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Abstract
JSGLR2 is a java implementation of the Scanner-
less Generalized LR-parsing (SGLR) algorithm. It
employs a modular architecture. This architec-
ture comes with a performance overhead for letting
multiple components interact with each other. This
paper looks into the size of the performance over-
head penalty for the recovery parser variant. It does
so by creating an ‘inlined’ version of the recovery
parser variant. The inlined recovery variant is a
JSGLR2 implementation that ignores the modular
architecture, and hard-codes the components. The
performance of the inlined variant is measured with
a pre-existing evaluation suite. The results show
that there is a performance increase between the
original, and the inlined variant.

1 Introduction
1.1 Context
Parsing is a fundamental component of processing most pro-
gramming and markup languages. As various projects can get
a large amount of source code, it is important that parsing is
as fast as possible to reduce build times. At the same time,
it is convenient if a single parser implementation can han-
dle a large variety of languages. JSGLR2 [Denkers, 2018]
is a Scannerless Generalized LR-parser implementation that
can parse any context free language at practical speeds. It
manages the algorithm’s complexity by splitting the algo-
rithm into multiple components of a manageable size, each
of which receive optimizations sourced from various scien-
tific papers and other sources. The components are then com-
posed together using dependency injection. A factory design
pattern provides several different compositions, each provid-
ing a different feature set and optimizations. JSGLR2 shows
a 3x speedup for parsing Java source code, compared to JS-
GLR1 [Denkers, 2018].

1.2 The work
However, to achieve the modularity, the JSGLR2 implemen-
tation makes use of bridging architecture unrelated to the ac-
tual paring algorithm itself. It is possible that the modular
architecture provides an performance overhead, that can be

avoided by removing unnecessary architecture supporting the
modularization. This ‘inlining’ may simplify the way com-
ponents interact on a lower abstraction level, which may im-
prove parsing throughput.

This paper presents four inlined versions of one the JS-
GLR2 variants, called “recovery”. A copy of the “recovery
variant” is created, and refactors it be be less modular. The
four inlined versions share a common base, but have slight
differences in how they inline certain components. Next, us-
ing a dedicated evaluation suite, this paper presents the per-
formance results of the original and the inlined variants. The
inlined variants are compared to the base case and each other.
From the results, conclusions are drawn on which inlined
variants are the most successful.

1.3 Organization
The paper is organized as follows into several sections. Sec-
tion 2 provides a more in-depth background on the JSGLR2
recovery parser. It gives an overview of SLGR parsing. Sec-
tion 3 describes the methodology, and what the inlining pro-
cess consisted of. It also discusses the differences between
the four proposed variants, and why four different variants
were created in the first place. Section 4 describes the eval-
uation suite and discusses the results. Section 5 touches on
reproducibility of the results. Section 6 summarizes the pa-
per, and suggests future work. Finally, the appendix contains
most figures, including the results.

2 Background
2.1 LR Parsing
JSGLR2 is a Scannerless Generalized LR-parser. Visser
[Visser, 1997] describes it as “the integration and improve-
ment of scannerless parsing, generalized-LR parsing and
grammar normalization”. LR-parsing forms the base of the
SLGR algorithm. LR-parsing is based on Knuth’s LR pars-
ing algorithm [Knuth, 1965]. It parses a subset of context free
languages, noted as “LR(k)” grammars. It is based on con-
suming input tokens one by one, and updating a state machine
with a stack. The state then tells which of the three functions
to perform: shifting, reducing, or accepting [Denkers, 2018].

Before the parsing can begin, the state machine needs to
be created. In JSGLR2, it is called the parse table [Denkers,
2018]. It represents the grammar of the language to be parsed.
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As the parse table is not part of parsing itself, further discus-
sion on its creation is outside the scope of this work. What
is important to know, is that it is a map between a tuple of a
state with a token, and an action. ‘Shift’ and ‘Reduce’ action
state to which state to transition to next, while the ‘Accept’
action successfully ends parsing.

