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 Abstract — Visual scoring of magnetic resonance images for the 

early detection of rheumatoid arthritis is prone to human subjectivity and 

lacks sensitivity. In a bid to develop an objective and quantitative alternative 

using digital image processing, this thesis proposes automatic segmentation 

of the carpal bones, followed by the quantification of bone marrow edema, 

which is an important inflammatory imaging biomarker. Segmentation of the 

carpal bones is achieved using multi atlas-based segmentation. Compared to 

manual segmentations of the training data, an average Dice overlap of 0.85 

was achieved. By examining contrast-enhanced MR images of the wrist, 

edematous bone is classified from normal bone marrow using knowledge 

based fuzzy clustering. Validation of the quantitative score against the 

existing RA MRI Scoring (RAMRIS) system showed a significant positive 

correlation. Segmentation error was seen to be a confounding factor, limiting 

the specificity of the BME measure. To increase agreement and maximise 

the available information, it is recommended that data from a 

complementary imaging plane is included. 
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Articular Of or relating to a joint or joints 
Arthralgia Joint pain 

Edema Swelling caused by accumulation of fluid 

Osteitis Inflammation of bony tissue 

Prognosis A prediction of the probable course and outcome of a disease 
Registration The process of matching or aligning of one image to another 
Segmentation The process of subdividing an image into its constituent objects or regions 

of interest 
Synovitis Inflammation of the synovium 
Synovium A soft-tissue membrane that lines the joint capsule of synovial joints  
Voxel A volume element, the 3D analogy of a ‘pixel’ 
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1.   Introduction 

1.1  Clinical background 

Rheumatoid Arthritis 

Rheumatoid arthritis (RA) is a chronic autoimmune disease, typified by inflammation of 
synovial joints. These are joints lined with synovium, a specialised tissue responsible for 
maintaining the nutrition and lubrication of the joint. The exact pathogenesis is unknown, 
making RA an active area of medical research. Approximately one percent of the world 
population is affected, with a relatively higher incidence in the elderly and women. Tell-tale 
signs of RA are (morning) stiffness, pain, swelling and fatigue. Although symptoms are 
systemic, the small joints of the hands, wrists and feet are those earliest and most frequently 
involved [1]. Pathophysiological features include (teno)synovitis, bone marrow edema 
(BME) and bone erosions. Synovitis is the inflammation of the joint lining or tendon sheaths 
due to the accumulation of fluid. Similarly BME describes the build-up of liquid inside the 
bone marrow cavity. Without intervention, erosion and destruction of the joints eventually 
ensues, resulting in deformities and loss of function. On top of this, the pain, discomfort and 
physical limitations place an emotional burden on patients, further diminishing their quality 
of life. From a socioeconomic standpoint RA places large direct and indirect costs on 
healthcare and society as a whole. This includes the high cost of treatment, as well as costs 
incurred due to sick leave, disability pensions and occupational therapy. In the Netherlands, 
as many as one in eight workers with RA is declared unfit for work [2]. A Dutch cohort 
study records 42% of RA patients as being work disabled after three years [3]. Fortunately, 
since the arrival of specialised new drugs known as biologicals, destructive RA may become 
a thing of the past. This treatment comes at a price however; estimates place the costs for 
biologicals in 2010 at 450 million euro in The Netherlands and 90 billion dollars worldwide 
[4]. In the same year in The Netherlands, biologicals ranked number one and two in terms of 
total expenditure and growth thereof [5]. The overall impact of RA emphasises the need to 
shorten disease life. 

Treatment of RA 

Since the root cause of RA is yet to be discovered, there is no outright cure. In recent years 
however, rheumatology has gained new insights into the complex biological pathways un-
derlying the disease. There is growing evidence to support the concept of a “window of 
opportunity” early in the disease phase, when aggressive treatment can be seen to improve 
patient outcomes in the long term [6]–[10]. Said treatment involves the prescription of bio-
logicals, a type of disease-modifying antirheumatic drug (DMARD). These agents inhibit 
the cell signalling protein called tumour necrosis factor-alpha (TNFα) responsible for pro-
voking an inflammatory immune response. As a result, the progression of RA may be sup-
pressed, preventing irreversible joint damage and subsequent disability. Achieving this state, 
known as remission, is the therapeutic goal in RA and has become a realistic outcome for a 
substantial portion of patients (Figure 1.1). Given the aforementioned “window of oppor-
tunity” rheumatologists focus on what is known as early RA or even very early RA and try to 
identify individuals who are likely to have a persistent and destructive disease course. A 
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treat-all approach is not viable due to the aggressive nature and high costs associated with 
the medication. Though the literature is not consistent in its definition of early RA, most 
authors use the term to mean disease duration of less than one year. Rheumatologists in the 
Leiden University Medical Center (LUMC) define very early RA as the first three months 
after symptoms first arise. In order to select those who are to receive treatment with biologi-
cal DMARDs, screening is performed in the preclinical phase of arthritis. However current 
screening for (very) early RA lacks sensitivity, calling for novel clinical and radiological 
indicators.  
 

 

Figure 1.1: Greater cumulative remission is shown for patients who had their first assessment within 
12 weeks of symptom onset compared to those who delayed. Source [11]. 

 

1.2  RA and diagnostic imaging 

Current RA diagnosis depends on the aggregation of a range of clinical criteria, including 
physical examination results, laboratory data and radiologic findings [7]. For decades, the 
mainstay modality for assessing joint damage has been conventional radiography (CR). In 
RA, CR can help monitor disease progression by assessing bone erosions and joint space 
narrowing [12]. Although CR is an accessible and reproducible form of imaging, it does not 
capture soft-tissue lesions, such as synovitis and bone marrow edema, which precede joint 
damage. Moreover, erosions may be seen with other imaging modalities many months be-
fore abnormalities appear on radiographs [13]. Consequently, CR is not a reliable prognostic 
tool for patients with very early RA.  

Like CR, ultrasonography (US) is readily available to the clinician and has the ad-
vantage of being low-cost and free from ionizing radiation. Used for diagnosis and even 
symptomatic treatment, it can be used to assess tendon and cartilage damage, synovitis and 
erosions [12][14]. US is easily repeated, allowing for frequent follow-ups. Unfortunately, 
not all areas of the joints and surrounding tissue are acoustically accessible by US, meaning 
imaging is limited to superficial structures. Another major drawback is that the scanning 
technique is highly operator dependent, leading to reproducibility issues [1].  
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Known for offering superior soft-tissue contrast, MRI is increasingly being used in the 
assessment of RA, particularly in its crucial early stages. MRI is more sensitive to bone 
erosions than CR, and therefore more accurate in monitoring erosive progression [1]. More-
over, MRI is able to detect pre-erosive inflammatory features such as synovitis and bone 
marrow edema (BME), which act as prognostic markers for RA [15], [16]. In a Norwegian 
study, MRI measures of inflammation were the most responsive to RA treatment when 
compared to CR and US [17].  
 

 

 
Figure 1.2: The ONI MSK Extreme 1.5T by General Electric. 

 

Extremity MRI 

Dedicated extremity MRI (eMRI) scanners have considerably increased the usability of 
MRI as an imaging tool in RA. Featuring a smaller bore size compared to full-body MR 
system, the patient can sit or lie beside the scanner inserting only a hand or a foot. In general 
this provides a more comfortable patient experience. From an economic standpoint, eMRI 
machines are appealing due to their small size, lower cost and greater patient throughput. 
The ONI MSK Extreme 1.5T by General Electric (GE) is the eMRI scanner in use at the 
LUMC (shown in Figure 1.2). Although RA appears bilaterally, in the interest of reducing 
study time, only the hand and wrist (and corresponding foot) of the dominant or most symp-
tomatic extremity are studied. To highlight inflammatory lesions, a gadolinium-based con-
trast agent is administered intravenously. Due to a shallow bore, acquisitions of the hand 
using the ONI eMRI are performed in two parts: one of the wrist and one of the metacar-
pophalangeal (MCP) joints (see Figure 1.3). The disjoint datasets may be fused using post-
processing (image stitching), providing the two field-of-views (FOV) overlap. 
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Figure 1.3: Approximate field-of-view (shaded area) for the wrist (left) and MCP joints (right) using 

eMRI. For image stitching a degree of overlap is required. Source: [7]. 

Scoring systems 

MRI shows great promise in detecting early RA as it captures all relevant structures in ar-
thritic disease and is sensitive to change. However, before it can become an integral part of 
clinical RA diagnosis, there is a need to standardise and quantify image assessment. A re-
producible scoring scheme that captures disease-related activity facilitates comparisons in 
clinical trials involving early RA patients and healthy controls. In turn, the prognostic utility 
of imaging biomarkers can be evaluated. The ability to closely monitor disease progression 
will result in improved treatment decisions.  

RAMRIS 

Devised and validated by the OMERACT1 group, the RA MRI Scoring (RAMRIS) system 
was introduced in 2002. It is a method to semi-quantitatively evaluate abnormalities in the 
wrist and MCP joints. The intention is to assess both inflammatory and destructive changes. 
RAMRIS functions as a standard comparator for RA MRI assessment in clinical studies 
[18]. This has increased the clinical value of MRI, allowing it to become a relevant outcome 
measure in clinical trials in patients with RA.  
 
RAMRIS stipulates a core set of basic MRI sequences for evaluating RA joints to increase 
comparability [19]: 
 

• Imaging in two planes with T1 weighted images before and after intravenous gado-
linium contrast 

                                                        
1 Outcome Measures in Rheumatoid Arthritis Clinical Trials 
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• A T2 weighted fat saturated sequence or, if the latter is not available, a STIR (short 
tau inversion recovery) sequence2 
 

where two planes can be reconstructed from a single 3D acquisition with isometrical voxels, 
or acquired separately by obtaining a two dimensional sequence in two planes. An intrave-
nous gadolinium injection is not critical if assessing bone erosions only. 
 
The important RA joint pathologies are defined as follows (see Figure 1.4 for example im-
ages):  
 

• Synovitis: an area in the synovial compartment that shows above normal post-
gadolinium enhancement of a thickness greater than the width of the normal syno-
vium 

• MRI bone erosion: a sharply marginated bone lesion, with correct juxta-articular lo-
calisation and typical signal characteristics, which is visible in two planes with a 
cortical break seen in at least one plane 

• MRI bone edema: A lesion within the trabecular bone, with ill-defined margins and 
signal characteristics consistent with increased water content 

 
 

   
Figure 1.4: Example images of RA MRI features [20]. Left: bright edge indicates synovitis of an 

MCP joint. Middle: bone erosion (dark spot) of the capitate in the wrist. Right: high signal inside the 
bone indicates BME of the lunate. Note inflammatory lesions are best seen on contrast-enhanced 

MRI (left and right), whereas erosive features are best captured by pre-contrast T1 MRI (middle). See 
Figure 1.5 for bone anatomy of the hand. 

 
These pathologies are scored semi-quantitatively, for specific bones and regions of the hand 
and wrist, as follows: 
 

• Synovitis is scored 0–3. Score 0 is normal, and 1–3 (mild, moderate, severe) are by 
thirds of the presumed maximum volume of enhancing tissue in the synovial com-
partment. 

                                                        
2 NB: a T1-weighted fat-suppressed sequence is used instead in this study; see Table 1.2, page 12. 
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• Bone erosions are scored 0–10, according to the proportion (in increments of 10%) 
of bone involved and compared to the ‘‘assessed bone volume’’: 
0: no erosion; 1: 1–10% of bone eroded; 2; 11–20%, ..., 10: 91-100%  

• Bone marrow edema is scored 0–3 based on the proportion (in increments of 33%) 
of bone involved: 0: no edema; 1: 1–33%; 2: 34–66%; 3: 67–100%  
 

Limitations of visual scoring 

Whilst the introduction of RAMRIS has been a necessary and a welcome one, the system is 
not free from measurement error and is prone to reliability and reproducibility issues. In a 
paper on the most important pitfalls encountered in RA MRI scoring, McQueen et al. attrib-
ute the principal sources of error or confusion to imaging artefacts, the misinterpretation of 
normal features, the influence of slice thickness/field of view and the distortion of anatomy 
due to disease [21]. Furthermore, lesions frequently coexist, making them hard to classify.  

The sensitivity of visual scoring, as done in RAMRIS, is inherently limited by the hu-
man visual system. Subtle changes in grey values are difficult to detect and depend on light-
ing conditions, display settings and other variables. Although studies have shown inter- and 
intra-observer agreement for RAMRIS to be “satisfactory” or “reasonable”, they remain an 
issue and may depend on the relative level of MRI reading experience [18], [22]. The 
aforementioned issues undermine the reliability and reproducibility of RAMRIS. 

Various sources of experimenter bias also undermine score reliability. An example of 
procedural bias is whereby baseline and follow-up data are viewed and scored concurrently, 
allowing the reader to (unknowingly) change his or her expectation of disease progression. 

Practical issues include the time and cost to train and calibrate readers. Visual image 
scoring itself is also a tedious and time-consuming task, forcing readers to stop scoring 
when fatigue sets in. The issue of time also prevents RAMRIS from being adopted in clini-
cal practice. 

RAMRIS is a semi-quantitative score measured on an ordinal scale. An objective and 
quantitative assessment of MR images for RA is preferred but requires further development 
in order to ultimately enhance the predictive power of the aforementioned imaging bi-
omarkers. 
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Figure 1.5: Bone anatomy of the left hand. The carpal bones form two transverse rows; the proximal 
row articulates with the radius and ulnar bones of the forearm. The distal row articulates with the 

metacarpals of the palm. Source — Pearson Education, Inc. (2009). 

 

1.3  Research problem & goal 

The visual scoring of eMRI for RA is inefficient, subjective and semi-quantitative. In order 
to make MRI assessment more objective, sensitive and reproducible, automated quantitative 
analysis, by means of computer software, is sought. This can reduce study time and is more 
readily distributable than having to train expert readers. Before any computational approach 
can be standardised, the automatic detection and quantification of key imaging biomarkers 
(and potentially new ones) needs to be developed. Hence, the goal of this project was to 
develop and validate image-processing tools that quantitatively assess pre-erosive inflam-
matory biomarkers for the early detection of RA. Specifically, this work focussed on charac-
terising BME of the carpal bones using pre-contrast as well as and post-contrast fat-
suppressed eMRI of the wrist. The reasons for which are explained below. 
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Bone marrow edema 

Devised from MRI studies, the term bone marrow edema (BME) was first introduced in 
1988 [23]. BME is defined by OMERACT as: “a lesion within the trabecular bone, with ill-
defined margins and signal characteristics consistent with increased water content”. In other 
words, BME describes the replacement of bone marrow fat by fluid (containing H+ ions), a 
change readily detected by MRI. Edematous bone marrow is more vascularised and there-
fore experiences greater perfusion of contrast agent. After a dose of gadolinium, BME is 
seen as increased signal (see Figure 1.6). BME is best assessed on post-contrast fat-
suppressed images, typically in the coronal plane [24]. A number of studies have followed 
patients with early RA and concluded that BME was the strongest predictor of radiographic 
progression [25], [26]. Visually, BME has an indistinct, “feathery” appearance, thus making 
it challenging to delineate. MRI BME is reported to be observed most frequently in the car-
pal (wrist) bones, namely the scaphoid, lunate, triquetrum and capitate [13], [27] (see Figure 
1.5 for bone anatomy of the hand). This is supported by Li et al., who reported that the car-
pal bones contain significantly higher total volume of BME compared to other joint sites of 
the hand. For these reasons the carpalia are considered the most important joint site to char-
acterise BME. Thus, this combination of RA lesion and joint site is the main subject of this 
study. 
 

 

Figure 1.6: A contrast-enhanced eMRI of the right wrist (T1-weighted fat-suppressed) with BME of 
the triquetrum (white arrow). Using RAMRIS, this bone was given a score of 1 on a scale of 0 to 3.  
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eMRI acquisition protocol 

In eMRI studies in healthy subjects and arthritis patients at the LUMC, the wrist is typically 
scanned in two orientations using a pre- and post-contrast sequence. Before gadolinium-
contrast is administered, the wrist is scanned in the coronal direction and sometimes in the 
transverse direction (see Figure 1.7 for body plane definitions). Post-gadolinium contrast, a 
coronal scan is acquired as well as a transverse scan. Depending on the orientation, there is a 
different through-plane resolution; the transverse scan of the wrist has a thicker total slice 
thickness (slice thickness + inter-slice gap) (3.3mm) compared to the coronal scan (2.2mm). 
A summary of the data dimensions is provided in Table 1.1. 

Table 1.1: Spatial resolution and image dimensions of coronal and transverse eMRI of the wrist. 

Orientation 
In-plane 

voxel size 
(mm2) 

Slice  
thickness 

(mm) 

Inter-slice 
spacing 

(mm) 

Image  
dimensions 

(voxels) 

Coronal 0.195 2.0 0.2 512×512×18 

Transverse 0.195 3.0 0.3 512×512×20 

  
 
Given their higher spatial resolution, the coronal scans were used throughout this work, 
from segmentation to quantification of BME. For manual annotation, the coronal scan is 
more intuitive to navigate, especially to the untrained eye. The pre-contrast T1-weighted 
image contains the most information for detecting bone anatomy, whereas the T1-weighted 
post-contrast image (fat-suppressed) is needed to identify inflammation. The latter sequence 
was introduced to replace a T2-weighted scan (as stipulated by RAMRIS) allowing for simi-
lar images at shorter acquisition times [28]. Table 1.2 states the eMRI sequences used for 
pre- and post-contrast acquisitions along with their pulse timing parameters. 

