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Abstract—While Resistive RRAM (RRAM) offers attractive 

features for artificial neural networks (NN) such as low power 

operation and high-density, its conductance variation can pose 

significant challenges when the storage of synaptic weights is 

concerned. This paper reports an experimental evaluation of the 

conductance variations of manufactured RRAMs at the memory 

array level. Working at the memory array level allows to catch 

cycle-to-cycle (C2C) as well as device-to-device (D2D) variability 

and, hence, to propose a realistic evaluation of the conductance 

variation. Variability is evaluated with respect to the RRAM low 

resistance state (LRS) and high resistance state (HRS) 

conductance ratio. This ratio is selected as the parameter of 

interest as it guarantees the proper operation of the RRAM: the 

larger the ratio, the more reliable and robust the RRAM cell is 

in storing and retrieving data. The measurement results show 

that the conductance ratio is heavily affected by variability. 

Large spatial and temporal variations are reported, making 

challenging RRAM-based analog weight storage. 

Keywords— RRAM, Variability, Neuromorphic, Computing, 

Synaptic weights, Reliability. 

I. INTRODUCTION 

 

Resistive RAM (RRAM) is a promising technology not 

only for large data storage but also to enable energy efficient 

computing solutions which could facilitate the deployment of 

artificial intelligence at the edge (edge-AI) [1]. However, not 

solving the issues related to no-idealities such as the 

variability in the electrical parameters of RRAMs (e.g., 

conductance variability) may block further development of 

the technology [2,3]. In RRAM-based neural networks (NN), 

conductance variability results in weight variability [4,5,6]. 

Weight variability can affect the network during training and 

inference, affecting the network ability to make precise 

predictions. The training process is particularly sensitive to 

the fluctuations of the synaptic weights [7]. Even slight 

variations can move the optimal work of the network, leading 

to uncontrolled accuracy loss during inference [8]. Therefore, 

there is an urgent need to analyze and quantify the 

conductance variability in RRAMs. 

A solution to improve the network resilience against 

conductance fluctuation issues is to intentionally inject some 

noise into the synaptic weights during the training, exploiting 

a technique called variability-aware training (VAT) [9]. To 

obtain realistic results after the training process, such noise 

should be linked to the actual variability of the RRAM 

device, including device to device (D2D) and cycle to cycle 

(C2C) variabilities. However, this last point is neglected in 

many publications [10]. An alternative way to mitigate 

conductance fluctuations issues at the NN level is the 

mapping-aware biased training methodology [11] which 

consists in identifying RRAM conductance states inherently 

more immune to variation (favorable states). Then, a 

mapping-aware training technique is adopted where 

important weights are directly get mapped to such favorable 

states [12]. The mapping-aware training considers the 

inherent non-idealities of RRAM devices, such as variations 

in the conductance levels in the first place [12]. Therefore, 

detecting devices suffering from variability issues is a crucial 

step before considering a mapping-aware training 

methodology practical implementation. However, in this case 

as well, this aspect is not taken into account in many 

publications [13]. 

In this context, this paper advances the state-of the art by 

providing a silicon-based analysis of the conductance 

variability in RRAMs. Conductance variability is assessed 

quantitatively for each cell of a memory array test chip. 

Afterwards, a ranking of the cells more immune to variability 

is established. Finally, cells more favorable to weight 

mapping are derived from this ranking.  

The main contributions of this study are summarized below: 

• RRAM conductance variation silicon data are collected 

at the test chip level. 

• A deep analysis of the conductance variation over 

multiple cycles is provided to understand the conductance 

stability and repeatability. 

• Outcomes of this work are supported by silicon results 

related to an Oxide-based RAM (OxRAM) technology 

provided by ST-Microelectronics. 