Parsing itself starts with a pre-processing step called scan-
ning. It reads the input text, and turns it into a stream of
tokens. A token represents a language primitive, such as an
number, an operator, or a keyword. Scanning strips out white-
space, layout, comments, and other features not needed for
the parser. The tokens are then fed into the parser.

Parsing starts with the freshly generated stream of tokens,
and a stack containing one element: the start state of the parse
table. The parser then iteratively reads the next token, and
uses it together with the topmost state in the stack to retrieve
the next action.

The shift action pushes a tuple on top of the stack. The
tuple consists of a new state, and the token that triggered this
action. The shift action lets the parser consume the input until
a reduce action can be applied.

The reduce action is where the ‘comprehension’ of the in-
put happens. It pops off one or more states from the stack,
and combines their associated tokens into a composite token
called a parse node. The node represents what the tokens
mean together. For example, if the three top-most tokens were
“Constant 1”, “Operation +”, “Variable x”, then a reduction
that takes these three tokens could produce a parse node rep-
resenting “Value (1 + x)”. After reducing, the next state is
looked up in the parse table. The input tuple is then the new
topmost state, which was directly below the states that were
removed for reducing, and the parse node as token. The found
state is then put on top with the stack, together with the parse
node. Effectively, reducing replaces simpler tokens with a
single composite token.

The action state signifies that parsing is done. Usually, it is
only accessible when the next token is End Of Input, which
is appended at the end of a token stream. It tells the parser to
inspect the stack, and see if is represents a successful parse.
This is the case when the stack only contains two elements:
the start state, and another state with an associated token. This
token then represents the full syntax tree that the parser is
supposed to generate. If there more than two states in the
stack, then parser signals a failure.

2.2 Generalized parsing
While LR parsing is relatively fast and simple, it has one ma-
jor downside: it fully deterministic. For each state and to-
ken, there can be only one action. This is an issue when the
grammar description of a language contains ambiguities. For
example, take the following grammar:

Start -> Expression
Expression -> <Expression> + <Expression>
Expression -> <Expression> * <Expression>
Expression -> x

Then, an input such as "x + x * x" presents an ambigu-
ity: should it be parsed as "(x + x) * x", or as "x + (x
* x)"? When the parser reaches the middle x, it would not

know whether to reduce the "x + x" into "(x + x)", or to
shift until the last x, and then reduce the multiplication first.
The solution for this would be to designate some kind of oper-
ator precedence, where one action is preferred over the other.

However, in this example, if "x + (x * x)" is the
proffered outcome, another issue appears. When deciding
whether to shift or reduce the middle x, the parser so far has
only consumed "x + x". It does not know what the next
character is. It might be *, in which case the parser should
shift, or it might be actually End of Input, in which case the
parser should reduce. Knuth solved this with lookahead: in-
stead of using the currently parsed token to look up the next
state in the parse table, The parser reads, but not consumes,
the next k tokens and uses them all together to look the next
state [Knuth, 1965].

While this works for most practical languages, in theory,
it is possible to devise a grammar that requires more than k
tokens to resolve an ambiguity [Denkers, 2018]. Generalized
LR-Parsing is an alternative solution to the ambiguity prob-
lem [Visser, 1997]. It allows a parse table to return multiple
states from a lookup. Then, for each return action, the parser
creates a new parallel stack, and applies a different action on
each action. The parser then continues updating all stacks in
parallel. Effectively, this means that the parser tries all ac-
tions at the same time. If a single stack ends up being wrong
in some way, it can be discarded, while other stacks continue
working. The parser fails only when all stacks fail.

To save space, the parallel stacks are stored in a Graph
Structured Stack (GSS) [Denkers, 2018]. The states in the
stacks are stored as nodes. Directed edges point to the next
element below the top state. This lets parallel stacks share
common states.