Table 1.2: Echo and Repetition times for coronal eMRI sequences of the wrist. 

eMRI  
sequence 

Echo time 
!" 

(ms) 

Repetition time 
!"  

(ms) 

(1) T1 pre-contrast 11 575 

(2) T1 post-contrast,  
fat-suppressed 9.2-9.6 700 
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Figure 1.7: The coronal, sagittal and transverse anatomical imaging planes. 

 

1.4  Outline 

To recap, the goal of this project is to develop an algorithm to automatically quantify the 
degree of BME in the carpal bones, using (contrast-enhanced) eMRI. In order to do so, the 
carpal bones need to be segmented in both the pre- and post-contrast images. This is because 
the pre-contrast T1-weighted sequence best captures anatomical information to segment 
bone, while the post-contrast T1-weighted image with fat-suppression gives a better picture 
of BME. Hence the combination of the two sequences provides the best possible segmenta-
tion and quantification. Furthermore, segmentation of individual carpal bones allows for 
comparison of the quantitative score to RAMRIS, which scores BME on a per-bone-basis. 
In Chapter 0 a proposed atlas-based segmentation (ABS) technique for carpal bone label 
assignment is given. This technique incorporates prior knowledge which helps assign dis-
tinct labels to each carpal bone. Several experiments were performed to optimise the ABS 
accuracy using manually labelled reference images as a benchmark. 

Chapter 3 describes an automated process to comparatively assess the pre- and post-
contrast images of the wrist for the presence of BME. To facilitate this comparison, the two 
images will need to be spatially aligned (registered). The BME quantification method was 
also optimised using the training set. The two aforementioned techniques are shown in the 
overall framework in Figure 1.8. 

Chapter 4 details a validation study that compares the quantitative BME score to 
RAMRIS using an independent test set. 

The final chapter, Chapter 5, provides an in-depth discussion of the overall findings of 
this thesis as well as suggestions for future work. 
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Figure 1.8: High-level framework for the atlas-based segmentation of the carpal bones and the quantification of bone-marrow edema. The 

pre-contrast image is matched to a labelled atlas image to obtain a segmentation of the carpal bones (ABS). The resulting label field is used, 
together with the pre- and post-contrast images in a comparative analysis whereby the degree of BME is calculated per carpal bone.
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2.  Atlas-based Segmentation 

2.1  Background 

In this work, the carpal bones are automatically located using atlas-based segmentation 
(ABS). This technique uses a pre-segmented image, known as the atlas, as a reference to 
segment new images. Accurate segmentation is the goal and will affect the success or failure 
of subsequent BME quantification. As such, a significant effort was made to implement, 
automate and optimise ABS of the carpal bones, the details of which are described and dis-
cussed in this chapter. A more general and detailed overview of ABS is provided by T. 
Rohlfing et al. [29]. 

Rationale  

A major challenge in processing MR images is the absence of a standardised signal intensity 
scale, such as the Hounsfield unit in CT. This is because the MR signal is affected by mag-
netic field inhomogeneities and positional changes within the RF-coil, as well as other scan-
ner read-out artefacts. As a result, intensities for a specific tissue type will vary across pa-
tients. This effect is present even when examining the same patient, on the same scanner 
with an identical MR sequence [30], [31]. Hence, in MR images of the wrist, there is no 
clear and dependable relationship between a voxel’s intensity value and its anatomical label. 
Furthermore, a carpal bone comprises more than one tissue type and thus displays a range of 
intensity values. Bone marrow, being a fatty tissue has a high intensity in a T1-weighted 
image, whereas the cortical bone surrounding it appears dark, like air or tendons.  

Given the carpal bones have a highly inhomogeneous appearance, simple intensity-
based segmentation such as a threshold or level sets is unlikely to render satisfactory results. 
ABS on the other hand, is well suited to the task, as it captures a priori information about 
anatomical structures. This includes the bone’s shape, location and orientation in relation to 
neighbouring structures. Furthermore, as mentioned in 1.4, the segmentation ought to not 
only detect the carpal bones but also distinguish them from each other. ABS can easily ac-
commodate for this by means of distinct label classes.  

In short, ABS allows for automated segmentation in 3D and helps incorporate prior 
knowledge. The decision to use an ABS approach was made following a literature review on 
bone segmentation techniques in MR conducted at the start of the project. It is included as a 
reference in 0. 
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Figure 2.1: High level atlas-to-patient registration framework for ABS. The atlas image !! is defined 
as the moving image and is deformed onto the patient image !. Registration is achieved in two stag-
es, using an affine transformation for global alignment, followed by a non-rigid transformation pa-

rameterised by cubic B-splines. The final coordinate transformation !, which maximises the similari-
ty between !! and ! is applied to the manually delineated label field !! to obtain the segmentation 

estimate !.  

Registration 

ABS uses one or more pre-segmented reference images to segment new images. The set of 
reference images is known as the atlas. Through image registration, the atlas image !! is 
matched to an unseen patient image !. Similarly the labels of the atlas (image !!) can be 
propagated to the patient image to obtain the carpal bone segmentation !. The framework 
for this process is given in Figure 2.1. Image registration is the process of bringing two im-
ages (or volumes) into spatial alignment. It calculates a coordinate mapping ! between the 
two images such that their similarity is maximised. In this work, all registrations between 
atlas and patient images were carried out using the elastix3 image registration toolbox 
(open-source) [32]. For consistency, this thesis uses the mathematical notation as defined in 
elastix documentation and associated literature (see [32], [33]). Registration is achieved 
by iteratively warping or deforming the moving image !! onto the fixed image !!. This pro-
cess involves a transformation and an interpolation step. The choice of transformation con-
trols the allowable degrees of freedom in the deformation. In this work, atlas to patient reg-
istration is achieved by using two sequential registrations. The first uses an affine transfor-
mation model and aims to achieve global alignment. The second uses a non-linear transfor-
mation model, parameterised by cubic B-splines, further deforming the atlas image onto the 
patient image. The atlas image ! is defined as the moving image so as to not distort the pa-
tient image !, where measurements are made. The total atlas-to-patient coordinate transfor-

                                                        
3 www.isu.uu.nl/elastix 
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mation is given by the functional composition of the affine and the non-rigid B-spline trans-
form:  

 
! = (!!!"#$%&' ∘ !!""#$%!)(!). 

 
An intensity-based similarity metric, defined as !, measures the quality of alignment of 

each registration. Such a metric is selected based on the expected relation between intensity 
values of the two images. Common similarity measures for mono-modal registration are 
Sum of Squared Differences (SSD) and Normalized Cross-Correlation (NCC). The former 
assumes the fixed and moving image have an equal intensity distribution. NCC on the other 
hand, can handle some intensity inhomogeneities, assuming a linear relation between inten-
sities values of the two images. For mono- but particularly for multi-modal registrations, 
Mutual Information (MI) is commonly used. This is an entropy-based measure stemming 
from information theory. It assumes no prior functional relationship between the image in-
tensities. Section 2.3 offers a closer look at the different similarity measures and their effect 
on registration success. 

The registration process is formulated as the minimisation of a similarity-based cost 
function ! with respect to the vector of transformation parameters !: 

! = !"#!"#
!
!! !!; !!"#$%; !!"#$%& , 

where ! = −! (i.e. high similarity, low cost). Commonly, an iterative optimisation strategy 
is employed based on gradient descent. Every iteration, voxels are sampled from the fixed 
image to compute the cost function derivatives. A step is taken in the direction of the nega-
tive derivative of the cost function until a minimum is reached.  

In looping over the fixed image, all voxels may be used but it has been shown that a 
subset also suffices, reducing computational cost [34][35]. Samples can be chosen randomly 
and either on- or off-grid. When sampling off-grid (i.e. at between voxel locations) the grey-
values are obtained by intensity interpolation. 

Similarly, during the optimisation, samples taken from the moving image at non-voxel 
positions requiring interpolation for which a range of methods can be used, trading-off be-
tween quality and speed. For the best results, the final deformed image (if needed) is 
resampled using third-order B-spline interpolation. 

Finally, a multi-resolution approach is used reduce the data size and complexity and in-
crease the chance of successful registration. Smoothing and sometimes down-sampling are 
specified for a number of resolution levels forming what is known as an image pyramid or 
scale space. The exact specification of the pyramid schedule is dependent on the data and 
the application at hand. The same goes for all registration parameters; there are no clear-cut 
rules and the algorithm should be tuned to the specific needs. The choice of registration 
parameters is explained in detail in Chapter 0. 
 
Affine transformation model  
The initial registration uses an affine transformation model, allowing for translation, rota-
tion, scaling and shearing. Shearing or skewing, has the effect of turning a square into a 
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slanted non-square parallelogram, or a circle into an ellipse. An affine transformation pre-
serves the area of geometric figures, as well as the relative distances of collinear points. The 
combination of these four transformations, applied in all three directions (!, !, !) yields a 
total of twelve degrees of freedom.  
 
B-spline transformation model  
The second registration uses a non-linear transformation model of three-dimensional cubic 
B-splines. It takes the result of the first registration as the starting point. It is parameterised 
by a vector of control points which is iteratively optimised to achieve high similarity be-
tween the two volumes. These control points are defined on a regular grid, overlayed on the 
fixed image (which is unrelated to the sampling grid). The spacing of the control points (!) 
is defined for each computation level and is a key parameter. It effectively determines the 
‘elasticity’ of allowed deformations. A densely spaced control point grid allows for greater 
deformations than a sparsely spaced one. Chapter 3 explains how the optimal grid-size spac-
ing was determined. 

Optimisation 

The transformation models (the B-spline model in particular) involve a large number of 
parameters that precisely define and guide each registration, allowing for complex defor-
mations. Whilst giving a high amount of flexibility and control over the process, it also cre-
ates many possible combinations of settings. In order to select the optimal parameters, both 
registration steps were optimised. Details of these experiments are discussed in 2.2 and 2.3. 

Multi-atlas 

In principle, a single atlas is sufficient to segment unseen images. However, it has been 
shown that the inclusion of multiple atlas images yields better segmentation success [36]. 
This is analogous to gains seen in the combination of classifiers in the field of pattern 
recognition. Each transformed atlas image effectively represents a unique classifier, assign-
ing a label value to the voxels in the target image [37]. The manual segmentation and regis-
tration can then be seen as the classifier-training phase. A multi-atlas approach helps reduce 
the impact of bias from a single labelled subject and to model anatomical variability [38]. 
Instead of a single estimate of the label-field, a multi-atlas framework renders one for each 
atlas subject. These labels are then combined to generate the final segmentation in a process 
known as label fusion. 

Label fusion 

Each pairwise registration between the patient image and three atlas images yields a coordi-
nate transformation !!, which can then be applied to the atlas label fields !!, resulting in a 
set of deformed label images {!! ∘ !!,… , !! ∘ !!} for ! = 1,… , !. Each deformed label field 
is an estimate of the final segmentation. A straight-forward but effective way to combine 
these estimates is by Majority Voting (MV); for every voxel in the patient image, each de-
formed label field casts a vote on whether said voxel belong to a certain carpal bone or not. 
Following label fusion, the segmentation mask may require some post-processing in order to 
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fill gaps or remove other artefacts. Figure 2.2 illustrates the overall ABS framework, includ-
ing label fusion. 
 
 
 

 
Figure 2.2: Framework for multi-ABS of the carpal bones, including MV label fusion and a post-

processing step resulting in the final ABS label image !!"#. 
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2.2  Method 

The entire ABS framework was implemented using MeVisLab4, a development environment 
for medical image processing and visualisation. Calls to elastix were made using a dedi-
cated wrapper within MeVisLab. All automation was programmed using Python scripts 
within MeVisLab’s integrated text editor MATE. Parameter files used for the registration 
steps in ABS as well as in BME quantification (Chapter 3) are available at: 
http://elastix.bigr.nl/wiki/index.php/Par0030. 

Atlas creation 

For this work, three healthy individuals (no arthritis or arthralgia) were selected at random 
from a pool of 32 subjects (mix of healthy volunteers and RA patients). The coronal MR 
images (T1-weighted, pre-contrast) of the right wrist of these three subjects were used to 
create the atlas. Consideration was given to ensure the images of the three individuals dif-
fered somewhat in appearance. In the atlas images the carpal bones were manually segment-
ed using ITK-SNAP5 [39]. A rheumatologist experienced in reading RA MRI provided 
training. Care was taken to include both trabecular bone (marrow) as well as cortical bone 
(dense outer shell). The carpal bones are labelled 1-8, in order of the ‘SLTPTTCH’ mne-
monic used by medical students. A corresponding colour scheme was generated and used 
throughout visualisation (see Table 2.1 and Figure 2.3). The colours were chosen to be as 
distinct as possible by maximising the distance between colours around the colour wheel. 

Table 2.1: Segmentation labels for the carpal bones and corresponding colours. 

                                                        
4 www.mevislab.de 
5 www.itksnap.org 

Carpal bone Label RGB value Colour 

Scaphoid 1 255 0 0  

Lunate  2 0 255 0  

Triquetrum  3 0 0 255  

Pisiform  4 255 255 0  

Trapezium  5 0 255 255  

Trapezoid  6 255 0 255  

Capitate  7 255 157 0  

Hamate 8 0 170 127  



 

 23 

   
Figure 2.3: Manual carpal bone segmentation of T1-weighted eMRI of the right wrist. The MR im-
age with segmentation overlay (left). A 3-D rendering of the segmentation (centre) and the grayscale 

label field (right). 

Affine registration 

Given the eMRI data is not free from inhomogeneities and bias field artefacts, NCC was 
used as the similarity metric for the affine registration. 

For all registrations an adaptive stochastic gradient-descent optimiser in combination 
with a random coordinate sampler was used [40]. The number of iterations and the number 
of spatial samples were user-specified. For this optimiser and sampler combination, the 
elastix manual6 suggests 3000 spatial samples per iteration, with new samples taken in 
every iteration. Extensive testing by the creators of elstix form the basis of these recom-
mendations (see [35]). Similarly, the number of iterations was set at 1000, which according 
to the manual is a robust setting. 

Linear first order B-spline interpolation was used during registration/optimisation. For 
the final deformation, this was increased to a third order B-spline for the best results.  

The goal of the affine registration is to match global structures. Hence a Gaussian scale 
space was used, meaning smoothing is applied at each resolution, but no down-sampling. 
Four resolution levels were used in the smoothing image pyramid for both the fixed and 
moving image. By default, elastix applies equal smoothing in all directions. However, 
given the data suffers from highly anisotropic voxel sizes (!, !, !!⟼ 1: 1: 10), less smooth-
ing was applied in the !-direction by a factor of ten. By tailoring the smoothing to the aniso-
tropic nature of the data, a more evenly blurred volume results (see Figure 2.4 for details).  

Table 2.2 summarises the key parameter settings for the affine registration, they re-
mained unchanged throughout in order to independently test B-spline registration parameter 
settings. 

                                                        
6 http://elastix.isi.uu.nl/download/elastix_manual_v4.7.pdf 
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Figure 2.4: The effect of a Gaussian smoothing schedule, from highest to lowest (R3-R0) resolution 
level. It ensures global structures are matched before smaller ones. The amount of Gaussian smooth-
ing (σ in voxels) in each direction (x,y,z) at four different scales is: (40  40  4, 20  20  2, 10  10  1, 5  

5  1). In the z-direction, the applied smoothing is a factor ten less than in the x- and y-directions in the 
first two levels. No smoothing is applied (σ=1) in the z-direction in the last two levels. 

Table 2.2: A summary of important elastix registration parameter settings. Affine registration 
parameters were fixed. For the B-spline registration, (the range of) different parameter settings that 

were tested are shown. 

  
elastix parameter Registration 

Transform Affine B-spline 

Similarity metric NCC SSD, NCC, MMI 
Optimiser ASGD ASGD 

Number of iterations 1000 500-3000 

Sampler Random Coordinate Random Coordinate 

Number of samples  3000 500-5000 

Image pyramid Gaussian smoothing Gaussian smoothing 

Number of resolutions 4 3 

Final interpolator 3rd order B-spline 3rd order B-spline 

Final grid spacing (mm) N/A Custom, 4, 8, 16  

SSD = Sum of Squared Differences, NCC = Normalized Cross Correlation,  
MMI = Mattes Mutual Information, ASGD = Adaptive Stochastic Gradient Descent 
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B-spline registration 

The non-rigid registration is modelled by non-linear transformation, parameterised by a 
cubic B-spline polynomial. It takes the result from the affine registration as a starting point 
and assumes global alignment between the two wrists is achieved. As in the affine registra-
tion, NCC was used although other similarity metrics were also tested in parameter optimi-
sation. The same optimiser, random sampler and interpolation settings were used. Instead of 
four-levels, a three-level pyramid was used. The number of iterations as well as the number 
of spatial samples was set to 2000. The final control point grid spacing was set to 8mm, 
giving a schedule of 32mm-16mm-8mm, for all directions. This crucial parameter was also 
optimised with respect to segmentation accuracy.  

