conditions (14), and the
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boundedness properties. It has the form of a full Fourier series in 0 and is therefore complete. Also
it should be noted that the separation constant u does not occur in the general solution (34) for u,
as a result of the multiplicative combination of the solutions for f,. (25) and for g, (32). When,
instead of differentiating Eq. (21.1), Eq. (21.2) is differentiated with respect to 7, the same results
are obtained.

4.2 Application of general Dirichlet boundary conditions and uniqueness criterion

To determine the coefficients a{” and b, and the coefficients a{®, a$”, by and b5’ for

n =1,2,3, ..., occurring in the general solution (34) the two remaining boundary conditions for
the prescribed displacements as given by (15) have to be used. Use is made of the orthogonality of
the sine and cosine functions. To this end, first » = R and the boundary conditions (15) are
substituted into the general solution (34). Subsequently, the result is multiplied by cos (m6) or sin

(m0) form = 0, 1, 2, .. ., respectively, and integrated with respect to 0 on the whole domain [0, 27].
Form =1, 2, 3, ... this leads to two linear systems of two equations, namely
1 2n
,ym%wmwymz,éw):E/¢Amgnmwm0:ém,vn:LZSPW
0
2n

" Y1 . m
R (@B ) = [ @) sim(moyio =17, m=1.23,....
- ;

0
2n

, 1
R™1 (w(m)agm)Rz — a(;"’)) = —/ ¢, (0) cos (m0)do =1, m=1,23,...
0
1 2n
RW*@W%?+@W)=E/@Mmammwuezqm,7n:L23VW
0

which defines also the constants I, 19, 9™ and I{™ resulting from integration of the boundary
conditions. For m = 0 it follows directly that,

2n 2m

0 1—v 0 1
o) = =g | @O0, v =55 [onoyan (36)
0

0

Then, for m >0 the equations in (35) can be combined and rearranged for corresponding
coefficients reading in matrix-vector notation as follows

- R2 17 a(lm) ém)
=R " |, m=123,...,
L w(m)RZ -1 a(Zm) I(m)
37
r RZ 17 b<m) [(m)
Y m=123,...
| w(m)RZ -1 bgm) _[(m)

Both systems of linear equations in (37) are uniquely solvable if and only if the determinants of the
matrices are non-zero. Non-unique solutions of (37) can exist if and only if the determinants are
equal to zero. For both, the determinant reads
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m 2 _ 2B —4v)
—(w< >+1)R =30k (38)
Therefore a unique solution exists for all v # 0.75. No solutions or non-unique solutions exist if and
only if v = 0.75. Equation (38) is therefore called the necessary and sufficient criterion for
uniqueness of the boundary value problem.

The unique part of the solution can then be determined by solving both systems in (37) for v # 0.75 and
by calculating the coefficients. Substituting these coefficients into the general solution (34) results in

(0 1 —2v) 21 -2v)—m_,_, _ =2\ (m) ~2 1 (m)
+[(1 77”2)12 )+ < +—)I(m] sin(m0) }
- 1 = 1 -V +m~, m
= S [ (2t

(39)

with constants I as defined in (35), and the dimensionless radius 7 = 7/R.

For v = 0.75, system (37) cannot be solved uniquely. The determinant of the matrix of (37) equals
zero. Then either no solution or as in this case infinitely many solutions can exist. Substituting
v = 0.75 into (37) gives the non-unique part of the solution as

up(7,0) = %[éo)? +y ! [(a(lm)Rm+1 (1-7%) —}—[;m)) cos (m0)+
m=1

i (b(l’m)Rn'Hl (772 _ 1) +1§m)) sin (m())} s
(40)
o7, 6) Z wa R (7 — 1) +[£m>) cos (m0)+

(m:(l >J’€’7Z+1 -1) —Iém)) sin (m@)}

[\')I>—‘

The coefficients a{™ and b{" remain undetermined in the solution and can take any real value. Note
thus that solution (40) satisfies the system of PDEs (13), all the boundary conditions, (14) and (15),
and the boundedness properties for v = 0.75.