2.3 Scannerless parsing
Scannerless parsing, as the name implies, is a modification
to the LR-parsing algorithm that removes the scanner. It
changes the parsing algorithm to work on characters directly.
One advantage of this is that now white-space and layout
can be part of the language grammar. However, the main is-
sue that scannerless parsing solves are context sensitive key-
words. For example, take the string int int = 1; in a C-
like language. Normally, the scanner would mark the second
int as a keyword token, and then parsing would fail, as as-
signing a value to a keyword does not make any sense. How-
ever, with scannerless parsing, a grammar could be devised
that would consider any alphanumeric characters between the
first int and the = as a valid identifier. The big downside is
that it significantly increases the size of the parse table.

2.4 Recovery parsing
The parsing techniques described so far assume a simple di-
chotomy: either the input text is syntactically valid and can
be parsed, or there is an error and parsing should be aborted.
Recovery parsing gives a middle ground. It tries to parse as
much input as possible, and isolate out areas of text with er-
rors. JSGLR2 uses a modification of the “islands and wa-
ters” approach [Moonen, 2001; Denkers, 2018]. During nor-
mal parsing, the parser keeps a history of the changes to the



stacks. Upon failure, the parser progressively undoes its ac-
tions, and skips over the characters where the error was en-
countered.

2.5 Spoofax Workbench
Spoofax is a suite of various tools and languages used to
develop programming and mark-up languages [MetaBorg,
2016]. JSGLR2 is one of its components, providing the pars-
ing functionality. Spoofax interacts with JSGLR2 by provid-
ing it with a parser generator, and a means to build abstract
syntax trees Spoofax can used in other locations.

2.6 JSGLR
JSGLR2 implements all concepts mentioned so far using a
modular architecture. The classes used to compose the re-
covery variant can be seen in Figure 1. The majority of these
classes, such as Parse State, all managers, and Reducer,
are singletons that provide a part of the SGLR parsing algo-
rithm. A minority of classes, such as Stack Node, Parse
Forest and Derivation, are data structures used by the
parser. For example Stack Link and Stack Node are used
to represent the stack, while Character Node and Parse
Node store the parsed rules.

With the exception of Parse Table, all classes shown in
figure 1 are subject to inlining. This is the case because the
Parse Table is not defined in the JSGLR2 project, but de-
fined and passed in externally.

3 Methodology and Contribution
The very first step is to define what an inlined variant should
look like. This is what this section concerns itself with. The
idea of inlining is as follows: keep the high-level algorithm
the same, but remove the modularity; undo the idea that JS-
GLR2 can be assembled from arbitrary parts. The rationale
behind this is that to enable modularity, all components need
to support all possible parser variants. These variants each
have unique features, such as recovery for the recovery vari-
ant. This means that the components need to have some way
to support all those features. The result is that components
contain control flow logic that is only exercised for certain
variants. Yet, all variants need to suffer from the overhead of
these additions.

3.1 Getting access
Before writing the inlined variant, an important preliminary
needs to be satisfied first. There should be a way to re-
trieve the inlined recovery variant. Access is made possible
with the insertion of the inlined variant into JSGLR2Variant.
A new entry in JSGLR2Variant.Preset is created, called
recoveryInlined. Instead of a JSGLR2Variant, this
enum value returns a subclass called RecoveryVariant.
It is stored as an inner class inside JSGLR2Variant, and
overrides JSGLR2Variant.getJSGLR2() to return the in-
lined variant. RecoveryVariant also contains a parame-
terless constructor making it possible to create it without
the need to pass in a ParserVariant, ImploderVariant,
and TokenizerVariant, which are required to instantiate
JSGLR2Variant. RecoveryVariant’s constructor simply

passes null to the superclass constructor, signifying that the
inlined variant is not modular.

3.2 Duplication and inheritance removal
Now that there a way to to get the inlined variant, the
first major refactor can happen. It consists of four parts:
duplicating the recovery variant, renaming the compo-
nents, squishing inheritance, and removing generics. The
first and second part provide the groundwork to work on.
This way, the inlined variant is separate from the exist-
ing variants, so no existing functionality is affected. The
new names are found in table 1. As for the location
of the new files, JSGLR2RecoveryInlined is put in the
org.spoofax.jsglr2 package, the same place as where
JSGLR2Implementation resides. All other components are
put in a separate org.spoofax.jsglr2.inlined package,
so that they would not pollute other namespaces.

