

3D PATH-F IND ING IN A VOXEL I ZED MODEL OF AN INDOOR
ENV IRONMENT

A thesis submitted to the Delft University of Technology in partial fulfillment
of the requirements for the degree of

Master of Science in Geomatics

by

Martijn Koopman

November 2016

Martijn Koopman: 3D Path-finding in a voxelized model of an indoor environ-
ment (2016)
cb This work is licensed under a Creative Commons Attribution 4.0 Inter-
national License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.

Supervisors: dr. ing. Sisi Zlatanova
dr. ir. Ben Gorte
dipl.-ing. Ulf Hackauf

Co-reader: ir. Edward Verbree

http://creativecommons.org/licenses/by/4.0/

ABSTRACT

Indoor environments can be complex and need to be represented by a 3D
representation. This is especially important for 3D path-finding. 3D fea-
tures of the environment can have an effect on the computed path and these
features can not be represented correctly in a 2D representation.

A voxelized model is a good 3D representation that supports path-finding.
It is a geometrical and topological model and it is easy to incorporate seman-
tics. It is also fairly easy to consider the shape and size of the actor.

This thesis presents a new path-finding method that operates on a vox-
elized model and supports different kinds of actors. Distinction is made
between actors by their size and mode of locomotion. Supported modes of
locomotion are walking, driving and flying. A hierarchical data structure is
used to reduce the time complexity of the path-finding problem. This hierar-
chical data structure is a graph which is derived from a cell decomposition
of space.

The results indicate that the path-finding method in its current state op-
erates well for walking and driving actors, but further improvements are
required for flying actors.

v

ACKNOWLEDGEMENTS

I would like to thank everyone directly or indirectly involved in this thesis
research. Special thanks goes to my mentors dr. ing. Sisi Zlatanova and dr.
ir. Ben Gorte for their feedback and ideas. I would also like to thank my co-
reader ir. Edward Verbree for his feedback along with all other participants
of the indoor lab. The indoor lab offered a good environment with people
working on related topics.

Apart from this research, I also want to thank all students and teachers
with whom I worked the last few years. It was fun and I learned a lot.

vii

CONTENTS

1 introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Scope of this thesis . 2