Label fusion 

Once all three atlas label fields had been deformed into that patient coordinate space, they 
were fused using MV. Equal weights were assigned to each voter. The weight refers to the 
probability of being true (namely ! = !0. 33). A majority of three voters implies a vote 
threshold of 0.66. In other words, when two or more of the voters agree that a certain voxel 
is bone/non-bone, then said label is assigned. 

Post-processing 

As a way to refine the fused ABS result, a post-processing method was developed based on 
Otsu’s method [41]. Otsu’s method can be used to automatically segment an image into 
foreground and background on the assumption its intensity distribution is roughly bi-modal. 
The optimal threshold value is found by iteratively minimising the intra-class variance of 
the two pixel classes. In pre-contrast MR images of the wrist, Otsu’s method is a very sim-
ple yet effective way of detecting bone marrow and other fatty tissues, which display a high 
intensity (see Figure 2.5). The fused ABS result can be restricted to regions that coincide 
with the labels derived from Otsu’s method. The MeVisLab network used to implement this 
post-processing step is given in Figure 2.6. 
 

   
 

Figure 2.5: A pre-contrast T1 eMRI of the wrist before (left) and after (right) applying Otsu’s meth-
od. The intensity histogram is shown (middle) with the threshold value (82) in blue. 
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Figure 2.6: MeVisLab network (read from bottom to top); the post-processing method takes the 
original patient image (pre-contrast) and applies a 10x10 averaging filter. Then the Otsu threshold 
image is calculated resulting in a binary image. This segmentation is multiplied by the fused result 

from the ABS. Finally a morphological CloseGap filter is used to close any holes. 

Parameter selection experiments 

Key model parameters for the affine registration were determined empirically, using a num-
ber of atlases and patient image pairs. Once suitable settings were found they were fixed to 
allow the isolated testing of parameters in the B-spline registration. 

The B-spline transformation model has a large number of parameters that precisely de-
fine and guide the registration, allowing for complex deformations. Whilst giving a high 
amount of flexibility and control over the process, it also creates an impractical amount of 
possible combinations of settings. The parameter set (defined as the vector !) can be varied 
giving a multi-dimensional parameter space to optimised. Seeing as the number of permuta-
tions is too large to conceivably test, an effort was made to test a number of key parameters 
for a range of settings. These were, in order: the (maximum) number of iterations per com-
putation level, the similarity measure, the final B-spline grid spacing and the number of 
randomly selected spatial samples. The optimal parameter setting from the first experiment 
was fixed and used in subsequent tests etc. 

 Performing these searches did not result in a global optimal setting, but helped decide 
if parameters have a significant influence on the registration accuracy, and subsequently, 
segmentation success. All parameter testing was fully automated using Python scripts to 
enable batch computations. The high-level pseudo code is given in Figure 2.7 as well as a 
flow-chart in Figure 2.8. Note for purposes of parameter testing, the Otsu post-processing 
was not used as this method was introduced after parameter testing to try and refine segmen-
tation results. 
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Measuring segmentation success 

At the time of testing, eight training images were manually labelled (coronal T1 scan of the 
right wrist, pre-contrast). These served as the benchmarks or ‘ground-truth’ allowing the 
abovementioned B-spline registration parameters to be optimised. The final ABS label field 
!!"# was compared to the manually segmented benchmark !!" !using the Dice Similarity 
Coefficient: 

!"#(!!"#, !!") = ! ! !!"#⋂!!"!!"# ! !!"
, 

where ∩ represent the overlap between the two label fields. The Dice overlap score, or simi-
larity index, is the most widely used measure for evaluating the performance of a segmenta-
tion algorithm [36]. DSC has a value of 0 when there is no overlap and 1 when they perfect-
ly agree. It is calculated per label class (i.e. per carpal bone) excluding the background class 
‘0’. An average DSC can then be calculated per patient or per carpal bone. 
 
 

 

Figure 2.7: Pseudo code for the high-level Python script used to automatically test a range of param-
eter settings for the B-spline registration. A single parameter is varied at a time, and the effect on the 
segmentation accuracy is measured using the degree of overlap between the ABS label field and the 

manually segmented benchmark. 

for param in param_list : 
 for patient in patient_database : 
  for atlas in atlas_database : 
   elastix_affine.compute() 
   elastix_bspline.compute() 
   transformix.compute() 
  computeMajorityVote(LA1,LA2,LA3) 
  computeOverlap(LABS,LBM) 
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Figure 2.8: Automated parameter testing in a multi-ABS framework. A 3-subject atlas is used to 

segment the carpal bones from each patient. The three resulting segmentation estimates !!", !!", !!" 
are fused using majority voting. Finally the overlap between !!"# and !!" is computed per label 

class using Dice similarity coefficient. elastix parameter files are varied at the input and the result-
ing segmentation accuracy, in terms of DSC, is recorded at the output.  
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2.3  Optimisation 

This section reveals the methods and results of optimising key parameters in the B-spline 
registration. To enable isolated testing, the atlas, affine registration parameters and label 
fusion method remained constant. 

Maximum number of iterations 

The number of iterations per resolution level was tested, ranging from 500-3000 in incre-
ments of 500. The parameter specifies the maximum number of iterations, however using the 
gradient descent optimiser, this is also the minimum number, since there is no other stop-
ping condition. A scatter plot of the average DSC versus the number of iterations is shown 
in Figure 2.9. The plot reveals there was some spread among the patients with the average 
DSC ranging from approximately 0.79 to 0.89. From this spread, we can conclude that ABS 
performed better on some patients than on others. The order of segmentation performance of 
patients remained consistent as the number of iterations was varied (i.e. patient 8 always 
performed best and patient 4 the worst, Figure 2.9). The varying segmentation success can 
be due to some patients’ images being more similar in appearance to one or more of the 
atlases, leading to a higher level of agreement and thus a more accurate segmentation.  
 

 

Figure 2.9: The average DSC vs. number of iterations for different patients, averaged across carpal 
bones. The number of iterations refers to the optimiser setting in the B-spline registration. 

 
To gain an understanding of the individual carpal bones’ segmentation performance, an 
average across the patients is shown in Figure 2.10. In general, the higher the number of 
iterations, the greater the registration success. However it is clear from the results that vary-
ing the number of iterations had no significant effect on ABS success (which in turn de-
pended on registration success) as measured by the DSC. Interestingly, the hamate and capi-
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tate were consistently the best-segmented carpal bones using this method. Possible explana-
tions for this fact are given in the discussion of this chapter (section 0). 
  

 

Figure 2.10: Average DSC vs. number of iterations for different carpal bones, averaged across pa-
tients. Little effect on segmentation accuracy, as measured by the DSC, was observed. In the interest 

of saving computation time, a lower setting is therefore recommended (e.g. 1500-2000 iterations). 

 
It is clear that, for the group of eight patients, varying the allowable number of iterations per 
resolution level in the B-spline registration has little effect on the segmentation success as 
measured by the DSC. At 500 iterations, the average segmentation success is poorest. For 
the other settings there is no significant variation. Given the segmentation is quite robust to 
changes in this parameter setting, we can consider the computation time, which increases 
from 30 seconds to about four minutes with an increasing number of iterations. Hence, we 
conclude that 1500-2000 iterations is a suitable parameter setting to satisfy the trade-off 
between computation time and segmentation accuracy. 

Similarity Measure  

Three similarity measures (built-in to elastix) were tested, namely: Sum of Squared Dif-
ferences (SSD), Normalized Cross Correlation (NCC) and Mattes Mutual Information 
(MMI). Using eight test-subjects, the SSD metric yielded one gross segmentation failure or 
outlier, achieving a DSC of just 0.11 (11%), see Figure 2.11. Based on this alone, the alter-
natives are preferred, as they showed no significant outliers. Between NCC and MMI, NCC 
shows slightly less variation and a slightly higher median. Given the images registered are 
from the same modality and with the same MR sequence, it was expected for NCC to work 
well. Though usually employed for registering multi-modal data, the results show that MMI 
can also be used for mono-modal data. Based on these results, the NCC metric is employed 
in both registration stages of ABS. 
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Figure 2.11: Average Dice similarity score vs. B-spline similarity metric. Sum of Squared Differ-
ences (SSD) similarity transform showed an outlier at 0.11 DSC (not shown due to scale). Normal-
ised Cross Correlation (NCC) achieves the most segmentation overlap with benchmarks on average, 

but Mattes Mutual Information (MMI) is also suitable for mono-modal registration.  

B-spline grid spacing  

A crucial aspect of the B-spline transformation model is the spacing (σ) between the control 
points !! which are defined on a grid over the fixed image. The parameter FinalGrid-
Spacing stipulates the separation, in millimetres, of the control points in the final resolu-
tion level. During preceding tests, the final grid spacing was set to 8mm. It was decided to 
halve and double this value, and collect the DSC values accordingly. From Figure 2.12 it 
can be seen that 4mm isotropic final grid spacing yields the best segmentation results with a 
median DSC of just under 0.85 (dotted line).  
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Figure 2.12: Average DSC vs. Final B-spline grid spacing. (a) shows the segmentation success for 
different patients, averaged across carpal bones. (b) shows the boxplot average of the same data. It is 
clear that on average (dotted line is the median), the segmentation overlap between ABS and bench-

mark labels is greatest using a 4mm final grid point spacing in the B-spline registration. 

 
By default, elastix isometrically doubles the grid spacing for each resolution level count-
ing back from the final level. Meaning, when a final B-spline grid spacing of 4mm is set, a 
three-level pyramid will have the following control point spacing for the respective levels, 
equal in all three directions: 16mm, 8mm, 4mm. Given the MR images of the wrist are high-
ly anisotropic, we can specify a custom grid spacing schedule that is better suited to the 
image dimensions. The coronal scans have the following dimensions in terms of voxels and 
physical units: 

Table 2.3: Image dimensions of coronal T1-w eMRI of the wrist. 

Dimension Image size 
(voxels) 

Voxel spacing 
(mm) 

Image size 
(mm) 

! 512 0.195 100.00 

! 512 0.195 100.00 

! 18 2.20 39.6 

 
Anatomically, carpal bones vary in size, and due to the slice selection of the MRI acquisi-
tion, only a small part of the bone may be visible in any one slice. By inspection, the mini-
mum cross-sectional distance of the bones as they appear in-plane, ranges from 30-100 
voxels, or 5-20mm in physical units. Hence, we expect an in-plane grid spacing of 4mm 
(every 20 voxels) to be able to match these fine structures. Going lower than 4mm we ap-
proach the voxel size and risks giving the registration too much freedom, leading to irregu-
lar transformations. This can be corrected by adding a regularisation term to the cost func-
tion which penalises excessive deformation. For simplicity, this penalty term was not added 
to the cost function. In order to determine the coarsest control point spacing, it was decided 
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to aim for 4 control points across the length and width of the image. This allows the major 
structures in the image to be deformed first, before halving the spacing and deforming more 
locally. Taking into account anisotropic voxel sizes and target object sizes, the custom B-
spline control point spacing was set as follows:  

Table 2.4: Custom B-spline control point spacing in mm for a three-level pyramid. 

Computation 
level 

Control point spacing (mm) 
! ! ! 

1 24 24 10 

2 12 12 5 

3 4 4 1 

 
When compared to a naïve setting of the control point spacing, the custom grid achieved 
greater segmentation accuracy on average as measured by the Dice overlap score (Figure 
2.13) as well as less spread overall. 
 

 

Figure 2.13: Average DSC vs. Final B-spline grid spacing; the segmentation accuracy, as measured 
by the Dice overlap score improved with smaller final grid-size spacing (see Figure 2.12). In compar-

ison, the custom grid spacing performs even better, with a median DSC of 0.86. 

Number of spatial samples 

The number of spatial samples in the previous experiments was set at 2000. In order to in-
vestigate the effect of this parameter on the segmentation success, its setting was varied 
from 2000 to 5000 in increments of 1000. Increasing the number of spatial samples, when 
tested on ten subjects, yielded no significant change in the average dice similarity rating (see 
Figure 2.14. In the interest of saving computation time, it is therefore recommended for 
2000 spatial samples to be taken at each resolution level. A lower setting is not recommend-
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ed by the elastix manual (and [35]), which states 2000 samples is a minimum when com-
bining the Adaptive Stochastic Gradient Descent Optimiser with the Random Coordinate 
sampler. Out of curiosity, the segmentation quality was observed using only 500 and 1000 
samples. Though still fairly robust, the minimum DSC drops compared to using 2000 sam-
ples or higher. Hence, the results support the recommended minimum setting of 2000 (new) 
random samples per iteration. 
 

 

Figure 2.14: Average carpal bone overlap scores (Dice) when varying the number of spatial samples 
taken (using Random Coordinate sampling) in each iteration of the optimiser. Varying this parameter 

setting had little to no effect on the segmentation accuracy. 

Optimisation results 

Post-optimisation, the settings that yielded the highest Dice overlap were fixed for the re-
mainder of the work. By the end of the thesis, 13 manual segmentations had been created. 
Performing ABS on this set using the optimal parameter settings yielded overall mean DSC 
of 0.85 (see Figure 2.15). 
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Figure 2.15: Box-and-whisker plots of carpal bone segmentation accuracy (DSC) using 13 manually 
segmented subjects as benchmarks. The results are shown per carpal bone, with all bones combined 

on the far left; a mean DSC of 0.85 was achieved across all carpal bones. 

Post-processing 

Post-processing of the ABS labels confines the segmentation to (normal) bone marrow, 
reducing false positive segmentation error (see Figure 2.16). Segmentation accuracy using 
Otsu post-processing was seen to be slightly lower overall, compared to stand-alone ABS. 
For comparison see Figure 2.17. The overall mean and median DSC are given in Table 2.5. 
 

  
 

Figure 2.16: Refining the ABS label field (left) by multiplying it by an Otsu threshold image. The 
post-processed result is a more conservative estimate of the carpal bone location (right). 
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Figure 2.17: Box-and-whisker plots of carpal bone segmentation accuracy (DSC) for the training set 

(n=13) using ABS with and without Otsu post-processing. On the far left the results for all carpal 
bones are combined with the remainder showing the results per label class or carpal bone. 

 
Table 2.5: A summary of the overall Dice overlap scores for all carpal bones for all training subjects 
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2.4  Discussion 

The proposed ABS segmentation of the carpal bones is able to automatically and correctly 
locate the joints with, on average, a segmentation accuracy (Dice) of 85%. Further im-
provements to the algorithm are needed to account for the 15% of the bony voxels incorrect-
ly labelled. Segmentation quality using a registration-based approach is limited by the accu-
racy of each pairwise registration, and (thus) the (anatomical) similarity between the patient 
and atlas subjects. Moreover, in a multi-atlas framework, label fusion also affects segmenta-
tion quality. In light of these three areas, a discussion follows regarding the atlas-based car-
pal bone segmentation method used in this study. 

Atlas selection 

Three healthy subjects were randomly selected from the training set to form the atlas. Atlas 
images with high co-similarity do not capture as much inter-subject anatomical variability, 
making for a poorer model. Hence, care was taken to select images that were dissimilar in 
appearance, though this was not done objectively. The term “healthy” indicates subjects 
have had no prior RA-related symptoms such as joint pain or stiffness. Without signs of 
advanced (destructive) RA, they form better models of what bones “should” look like and 
are generally easier to manually segment. That said, healthy subjects were not entirely free 
from lesions and abnormalities (e.g. erosions). 

A range of atlas selection strategies exist (see section 11.4 in T. Rohlfing’s review 
[29]). This thesis proposes a classifier approach to multi-atlas segmentation, using pairwise 
registrations between each atlas subject and the unseen patient image followed by label fu-
sion to obtain the final segmentation estimate. Another option for multiple atlases, as de-
scribed by Sabuncu et al., is to co-register all training subject to a common coordinate space 
[38]. One then computes a probability map that describes the likelihood of observing a par-
ticular label for a given voxel. The idea of fuzzy atlas labels in this case is appealing, espe-
cially given the ambiguity of manual labelling. A template image is generated, typically by 
shape-averaging all atlas images. This would need to be well defined, using statistical shape 
models for example, in order to maintain anatomical feasibility. Only one registration is 
then performed to propagate the atlas labels. Similarly, from a pool of atlas images, the best 
or “most similar” atlas may be selected for registration, to maximise segmentation success. 
This approach requires the similarities to be known a priori. The two alternative multi-atlas 
implementations fuse the atlas information prior to registration and thus rely on a single 
registration. This increases the chance of segmentation error due to occasional registration 
failure. Though computationally more demanding, doing multiple pairwise registrations 
followed by label fusion is more robust against these failures. 