3.3 Inheritance Removal
While the new files exist and can be used to create new vari-
ants, the third step is applied. For each inlined class. inheri-
tance is removed by recursively retrieving the superclass, and
inserting its methods. Methods that are overridden are ig-
nored, unless the subclass used a super call. In that case, the
superclass method body simply replaces the line with super
in it. The end result is that with a few exceptions, the inlined
classes do not have any super or subclasses anymore.

Inheritance Removal Exceptions
The exceptions to the inheritance squishing step are
as follows: JSGLR2RecoveryInlined implements the
JSGLR2<IStrategoTerm> interface, as it is the entry point
into the entire JSGLR2 algorithm family. Without it, other
parts of the Spoofax Workbench, which JSGLR2 is part of,
wouldn’t be able to use the inlined variant, including the eval-
uation suite that will be used for getting results in Section 4.

Another exception is InlinedStackPath.Empty
and InlinedStackPath.NonEmpty. They inherit from
InlinedStackPath, as they are used to represent a linked
list where the last element holds a different type of value.
While it is possible to rewrite this code to use a different,
inheritance free way to represent stack paths, it has been
decided to stick as close as possible to the original algorithm,
to ensure that this change in behaviour would not affect the
benchmark results.

Similarly, InlinedAmbiguityDetector,
InlinedCycleDetector, and
InlinedNonAssocDetector, implement
IInlinedParseNodeVisitor, as they use a variation of
the visitor design pattern. Meanwhile, InlinedParseNode
and InlinedCharacterNode have to implement the
IParseForest, for two reasons. The first one is that they
are both nodes in a parse forest. Some methods and data
structures, such as the reducer and stack links, need to be
able to function with both types of nodes. The second reason
is because the parser component of the inlined variant imple-
ments IParser, the parse method it implements returns a
ParseResult, which in turn contains a IParseForest.



Original Class → New Class

org.spoofax.jsglr2.JSGLR2Implementation → JSGLR2RecoveryInlined
org.spoofax.jsglr2.imploder.TokenizedStrategoTermImploder → InlinedImploder
org.spoofax.jsglr2.inputstack.InputStack → InlinedInputStack
org.spoofax.jsglr2.parseforest.AmbiguityDetector → InlinedAmbiguityDetector
org.spoofax.jsglr2.parseforest.CycleDetector → InlinedCycleDetector
org.spoofax.jsglr2.parseforest.NonAssocDetector → InlinedNonAssocDetector
org.spoofax.jsglr2.parseforest.ParseNodeVisitor → InlinedParseNodeVisitor
org.spoofax.jsglr2.parseforest.hybrid.HybridCharacterNode → InlinedCharacterNode
org.spoofax.jsglr2.parseforest.hybrid.HybridDerivation → InlinedDerivation
org.spoofax.jsglr2.parseforest.hybrid.HybridParseForestManager → InlinedParseForestManager
org.spoofax.jsglr2.parseforest.hybrid.HybridParseNode → InlinedParseNode
org.spoofax.jsglr2.parser.ForShifterElement → InlinedForShifterElement
org.spoofax.jsglr2.parser.Parser → InlinedParser
org.spoofax.jsglr2.parser.observing.IParserObserver → InlinedObserver*
org.spoofax.jsglr2.parser.observing.IParserNotification → InlinedObserving.IInlinedNotification*
org.spoofax.jsglr2.parser.observing.ParserObserving → InlinedObserving*
org.spoofax.jsglr2.recovery.BacktrackChoicePoint → InlinedBacktrackChoicePoint
org.spoofax.jsglr2.recovery.RecoveryDisambiguator → InlinedDisambugator
org.spoofax.jsglr2.recovery.RecoveryJob → InlinedRecoveryJob
org.spoofax.jsglr2.recovery.RecoveryObserver → InlinedObserver*
org.spoofax.jsglr2.recovery.RecoveryParseFailureHandler → InlinedParseFailureHandler
org.spoofax.jsglr2.recovery.RecoveryParseReporter → InlinedParseReporter
org.spoofax.jsglr2.recovery.RecoveryParseState → InlinedParseState
org.spoofax.jsglr2.recovery.RecoveryReducerOptimized → InlinedReducer
org.spoofax.jsglr2.reducing.ReduceManager → InlinedReduceManager
org.spoofax.jsglr2.stack.StackLink → InlinedStackLink
org.spoofax.jsglr2.stack.collections.ActiveStacksArrayList → InlinedActiveStacks
org.spoofax.jsglr2.stack.collections.ForActorStacksArrayDeque → InlinedForActorStacks
org.spoofax.jsglr2.stack.hybrid.HybridStackManager → InlinedStackManager
org.spoofax.jsglr2.stack.hybrid.HybridStackNode → InlinedStackNode
org.spoofax.jsglr2.stack.paths.EmptyStackPath → InlinedStackPath.Empty
org.spoofax.jsglr2.stack.paths.NonEmptyStackPath → InlinedStackPath.NonEmpty
org.spoofax.jsglr2.stack.paths.StackPath → InlinedStackPath
org.spoofax.jsglr2.tokens.StubTokenizer → [removed]