5 Hourglass-like boundary conditions

For the prescribed displacements at the circle boundary 0€Q (characterised by the functions ¢, and ¢y
as defined in (15)), eight different types of displacement modes can be distinguished, see Table 1
according to Rohe [27]. For the uniform deformation modes, i.e., 1 to 6, only unique solutions occur,
as described for example in [4]. The ones leading to non-unique solutions are only the horizontal and
vertical hourglass-like modes, 7 and 8. For the circle the prescribed boundary displacements in this
case can be defined as

{ ¢,(0) =e/2[sin () + sin (30)],

®g(0) = e/2[— cos (0) + cos (30)], (41)
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in which e is the magnitude of the prescribed enforced nodal displacement. See Fig. 1, in which an
indication of the horizontal hourglass-like boundary condition is sketched.

Substituting the hourglass-like boundary conditions (41) into the right hand side of (35) to
determine /" and this result into (39) gives for v # 0.5, 0.75, 1 the final solution for the
dimensionless displacements in the circle as

w,(7,0)  ( 1—4v 1 , 7
= (2 7 +374v sin (0) + 2sm(S())7

e (3 —4v) ”
_ . 2
ue(;’, 0) _ (2(43 - fv) P24 3 —14\)) cos (0) —5—%005 (30).

For the other deformation modes the displacements are given in Table 1. From (42), the strain and
stress fields can be determined as

gwg - E - :sin (0) + sin (39)} 7.

899}5 = [sin (0) — sin (30)]7, (43)
87~()1§ = {— 3= 4vcos (0) + cos (80)} 7,

%Ig = 3 j4v sin (0) + sin (30)} 7,

%]g = :ﬁsm((a) — sin (39)}% (44)
%}g = :— 3 —14v cos (0) + cos (36)} 7.

A visualisation of the displacement field is given in Fig. 2a for Poisson’s ratio of v = 0.45. It can
be observed that the solution along the boundary describes the hourglass-like conditions as imposed.
The magnitude of the displacement in the nodes is one. At the bottom, top, left and right point of the
circle boundary the displacement is zero. In the horizontal and vertical straight lines through the
circle centre only vertical displacements occur. The maximum displacement occurs in the circle
centre with a magnitude of /e = 0.83. Shown in Fig. 2b is the plot of the principal stress field and
in Fig. 2c the plot of the principal strain field for v = 0.45. For tensor fields, compression is denoted
by a solid line, while tension is denoted by a dotted line. The principal stresses and strains are
symmetric to the vertical axis and anti-symmetric to the horizontal axis. In the upper part of the
circle mainly tensional stresses in horizontal direction occur with a maximum magnitude of
oR/(2Ge) = 3.5. The lower part is mainly subjected to horizontal compressional stresses with same
magnitude. The maximum magnitude of principal strains is ¢k/e = 2 as horizontal tension and
vertical compression at the top. In the circle centre neither stresses nor strains occur.

6 Parametric study

Values of Poisson’s ratio v between 0.5 and 1.0 can occur in equivalent linear elasticity when
applied to dilatant granular materials, see for example Molenkamp [6]. This is also the range of
special interest to study the stability of the solution, and therefore special attention is given to. The
parametric study shown in Figs. 3 and 4 is carried out in a step-size of 0.15 for values of Poisson’s
ratio of 0.45, 0.60, 0.74, 0.76, 0.90 and 1.05. As for 0.75 no unique solution exists, two values close
above (i.e. 0.76) and below (i.e. 0.74) are studied.
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In Fig. 3, the plot of the field of dimensionless total displacements /e is given. Note that the
scaling factor differs for the various values of v for a clear visibility of the vectors. In the range
0.5 < v < 1.0 the maximum displacement occurs at the circle centre while for values outside the
maximum occurs at the nodes. Note the rigorous switch in direction of the displacements from
v =10.74 to v = 0.76. Whereas for v = 0.74 the displacement in the centre is directed vertically
upwards with a magnitude of u/e = 25, at v = 0.76 the direction changes to vertically downwards
with a magnitude of u/e = 25. This indicates the mathematical instability of the solution around
the point v = 0.75. For a small change in the input parameter v a large change in the result is
observed. Along the boundary in all cases the implied hourglass-like boundary condition can be
recognised.