Considering that the limited precision of RRAM devices 

intended to map synaptic weights is addressed [14], outcomes 

derived from this study can be applied to any mapping 

technique currently used to implement RRAM-based NN 

accelerators, namely, (a) multilevel [15,16], (b) binary [17], 

(c) unary [18], (d) multilevel with redundancy [19] and (e) 

slicing [8]. Moreover, this study contributes to the 

understanding of the conductance variation in RRAMs [20] 

from an electrical standpoint, which is the first step before 

enabling accurate analogue computing with imprecise 

memory devices. Also, although functional silicon-based 

RRAM NN accelerators have been published in the literature 

[21,22], we cannot but notice that a demonstrator combining 

high recognition accuracy with analog weight storage and 

low-power operation is still missing. 

The remainder of this paper is organized as follows. 

Section II introduces the specifications of the manufactured 

RRAM cells. Section III presents the experimental setup. 

Section IV reports the silicon measured data on RRAM 

conductance variability and analyze them. Section V shows 
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how the made analysis can enable accurate RRAM based 

neuromorphic computing. Finally, Section V concludes the 

paper.  

II. SPECIFICATIONS OF THE MANUFACTURED RRAMS 

RRAM devices typically operate based on the reversible 
change in resistance caused by the formation and rupture of 
conductive filaments (CFs) [15]. From a physical standpoint, 
when a voltage is applied across the cell (i.e., between the top 
and bottom electrodes), depending upon the voltage polarity, 
one or more CFs made out of oxygen vacancies are either 
formed or ruptured. Once the CFs are formed inside the metal 
oxide, bridging the top and bottom electrodes and leading to 
a low-resistance state (LRS), current can flow through the 
CFs. Subsequent resistance changes are achieved by 
rupturing the filaments. Applying a voltage with reversed 
polarity causes the filaments to break, leading to a high-
resistance state (HRS). Fig. 1a presents the considered 1T1R 
RRAM device where one transistor (W = 0.8 µm and L = 0.5 
µm) is connected in series with one resistive element 
(RRAM). The resistive element, shown in Fig. 1b, is 
incorporated in the Back End Of Line (BEOL) of a 130 nm 
technology, between metal layers [23]. The stack is deposited 
using Physical Vapor Deposition (PVD) where a 10 nm 
Hafnium dioxide (HfO2) layer is placed on the top of a TiN 
Bottom electrode (BE). A Ti/TiN bilayer stack is then 
deposited as a top electrode (TE) to form a capacitor-like 
structure. Fig. 1c presents a classical 1T1R I-V hysteresis. 
Based on this characteristic, the 1T1R cell operation can be 
understood as follows: after an initial electro-Forming (FMG) 
step, the memory element can be switched reversibly between 
LRS and HRS. Resistive switching corresponds to an abrupt 
change between the HRS and the LRS. The resistance change 
is triggered by applying specific biases across the 1T1R cell, 
i.e., VSET to switch to LRS after a SET operation and VRST to 
switch to HRS after a RESET (RST) operation.  

 
              (a)              (b)                   (c) 

Fig. 1. (a) Symbol view of a 1T1R cell. (b) SEM cross section of the 
RRAM stack [23]. (c) RRAM I-V hysteresis.  

TABLE I.  STANDARD CELL OPERATING VOLTAGES  

 FMG RST SET READ 

WL 2 V 2.5 V 2 V 2.5 V 
BL 3.3 V 0 V 1.2 V 0.1 V 
SL 0 V 1.2 V 0 V 0 V 

Resistance 10 kΩ   240 kΩ   15 kΩ   - 

Conductance 100 µS 4 µS 66,6 µS - 

 
The voltage levels used during the different operating steps 
are presented in Table I, along with the nominal resistance and 
conductance values. Note that a nominal conductance ratio 
around 16 is obtained for the targeted technology (66,6 µS / 4 
µS, see Table I). During the read operation, typically, a small 

read voltage (0.1 V) is chosen to not disturb the current state 
of the cell. In practice, at the circuit level, the read operation 
is performed by sensing the current associated with the cell 
resistance to determine whether the cell is in logic ‘0’ (HRS) 
or in logic ‘1’ (LRS). It is worth noting that in the 1T1R 
configuration, the transistor controls the amount of current 
flowing through the cell according to its gate voltage bias. 
This clamping current is referred to as the compliance current 
(ICC).  