Table 1: Full list of all new renamed classes used for the inlined variants, as well as the full names of the original components.
*only for certain branches

The Observer Mechanism
InlinedParser implements IParser<IParseForest>,
as means to satisfy JSGLR2 interface, which pro-
vides a IParser<?> parser() method. How-
ever, notice that JSGLR2 also provides a void
attachObserver(IParserObserver) method, where
IParserObserver is a subclass of of IParser. This
method lets the user attach ‘observers’ to the parser, who
hook in into the parser internals via the observer design
pattern. Most methods inside the parser call an callback
function of all attached observers. To let the observers
modify the parsing logic, parser methods pass along the data
structures they work with to the observer callbacks. Because
of this, IParserObserver cannot be used with an inlined
variant directly.

Code inspection reveals that the observer functionality is
only used in four places: RecoveryObserver is used by
the recovery variant to inject additional code into the ‘shift’
and ‘reduce’ steps. ParserMeasureObserver from the

measure project is used to generate statistics during evalu-
ation. org.spoofax.jsglr2.cli project contains several
loggers to print out detailed information during the pars-
ing. org.spoofax.jsglr2.benchmarks contains several
observers used for data structure related tests.

To handle the observer mechanism, three solutions were
considered:

1. InlinedObserver: The first option is to apply the same
inlining logic to the IParserObserver as to all other
components. Inlined versions of IParserObserver,
ParserObserving, and RecoveryObserver are cre-
ated and used. The upside of this solution is
that it mimics the existing variant, resulting in
only the inheritance removal step being measured.
The downside is that it cannot be used with void
attachObserver(IParserObserver).

2. No observers: The observer mechanism is
simply stripped out entirely. All references



to IParserObserver, ParserObserving,
and RecoveryObserver are removed.
RecoveryObserver has two method, reducer
and shift. They are inserted directly into
InlinedReduceManager::reducer and
InlinedParser::shifter, where the two meth-
ods were indirectly called. The advantage of this
solution is that the possible overhead of calling observer
methods is gone. However, this solution has the same
disadvantage as the the first one.

3. FakeObserver: This solution tries to make void
attachObserver(IParserObserver) work by cre-
ating ’fake’ components. Each parser component is
used in IParserObserver gets an additional method
called getFake(). Its return type is a correspond-
ing non-inlined version of that component. For exam-
ple, InlinedDerivation::getFake() would return
IDerivation. However the actual return type is an
anonymous class extending from the return type. This
class has a single constructor that takes the inlined com-
ponent and stores it in a private field. All relevant meth-
ods are overridden to call their equivalents in the inlined
component. If such method takes or returns another
parser component, they need to be converted as well.
The result is that now non-inlined IParserObservers
can be used with the inlined recovery variant. The cost
is that each inlined parser component now contains two
classes: the true inlined version, and a fake version. This
significantly bloats the codebase. Additionally, convert-
ing between the inlined and fake versions would induce
a performance penalty.