In Fig. 4, the contour plots of the distribution of the total strain energy W = 1/2(6)r&q+
G00€00 + 20,96r9), the strain energy due to isotropic deformation Wi, = (1 +v)/6(er + €00)
(6, + G99), and the strain energy due to deviatoric deformation, Wy, = W — W, are given in the
left, the middle, and the right column, respectively. The contour lines of the isotropic energy shown
in the middle column of Fig. 4 run horizontally. The isotropic energy is directly related to the
volumetric strain measure. At the horizontal centre-line it is always zero. The isotropic energy is
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Fig. 3. Field of dimensionless total displacements u/e for v = 0.45, 0.60, 0.74, 0.76, 0.90, 1.05 plotted
with different scaling factors. Magnitudes at the centre v, are indicated

positive for v < 0.50, while for v > 0.50 it is negative in the whole field. For v = 0.74 and 0.76 the
values at the top and bottom of the circle tend towards infinity, indicating the instability around this
point. No switch in sign is observed around v = 0.75. The maximum and minimum values are
always at the top and the bottom of the circle. The deviatoric energy shown in the right column of
Fig. 4 is directly related to the deviatoric strain measure and remains positive for all values of v in
the whole field. Therefore the contour lines are almost horizontally distributed for v < 0.5. Reaching
v = 0.75 these turn to be concentric circles. For v > 0.75 the distribution turns to be vertical. The
maximum and minimum values are at the top and bottom of the circle for v < 0.75 and at the left and
right for v > 0.75. In the centre the deviatoric energy is always zero. The total strain energy shown in
the left column of Fig. 4 is the sum of both, the isotropic and deviatoric parts. For v = 0.45 the
isotropic part is only a fraction of the deviatoric contribution. Around v = 0.75 the maximum
absolute isotropic energy per unit of volume is several times larger than the corresponding maximum
deviatoric energy while they are opposite in sign. Therefore the total energy does tend to infinity at
v = 0.75, but less clear than the isotropic energy. The total energy is distributed horizontally for
v < 0.5, turning to concentric horizontal ellipses at 0.6. For larger values the energy is distributed
“‘star-shaped’” with minimum (negative) values at the top and the bottom and maximum (positive)
values at the left and the right. At the centre the total energy is zero.

To summarise the findings above, Fig. 5 shows the strain energy integrated over the whole domain
versus Poisson’s ratio v to verify the behaviour of the solution around the points v = 0.5, 0.75, 1.0.
The total strain energy W,,, is contributed by the isotropic part W;,, and the deviatoric part W,
Around v = 0.75 all three values tend asymptotically to infinity, indicating the mathematical
instability around this point. At v = 0.5 and 1.0 the limits from above and below these magnitudes
of Poisson’s ratio v reach the same value of the total strain energy. The solution is continuous there,



59

On the uniqueness of solutions

11v=045 .36 33 11v=045 . 0269 5, 11v=045 .33 54
;2'4—13 ) :V*O";Z;im ffsl — 160

0.5 éoms 0.5 0.0448 — 0.5 0562 — %
g 0 g ) 0 __\ g 0
= = =

k@oe j \0.0448 ] osp———7
-0.5 12— -0.5 0.0895 -0.5 .12 —
= o013 a6
e T 2= =

-1 364 -1 0269 -1 337

a -1 -05 0 05 1 b -1 05 0 05 1 c -1 -05 0 05 1
x/R x/R x/R
11v=0.6 237 08
:‘*'1—;587 1.1
0.5 0395 —
\
X 0
= 0
05 \—0.305 /
-0. 0.7
= 119
R E -1.58= o8>
-1 789 -1 537
d -1 -05 0 05 1 e -1 -05 0 05 1 f -1 -05 0 05 1
x/R x/R x/R
11v=0.74 o322 1[v=074 3% 1160 1{v=0.74 /&m
== 696= S\
= 464 —— //%

0.5 S, 05 /2% s 0.5 / \\\
S 057@\\ 0 //@6 X 9 0 & 0579/\//N\59
= = =

0.5 / \ 0.5 = 0.5 \\ \%2{/9 //

- - 264 -

' ’ = 696 ' S
%/\y 928= 110> \%2&/
-1 555 -1 1390 -1 &
g -1 05 0 05 1 h -1 05 0 05 1 i -1 05 0 05 1
x/R x/R x/R
p 724 . L1530 L 01
1 v—0.76§9 1+v=0.76 NTTE 77(.1;‘70 1 "—0~7652/4/:'§st
N —.508 ’/T§