III. EXPERIMENTAL SETUP 

Fig. 2.a presents the test chip considered for measurements 
which is a classical 1T1R array. Memory cells are grouped to 
form eight 8-bit memory words. Word Lines (WLX) are used 
to select the active row, Bit Lines (BLX) are used to select 
active columns during a SET operation and Source Lines 
(SLX) are used to RST a whole memory word or an addressed 
cell. To allow a full flexibility during characterization, BL, 
WL and SL nodes are externally available. During the RRAM 
cell characterization, the extraction of RLRS and RHRS is 
achieved using 1 ms DC voltage sweeps with a 1 mV voltage 
step; the applied voltage increases step by step and the current 
flowing through the cell is measured, allowing an extraction 
of the I-V characteristics of each cell. Fig. 2.b presents a view 
of the fabricated memory array. Due to the limited pin out of 
the probe card, only a 7x7 memory array is available for our 
experiments (i.e., a subset of the 8x8 array). 

 

Fig. 2. (a) 8x8 RRAM memory array and (b) physical view of the 
fabricated memory array. 

Before any operation, the memory array is first formed 
(FMG). Then, memory cells are RST one by one to extract 
the RHRS value at 0.1 V. After RST, cells are SET to extract 
the RLRS value, also at 0.1 V. The RST/SET process is 
repeated 230 times for the whole array in order to catch C2C 
as well as D2D variability. The measurement protocol seen 
by each cell of the array is presented in Fig 3. 

 

Fig. 3. Measurement protocol: after FMG, a RST/SET operation is repeated 
230 times for each addressed cell. RST and SET operations are followed by 

a read operation to extract the cell resistances. 

Memory array test chip

FMG @ VBL = 3.3 V

RST @ VSL = 1.8 V

Read @ 0.1V
230 times 

Read @ 0.1V

SET @ VBL= 1.2 V 
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IV. EXPERIMENTAL RESULTS  

A. Preliminary results 

Although RRAMs have shown interesting properties, one of 
the most important challenges of the technology is the control 
of the device variability (temporal and spatial) in both LRS 
and HRS states [24, 25]. In fact, variations of RHRS/RLRS are 
so unpredictable that they have been employed as an entropy 
source in True Random Number Generators (TRNG) [26, 27]. 
Fig. 4 shows the impact of D2D and C2C variability at the I-
V characteristic level after RST/SET operations applied to 
each of the 49 cells of the memory array (D2D variability, 
Fig.4a) and after a RST/SET operation applied only 49 times 
(for comparison purposes) to an isolated cell of the memory 
array (C2C variability, Fig.4b). The nominal characteristic is 
highlighted in red (RST) and blue (SET) colors. Based on 
these preliminary measurement results, it appears clearly that 
HRS and LRS resistance/conductance is affected by spatial 
and temporal variations. Hence, this non-ideality has to be 
considered when designing RRAM-based NN. In this context, 
the next section proposes a quantitative analysis of 
conductance variations. A cell tracking analysis will be 
conducted in order to monitor the evolution of the 
conductance ratio of each cell of the memory array presented 
in Fig. 2a over 230 programming cycles. The state of 
individual memory cells will be tracked to detect cells that 
deviate from their nominal behavior (i.e., deviation from the 
nominal conductance ratio of 16). 

              
                (a)                                      (b) 
Fig. 4. Experimental evidence of (a) cell level D2D variability and (b) cell 
level C2C variability. The nominal characteristic is highlighted in color. 

A. Conductance ratio variability evaluation 

In Fig. 5, the evolution of the LRS/HRS conductance ratio of 
three different cells (i.e., located at three different addresses) 
is presented in the logarithmic scale. Cell (5;0), where ‘5’ and 
‘0’ represent the WL and BL line numbers respectively, is the 
most affected by variability. 