Out of these, the last one was attempted at first, but then
dropped as infeasible. The other two solutions, however, were
both applied, by splitting the development. One maintains
the observers as in solution one, the second branch applies
solution two. The two variants will be further referred to as
“Inlined Observers”, the other one as “No Observers” The
reasoning behind this is that the observer mechanism is hy-
pothesised to be a notable contributor to the modularity over-
head, so evaluation of both versions would help confirm or
deny this.

3.4 ParserMeasureObserver

ParserMeasureObserver is part of the measurements
project, and is used for parser testing. It uses the observer
mechanism to count how much each method in the parser was
called. This is useful when comparing different parser vari-
ants. This includes the inlined ones. While for the “Inlined
Observers” inlined variant it would be possible to create a
“Inlined Measure Observer”, the “No Observers” variant can-
not support it directly. Therefore, a third inlined variant was
created, called “Integrated Measurements”. It is similar “In-
lined Observers” variant. The difference between these two is
that ParserObservering is renamed to StatCounter, and
instead of letting it store arbitrary observers, it instead con-
tains ParserMeasureObserver logic.

Inheritance Removal Rationale

The idea behind removing inheritance concerns itself with
static and dynamic dispatch. In many object oriented lan-
guages, these are the two ways a method can be called inside
a compile binary. Static dispatch is simple enough: during
compilation, the location of the called method is calculated,
and the resulting memory address is directly added to the call
instruction. During runtime, method calls are as simple as a
jump instruction plus some stack setup and teardown over-
head. The major downside of it is that it only works if the
target method is known during compile time. This is the case
when inheritance is used. This is because the runtime type of
an object may actually be a subclass, and therefore, the called
method may be overridden. Therefore, the system needs to
check to which class the object whose method is called be-
longs to, and look up the appropriate method location. For
java, the official specification implies that it supports both dis-
patches, via the invokespecial and invokevirtual, re-
spectively [Gosling et al., 2021]. Therefore, it is possible that
removing inheritance would improve performance.

3.5 Removing Generics

The last step to make the inlined variant functional is to
swap out all references to parser components from gener-
ics to the specific inlined versions. Non-inlined parser
components use generics to refer to each other. For exam-
ple, the full type definition of RecoveryParseState
is RecoveryParseState<InputStack extends
IInputStack, StackNode extends IStackNode>.
So, all occurences of InputStack have been re-
placed with InlinedInputStack, and StackNode with
InlinedStackNode.

3.6 Marking Classes as Final

The last change was marking all classes as final. In java, this
prevents a class from having subclasses. This might help the
compiler use static dispatch. To see if it indeed helps the com-
piler, they were put in the fourth inlined variant, simply called
“No Observers and Final Classes”. As the name implies, it is
built upon the “No Observers” variant.

4 Evaluation, Results, Discussion

4.1 Evaluation suite

The evaluation of the inlined parser variants is done with an
external evaluation suite simply called ”JSGLR-evaluation”.
It is a a collection of scripts operated via a Makefile. It is
responsible for setting up the test sources, running the bench-
marks, doing statistical measurements, and generating the
graphs. This evaluation suite was originally designed to com-
pare the various modular parser variants. During the develop-
ment of the inlined variants, the suite was adjusted as well to
support the inlined versions, and to exclude the modular vari-
ants other than recovery. It was used to generate the figures.



4.2 Sources
The test sources are single source files picked from public
projects written in Java, webdsl1, and sdf32. All benchmarks
and measurements are run per language, but all projects are
evaluated together in one run. The metadata for the files used
can be found in table 3.