The proposed method uses three subjects to form the atlas. This is the minimum num-
ber for a multi-atlas approach to force a majority vote. Increasing the atlas to include five 
subjects or more can easily be achieved by adding more manually segmented training sub-
jects. Although the computation time will increase with each added atlas subject, the overall 
segmentation performance will stand to benefit as the atlas’ ability to generalise increases. 
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Atlas creation 

The definition of the ground truth, in both atlas images and creating benchmarks for valida-
tion, remains a major underlying challenge in obtaining a satisfactory and validated segmen-
tation algorithm. The ground truth, or benchmark, is manually delineated, and therefore 
limited by the data and the person performing the labelling. The very visual limitations this 
thesis aims to address (inherent in the human visual system) as well as the many pitfalls that 
RAMRIS readers encounter (as mentioned in 1.2 – Limitations of visual scoring) also affect 
atlas and benchmark creation. Significant partial volume effects (PVEs) are present due to 
the elongated voxels (0.2: 0.2:!2.2!!). This decreases the ability to accurately resolve bone 
boundaries and calls on intuition and anatomical knowledge to complete labelling. In some 
cases it is near impossible to place a definitive boundary. This uncertainty factor should be 
taken into account to reduce the impact of human judgement in atlas creation.  

Lastly, all manual segmentations were performed by the author, who was only briefly 
instructed by a rheumatologist on classifying bone in eMRI. Ideally, an expert reader per-
forms all segmentations, or at least verifies them. 

Registration 

The registration algorithm has to account for differences in appearance between patient and 
atlas images. These can arise due to anatomical differences, (random) scanner variation, as 
well as global positional and/or postural changes. One source of scanner related variability 
is the orientation of the sampling planes. Usually aligned manually by the radiologist prior 
to each scan, the sampling planes will “cut” through the wrist at different angles. In combi-
nation with highly anisotropic voxel sizes (i.e. thick slices), appearance differences are ex-
acerbated. In fact, it was observed on multiple occasions that two scans of the same patient 
may present entirely differently appearing slices. This was noticeable when trying to propa-
gate the segmentation from one of the atlas images to a follow-up scan of the same subject 
(perfect anatomical correspondence) using an affine registration. Though thought to be a 
straightforward example, due to misaligned sampling planes, mutual similarity was affected 
to the point that no satisfactory segmentation was achievable. This raises a significant limi-
tation inherent in the data and challenges the underlying assumption that if (a section of) a 
bone is visible in one scan, then it should be visible in another. Hence, the registration-based 
segmentation approach is an ill-posed problem. 

In testing the effect of the number of optimiser iterations in the B-spline registration, 
the capitate and hamate consistently achieved the greatest segmentation overlap (see Figure 
2.10 and Figure 2.15). Coincidentally, these are anatomically the largest carpal bones. Being 
a spatial overlap measure, the DSC favours larger object, as they are harder to miss. Hence, 
the DSC, though a useful measure, is inherently biased towards large objects. We should 
consider this as we may be measuring effects of the segmentation accuracy metric itself, and 
not just ABS success. Another explanation may be that larger bones span more slices of the 
data volume, meaning the overall impact of spatial variation due to PVEs is decreased. For 
larger bones this implies greater atlas-patient co-similarity, leading to improved registration 
and thus segmentation quality. 

For this work, a Random Coordinate sampler is used in all registrations. It works with a 
user-defined number of samples. Hence, there are no benefits (in terms of data reduction) 
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from down sampling in the multi-resolution pyramid, as only a small subset of voxels are 
selected in each iteration. Furthermore, the data volumes being registered are less than 
10MB in size, so there is no big incentive to reduce the data size, as storage is not an issue. 
As for computation time, there is added cost due to having the full-sized images at each 
level of the pyramid, but at the same time, there is time saved in avoiding the down sam-
pling. Using a Random Coordinate sampler, samples are also taken from non-voxel loca-
tions, leading to a smoother cost-function and avoiding what is known as the ‘grid-effect’ 
(explained by Thévenaz et al. [42]). 

Label fusion 

Majority voting (MV) is a simple yet effective way of fusing segmentation labels. In this 
process each voter (the transformed label image, which is a combination of the atlas image 
and the registration algorithm) is assigned equal weight (one third). However, one can also 
adopt a strategy that lets more similar atlases carry more weight during label fusion. Based 
on the image as a whole, this can be a global weight, or, when computed on a fixed neigh-
bourhood, a local-weighted fusion. Exploring more advanced methods of label fusion can 
help compensate for registration error and improve overall segmentation results. Investigat-
ing this topic has been left for future work.  

Post-processing 

The method of combining the ABS labels with an Otsu threshold image results in a higher 
certainty of selecting normal bone marrow voxels, thus restricting the segmentation to the 
sub-cortical bone and out of the synovium. With cleaned-up boundaries, false positive seg-
mentation error and instances where label classes overlap are reduced. However, there are 
some downsides. Namely, the Otsu segmentation incorporates healthy bone marrow, but 
ignores cortical bone, which has a low intensity (black) as well as key bone lesions such as 
erosions and BME (both of a lower intensity) (see Figure 2.18). Each bone is effectively 
under segmented. Multiplying it by the ABS label field then further restricts the segmenta-
tion. We would like to include cortical bone as this has been taken into account in forming 
the benchmark segmentations. Furthermore, ignoring lesions such as BME directly contra-
dicts the purpose of this work, which is to detect and quantify them. In short, using this post-
processing method, false positive error is reduced, but false negative error is introduced. 
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Figure 2.18: The result of merging ABS labels with an Otsu threshold eMRI of the right wrist. Sys-
tematic under segmentation and the exclusion of important bone lesions are visible. The capitate (left) 
and the hamate (right) are magnified. In both cases, large lesions in the bone marrow are not included 

in the segmentation. Cortical bone is also not correctly labelled due to its low intensity. 
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2.5  Conclusion 

ABS segmentation of the carpal bones using multi-atlas label fusion incorporates prior 
knowledge including anatomical labels. Although atlas creation is a one-off exercise, it was 
found to be tedious and time-consuming, and non-trivial. Three training subjects were in-
cluded to form the atlas, forcing a majority vote decision in fusing the segmentation results. 
The registration framework provided by the elastix toolbox was easily adapted to the 
wrist images, although objective parameter optimisation is time-consuming and limited to 
the training set. Four key elastix parameters were tested in the B-spline registration step 
to determine their optimal setting in terms of segmentation quality as well as computation 
time. The resulting recommended parameter settings are summarised in Table 2.6. 

The ABS-algorithm has been shown to automatically detect the carpal bones with a 
mean segmentation accuracy in terms of the Dice overlap of 0.85. Segmentation errors are 
predominantly made on the boundaries and will affect subsequent image analysis. Fusing 
the ABS label field with an Otsu threshold image saw reductions in false positive segmenta-
tion error but introduced false negative error when compared to the ground truth; overall 
segmentation accuracy is reduced slightly with a mean DSC of 0.83. The Otsu post-
processing systematically avoids bone lesions, such as BME, which have a dark appearance 
in pre-contrast T1 MRI. On this basis alone it was deemed inadequate for the purposes of 
this work. 
 
Table 2.6: Optimal parameter settings, in terms of segmentation accuracy, for the B-spline registra-

tion in multi-ABS of the carpal bones. Based on a training set of 8-10 subjects.  

 
 
 
 
 
 
 
 
 
 
  

elastix parameter 
(B-spline registration) Setting 

Maximum number of iterations 1500-2000 

Similarity Measure Normalized Cross Correlation 

B-spline grid spacing Custom* 

Number of spatial samples 2000 

*see Table 2.4  
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3.   BME Quantification 

3.1  Introduction 

This chapter explains the methods used to generate a quantitative measure of BME by 
means of comparative analysis of pre- and post-contrast MRI. The technique is implemented 
for the carpal bones, but could easily be extended to other joints or bones, provided they are 
segmented. In general, the approach taken in quantifying BME largely depends on the type 
of study undertaken and the available data. For our purposes the data is treated as it would 
be in a cross-sectional study; looking at a range of patients at a particular point in time. Stat-
ic data is used (a single scan per visit per sequence) as opposed to dynamic (4-D) data where 
time is the added dimension (as in DCE-MRI). A brief look at related works in the literature 
on capturing BME from MRI is provided, before discussing the proposed automated meth-
od. 

The different techniques used to characterise BME can be categorised based on the 
type of MRI data used. Most methods using static data focus on capturing BME using mor-
phology (i.e. shape and size). Given the volume of BME is known it can be expressed as a 
percentage of the total bone volume in which it resides. In the case of dynamic contrast-
enhanced MRI (DCE-MRI), perfusion and enhancement rates are observed over a number 
of time points. These parameters can be used to assess the level of inflammatory activity. 
First, a number of volumetric approaches to capturing BME are highlighted. Finally, one 
study is mentioned for comparison that looks at BME using relative enhancement (perfu-
sion). 

Roemer et al. approximate the BME volume in MR images of the knee using a simple 
volumetric measure [43]. By manually drawing three orthogonal lines spanning the lesion’s 
maximal peripheral margins a cubic approximation of BME volume is calculated. This 
technique relies on human perception and manual drawing to determine BME’s often fuzzy 
boundaries and is not likely to be very reproducible nor accurate. MR systems and sequenc-
es were not held constant throughout this study. 

Mayerhoefer et al. present a computer-assisted method for the quantification of BME in 
STIR MRI of the knee [30]. Their aim was to address the lack of reproducibility in prior 
work on calculating BME volume. For each patient, a region-of-interest (ROI) is placed in 
three areas of healthy (or normal-appearing) bone marrow. Using the arithmetic mean from 
each ROI a threshold-value is calculated to label BME voxels for that particular examina-
tion. This is necessary as the intensity value for bone marrow fluctuates between patients 
and even in the same scan. The overall knee joint is manually segmented to measure the 
total bone volume. 

Li et al. [44] (2008) also focused on quantifying BME-like lesions in MR of the knee in 
patients with osteoarthritis. Their methods are quite similar to that of the Mayerhoefer pa-
per, relying on manual delineation and ROI placement in order to calculate a threshold value 
that selects BME lesions. For validation a “gold-standard” threshold was created based on 
the consensus of two radiologists who manually identified the best threshold value. A fol-
low-up paper from the same lead author, published in 2012, looked at BME in the wrist in 
DCE-MRI. Again, contours are manually placed in normal bone marrow to calculate the 
standard deviation of intensities. Five times the standard deviation is taken as the threshold 



 44 

to segment BME. The problem with aforementioned ROI-based approaches is that they rely 
on manual placement (subjective) and they assume said region is representative of the whole 
bone marrow, which is not necessarily true.  

Leung et al., present their work on bone lesion quantification using serial T1 MR imag-
es of the talus bone in rats [45]. Joint inflammation was locally induced in one ankle and 
compared to the left ankle as a control. They selected potential lesion voxels by applying 
Otsu’s thresholding method to a difference image of the baseline and follow-up scan to de-
tect high-intensity voxels. These voxels were generated across the time series of five images 
and summed. A bone lesion was only counted if it was found in two or more instances 
across the series. This method constitutes a true 3-D assessment of pathology and includes a 
registration framework for segmentation propagation and comparative analysis. 

Kubassova et al. made use of DCE-MRI (4-D data) to capture inflammatory lesions in 
the MCP joints [46]. The degree of inflammation is not measured by lesion volume but by 
the rate of contrast-agent uptake. Heuristics such as maximum rate of enhancement, initial 
rate of enhancement, and time of onset of enhancement were used to estimate the total num-
ber of enhancing voxels. 

For the purposes of this work only static data (one contrast-enhanced image) is availa-
ble, ruling out the methods used by Leung and Kubassova. Given the other articles lack 
automation and reproducibility due to their ROI-based approach, we seek a solution of our 
own. 

3.2  Method 

The approach of attaining a quantitative BME score per carpal bone is broken down into 
four steps (see Figure 3.1): 1) the pre- and post-contrast images need to be co-registered. 
The resultant rigid transformation is used to propagate the carpal bone labels. 2) By examin-
ing which intensity values co-occur in the pre- and post-contrast images, three joint-
intensity groups were identified, which correspond to the predominant tissue types. Edema-
tous bone is segmented using knowledge-based fuzzy clustering of these joint-intensities. 3) 
To reduce the effect of segmentation error, a post-processing step was included to remove 
artefacts. 4) the volume of BME per carpal bone is computed. The high-level process is 
illustrated in Figure 3.1. A number of optimisation experiments were performed to evaluate 
the influence of segmentation error on the BME score and its correlation strength with 
RAMRIS. 
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Figure 3.1: The framework for carpal bone BME quantification using co-registered (contrast-

enhanced) images of the wrist. Knowledge-based clustering of the joint-intensities generates a proba-
bility map that can automatically distinguish BME from normal bone marrow. The ABS is propagat-
ed and used to select individual carpal bones and calculate the percentage volume of BME. Artefact 

removal is added to reduce the effects of segmentation error at the bone boundary. 

Registration & segmentation 

To enable comparison between pre- and post-contrast images, they must first be registered 
to the same spatial domain. Computing this registration also allows the ABS to be propagat-
ed to the post-contrast image domain. Figure 3.2 shows the high-level registration frame-
work. The registration is different with respect to the ABS in a number of ways, which in 
turn changes the parameter setting requirements. Firstly, the registration is intra-patient in-
stead of inter-patient. Secondly, given different MR sequences are used (Table 1.2), this 
registration is akin to having multi-modal data. Therefore MI is used (Advanced Mattes 
mutual information in elastix). Given both wrist images come from the same patient 
(scanned only minutes apart) we expect to only have to account for positional and postural 
changes (rotation and translation). This can be corrected using a single rigid registration. In 
elastix this is known as the Euler transform. To compensate for differences in scale as 
well, a Similarity transform can be chosen. Unless specified otherwise, the geometric centre 
is automatically chosen by elastix as the centre of rotation. 

Remaining parameter settings were identical to the rigid registration used in ABS; the 
adaptive stochastic gradient descent optimiser was used in combination with a random coor-
dinate sampler: 3000 spatial samples were selected for 1000 iterations in a 4-level pyramid 
with custom Gaussian smoothing as described in 2.2. 
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Figure 3.2: Rigid registration framework prior to BME quantification. The post-contrast 

age!!!"#$%& which is to be segmented is defined as the fixed image. Once the coordinate transfor-
mation ! is known the ABS labels !!"# as well as the pre-contrast image !!"#$% are deformed into 

the coordinate space of the post-contrast image, indicated by !′!"# and !′!"#$%. Segmentation is 
therefore obtained by performing one additional transformation (label propagation). 

Joint histogram analysis 

An automatic tissue classification algorithm is proposed based on joint histogram analysis of 
pre and post-contrast eMRI of the wrist. A knowledge-based fuzzy clustering method as-
sumes three joint-intensity classes and is able to distinguish normal from edematous bone 
marrow. Carpal bone voxels classified as BME are counted and expressed as a percentage of 
total bone volume.  

The 2-D joint histogram plots the frequency of co-occurring image intensity values. In 
the joint histogram of pre- and post-contrast image pair, three clusters are visible (see Figure 
3.3). Assuming no artefacts or abnormalities, the main tissue types belong to the following 
clusters: 

1. Air, tendons and cortical bone 
2. Muscle and synovia 
3. Fat and bone marrow 

 
What characterises these three groups are their joint-intensities. Air, tendons and cortical 
bone have low intensities in both images, and belong to the cluster 1, near the origin. Mus-
cle and synovial tissue occupy low to mid-grey values on the intensity scale in both images 
(cluster 2). The third cluster represents normal bone marrow and other fatty tissue, charac-
terised by a bright signal in the pre-contrast image, and a low signal in the fat-suppressed 
image. Where healthy bone marrow belongs to cluster 3, BME displays a reversal of the 
expected joint-intensities; it displays a low-intensity signal in the pre-contrast image, and a 
high-intensity signal in the post-contrast image. Thus BME voxels lie closer to cluster 2 in 
the joint histogram. In other words, the co-occurrence of intensities of BME behaves more 
like that of (inflamed) synovial tissue. It is this knowledge that helps us detect BME voxels, 
given the carpal bone segmentation is known. 
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Figure 3.3: Top: joint histogram of pre- and post-contrast eMRI of the wrist (shown bottom left and 
right respectively). White dots show approximate cluster centres of the three intensity classes: 1 (air, 
tendons and cortical bone), 2 (muscle and synovia), 3 (fat and bone marrow). BME is present in the  

triquetrum (magnification) and has a joint-intensity closer to that of cluster 2. 

 
Fuzzy C-means (FCM) clustering was performed in MATLAB (available in version 2014b 
as part of the Fuzzy Logic Toolbox) based on a three-cluster model. The intensities of the 
post-contrast image together with the intensities of the co-registered pre-contrast image are 
provided as inputs. It was empirically determined that 30 iterations were sufficient to gener-
ate (and reproduce) the (same) cluster centres. This method generates three membership 
probability maps, one for each cluster. The map for which the synovium/muscle tissue 
voxels have the highest probabilities is automatically extracted based on cluster two’s ex-
pected centre location. In terms of pre-contrast image intensity (y-axis of joint histogram), 
cluster two is always the middle value. Hence, based on the median value the cluster centre 
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y-values, the correct cluster is automatically detected. The corresponding probability map to 
cluster two acts as the inflammation map and is read back from MATLAB for further pro-
cessing (see Figure 3.4). Membership threshold was set at 0.6 to select potential lesion 
voxels. Using the inflammation map and the carpal bone segmentation, each bone is masked 
and then post-processed on an individual basis before the volume of BME is computed.  
 