 

 Fig. 5. Conductance ratio versus the number of RST/SET cycles for 3 
different cells of the memory array presented in Fig. 2a. 

Large conductance fluctuations are reported with a 
conductance ratio standard derivation σ = 97.6 with respect 
to its mean value µ = 61.5. In contrast, cell (1;0) and cell (3;0) 
are less impacted with standard derivation values equal to 6.3 
and 13 respectively. Note that for cell (5;0), the conductance 
ratio falls below one in two cycles, resulting in an overlap 
between LRS and HRS conductance levels. Hence, this cell 
needs to be avoided for synaptic weight storage. The 
evolution of the conductance ratio standard derivation of the 
49 cells of the memory array is provided in Fig.6a. The 
standard deviation ranges from 2.8 (min. value) to 97.6 (max. 
value). A 2D representation of the standard deviation values 
over the memory array is presented in Fig.6b. Each cell is 
associated with a variable degree of grey. The whiteness of a 
cell reflects lower standard deviations. The white color being 
associated with the minimal standard deviation and the black 
color with the maximal standard deviation. For instance, cell 
at location (5;0), associated with a black color, is the most 
affected by variability with a standard deviation of 97.6, 
while cell at location (4;5), associated with a white color, is 
the least affected by variability regarding its standard 
deviation of 2.8. 

 
Fig. 6. (a) Evolution of the conductance ratio standard deviation of each cell 
of the memory array. (b) Topological representation of the standard deviation 
of each cell of the memory array. The values of the most impacted cell (97.6) 
and least impacted cell (2.8) are reported in (a) and (b). 

 
Fig. 7. (a) Evolution of the conductance ratio mean value of each cell of the 
memory array. (b) Topological representation of the mean value of each cell 
of the memory array. Largest and smallest values are reported in (a) and (b). 
 

 
 Fig. 8. (a) Evolution of the coefficient of variation CV of each cell of the 
memory array. (b) Topological representation of CV for each cell of the 
memory array. 
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Fig. 7 presents the evolution of the mean value of the 
conductance ratio for each cell of the memory array. 
Interestingly, this parameter is also affected by variability, 
demonstrating that the conduction window differs across the 
cell in the array. The fluctuation of the mean value of the 
conductance ratio is a relevant information when NN weight 
mapping is concerned as narrowing the conductance window 
results in a significant reduction in the conductance 
modulation capability of the cell (i.e., reduction of the 
number of analog conductance levels). 
Fig. 8 presents the evolution of the ratio of standard deviation 
to the mean value (σ/µ) for each cell of the memory array. 
This parameter is a dimensionless quantity that is used to 
measure the relative variability of the conductance ratio 
dataset, even if the datasets have different scales (i.e., 
different mean values). It is referred to as the coefficient of 
variation CV. The formula for calculating CV is given in (1). 
 

�� (%) =
�	
��

� ����
	���

��
�
. 100 =  

�

�
 . 100                       (1) 

 

Dividing the standard deviation by the mean value essentially 
standardize the measure of the variability. In Fig. 8a, the 
minimum CV value of 21.6% indicates that the standard 
deviation is relatively small compared to the mean, while the 
maximum CV value of 159% suggests a larger relative 
variability. As this parameter combine the influence of the 
standard deviation and the mean value, the latter will be 
considered in the upcoming discussion section. 