Results
Figures 2 - 5 show four bar graphs. The right column shows
time spent parsing per language. The left column normalizes
the result by showing the throughput in characters parsed per
second. The top row only shows parsing, while the bottom
row includes the imploder. The original, non-modular vari-
ant is marked as ’recovery’, and is brown colored, while the
inlined variant is called ’recoveryInlined’ and uses blue bars.
The show that with the exception of the inlined variant with
the integrated measurement observer, all inlined parsers have
better performance. The variant with built-in measurement
observer scores terribly. When looking at throughput includ-
ing imploding, Figure 3 shows a decrease of 28.9% for Java,
and 27.4%, 25.0% for Webdsl, SDF3, respectively. Without
imploding, the decreases3 are 15.8%, 29.6%, and 26.5%. The
high parse times of the variant with integrated measurements
is can be attributed to the fact that ParserMeasureObserver
uses hash maps to count distinct components created over the
course of parsing a test file. As an example, during testing, the
measurements project reported that over 30 000 stack nodes
were used during parsing, per language. So the measure ob-
server had a hash map that grew to contain all these elements.

The variant with inlined observers (Figure 2) differs from
the regular recovery variant only by having no inheritance,
and it shows that the inheritance is relatively small penalty.
In terms of parsing throughput, the inlined variant shows a
percentage increase of 9.0% for Java, 6.5% for WebDSL and
8.3% for SDF3. When excluding imploding, the results are
3.0%, 1.9%,and 6.2%, respectively.

Much more interesting are the results that forgo observers
altogether. Figure 4 shows a significant improvement of
24.0%, 32.4%, and 31.9% with imploding, 33.4%, 35.0%,
17.6% without imploding. This heavily implies that the ob-
server mechanism poses a significant overhead on the parser,
and that any attempts to improve the performance the JS-
GLR2 parser should remove the observers first.

The variant not discussed yet is the one that builds upon
the ”no observers” variant with making all classes final. With
imploding, it shows an increase of 32.8%, 32.2%, and 40.4%,
while just parsing results in 29.6% 38.5%, and 9.3%. If the
two inlined variants are compared4, the relative improvement
is -11.5 %, +10.0%, and -47.3%! That is, the variant with

1https://webdsl.org
2SDF3 is a domain specific language developed for, and used in

the Spoofax Workbench. It is used to write grammars for program-
ming languages

3Calculated as (new − old)/old · 100%, where new is the
throughput of the inlined variant, and old of the non-inlined recov-
ery variant.

4(percent increase variant with final classes% increase variant with no observers)·
100%− 100%

final classes shows worse performance. If imploding is in-
cluded, then the results are 29.9%, 21.2%, 35.5%.

The most likely reason for this discrepancy is that accord-
ing to table 3, Java and SDF3 have relatively small sample
size, of only three files each. These three files have a total size
of 10739 and 5019 bytes, respectively. Meanwhile, WebDSL
has 10 files, totalling 49194 bytes. Therefore, Java and SDF3
measurements must have a relatively high variance between
runs. WebDSL is the only language that shows a relative im-
provement in both cases, so therefore it seems to be the most
trustworthy result.

Even though the percentage values likely have a high er-
ror margin, the conclusion is still sound: The variant with
no observers and final classes shows the best performance
increases of all inlined variants. This means that removing
inheritance and observer mechanism, marking the classes as
final, and lowering the access modifiers has a net positive re-
sult on parsing performance.

5 Responsible Research
5.1 Software sources
New findings are generally more useful when they can
be consistently reproduced, or at least not consistently
disproved. To ensure that the reader can confirm the results
for themselves, the source code for the inlined JSGLR2 fork
can be found online at https://github.com/certified-potato/
jsglr2-inlined, while the evaluation suit is hosted at
https://github.com/certified-potato/jsglr2evaluation. The four
variants can be retrieved from repository via four branches:
inlined observers, integrated measurements,
no measurements and with privates. They corre-
spond to the variants with inlined observers, built-in
ParserMeasureObserver, purged observers, and purged
observers with all classes marked final, respectively.