 

 
 

                
 

Figure 3.4: Top-left: joint histogram with actual cluster centres from FCM. Top-right: Three clusters 
with membership threshold of 0.6. Middle: three probability maps resulting from FCM clustering of 
using three classes. Each channel shows the probability of membership of a certain class: voxels in 

the image on the left show the probability of belonging to cluster 1 (air, cortical bone, tendons). Cor-
respondingly the middle image displays the likelihood of cluster 2 membership and the image on the 
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right, cluster 3 membership probability. The middle image is defined as the inflammation map. A 
threshold is set at 0.6 to segment the normal from abnormal bone-marrow (bottom). 

Post-processing 

Post-processing steps were implemented to overcome confounding effects due to segmenta-
tion error at the bone boundary. Namely, over-segmentation causes part of the synovia to be 
included, which is of a high intensity, from the inflammation map. They typically appear as 
long elongated structures along the bone boundary (see Figure 3.5), but are not necessarily 
continuous. Using an ITK7 flatness filter, these objects could be removed. The flatness filter 
is insensitive to the size of the object and is calculated based on the principal moments from 
the moment-of-inertia tensor (or, equivalently, the covariance matrix of the voxel distribu-
tion within each object). This matrix has three eigenvalues, which indicate the size of the 
major axes of the object. It is defined as the square root of the ratio of the first two eigenval-
ues:  

!"#$%&'' = ! !2 !1. 
 

As the name suggest, this filter is sensitive to flat objects, but by incorporating the square 
root it becomes more sensitive to elongated, ribbon-like structures. This filter operates on a 
slice-by-slice basis. A threshold value (!) of 2 was used (a value of 1 removed everything 
and higher values did not remove enough). After removing the confounding edges, some 
small fragments remained. Hence, a connected components filter was applied to remove 
small specks (of 20 voxels or less) using a 3D 6-voxel neighbourhood. An example of the 
post-processing technique for one carpal bone (hamate) is shown in Figure 3.6. 
 
 

 
Figure 3.5: The segmentation mask for the hamate extends into the synovium (left). Using ITK Flat-

ness filter, the confounding edge is detected (right) and subsequently removed. 

  

                                                        
7 Insight Segmentation and Registration Toolkit - www.itk.org 
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Figure 3.6: From inflammation map to final BME segmentation in the lunate, reading from top-left 
to bottom-right. The inflammation map with segmentation mask overlayed (top-left). Masked bone 

with 0.6 membership to the synovium class (2) (top-right). After flatness filter (bottom-left) and after 
connected components filter (bottom-right). Non-BME voxels along the top edge of the bone are 

correctly discarded. 

BME score 

Finally, the BME score is calculated as the volume of BME contained within the bone, di-
vided by the total bone volume (known from the segmentation mask), expressed as a per-
centage: 
 

!"#!!!"#$ = ! !"#!!"#$%&
!"#$"%!!"#$!!"#$%&×100% . 

 

Optimisation 

A subset of 15 subjects was selected from the original training set of 29 used to optimise 
ABS. The added requirement was the presence of both the pre-contrast and post-gadolinium 
fat-suppressed T1 coronal images of the right wrist as in Table 1.2. Two subjects were ex-
cluded due to a different voxel spacing (poor resolution), leaving 13 subjects (10 unique). 
All 13 patients were from the Early Arthritis cohort (EAC) at the LUMC [47]. A trained 
RAMRIS reader had scored all subjects for the presence of BME in the carpal bones. These 
scores served as the gold-standard in evaluating and optimising the automated method. 
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Manual segmentation of the carpal bones was performed for each subject in the pre-
contrast image, using the same technique as described in 2.2 – Atlas creation. These label 
fields served as benchmarks (BMs), allowing for the ABS to be bypassed and the effect of 
ABS error on the BME scores to be investigated. 

The post-processing (PP) step described above was also bypassed using both ABS and 
BM segmentation, giving four experiments. See Figure 3.7 for experimental set-up. 

All BME scores were automatically computed per carpal bone and averaged per pa-
tient. The average percentage BME score per patient was correlated to the average RA MRI 
score per patient. Given that the RAMRIS is measured on an ordinal scale, the Spearman’s 
rank correlation coefficient was used. This is a non-parametric test that ranks the data in 
order to test the statistical dependence between two variables. 
 

 
Figure 3.7: Optimisation experiments set-up. For the segmentation mask, either the ABS labels (1) or 

the manually segmented benchmark (BM) labels (0) can be used (both propagated via a rigid trans-
formation). After comparative analysis, artefact removal (using ITK flatness and Connected compo-
nents filters) is selected (1) or bypassed (0). This gives a total of four combinations of segmentation 

and post-processing settings (00, 01, 10, 11), thus four experiments. 

 

3.3  Results 

The average scores over all carpal bones, scored both visually (by a trained reader using the 
RAMRIS system) as well as quantitatively (the proposed method) under four testing condi-
tions, are given in Table 3.1. Scatter plots for each test are provided in Figure 3.8. Corre-
sponding Spearman’s rank correlations were computed and are shown in Table 3.2. For 
more exhaustive results, such as the RAMRIS and quantitative scores per carpal bone, see 
Appendix B:  
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Table 3.1: Mean BME scores for all carpal bones in the training set (13 subjects) for 4 test scenarios 

Subject 
 mean % BME  

mean 
RAMRIS 

test 1 
BM 

test 2 
BM+PP 

test 3 
ABS 

test 4 
ABS+PP 

EAC01 0.25 11% 3% 18% 4% 
EAC02 0.75 15% 3% 15% 3% 
EAC03 1 17% 2% 21% 5% 
EAC04 0.375 20% 9% 24% 12% 
EAC05 0 12% 3% 11% 2% 
EAC06 0.625 15% 5% 25% 10% 
EAC07 0.125 11% 3% 18% 4% 
EAC08 0.625 13% 2% 16% 1% 
EAC09 0.25 11% 2% 14% 3% 
EAC10 0 11% 4% 18% 5% 
EAC11 0 25% 7% 24% 7% 
EAC12 0 14% 4% 14% 4% 
EAC13 0 6% 0% 5% 0% 

 
 

Table 3.2: Correlations between RAMRIS and the quantitative BME score for the 4 test scenarios. 

 

mean % BME 

test 1 
BM 

test 2 
BM+PP 

test 3 
ABS 

test 4 
ABS+PP 

Spearman's ! mean 
RAMRIS 

Correlation 
Coefficient 

.402 -.224 -.304 .156 

Significance 
(2-tailed) 

.174 .462 .312 .611 

n 13 13 13 13 

 
 
No significant correlation was obtained at the 95% confidence level. The settings in test 1 
(using BM segmentations) rendered BME scores that showed the strongest correlation with 
the mean RAMRIS, followed by those from test 4. This suggests post-processing is only 
warranted when ABS labels are used, which was expected, as that is what it was intended 
for. 
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Figure 3.8: Scatter plots for the four experiments using either BM or ABS labels and with or without 
post-processing (PP). 

3.4  Discussion 

No significant correlation was found between RAMRIS and the quantitative score for BME 
in the carpalia. However, the highest correlation with the lowest p-values were found using 
test 1 and test 4. Respectively, these tests used BM segmentation with no post-processing, or 
the ABS with post-processing. 

Segmentation error 

Prior to calculating the percentage of bone volume containing BME, segmentation error is 
introduced at two points in the algorithm; first, in the ABS process and second, in label 
propagation to the contrast-enhanced image. By using manual segmentations as bench-
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marks, the ABS routine is effectively bypassed. However, segmentation error is still intro-
duced in propagating the labels to the contrast-enhanced image (rigid registration error). The 
BME score is particularly sensitive to oversegmentation, as this includes voxels belonging 
to the neighbouring synovium which displays a high intensity, like BME, in the inflamma-
tion map. As such, over segmentation places an upward bias on the BME score which is 
why not many scores of 0% are recorded. It was observed that a small confounding edge in 
a single slice resulted in a score as high as 15-20% per bone. Whilst the post-processing step 
performed quite well to reduce this type of error, it is not 100% robust and only treats the 
symptoms instead of addressing the root cause. Much like in the case of the post-processing 
method used in ABS, with the removal of false positive error comes the introduction of false 
negative error. In other words, depending on the morphology of the potential lesion voxels, 
part of true BME lesion voxels may be removed along with confounding synovium edges. 

BME quantification 

The presence of noise due to segmentation error overestimates the presence of BME. How-
ever, once a BME lesion is correctly identified, it contains many small holes after threshold-
ing. This because BME has a rough texture (high variance) displaying a range of intensity 
values. An expert reader is likely to round of at the observed edges of the lesion, and count 
the whole content as one lesion. The proposed automated score however, displays holes 
within the lesion that are not counted (see Figure 3.6). This results in an underestimation 
when compared to RAMRIS. Some morphological closing may be needed to count the 
overall lesion, not just the highest intensity voxels inside it. 

In capturing BME a number of assumptions were made: all voxels that are included in 
the carpal bone segmentation that display cluster 2 joint-intensities are counted as BME 
voxels. Confounding lesions that show enhancement such as erosions filled with synovial 
tissue or nutrient vessels are not accounted for. There are other complicated cases where 
lesions occur contiguously. For example, an erosion is filled by inflamed synovial tissue 
which lies adjacent to a BME lesion. These cases, though rare, are difficult to assess, even 
for an expert reader. 

Parameter selection 

The total BME quantification pipeline has many parameters that are interdependent. Most 
settings were determined empirically, however, a more formal testing framework is needed 
to objectively determine optimal settings. Correlation to RAMRIS can be used as an out-
come measure for optimisation for example. Better still, by improving segmentation, the 
final artefact removal steps could be omitted, which greatly reduces the amount of parame-
ters to tune. 

Comparing to RAMRIS 

Given the ordinal scale of the RAMRIS system, comparison to quantitative scores is limited 
to non-parametric measures of correlation. Important to consider is that the proposed quanti-
tative approach bases the score entirely on one orientation, namely the coronal view of the 
wrist. RAMRIS stipulates that lesions should be cross-verified in an opposing plane, offer-
ing more data or information to examine. For a fairer comparison, the quantitative method 
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should be extended to include the transverse plane where available. Interesting to note is 
that none of the quantitative scores exceed 30% which suggests either RAMRIS overesti-
mated the total carpal bone volume affected by BME, or conversely, the quantitative score 
underestimated it.  

Training set 

The training set consisted of 13 subjects, which is a considerably small sample. All subjects 
were from the Early Arthritis cohort (EAC). This is a select subset of patients that have been 
diagnosed with early RA. In order to better train the algorithm, healthy subjects and patients 
in later stages of the disease should be included. For statistical analysis, a larger training set 
is also desirable as it would lead to more useful insights regarding the true relationship be-
tween RAMRIS and the automated score. 

3.5  Conclusion 

Using the training data (13 subjects), no significant correlation was found between the quan-
titative BME score and the semi-quantitative RAMRIS even when bypassing the ABS. 
Segmentation error along the bone boundary causes parts of the synovium to be included, 
placing an upward bias on the BME score. This error could be corrected using the proposed 
post-processing technique. Having optimised the BME quantification process with respect 
to the training set, validation is sought using an independent test set. This experiment is 
described in the next chapter. 
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4.   Validation Study 

4.1  Method 

An independent test set of 29 subjects was compiled using persons from three different co-
horts: 6 healthy volunteers (ATLAS cohort), 7 patients with Clinically Suspected Arthralgia 
(CSA) and 16 from the Early Arthritis Cohort (EAC). Subjects were selected ensuring the 
wrist images had been RAMRIS evaluated for BME in the carpal bones to allow for valida-
tion. Furthermore, the algorithm demands coronal images of the right wrist with the same 
pulse sequences as in Table 1.2. The images of the patients were placed in a structured data-
base to facilitate automated analysis and image processing. The proposed algorithm from 
ABS to BME quantification was applied to all 29 subjects.  

To answer the question of whether a relationship exists between RAMRIS and the 
quantitative scores, the mean BME scores per patient were correlated. Furthermore, to see if 
either scoring system can determine cohort membership the means of each patient group 
were compared. Finally, to see which carpal bones were most affected by BME, the average 
scores per bone were examined. 

4.2  Results 

Comparing mean scores per patient 

Complete results can be found in Appendix B: Supplementary Results (Table B.6 - page 98 
and Table B.7 page 99 for RAMRIS and quantitative scores respectively). In Table 4.1 the 
Spearman’s correlation coefficient is shown, computed on the mean scores per patient. The 
corresponding scatter plot is given in Figure 4.1. 
 

Table 4.1: Spearman’s rank coefficient between the mean RAMRIS and mean % BME scores. 

  
mean  

% BME 

Spearman's !  mean 
RAMRIS 

Correlation Coefficient .618** 

Significance (2-tailed) .000 

n 29 
**Correlation is significant at the 0.01 level (2-tailed). 

 
 
 

 
 
 

 



 58 

 
 

Figure 4.1: Scatter plot of the mean scores (RAMRIS vs. volume of BME) 
 

Comparing mean scores per cohort 

Table 4.2 states the mean scores per patient for both scoring systems, when grouped by co-
hort. The corresponding box-and-whisker plots are given in Figure 4.2 and Figure 4.3. 
 

Table 4.2: A summary of mean scores per cohort for RAMRIS and the percentage BME score. 

Cohort 
mean 

RAMRIS 
mean  

% BME 
ATL mean .0833 3.49% 

n 6 6 
Std. Deviation .102 0.74% 

CSA mean .0179 3.47% 
n 7 7 
Std. Deviation .047 1.70% 

EAC mean .320 5.49% 
n 16 16 
Std. Deviation .612 2.72% 
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Figure 4.2: A box-and-whisker plot for the automated BME score in the carpal bones. Average 
scores per patient in the test set (29 subjects) are given and grouped by cohort.  

 
 

Figure 4.3: A box-and-whisker plot for BME RAMRIS in the carpal bones. Average scores per pa-
tient in the test set (29 subjects) are given and grouped by cohort. 
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Comparing mean scores per carpal bone 

The mean scores per carpal bone, using both scoring systems, are shown in Table 4.3. 
 

Table 4.3: Mean scores per carpal bones (RAMRIS and percentage BME volume) 

Carpal 
bone 

mean  
RAMRIS 

mean  
% BME 

1-Sca .172 6% 
2-Lun .345 8% 
3-Tri .276 5% 
4-Pis .172 4% 
5-Tpm .069 6% 
6-Tpd .172 3% 
7-Cap .276 3% 
8-Ham .103 2% 

Total .198 5% 
 

Qualitative results 

In order to gain more insight into the algorithm’s behaviour, the following qualitative obser-
vations were made: 

• Oversegmentation leads to erroneous inclusion of synovium leading to an upward 
bias in the BME score 

• Undersegmentation is observed, wheres (large) lesions near the bone edge are 
missed as their intensities mimic that of synovium, leading to a downward bias in 
the BME score 

• In most cases the post-processing significantly suppresses the effect of segmentation 
error, but some (small) areas remain. 

• Parts of BME lesions are also removed by the flatness filter and connected compo-
nent filter. In the worst case, “flat” BME-like lesions are removed entirely. Hence, 
the filter is not specific enough in combatting oversegmentation and will also reduce 
the true BME score. 

 

4.3  Discussion 

Comparing mean scores per patient 

A positive monotonic correlation (Spearman’s rho = 0.618, n=29, ! < 0.01) is observed 
between RAMRIS and proposed quantitative measure of BME in the carpal bones. This 
indicates the scores, on average, are in good agreement. In its present form, the quantitative 
score is affected by noise due to oversegmentation. Using the post-processing technique, 
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most of this noise can be suppressed. For most carpal bones in the test set, a RAMRIS score 
of 0 was given (see Table B.7 in Appendix B); the corresponding quantitative score calcu-
lates a BME scores between 0-16%. It is important for the algorithm to be able to distin-
guish between healthy and diseased carpal bones. From this validation experiment however, 
no clear threshold value was visible. Some bones with a RAMRIS of 1, scored 3%, yet an-
other with the same RAMRIS scored 26%. The quantitative approach is more sensitive, but 
there is also more variability in the scores. 

Comparing mean scores per cohort 

Generally speaking, we expect subjects in the Atlas cohort to display less RA-related fea-
tures such as BME. The CSA group would be more at a risk and the EAC the most likely to 
display BME in the carpal bones. Comparing the means of the two scoring systems, this 
expectation is not met as CSA subjects displayed less BME in the carpal bones than subjects 
from the Atlas cohort. Given only 6 and 7 subjects were examined respectively, this could 
simply be due to the (random) sampling of subjects. Ranking the cohorts by the mean BME 
score, from least to most affected, the two scoring systems show agreement. With an une-
qual number of subjects from each cohort and few samples in general, further conclusions 
are difficult to make from this data. 