V. VARIABILITY AWARE NEUROMORPHIC COMPUTING  

The proposed analysis revealed that conductance variability is 
a major concern in RRAM technology for computing. Hence, 
outcomes of this study are crucial for anticipating the 
functionality and reliability of NN relying on individual 
RRAM cells to store the synaptic weights. 
The conductance ratio has been chosen as the main criterion 
to assess the robustness of RRAMs used in neuromorphic 
computing applications for two reasons: (i) a stable 
conductance ratio is essential for consistent learning 
processes, enabling the network to adapt to new information 
while updating the previously stored information (ii) a high 
conductance ratio provides a larger dynamic range for multi-
level cell storage (MLC [28]) which enables better 
differentiation between different synaptic states, turning the 
NN more robust. The conductance ratio is monitored against 
230 RST/SET programming cycles. A number of 230 cycles 
allows to assess the stability of the conductance ratio, without 
wearing out the memory cells. In other words, a time-zero 
robustness evaluation is conducted before the 
implementation of RRAMs as synaptic weights where 
reliability parameters such as endurance and retention come 
into place. A dataset of 230 conductance ratios is extracted 
for each cell of a memory array. The standard deviation, the 
mean value and the CV parameters have been computed to 
analyze the behavior of each cell.  Based on the CV 
parameter, a ranking of the most favorable cells (i.e., cells 
with lower µ/σ ratio) is proposed in Table II. The CV 
parameter (column 2) accounts for both the stability (σ 
contribution, column 3) and the mean value (µ contribution, 
column 4) of the conductance ratio. The addresses of each 
cell are reported in column 5. 

According to Table II and based on the NN application 
requirements, favorable conductance states presenting low 
CV values can be chosen to map significant weights [13]. 
Conversely, conductance states presenting high CV values 
(such as the worst cell in Table II last column) can be skipped 
during the weight mapping process due to less immunity to 
variations. 

TABLE II.  FAVORABLE CELLS RANKING  

# CV σ µ (S) (WL; BL) 

1 21.6 2.79 12.04 (4;5) 
2 22.4 6.58 29.33 (6;6) 
3 25.8 4.07 15.72 (0;3) 
4 28.0 4.25   15.15 (1;3) 
5 
6 
7 
8 
9 

10 
Worst cell 

28.2 
30.2 
31.0 
31.1 
32.2 
32.7 
159 

6.35 
6.33 
7.95 
4.24 
3.97 

11.80 
97.6 

22.53 
20.97 
25.64 
23.62 
12.35 
36.25 
61.5 

(1;0) 
(0;0) 
(6;0) 
(3;4) 
(2;2) 
(2;5) 
(5;0) 

 
While the conductance ratio variability is an important 
criterion at time zero [29], it is worth noting that time-
dependent reliability metrics [6] such as endurance, retention 
and read/write stress also play a critical role in determining 
the robustness of RRAM-based NNs. Particularly, cycling 
and endurance can lead to hard errors (memory cell stuck at 
one conductance state forever, with a conductance ratio stuck 
at one [30]). Also, similarly to other emerging memory 
technologies, RRAMs is subject to defects that directly 
impact the conductance ratio [31]. Therefore, appropriate test 
mechanisms are required to detect RRAM-related failures 
due to these defects [32,33]. Beyond RRAMs, the NN CMOS 
subsystem variability [34] (including the neurons [35], the 
RRAM reading [36] and programming circuitry [37,38]) can 
also impact the conductance ratio. Hence, a complete analysis 
strategy [39] has to be defined to mitigate the impact of all 
these non-idealities on the conductance fluctuations in 
RRAM-based NN accelerators. 

VI. CONCLUSION 

The existing of important fluctuations in RRAM conductance 
has been experimentally established after applying a limited 
number of programming cycles to individual cells of a 
memory array. The electrical behavior of each cell of the 
array has been analyzed at the electrical level. We have 
reported a large range of variation of the conductance ratio 
standard deviation (from 2.79 to 97.6) as well as its mean 
value (from 12.04 to 61.5). After having computed the 
coefficient of variation CV of each cell of the array, a large 
variation of this parameter was also reported (from 21.6 to 
159). In the light of these findings, and as future perspectives, 
this study has motivated the design of hardware and software 
solutions intended to mitigate the impact of the conductance 
variability to ensure the correct operation of RRAM-based 
neuromorphic systems. 
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