5.2 Evaluation device
The results were evaluated on a HP ZBook Studio G5 note-
book. The CPU is an Intel®Core™i7-8750H at 2.20 GHz.
The L1, L2, and L3 caches are 384KiB, 1536KiB, and 9MiB,
respectively. The system memory is 16GiB SODIMM DDR4
Synchronous 2667 MHz (0.4 ns). To ensure consistent re-
sults, Intel®Turbo Boost has been disabled. The java instal-
lation used to run the benchmarks is OpenJDK Runtime En-
vironment (build 1.8.0 292-8u292-b10-0ubuntu1 20.10-b10)
with OpenJDK 64-Bit Server VM (build 25.292-b10, mixed
mode).

5.3 Ommitted data
Some results were omitted, as they were considered not
relevant enough to include in this paper. The first
set of discarded data are the benchmarks of the parser
with inlined observer, that was modified to also attach a
InlinedMeasureObserver. It used to confirm that low per-
formance of the parser version with integrated measure ob-
server is indeed caused by the measurement logic itself. How-
ever, this discarded variant has no other use, and does not
provide any other useful information.

https://github.com/certified-potato/jsglr2-inlined
https://github.com/certified-potato/jsglr2-inlined
https://github.com/certified-potato/jsglr2evaluation


Another piece of data that is not shown here, are the bench-
marks that include non-recovery variants. The reason is sim-
ple: other variants have a different logic, and are therefore not
comparable to the recovery variant, both the regular and the
inlined versions.

Similarly, comparisons with third party parsers, such as
ANTLR5, and tree-sitter6, are omitted as well.

Lastly, the measurements from the measurement project
were omitted as well. The reason is because it shows how
much each method in the parser is called. Inlining does not
change the logical algorithm, so all values for all variants
were the same.

6 Conclusions and Future Work
6.1 Summary
The goal of this work was to measure the overhead of the
modular architecture on the recovery variant JSGLR2 parser.
This variant has been extracted, and refactored to stand on
its own, without making use of the existing framework. Four
different inlined variants have been created, all sharing a com-
mon base, but having slight differences, particularly on how
to handle the parser observer mechanism. The four variants
all have been evaluated relative to the original, non-inlined
recovery variant. The result show that removing inheritance,
deleting the observer mechanism completely, and marking
methods as package-protected or private, and classes as final,
has a net benefit on performance.

6.2 Future work
Future work would consist of applying additional in-
lining techniques. The first one would be combining
classes that have an one to one relation. For example,
InlinedParseState and the various Manage could be be
inserted into InlinedParser. This could be used together
with the idea of combining methods together. Coman [Co-
man, 2021] has made similar work, so those ideas could be
combined.

Another improvement would be to increase the sample size
of the files used for benchmarking. The improvement itself is
trivial, as it only requires to change the evaluation configu-
ration suite. However this does increase the running time of
the evaluation suite. So better planning to schedule in longer
benchmarks would be beneficial.
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JSGLR2
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Failure Handler
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Figure 1: Simplified UML diagram of the recovery variant parser. It only shows which classes own which other classes, and inheritance in
cases when the multiple subclasses are used together. Not shown is how the classes relate to each other in terms of method calls, nor the full
inheritance tree.

Table 2: Counts of components, method calls and other parts of the parser used during parsing.
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Figure 2: Results of the inlined variant with inlined observers
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Figure 3: Results of the inlined variant with that has ParserMeasureObserver built-in
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Figure 4: Results of the inlined variant with observers mechanism removed
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Figure 5: Results of the inlined variant with observers mechanism removed and all classes made final



Language Source Files Lines Size (bytes)

Java
apache-commons-lang 1 57 2331
netty 1 56 1858
spring-boot 1 167 6550

WebDSL

webdsl-yellowgrass 1 6 100
webdsl-elib-example 1 7 95
webdsl-elib-ace 1 131 3775
webdsl-elib-tablesorter 1 107 4075
webdsl-elib-utils 1 25 648
webdsl-elib-bootstrap 1 1196 34501
webdsl-elib-unsavedchanges 1 96 4108
webdsl-elib-timeline 1 52 964
webdsl-elib-timezones 1 109 3724
webdsl-elib-holder 1 17 602

SDF3
nabl 1 14 136
dynsem 1 145 3649
flowspec 1 63 1434

Table 3: Metadata of source files used for benchmark tests
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