0.5 0.5 ; 254 ) 0.5 // \\\
< 6®\ 0 /@6 X ) 0 = 068//%%\\68
= = = \IMJ

05 05 = / 0.5 N

0. -0. 508 -0. 01—

763 N
/\y 1020 o0 SHE=S
-1 g -1 1530 -1 o1
j -1 05 0 05 1 Kk -1 -05 0 05 1 1 -1 -05 0 05 1
x/R x/R x/R

Fig. 4. Total (left), isotropic (middle) and deviatoric (right) strain energy distribution for v = 0.45, 0.60,
0.74, 0.76, 0.90, 1.05

indicating the mathematical stability around this point. The deviatoric energy is positive in the whole
domain, whereas the isotropic energy is positive only for v < 0.5. For all deformation modes the
analytic expressions of the integrated strain energy in the circle are given in Table 1. The
expressions are comparable to the eigenvalues of the element stiffness matrix found by Molenkamp
[6] for the isoparametric four-node isotropic linear elastic square element.
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Fig. 4 (Continued). Total (left), isotropic (middle) and deviatoric (right) strain energy distribution for
v = 0.45, 0.60, 0.74, 0.76, 0.90, 1.05

7 Evaluation

Comparison of the results above with the results for the square shaped area, Molenkamp [6],
demonstrates that the removal of the corners by changing from a square to a circle increases the
Poisson’s ratio v range with positive total energy from about v < 0.6 to v < 0.75. Like for the square
also for the circle at this limit ‘locking’ occurs due to infinite total energy occurring as illustrated in
Fig. 5. For the polar angles 0 = 0 and 6 = /2 the local strain energy per unit of area along the
circular boundary approaches +c0 and —oo respectively for v T 0.75.

In the next phase of the ongoing research the system of partial differential equations will also be
elaborated for Mohr-Coulomb elasto-plasticity including hardening. This material model is widely
used in geotechnical engineering to describe soil behaviour and was used in the unexplained
problems [1]—[3] under investigation. This material model also includes elasto-plastic dilation and a
non-associative flow rule. It is expected that a further extension of the method will also supply closed
form analytical solutions and necessary and sufficient uniqueness criteria for different kinds of
elements, like elliptical (artificial) and rectangular ones. For triangular elements the solution is
expected to be possible as the displacement field will be uniform.

8 Conclusion

The boundary value problem of linear elastostatics has been derived in terms of displacements for
arbitrary domains. Then for the circular domain, with hourglass-like boundary conditions the closed
form analytical solution has been derived using an extended version of the method of separation of
variables. It has been shown that there exists at least one solution for all G € R and all v € R. At
most one solution exists for all G # 0 and all v # 0.5, 0.75,1. The solution is mathematically stable
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Table 2. Summary of the mathematical stability and uniqueness of the hourglass-like Dirichlet boundary
value problem for the circular interior domain

parameter G parameter v Mathematical stability uniqueness
G =0 veR - no
G#0 v = 0.5 yes no

v = 0.75 no no

v =1 yes no

v # 0.5, 0.75, 1.0 yes yes

for all G # 0 and all v # 0.75. Combined this means that the problem is well-posed for the shear
modulus G # 0 and for all values of Poisson’s ratio v # 0.5, 0.75, 1. The results are summarised in
Table 2. At v = 0.75 for the circle in the case of plane strain linear isotropic elasticity locking of the
element occurs due to the fact that the total strain energy becomes infinite. The local strain energy
per unit of area along the circular boundary approaches +oco and —oco for v 7 0.75 and v | 0.75,
respectively.

The character of the system of partial differential equations is not changed by the choice of the
coordinate system or domain. That means that non-unique solutions will stay to occur at the points
G =0 and v = 0.5, 1 also for the rectangular or arbitrary domain. However, the choice of the
boundary may influence the nature of the remaining non-unique parameter range.
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