Comparing mean scores per carpal bone 

In order to gain an understanding of which carpal bones were most affected by BME, the 
mean scores per carpal bone for both RAMRIS and the automated score are given in Table 
4.3. With only eight joint sites, there are insufficient data points to perform a statistical cor-
relation. The average RAMRIS scores of each bone varied between .069-.345 with a mean 
of .198, whereas the quantitative scores varied between 2-8% with a mean of 5%. On aver-
age, the lunate was the most highly scored bone for BME in both scoring systems. Two 
studies in the literature give us an indication of what bones are typically most affected by 
BME. Peterfy et al. provide a review of MRI findings from four multicentre randomised 
controlled trials, using data from 522 RA patients [27]. Results showed that BME (referred 
to as osteitis) was most frequently scored in the navicular (scaphoid), lunate and capitate (in 
that order). In a study of 42 individuals with early RA (median symptom duration of 4 
months) by McQueen et al. the lunate, triquetrum and capitate were the most common joint 
sites for BME. If we take these four bones (scaphoid, lunate, triquetrum and capitate) as 
highest scoring bones (for BME), we see that the RAMRIS scores for the test set agree with 
all four and the quantitative scores agree with three of the four. 
 

4.4  Conclusion 
The proposed automated BME score shows a strong positive correlation to the visual scores 
according to the OMERACT RAMRIS standard (Table 4.1: Spearman’s rho = 0.618, n=29,  
! < 0.01). Furthermore, the scoring systems show good agreement on which cohorts and 
carpal bones were most affected by BME. We expect the two systems to agree, as they 
measure the (proportional) volume of the bone affected by BME. However, the quantitative 
approach does not make use of an additional viewing plane (i.e. the transversal wrist data). 
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5.   General Discussion and Recommendations 
 
This thesis has presented an image processing algorithm that automatically detects the car-
pal bones from eMRI of the wrist and measures the amount of BME present in each joint as 
a percentage of total bone volume. Validation using an independent test set shows a defini-
tive correlation to RAMRIS. In this chapter the main findings are summarised, key strengths 
and limitations are identified and recommendations are given for future work.  

5.1  Strengths & Weaknesses 

This study is novel in the sense that it provides fully automated analysis, aside from the 
preparatory manual labelling involved in atlas creation. A set of unseen patient images can 
be easily processed in batches, provided they are of the same MR sequences and stored in a 
database with the same predefined structure. The absence of human interaction makes this 
method an objective one, overcoming the reproducibility and variability issues inherent in 
other computer-assisted techniques. Furthermore, this algorithm provides a truly quantita-
tive measure of MRI BME.  

Using the elastix registration framework, optimised parameter files have been de-
vised for the coronal wrist images, maximising registration and in turn, segmentation accu-
racy. The feasibility of ABS for the carpal bones has been demonstrated. Initial results are 
encouraging and it has been observed that limited spatial resolution in the underlying data 
ultimately restricts the segmentation and quantification accuracy. This finding has changed 
the course of the encompassing early RA project (coined ESMIRA) where efforts are being 
made to fuse transversal and coronal data. The intention is to obtain high resolution data 
with isotropic voxels for more reliable quantification. 

The technique of capturing BME maximises the available information by comparing 
both the pre- and post-contrast images. A knowledge-based fuzzy clustering technique over 
all image intensities robustly counts the voxels that belong to BME. This is an improvement 
on the ROI-based methods seen in related works, as they require manual placement and 
work on the underlying assumption that the ROI is representative of normal bone marrow. 

The algorithm has shown to be robust and adaptive to signal intensity variance between 
and across patients, even without bias field correction or intensity normalisation. This is 
indicated by the fact that there were no significant segmentation failures or outliers.  

Overall the proposed algorithm makes an important step toward fully automatic BME 
quantification for the early detection of RA. 

The main limitation of the system is that the segmentation error significantly confounds 
the BME metric. This error arises from the large spatial variation between atlas and patient 
largely owing to thick slices in the MRI data. Segmentation error is carried forward through 
to the final score. Registration can only do so much to correct for spatial variation and can-
not account for missing information. 

Related to the above is that the scope of this project was very narrow; the decision was 
made to focus solely on BME in the carpal bones. Based on its superior resolution, the coro-
nal scans were selected for segmentation and subsequent quantification. This ignores the 
available contrast-enhanced transverse images from the same patients. More is said on this 
matter in section 5.4 - Recommendations. 
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This technique may introduce some atlas bias to the BME measurement. Although 
three subjects are included in the atlas, they all model normal wrist anatomy. Therefore the 
system may not be as well suited to segmenting advanced RA subjects that have more ex-
tensive joint damage. However the overall algorithm would stand to benefit if lesions and 
other parts of the wrist anatomy were included in the model. For example, by adding a label 
class for the synovium, or learning the background structures from the data. 

In atlas creation only the bone marrow and cortical bone belonging to the carpal bones 
are delineated. This is to determine the correct size and location of each bone. Bone size is 
used to calculate the final BME score, which is a percentage of total bone volume. However 
a trade-off exists in including cortical bone or not in the manual labelling. By including it, a 
more accurate estimate of the total bone volume is made. However, by ignoring cortical 
bone, the likelihood of the segmentation encroaching onto the synovium, which confounds 
the BME score, would be reduced. Considering OMERACT defines BME to be “a lesion 
within the trabecular bone”, it could be argued that cortical bone can be omitted from the 
atlas for the purposes of detecting BME.  

Only a small number (13) and a select set (Early Arthritis Cohort) of subjects were 
used to train the ABS and the BME quantification sub-parts. Hence, some overfitting is 
expected and this decreases the model’s ability to generalise beyond the training set. 

5.2  Characterising BME 

This thesis, as well as other works that use static MRI, essentially treat BME as a lump. 
However given its inflammatory nature, functional information from DCE-MRI may pro-
vide more insight and sensitivity to BME. The more vascularised a certain tissue, the more 
contrast-agent is absorbed. Bone marrow vascularity, instead of the proportion of bone af-
fected, might constitute a more sensitive characterisation of this lesion. In a study by Hodg-
son et al., there were indications that the relative enhancement rate is more responsive to 
treatment than RAMRIS BME scores [48]. These findings were echoed by Cimmino et al. 
who in a small study of ten RA subjects found no change in RAMRIS after treatment, 
whereas the clinical Disease Activity Score (DAS) as well as the DCE-MRI derived synovi-
tis scores both decreased and correlated well with each other [49]. Unfortunately the ONI 
MSK Extreme is not capable of DCE-MRI. 

5.3  Clinical Implications 

Although a lot of advancements have been made, “the concept of using MRI as an outcome 
measure in RA remains ‘young’ ” [50]. The clinical relevance of RAMRIS is yet to be fully 
established and more research is needed to reveal the exact relationship with other disease 
measures. Until such time the exact role of BME as a measure of RA disease activity also 
remains unclear. Although undoubtedly related to RA, its specificity may be limited as pa-
tients in remission still show BME (sub-clinical inflammation) [51]. In patient assessment it 
is likely that an aggregation of factors need to be gauged, including bio-clinical as well as 
imaging disease markers. Eventually, if fully quantitative methods are to replace visual scor-
ing, longitudinal studies will be needed to evaluate their ability to predict disease progres-
sion and their responsiveness to therapeutic regimens. 
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On the commercial side of things, time is a crucial factor in moving hand scanning into 
clinical practice. In a move towards fast and accessible assessment of inflammation in RA 
patients, Hemics BV8 has introduced a new type of optical hand scanner. Using a light 
source and two cameras, the speed and magnitude of blood pooling in the hands and wrists 
are recorded. In less than two minutes, a 2-D image is generated to distinguish healthy from 
inflamed tissue and an optical score is assigned to each joint. This small and affordable unit 
that allows for wider deployment and more frequent scanning to monitor disease progres-
sion, without the need for a rheumatologist. Although a promising alternative, no studies 
could be found in the literature that can validate its efficacy. 
 

5.4  Recommendations 

• The most significant factor holding back the success of this algorithm is a material 
one; the eMRI data is highly anisotropic with so-called matchstick-shaped voxels. In-
cluding the transverse scan would increase the amount of available information and 
make for a fairer comparison to RAMRIS. For example, using super-resolution recon-
struction (SSR) the coronal and transversal volumes can be fused to give high-
resolution data with isotropic voxels. Given the imaging protocol at the LUMC how-
ever, this is only possible using the contrast-enhanced images, meaning the quantifi-
cation of BME using joint-histogram clustering could not be used. 
 

• Segmentation, using the proposed framework, is essentially a label fusion problem. 
Seeing as registration errors often occur locally, a locally-weighted fusion technique 
would be worth investigating, whereby the weights allocated to each voter depend on 
local registration performance (i.e. similarity). 
 

• Given the limitations of the Dice overlap score, an additional/alternative metric to 
evaluate segmentation success with respect to a ground truth could provide a more 
complete view on segmentation performance. A mean surface distance measure is one 
example. Alternatively, additional overlap metrics such as precision and recall (sensi-
tivity) can give more insight. 
 

• In an application to organ segmentation in MR, Berendsen et al. described the bene-
fits of integrating statistical shape models into the cost-function as a penalty term in 
non-rigid registration [52]. Including statistical shape models of the carpal bones (see 
van de Giessen et al. [53]) could improve the amount of prior knowledge captured by 
the model and thus better predict the expected deformations. 
 

• The proposed method of capturing BME from the image data could be extended, but 
not before segmentation accuracy is addressed. Local statistical measures such as the 
variance could be used as a measure of texture or fuzziness which is typical of BME.  

                                                        
8 http://www.hemics.com/technology 
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5.5  Conclusion  

In conclusion, early diagnosis and aggressive treatment is the best chance of achieving re-
mission in RA patients. MRI is capable of capturing key pathophysiological RA features at 
an early stage. Quantitative characterisation of MRI BME aims to increase sensitivity and 
reduce the subjectivity that currently undermines visual RA MRI evaluation. This thesis has 
described an automatic method that captures bone marrow edema in the carpal bones using 
eMRI. Partial-volume effects due to anisotropic voxel spacing significantly reduce similari-
ty between patient images. This limits the registration quality and in turn leads to segmenta-
tion error. This error is carried forward and confounds the sensitive BME score. Post-
processing was able to curb the impact of this effect, and a promising correlation was found 
with the existing RAMRIS system. For future work: the inclusion of transversal data would 
increase the available information, make for a fairer comparison to RAMRIS and improve 
the overall accuracy of the algorithm.  
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Abstract—Visual scoring of magnetic resonance images for the early detection of 

rheumatoid arthritis is prone to human subjectivity and reliability issues. In a bid to 
develop an objective and quantitative alternative using digital image processing, 

accurate bone segmentation is required. In this literature review the suitability of 

existing bone segmentation techniques is evaluated for the purpose of automatically 

delineating the carpal bones from MRI data. Furthermore, the requirements of the 

segmentation technique are stipulated, as well as the search strategy used to peruse the 

literature. Following a systematic search, a range of methods was uncovered. By 
studying seven key articles in-depth, their strengths and weaknesses are discussed. 

From the analysis, it is argued that atlas-based segmentation is the preferred method, 

given it is automatic, incorporates prior knowledge and is implemented directly in 3D. 
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Introduction 

The aim of this literature study is to reveal and summarise the current state of knowledge with regard 
to the early detection of rheumatoid arthritis (RA) using magnetic resonance (MR) images of extremi-
ties (hands, wrists and feet). Specifically it focusses on segmentation of bone tissue in MR images. 
Segmentation, in image processing, refers to the process of subdividing an image into its constituents 
or regions of interest [1]. By examining the literature, one is in a better position to place and direct 
their research (i.e. formulate a research problem), which ultimately aims to address a gap in 
knowledge. Of course the literature should be consulted on an ongoing basis, as the project evolves 
and as new articles are published. This review will establish the context and rationale of the master’s 
thesis project and confirm the choice of research focus. Furthermore, by evaluating the literature, 
eventual findings can be more easily compared to those of others, and their implications assessed.  
 
Rheumatoid arthritis (RA) is an autoimmune disease typified by chronic inflammation and eventual 
destruction of the joints. The exact pathogenesis is still unknown. Modern therapeutics can suppress 
the progress of the disease and even force it into remission, preventing joint deformities and subse-
quent disability. To maximise the chance of success, this treatment strategy must be initiated very 
early, thus early detection is critical. Accordingly, the focus of medical imaging has shifted to detect-
ing pre-erosive inflammatory features, which act as prognostic markers for RA. These include syno-
vitis, tenosynovitis and bone marrow edema (BME). Magnetic resonance imaging (MRI), with its 
superior soft tissue contrast, is a vital tool that captures all relevant structures and changes in arthritic 
disease [2][3]. Current scoring of MRI findings for RA is done semi-quantitatively, using the RA 
MRI scoring system (RAMRIS) developed by the Outcomes Measures in Rheumatoid Arthritis Clin-
ical Trials (OMERACT) group [4][5]. It visually scores the carpal (wrist) and metacarpophalangeal 
(MCP) joints for synovitis, bone marrow edema and erosion and requires a trained reader. This ap-
proach, though a welcome one, is inherently limited by the human visual system and prone to observ-
er variability and reliability issues. Objective and quantitative assessment is preferable but requires 
further development in order to ultimately enhance the predictive power of the aforementioned imag-
ing biomarkers. 
 
Devised from MRI studies, the term BME is defined by OMERACT as: “a lesion within the trabecu-
lar bone, with ill-defined margins and signal characteristics consistent with increased water content” 
[4]. In other words, BME describes the replacement of bone marrow fat by fluid (containing H+ ions), 
a change readily detected by MRI. Edematous bone is more vascularised and therefore can be visual-
ly enhanced with the aid of gadolinium, an intravenous contrast agent, in dynamic contrast enhanced 
(DCE) MRI [6]. After a dose of intravenous contrast, BME is seen as increased signal (see Figure 2). 
In patients with early RA, BME is reported to be an independent predictor of radiographic progres-
sion [7] and in the largest cohort study to date it is hailed the strongest imaging predictor of future 
erosions [8]. With eighty-four patients however, the sample size of this study is fairly small. Visually, 
BME has an indistinct, “feathery” appearance, thus making it challenging to delineate. The lesion is 
unique to MRI and has been described as “intriguing” by Peterfy [9], all together making it an inter-
esting and worthwhile feature to study. MRI BME is reported to be most frequently scored in the 
carpal (wrist) bones, namely the lunate, triquetrum and capitate  [10] (see Figure 1 for bone anatomy 
of the hand). This is supported Li et al. [11], who report the carpal bones contain significantly higher 
total volume of BME, compared to other joint sites of the hand. These reasons suggest the carpalia 
form a warranted joint site to study for the characterisation of BME. In addition, the available extrem-
ity MRI data is acquired in separate stations, so a choice of joint site (either MCPs or carpal bones) is 
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needed to avoid image stitching. Accordingly, the scope of this graduation project is narrowed; the 
focus will be on detecting and quantifying MRI BME in the carpal bones using T1-weighted pre- and 
post-contrast images generated by extremity MRI. 
 

 
Figure 1. Bones of the hand, showing the carpal bones (wrist bones), metacarpal bones (bones of the 

hand proper), and phalanges (finger bones) —Encyclopædia Britannica, Inc. (2011) 

 

 
Figure 2.  Example of a bone marrow edema lesion (B) on an MR image of the knee. This lesion was 

given a score of 2 on a scale of 0 to 3. [12] 
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To recap, current visual scoring methods of extremity MR images for early detection of RA lack 
objectivity and reliability and there is a call for a quantitative approach. Hence, the goal of this pro-
ject is to develop and validate image-processing tools that can quantitatively assess pre-erosive in-
flammatory biomarkers for the early detection of RA. The first step of the proposed quantitative char-
acterisation of MRI BME in the carpal bones is the segmentation of the carpal bones. Following 
which, the presence of BME is measured using image-processing techniques. These quantitative 
findings will be compared with a RAMRIS evaluation of the same data. This literature review ad-
dresses the first step, namely: the segmentation of bone tissue in MR images. Accurate segmentation 
is the goal, and will determine the eventual success or failure of subsequent computerised analysis. 
Being a crucial step in the image-processing pipeline, the purpose of this literature review is to reveal 
the current state of knowledge with respect to bone segmentation techniques for MR images. This 
will help form a decision on what segmentation method is most appropriate for segmenting carpals in 
MRI data or whether a new method needs to be developed. This review is organised into three sec-
tions. The first is a discussion of the methods used to survey the literature. Secondly, the results of the 
literature review are presented and selected works critically analysed. Finally, the implications of 
these results are discussed and a way forward is suggested. 
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Methods 

This section outlines the methods used to retrieve, organise and analyse the literature deemed relevant 
to answering the research question. In addition, the tools, key search terms, and inclusion and exclu-
sion criteria used are discussed. The literature search was performed between 4-Nov-2013 and 5-Dec-
2013. A number of papers [13]–[15] were provided by my supervisor as a starting point, however 
these focussed more on the broader scope of the project, rather than on bone segmentation specifical-
ly. Serving a similar purpose and containing many useful references, a grant application on the wider 
project of early detection of RA was also provided [16]. 
 
Search terms—Atlas, automatic, bone, bone marrow (o)edema, carpal(s), computed tomography 
(CT), computer-aided, computer-assisted, image analysis, joint(s), knowledge-based, magnetic reso-
nance imaging (MRI), quantification, radiography, registration, rheumatoid arthritis (RA), segmenta-
tion, synovitis, wrist. 
 
Databases—Google Scholar, IEEE Xplore, PubMed, Science Direct, Web of Knowledge, Wiley 
Online Library. 
 
A number of requirements were set to guide the literature search. Namely, bone segmentation ought 
to be automatic, or with as little user interaction as possible, seeing as the aim is to make the interpre-
tation of RA MR images objective and computerised. The segmentation technique should be fit for 
MRI data, both pre- and post-contrast T1-weighted images. Mimicking a human reader, the segmen-
tation process should include prior knowledge of the carpals where possible. In other words, a naïve 
approach to segmentation is discarded, as it is neither accurate nor robust enough for our needs. 
 
An initial search was performed broadly to avoid missing important articles. Later searches were 
refined by adding and combining different search terms. Some search engines, such as Thomson 
Reuters’ Web of Knowledge allow search refinement by categories such as radiology and medical 
imaging, rheumatology and biomedical engineering. By trying several logical and relevant permuta-
tions, more literature could be captured. In trying to ascertain the state of the art as well as to avoid 
duplicates, the most recent publication on the same work was included whenever possible. There 
were no limits put on publication year however, as image processing is a fairly young field, and there 
are many important publications from previous decennia that modern techniques are founded on. 
Leading authors were identified and citations were traced on Google Scholar and in reference lists to 
find related works. Articles were downloaded and managed using Mendeley Desktop reference man-
ager software. This software also supports cite while you write (CWYW) referencing with word pro-
cessors but also exports to BibTeX for use with LaTeX. Useful added features include cloud-based 
file storage and the ability to make annotations and highlights within the program itself, enabling a 
paperless literature review.  
 
After collection, a number of key articles were read to further familiarise oneself with the topic. Fol-
lowing which, a selection process took place. Key criteria were based on the imaging modality used. 
A preference was given to MRI related works, especially those including DCE-MRI. However CT 
and conventional radiography (CR) based techniques were also included as they can form a source of 
inspiration as well. Similarly, a preference was given to fully automated segmentation techniques. 
The broad searches were targeted to bone segmentation, whereas later search terms pertaining to 
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(rheumatoid) arthritis were included to see if disease-specific solutions already existed. Papers that 
did not focus on the segmentation of bone tissue in the broadest sense were not included. The purpose 
of article selection was, despite a specific application area, to get a wide range of techniques, to draw 
inspiration from, and critically judge them on their suitability to the research problem. Often it was 
sufficient to read the abstract, and image-processing sections of articles to judge whether it was 
unique or novel in terms of the segmentation technique it presented. A table was used to enter the 
most important publications and organise them based on the segmentation technique, imaging modal-
ity, target site, level of automation and whether the work was validated or not (see Table 1). This also 
provided a classification scheme for incoming articles to help maintain oversight. 
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Results 

In this section the collected literature is presented and critically evaluated. Key trends and commonal-
ities will be identified. Furthermore, the suitability of existing methods to the research problem (au-
tomatic segmentation of carpal bones in MR images) will be assessed. Image segmentation is the 
division of an image into meaningful structures [17]. A myriad of different approaches, methods and 
techniques to achieve this are presented in the literature, as well as extensive reviews thereof. How-
ever, there is no single approach that can solve all segmentation tasks. It is very application depend-
ent and segmentation algorithms need to be tuned to the target data. A review of segmentation tech-
niques would be superfluous; instead the most relevant and applicable techniques found in the litera-
ture will be highlighted. For the most relevant segmentation approaches their suitability is critically 
analysed in light of the requirements - segmentation should be automatic, fit for MRI data and incor-
porate prior knowledge. 
 
At the time of writing, some ninety publications have been collected, forty of which are related to or 
contain details on bone segmentation. Selecting only papers that focus on the technical aspects of 
bone segmentation further reduced this list. Seven papers were chosen for detailed evaluation. They 
were read in-depth, and in most cases, several times. They are listed in Table 1 (page 13) and are 
classified on key aspects such as segmentation technique, bone site, and level of automation. In the 
literature review, the common segmentation techniques encountered can be roughly categorised as 
follows: 
 

! Threshold-based and region growing 
! Active contours and level sets 
! Classifiers 
! Atlas-based 

 
Important to note is that no segmentation method belonged exclusively to one category, and in all 
cases, a combination of image processing and segmentation techniques is used. Manual outlining or 
corrections, though often inevitable, is not included as it is not automated. Following is a discussion 
of the seven selected papers (with reference to a few others), presented in order of the segmentation 
categories listed above. For each paper, a description of the segmentation method used is given, fol-
lowed by an evaluation of its merits and weaknesses in light of the research problem. 
 
Kubassova et al. [18] present their work on the automatic segmentation of the MCP joints in DCE-
MRI acquired images. Their approach is primarily threshold-based and is quite creative, hence its 
inclusion. The authors reduce the 3D segmentation problem to 2D and even 1D as will be explained. 
To align pre- and post-contrast images, registration is performed akin to Mysling et al. [19] (dis-
cussed later). Segmentation of the MCP joints is realised in two stages: first, regions that represent 
bone interiors are detected, then, the boundaries of the regions are refined using an adaptive segmen-
tation technique. The preliminary stage involves background removal followed by morphological 
opening to remove outliers. A location classifier tells the algorithm where to “expect” bone based on 
training data. Note the coordinate system needs to be normalised for this. Should bone for whatever 
reason fall outside this expected region, then it will fail to be correctly classified. The preliminary 
segmentation assumes the bone to be elliptical in shape and free of holes. Although blood vessels also 
satisfy these assumptions, they are distinguished based on their smaller size and location near the 
joint edges. The adaptive segmentation using the preliminary segmentation mask is used as an initial 
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bone boundary estimate and aims to improve its conformity to the true bone boundary. As shown in 
Figure 3, a bounding box is placed around each bone site. The centroid is located and half the diago-
nal is used as the radius, which is then rotated step-wise. At each step the intensity profile along the 
radius is retrieved and the point of steepest change is determined to be the optimum boundary pixel.  
 
Kubassova’s segmentation algorithm, though creative, is likely to breakdown in a number of areas. 
Firstly, in case of extreme curvature, using the adaptive segmentation method, the radius could cross 
more than one boundary pixel. Another limitation in this work is that the segmentation is performed 
in 2D, on a per-slice basis. This way no information from neighbouring slices is able to contribute to 
a better bone boundary estimate. Furthermore, the initial bone segmentation mask is derived from the 
superposition of twenty scans obtained in the DCE-MRI sequence. This seems excessive and depends 
greatly on the success of interim registrations to control for patient motion and normalise the coordi-
nate system. In the preliminary segmentation, the bone is assumed to contain no holes. This assump-
tion is likely to be violated, especially with RA patient data, where erosions are prevalent. The paper 
lacks details on the removal of small blood vessels and given they satisfy the same assumptions as 
bone (elliptical, no holes), accidental exclusion of bone voxels could occur (false negative). Although 
Kubassova et al. achieve a reasonable segmentation rate (80% mutual overlap) by combining relative-
ly basic image processing techniques, the total image processing chain contains many sub-methods, 
meaning any small error is carried forward and multiplied. Should all assumptions hold, this algo-
rithm is quite efficient. Yet, as the authors themselves are aware, “the procedure is not perfect”. 
 

 
Figure 3. Adapative segmentation of MCP. Boundary pixel refinement using 1D signal intensity thresholding. 

(Kubassova, 2005) [18] 

 
Duryea et al. [20] present “semi automated three-dimensional segmentation software to quantify 
carpal bone volume changes on wrist CT scans for arthritis assessment”. Even though the segmenta-
tion is semi-automatic and CT-based, this paper was included as it closely aligns with the research at 
hand. User interaction is needed to place a ROI over each carpal in the most central slice. A seed-
point is then manually placed on the bone boundary to initialise an edge-tracking algorithm (see Fig-
ure 4.a). From the seed point, the carpal’s edge is traced using the maximum greyscale gradient. Even 
at CT resolution, the carpals are not always separable based on intensity gradient alone, and so the 
user must correct the edge-tracing if it mistakenly jumps to an adjacent carpal. This is seen in Figure 
4.c below and highlights the need to bestow prior knowledge upon the algorithm. After the central 
slice has been outlined, adjacent slices are segmented using active contours; delineations from the 
previous slice serve as initialisations for the next. The biggest drawback of Duryea’s segmentation 
approach is the lack of automation. In addition, a gradient-based cost function is simple yet does not 
incorporate other useful information available in the data.  
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Figure 4. User-guided edge tracing for active contour initialization. (Duryea, 2008) [21] 

 
In contrast to Duryea, Lorigo et al. [22] incorporate texture (in the form of local variance), as well as 
intensity into the weighting function of the geodesic snakes to segment knee bones in MRI. Exploit-
ing the fact that trabecular bone (situated near joints) has fairly uniform texture, the authors report 
successful segmentation. Use of the balloon model allows initialisation anywhere within the bone. 
After convergence, due to windowing effect, the final contour has to be pushed outward by a constant 
equal to the window size. As in Duryea’s work, the 2D segmented contours are stacked to arrive at 
the 3D segmentation. Intensity-only and variance-only energy functions were also tested, where in-
terestingly, it was found the variance-only model rivalled the two-value approach. Although this 
technique is shown to be successful on T1 (anatomical) scans of the knee, it remains to be seen how it 
works on contrast enhanced MR images, where the intensity varies more greatly and a different pa-
rameterisation and cost function may be called for. As is the case in this publication, but also true for 
others, the absence of a ground truth makes it difficult to assess segmentation accuracy. Different 
radiologists will make different interpretations on where bone boundaries are situated. This inherent 
variability makes validation difficult to perform. At best we can say: “the segmentation result is sup-
ported by that of a radiologist”. Comparing the approaches from Duryea and Lorigo and given the 
complexity of MR images, it is clear gradient information alone is not sufficient nor reliable enough 
to achieve satisfactory results (automatically). Another difficulty in active contour based approaches 
is that they segment 2D contours which are then stacked to form a final 3D segmentation. When 
computing an optimal boundary pixel, this limits the available information to 2D neighbouring pixels. 
When performed directly in 3D, boundary pixels from adjacent slices can contribute additional in-
formation to form a more informed, and thus accurate segmentation. As reported by Duryea et al. 
partial volume effects and bone surfaces that are oblique to the imaging plane cause disruptions in the 
image boundary. Resulting from volume averaging, these challenges are important to note, and are an 
inherent artefact of tomographic MR images. 
 
Where a location classifier is a helper method in Kubassova’s work, Folkesson et al. [23] base their 
entire segmentation method of articular cartilage in knee MRI on a three class k-nearest-neighbour 
(kNN) classification scheme (see Figure 5). Applied directly in 3D, this fully automatic segmentation 
technique could be adapted for carpal bone segmentation. Using a range of features, the authors are 
able to include prior knowledge such as position in the image, and Gaussian smoothed intensity. By 
approximating the cartilage as a curved disc in 3D, the eigenvalues and eigenvectors of the Hessian 
are taken as features; these describe the size and direction of the principal curvatures. Although this 
method is quick and reportedly successful, the feature sets would need to be tailored to extracting 
carpal bones in place of knee cartilage (a disk shaped assumption does not hold for the carpals). Giv-
en the carpals are somewhat rounded objects, a potential shape descriptor for the carpals is eccentrici-
ty, which describes how much a shape deviates from a perfect circle (eccentricity of 0). This is ex-
plained by Zhang et al. [24] in their work on bone age assessment using radiographs of the carpals in 
children. Their acceptance bounds seem rather wide (.1<eccentricity<.9), meaning few objects are 
eliminated. Having said that, these bounds could be enough to reject all objects that deviate too much 
from being a circle/ellipse. On the classification of carpal bones based on their shape, van de Giessen 
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et al. [25] report no evidence of distinct shape classes in their study, which generates statistical shape 
models (SSM) of the lunate and scaphoid. This suggests, shape descriptors alone are insufficient to 
anatomically differentiate carpal using classifier-based segmentation.  
 

 
Figure 5. Tree representation of hierarchical three class classification scheme. (Folkesson, 2005) [23] 

 
The most recent and relevant publication is by Mysling et al. (2013) [19]. The authors present an 
atlas-based segmentation (ABS) technique of the wrist synovium. If this paper targeted BME of the 
wrist instead, it would precisely address our research problem. ABS is commonly used in medical 
image processing, and involves a clinical expert manually annotating an image or data set, forming a 
reference image or atlas. The atlas is registered1 (deformed) to the patient scan, allowing the label 
information to be transferred to the target data via spatial inference or voting. In constructing their 
atlas, Mysling et al. segment the wrist synovium into three regions by subtracting manual delinea-
tions of the bones from manual delineations of the overall wrist region of interest (ROI) (see Figure 
6). Registration occurs in two stages. First, a global, rigid registration using only translation, rotation 
and scale is performed. This process is also called an affine transformation. Subsequently, several 
iterations of local, non-rigid registration based on and B-spline basis functions are performed. The 
success of each registration is determined by a similarity measure. Normalised mutual information 
(NMI) was found to be the best performing similarity measure in performing registration to correct 
for patient motion during contrast administration. Almost every paper on ABS echoes this result, 
suggesting NMI is useful in optimising multi-modal registration. The hierarchical and multi-stage 
approach to registration is also commonly seen in the literature. Therefore Mysling et al. do not pre-
sent a novel segmentation technique per se, but the paper is of interest as it looks at quantifying in-
flammatory arthritis, in the same anatomical region, using a similar MR protocol (including DCE-
MRI) and thus aligns closely to our research. Only the choice of inflammatory RA biomarker is dif-
ferent. Seeing as the carpals are part of the manual segmentation step, the atlas construction can be 
simplified and adapted to suit our needs. The fact that the authors achieve segmentation and subse-
quent quantification is a proof of concept that there is an alternative to the labour-intensive visual 
scoring of MR images for RA. Although it could be argued that ABS, in the manual annotations re-
quired for atlas construction, is also laborious, this process is a one-off.  Another thing to note is that 
(freeform) registration, particularly when performed in 3D, is expensive to compute and therefore 
time-consuming. ABS is applied to the automatic segmentation of the pelvic bones in Ehrhardt’s [26] 
work. The authors note that strong anatomical variations in soft-tissue prevents accurate registration 
in most cases, and as such they limit their ABS to bone. Extending this idea to the carpal region, 
segmentation has to handle not only anatomical variations, but also postural changes, as the wrist is a 
complex joint. 

                                                             
1 Registration is the process of matching or aligning of one image to another 
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Figure 6. Synovium atlas construction. Left: manual segmentation of synovial regions and wrist bones. Right: 

resultant synovial atlas. (Mysling, 2013) [19] 

 
Leung et al. [15] describe methods to segment the talus bone of a Lewis rat from serial MR images 
based on multi-stage registration. This paper is also situated along the RA line of research. The rat is 
chosen to achieve in-vivo characterisation of bone changes as well as comparison to histological 
findings, making this publication unique. Just how close a rat’s talus is to a human carpal anatomical-
ly and physiologically remains insure, but nevertheless, the methods presented can be extrapolated to 
other bones or multiple bones. Only one randomly selected image after being manually segmented, 
served as the atlas. Using a single atlas is the simplest approach in ABS. It is understandable given 
there were only 11 subjects, but it does limit the variability the atlas is able to capture. The multi-
stage registration process is similar to that described in Mysling et al. [19]. Leung et al. detail various 
parameter settings and how long it took to achieve accurate delineation (2-4 hours for a bone). They 
made use of cross-correlation (CC) as well as NMI as similarity measures. Optimising these similari-
ty measures was performed using simulated annealing and steepest gradient descent (more research is 
needed to understand how these function exactly). Instead of registering the whole image, the authors 
chose to register only voxels contained within a ROI around the talus bone. How this is ROI is found 
is not stated however and may require user interaction. Although the registration is made computa-
tionally easier, ROI size and position has a great impact on the registration accuracy. By registering 
the whole image, more mutual pixel information is available and could lead to better segmentation 
results. Leung et al. highlight the importance of accurate segmentation, stating that in their case, bone 
lesions constituted as little as 1% of the volume of the talus bone. 
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Table 1. Summary of papers related to bone segmentation 

First author, year 
publication [ref] 

Modality Target site RA       
Biomarker 

T1w + 
DCE 

Segmentation 
technique 

2D/3D Level of   
automation 

Validation 

Kubassova, 2005  MRI MCP - Y Knowledge-
based, adaptive 
thresholding 

2D Automatic Clinical judge-
ment, manual 
segmentation 

Duryea, 2008 [20] CT Carpals 
(in-vivo and phantom) 

Erosion 
(volume) 

- Edge-tracking, 
active contours 

2D!3D Semi-Aut. Reproducibility 
only 

Lorigo, 1998 [22] MRI Knee - N Level sets 2D!3D Automatic - 

Folkesson, 2005 [23]  MRI Knee cartilage - N Classifiers 3D Automatic Manual segmen-
tation 

Ehrhardt, 2001 [26] CT Pelvis - - Atlas-based 3D Automatic Future work 

Leung, 2006 [27] MRI Talus  
(rat) 

Erosion N Atlas-based 3D Automatic Manual segmen-
tation, 
RAMRIS, his-
tology 

Mysling, 2013 [19] MRI Carpals Synovitis Y Atlas-based 2D Automatic RAMRIS 
(2 radiologists) 
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Table 2. Pros and Cons of segmentation methods surveyed 

Segmentation method [ref] 
 

Pros Cons 

Threshold-based and  
region growing 
[18] 

" Simplicity (easy to implement and largely free of 
parameter selection) 

" Low computational cost 
 

" Lacks automation 
" Does not incorporate prior knowledge 
" Many assumptions leads to over-generalisation 

Active contours and  
level sets 
[20], [22] 

" Automatic 
" Reduces problem to 2D segmentation 

 

" 2D!3D; lack of 3D spatial information 
" Data-driven, not so much knowledge-driven 

Classifiers 
[18], [23], [24] 

" Automatic 
" Training classifiers incorporates prior knowledge 

" Requires additional image-processing tools 
" Feature generation and selection is arduous 

 

Atlas-based 
[15], [19], [26] 

" Automatic 
" 3D model of anatomy; maximise prior 

knowledge 
" Registration frameworks useful for patient mo-

tion correction in DCE-MRI 

" Manual annotation needed initially 
" Computational cost of (accurate) registration  
" Success limited by postural and anatomical varia-

tions 
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Conclusion 

The purpose of this review was to reveal the current state of knowledge with respect to bone segmen-
tation image processing techniques for MR images. The literature survey did not uncover an “off-the-
shelf” solution to the challenge of automatically segmenting carpal bones from DCE-MRI data. In 
this sense, there is a gap in knowledge that needs to be addressed. In fact, there are many ways to 
achieve segmentation and establishing a ground truth for verification remains non-trivial. We can 
however, from critically analysing a range of existing methods, come to our own conclusions as to 
which approach can be best adapted to suit our needs.  
 
Table 2 summarises the pros and cons of the three major segmentation techniques encountered in the 
literature. Most threshold-based and region growing approaches to segmentation require user inter-
vention or correction, therefore lacking automation, which is one of the requirements. Furthermore, 
the ability to include prior knowledge is limited. Although implementation is rather straightforward, 
thresholding requires many assumptions to achieve satisfactory results. The use of level sets can be 
made automatic, however the cost function definition remains data-driven, as opposed to knowledge-
driven. Furthermore, most active contours perform segmentation in 2D, thereby sacrificing valuable 
3D information from adjacent slices which can contribute to the vote in voxel classification. For our 
purposes, ABS is seen as a suitable method, as it is automatic, is knowledge-based, and performed 
directly in 3D. The atlas is, as its name suggests, a map or spatial record about what we know about a 
region, in our case the wrist. In medical imaging, it is a probabilistic model of a population of spatial 
data. In essence, an ABS approach mimics that of the human reader in a RAMRIS-based evaluation, 
except the atlas is digitalised and uses MRI (modality specific). ABS fits into the framework of this 
project, as registration is required to correct positional differences between pre- and post-contrast 
acquisitions. A possible downside is the computational cost of achieving accurate registration. The 
freeform registration, depending on the allowable degrees of freedom and other settings, will take the 
longest to compute. However, given this work is not aimed at clinical implementation, the issue of 
computing time can be put aside. In a number of publications [18][24], ROIs are placed around joint 
sites of interest, with the motivation of discarding unwanted information and improving the run time 
of segmentation and subsequent image processing analysis. In the case of ABS however, registration 
benefits from more information in order to achieve alignment. Hence, for our purposes, ROI will not 
be used until at least after affine segmentation has been achieved.  
 
Now that the segmentation technique has been chosen. Further research is needed in how to construct 
the atlas, and how to perform the registration specifically. Then comes the question of how to auto-
matically capture BME and quantify its severity within each carpal bone. A choice of atlas construc-
tion is necessary; for example, should a single atlas be used, or multiple atlases, or an average atlas? 
The goal is to define an atlas that best describes the population and allows for accurate registration. 
Hence, averaging may lead to loss of anatomical detail and feasibility. The patient-atlas registration 
process is multipart and complex and its success will determine the accuracy of final segmentation. It 
is therefore important to carefully select and tune the desired parameters to achieve close registration. 
A choice of similarity measure is needed too, although it is clear NMI will be useful in registering 
pre- and post-contrast images. It is intended to use the elastix toolbox, which is an intensity based 
medical image registration software and is freely available [28]. Further consultation of literature and 
empirical testing will determine which settings lead to accurate and satisfactory bone segmentation.  
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Abbreviations and acronyms 

ABS Atlas-Based Segmentation 

BME Bone Marrow Edema 

CR Conventional Radiography 

CT Computed Tomography 

DCE-MRI Dynamic Contrast Enhanced MRI 

kNN k-Nearest Neigbours 

NMI Normalised Mutual Information 

MCP Metacarpophalangeal (joints) 
MRI Magnetic Resonance Imaging 

OMERACT Outcome Measures in Rheumatoid Arthritis Clinical Trials 

RA Rheumatoid Arthritis 

RAMRIS Rheumatoid Arthritis Magnetic Resonance Imaging Scoring system 
ROI Region Of Interest 

Glossary 

Articular Of or relating to a joint or joints 

Arthralgia Joint pain 

Edema Swelling caused by accumulation of fluid 

Geodesic Relating to or denoting the shortest possible line between two points on a sphere or 
other curved surface. 

Osteitis Inflammation of bony tissue 

Pannus A membrane of granulation tissue, causes cartilage destruction and bone erosion. 

Prognosis A prediction of the probable course and outcome of a disease 

Registration The process of matching or aligning of one image to another 

Segmentation The process of subdividing an image into its constituent objects or regions of interest 
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Appendix B:  Supplementary results 

Training set 

 

Table B.1: RAMRIS BME scores for the carpal bones of training set subjects. 

Subject mean 1 
Sca 

2 
Lun 

3 
Tri 

4 
Pis 

5 
Tpm 

6 
Tpd 

7 
Cap 

8 
Ham 

EAC01 0.25 1 0 1 0 0 0 0 0 
EAC02 0.75 0 1 2 2 0 0 0 1 
EAC03 1 1 1 2 1 0 1 1 1 
EAC04 0.375 1 1 0 0 0 0 1 0 
EAC05 0 0 0 0 0 0 0 0 0 
EAC06 0.625 2 1 0 0 0 0 1 1 
EAC07 0.125 0 0 1 0 0 0 0 0 
EAC08 0.625 1 1 1 1 0 0 1 0 
EAC09 0.25 0 1 1 0 0 0 0 0 
EAC10 0 0 0 0 0 0 0 0 0 
EAC11 0 0 0 0 0 0 0 0 0 
EAC12 0 0 0 0 0 0 0 0 0 
EAC13 0 0 0 0 0 0 0 0 0 

 
Table B.2: Test 1: BM. Percentage BME scores for the carpal bones of training set subjects. 

Subject mean 1 
Sca 

2 
Lun 

3 
Tri 

4 
Pis 

5 
Tpm 

6 
Tpd 

7 
Cap 

8 
Ham 

EAC01 11% 9% 13% 21% 12% 7% 9% 10% 9% 
EAC02 15% 14% 19% 24% 21% 8% 9% 11% 11% 
EAC03 17% 20% 17% 23% 18% 13% 15% 15% 11% 
EAC04 20% 22% 42% 26% 6% 18% 18% 19% 11% 
EAC05 12% 10% 15% 12% 13% 14% 12% 12% 7% 
EAC06 15% 30% 15% 13% 11% 8% 12% 17% 16% 
EAC07 11% 12% 10% 20% 8% 8% 10% 12% 12% 
EAC08 13% 19% 11% 16% 9% 11% 14% 13% 13% 
EAC09 11% 16% 13% 14% 14% 7% 8% 9% 7% 
EAC10 11% 16% 13% 14% 14% 7% 8% 9% 7% 
EAC11 25% 28% 30% 30% 20% 31% 26% 18% 15% 
EAC12 14% 18% 17% 15% 19% 6% 12% 12% 9% 
EAC13 6% 6% 8% 8% 8% 6% 7% 4% 5% 
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Table B.3: Test 2: BM + PP. Percentage BME scores for the carpal bones of training set subjects. 

Subject mean 1 
Sca 

2 
Lun 

3 
Tri 

4 
Pis 

5 
Tpm 

6 
Tpd 

7 
Cap 

8 
Ham 

EAC01 3% 2% 8% 5% 0% 0% 1% 3% 2% 
EAC02 3% 2% 9% 4% 3% 0% 1% 2% 2% 
EAC03 2% 1% 4% 8% 1% 0% 1% 2% 1% 
EAC04 9% 13% 25% 14% 0% 1% 7% 8% 2% 
EAC05 3% 0% 2% 4% 7% 0% 3% 7% 0% 
EAC06 5% 10% 4% 3% 2% 0% 1% 10% 8% 
EAC07 3% 0% 0% 12% 0% 1% 2% 5% 0% 
EAC08 2% 1% 1% 7% 2% 2% 4% 2% 1% 
EAC09 2% 6% 4% 4% 4% 0% 0% 2% 1% 
EAC10 4% 8% 5% 6% 0% 7% 4% 4% 1% 
EAC11 7% 6% 6% 15% 4% 16% 2% 6% 1% 
EAC12 4% 5% 11% 6% 0% 0% 2% 5% 0% 
EAC13 0% 0% 1% 2% 0% 0% 0% 0% 0% 

 

Table B.4: Test 3: ABS. Percentage BME scores for the carpal bones of training set subjects. 

Subject mean 1 
Sca 

2 
Lun 

3 
Tri 

4 
Pis 

5 
Tpm 

6 
Tpd 

7 
Cap 

8 
Ham 

EAC01 18% 20% 15% 20% 15% 20% 15% 20% 15% 
EAC02 15% 19% 11% 19% 11% 19% 11% 19% 11% 
EAC03 21% 27% 15% 27% 15% 27% 15% 27% 15% 
EAC04 24% 28% 20% 28% 20% 28% 20% 28% 20% 
EAC05 11% 11% 11% 11% 11% 11% 11% 11% 11% 
EAC06 25% 32% 18% 32% 18% 32% 18% 32% 18% 
EAC07 18% 19% 17% 19% 17% 19% 17% 19% 17% 
EAC08 16% 19% 13% 19% 13% 19% 13% 19% 13% 
EAC09 14% 18% 9% 18% 9% 18% 9% 18% 9% 
EAC10 18% 21% 14% 21% 14% 21% 14% 21% 14% 
EAC11 24% 31% 17% 31% 17% 31% 17% 31% 17% 
EAC12 14% 16% 11% 16% 11% 16% 11% 16% 11% 
EAC13 5% 6% 4% 6% 4% 6% 4% 6% 4% 
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Table B.5: Test 4: ABS + PP. Percentage BME scores for the carpal bones of training set subjects. 

Subject mean 1 
Sca 

2 
Lun 

3 
Tri 

4 
Pis 

5 
Tpm 

6 
Tpd 

7 
Cap 

8 
Ham 

EAC01 4% 3% 4% 3% 4% 3% 4% 3% 4% 
EAC02 3% 4% 2% 4% 2% 4% 2% 4% 2% 
EAC03 5% 9% 1% 9% 1% 9% 1% 9% 1% 
EAC04 12% 16% 7% 16% 7% 16% 7% 16% 7% 
EAC05 2% 2% 1% 2% 1% 2% 1% 2% 1% 
EAC06 10% 16% 5% 16% 5% 16% 5% 16% 5% 
EAC07 4% 4% 4% 4% 4% 4% 4% 4% 4% 
EAC08 1% 1% 2% 1% 2% 1% 2% 1% 2% 
EAC09 3% 6% 0% 6% 0% 6% 0% 6% 0% 
EAC10 5% 6% 4% 6% 4% 6% 4% 6% 4% 
EAC11 7% 10% 3% 10% 3% 10% 3% 10% 3% 
EAC12 4% 8% 1% 8% 1% 8% 1% 8% 1% 
EAC13 0% 0% 0% 0% 0% 0% 0% 0% 0% 
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Test set 

 
Table B.6: RAMRIS, mean and per carpal bone, for test set subjects. 

Subject Cohort mean 1 
Sca 

2 
Lun 

3  
Tri 

4 
Pis 

5 
Tpm 

6 
Tpd 

7 
Cap 

8 
Ham 

1 ATL 0 0 0 0 0 0 0 0 0 
2 ATL 0.125 0 1 0 0 0 0 0 0 
3 ATL 0.125 0 0 0 0 0 0 1 0 
4 ATL 0 0 0 0 0 0 0 0 0 
5 ATL 0 0 0 0 0 0 0 0 0 
6 ATL 0.25 0 0 0 0 0 0 2 0 
7 CSA 0 0 0 0 0 0 0 0 0 
8 CSA 0 0 0 0 0 0 0 0 0 
9 CSA 0 0 0 0 0 0 0 0 0 

10 CSA 0 0 0 0 0 0 0 0 0 
11 CSA 0.125 0 1 0 0 0 0 0 0 
12 CSA 0 0 0 0 0 0 0 0 0 
13 CSA 0 0 0 0 0 0 0 0 0 
14 EAC 0 0 0 0 0 0 0 0 0 
15 EAC 0 0 0 0 0 0 0 0 0 
16 EAC 1.125 1 3 3 2 0 0 0 0 
17 EAC 0.125 0 1 0 0 0 0 0 0 
18 EAC 0 0 0 0 0 0 0 0 0 
19 EAC 0.250 0 1 1 0 0 0 0 0 
20 EAC 0.125 0 0 1 0 0 0 0 0 
21 EAC 2 3 2 1 2 1 3 3 1 
22 EAC 0 0 0 0 0 0 0 0 0 
23 EAC 0 0 0 0 0 0 0 0 0 
24 EAC 0 0 0 0 0 0 0 0 0 
25 EAC 0 0 0 0 0 0 0 0 0 
26 EAC 0.125 0 0 0 0 1 0 0 0 
27 EAC 1.375 1 1 2 1 0 2 2 2 
28 EAC 0 0 0 0 0 0 0 0 0 
29 EAC 0 0 0 0 0 0 0 0 0 
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Table B.7: Quantitative scores, mean and per carpal bone for test set subjects. 

Subject Cohort mean 1 
Sca 

2 
Lun 

3  
Tri 

4 
Pis 

5 
Tpm 

6 
Tpd 

7 
Cap 

8 
Ham 

1 ATL 4% 14% 2% 4% 2% 10% 0% 1% 1% 
2 ATL 4% 2% 10% 6% 8% 3% 1% 2% 1% 
3 ATL 3% 5% 6% 4% 3% 0% 4% 5% 1% 
4 ATL 3% 6% 1% 0% 3% 8% 5% 2% 1% 
5 ATL 2% 4% 4% 2% 0% 2% 0% 2% 3% 
6 ATL 4% 1% 0% 5% 4% 0% 0% 18% 0% 
7 CSA 3% 5% 6% 2% 8% 6% 0% 0% 0% 
8 CSA 3% 3% 3% 0% 4% 8% 3% 3% 1% 
9 CSA 2% 2% 1% 0% 5% 3% 0% 3% 1% 

10 CSA 3% 9% 6% 0% 7% 0% 0% 2% 3% 
11 CSA 4% 5% 6% 5% 1% 5% 5% 3% 2% 
12 CSA 2% 2% 2% 4% 1% 0% 0% 1% 3% 
13 CSA 7% 7% 16% 7% 1% 9% 4% 4% 7% 
14 EAC 6% 3% 13% 0% 13% 5% 4% 5% 1% 
15 EAC 2% 1% 2% 5% 2% 1% 1% 2% 1% 
16 EAC 7% 6% 18% 9% 3% 4% 8% 4% 1% 
17 EAC 7% 10% 12% 6% 1% 7% 9% 1% 8% 
18 EAC 4% 0% 6% 8% 8% 4% 3% 3% 3% 
19 EAC 7% 11% 18% 5% 2% 13% 1% 2% 3% 
20 EAC 6% 6% 9% 8% 8% 16% 0% 1% 1% 
21 EAC 13% 11% 22% 26% 1% 13% 16% 10% 3% 
22 EAC 5% 5% 9% 4% 10% 9% 2% 2% 1% 
23 EAC 3% 2% 12% 0% 5% 3% 0% 1% 1% 
24 EAC 4% 10% 4% 1% 8% 5% 0% 2% 3% 
25 EAC 3% 4% 6% 4% 0% 4% 2% 0% 1% 
26 EAC 6% 10% 7% 9% 6% 9% 0% 4% 1% 
27 EAC 9% 15% 6% 12% 3% 13% 8% 6% 9% 
28 EAC 5% 4% 7% 10% 3% 2% 6% 6% 2% 
29 EAC 2% 2% 6% 0% 1% 2% 2% 1% 2% 

           
 