1.4 Outline of this thesis . 3

2 theoratical background & related work 5

2.1 Theoratical Background . 5

2.1.1 Grid or graph . 5

2.1.2 Grid connectivity . 5

2.1.3 Static or dynamic model 6

2.1.4 Single actor or multi actor 6

2.2 Related Work . 6

2.2.1 Shortest path algorithms 6

2.2.2 Graph generation . 9

2.2.3 Hierarchical path-finding 13

2.2.4 Space subdivision for indoor navigation 15

3 methodology 17

3.1 Input parameters . 19

3.2 Dilation . 20

3.3 Semantic labelling . 20

3.4 Gell generation . 22

3.5 Graph generation . 23

3.6 Path-finding . 24

3.6.1 Path-finding in graph 25

3.6.2 Path-finding in cell . 26

3.7 Testing . 26

3.7.1 Input model . 26

3.7.2 Input actor . 26

3.7.3 Paths . 26

3.7.4 Procedure . 27

4 implementation 29

4.1 Development environment . 29

4.1.1 ParaView data types . 29

4.2 Data model . 30

4.3 Python scripts . 31

4.4 Implemented algorithms . 33

4.4.1 Flood-fill algorithm . 33

4.4.2 Distance transformation 33

4.4.3 Watershed transformation 34

4.4.4 Cell merging . 34

4.4.5 A* path-finding . 35

5 results & analysis 37

5.1 Walking person . 37

5.1.1 Dilation of the model 37

5.1.2 Semantic labelling . 38

ix

x Contents

5.1.3 Graph generation . 39

5.1.4 Path-finding . 40

5.2 Flying drone . 42

5.2.1 Dilation of the model 42

5.2.2 Semantic labelling . 42

5.2.3 Graph generation . 42

5.2.4 Path-finding . 43

5.3 Analysis . 45

5.3.1 Graph generation . 45

5.3.2 Path-finding . 46

5.3.3 Path length . 46

5.3.4 Computation time . 46

6 conclusion, discussion and future work 49

6.1 Research questions . 49

6.2 Conclusion . 52

6.3 Discussion . 53

6.3.1 Semantics . 53

6.3.2 Shape of actor . 53

6.3.3 Applicability for different kind of actors 54

6.4 Future work . 55

6.4.1 Supporting different notions of the best path 55

6.4.2 Maintain preferred flying height 55

6.4.3 Supporting elevators . 55

6.4.4 Testing for driving actor 56

6.4.5 Path-smoothening . 56

a path-finding results 59

b reflection 61

L I ST OF F IGURES

Figure 2.1 Voxel connectivity . 5

Figure 2.2 Chamfer distance transform 8

Figure 2.3 Subdivision of space in pillars 9

Figure 2.4 Graph generation . 10

Figure 2.5 Pillar merging . 10

Figure 2.6 Subdivision of space in spheres 11

Figure 2.7 Watershed transformation 12

Figure 2.8 Topological abstraction of grid 13

Figure 2.9 Class diagram hierarchical path-finding 14

Figure 3.1 Data flow . 18

Figure 3.2 Dilation methodology 20

Figure 3.3 Semantic labelling methodology 21

Figure 3.4 Cell generation flow 22

Figure 3.5 Methodology class diagram 23

Figure 3.6 Portal detection methodology 24

Figure 3.7 Example graph . 25

Figure 3.8 Path-finding methodology 25

Figure 3.9 Input model floorplan 27

Figure 4.1 Cell object definition 30

Figure 4.2 Python script execution order 31

Figure 4.3 Chamfer distance transform masks 33

Figure 5.1 Dilation result . 37

Figure 5.2 Semantic labelling result 38

Figure 5.3 Semantic labels for walking person 39

Figure 5.4 Generated graphs for walking person 40

Figure 5.5 Path-finding results for walking person 41

Figure 5.6 Generated graphs for flying drone 43

Figure 5.7 Path-finding results for flying drone 44

Figure 5.8 Hierarchical path and non-hierarchical path 45

Figure 5.9 Cell merging result . 46

Figure 6.1 Path-smoothening . 56

xi

L I ST OF TABLES

Table 1.1 Example actors . 2

Table 3.1 Accessibility of semantically labelled space based on
mode of locomotion . 18

Table 3.2 Input actors . 26

Table 3.3 Paths . 27

Table 4.1 Grid models . 30

Table 4.2 Euclidean distances of Chamfer distance transform
5x5x5 mask . 34

Table 4.3 Labels of semantic classes 36

Table 4.4 Allowed semantic classes by mode of locomotion . . 36

Table 5.1 Dilation parameters for walking person 37

Table 5.2 Vertical footspans for walking person 38

Table 5.3 Statistics of graph generation for walking person . . . 40

Table 5.4 Dilation parameters for flying drone 42

Table 5.5 Statistics of graph generation for flying drone 42

Table A.1 Path-finding results for walking person. 59

Table A.2 Path-finding results for flying drone. 60

xiii

ACRONYMS

CDT Chamfer distance transformation . 8

CPG cell-and-portal graph . 11

VTK Visualization Toolkit . 29

xv

1 INTRODUCT ION

1.1 motivation
Path-finding is the process of finding a collision free path between two lo-
cations. Within the domain of geomatics is path-finding mostly used for
navigation, but it can also be used for other applications like emergency
evacuation simulation [Meijers et al., 2005] and building performance mea-
surements [Goldstein et al., 2014].

To date, most research on path-finding has been conducted on 2D repre-
sentations of an environment. These 2D representations are sufficient for
most outdoor applications, but indoor environments require a 3D represen-
tation in some situations. Indoor environments can be complex and can
have 3D features that are of importance for path-finding. For example, an
actor that moves from one location to another has a certain height that has
to be considered. Next to that, some actors are not bound to a ground sur-
face (e.g. flying) and can move over or underneath obstacles. Also split level
floors or hanging platforms are 3D features. These situations require a truly
3D representation of the environment.

There are multiple ways to represent a 3D indoor environment. One of
them is the voxelized model. A voxelized model is a three-dimensional
uniform rectilinear grid in which each grid element indicates the occupancy
of an object within that space. This grid spans the entire model and has a
certain granularity (i.e. resolution). One grid element in a voxelized model
is called a voxel which is short for ‘volumetric pixel’.

This type of representation has at least three advantages for 3D path-
finding. First of all, it is simple. The model is just a 3D array in which each
voxel is indexed by its X, Y and Z coordinates. Secondly, based on Poincaré
duality the grid can be thought of as a special graph with rectilinear connec-
tions. This inherent topology makes it possible to do path-finding directly
on the model without deriving a topological model first. Thirdly, each voxel
can be associated with one or more attributes to incorporate semantics.

A voxelized model has one big disadvantage with respect to path-finding.
That is the large number of voxels that has to be enumerated for path com-
putation. This number depends on two characteristics of the model: the spa-
tial extent and the resolution. For example, consider a building of 100x50x40

meters with a resolution of 20 centimetres. This means the model contains
25 million voxels. To be able to perform (near) real-time path-finding in
such a model it is necessary to consider optimizations like hierarchical path-
finding. Near real-time path-finding is often required because an actor will
hold in many applications as long as the path is not supplied.

Path-finding can be applicable for human actors like pedestrians or peo-
ple in wheelchairs, but also for non-human actors like flying drones or do-
motica robots. Human actors can usually find the way on their own, but
non-human actors require a detailed path to navigate. These non-human
actors are now emerging and will probably become more and more promi-
nent in the future. What distinguishes these different types of actors are

1

2 introduction

Actor
Dimensions
(w x h) (cm)

Mode of
locomotion

Notion of best path

Walking adult 50 x 190 Walking Shortest; Least turns
Person in wheelchair 70 x 150 Driving Shortest
Rotary wing drone 40 x 20 Flying Shortest; Fixed elevation
Vacuum cleaner
robot

35 x 10 Driving Hamiltonian

Table 1.1: Example actors

their size, mode of locomotion and notion of the best path. Several example
actors are defined in Table 1.1.

The existence of research literature on 3D indoor path-finding is limited.
As stated in [Zlatanova et al., 2014], more research should be conducted
on path-finding in 3D regular grids for human applications as well as for
indoor robots. Therefore new approaches should be investigated or existing
approaches should be combined.

1.2 objectives
The objective of this thesis research is to develop a path-finding method
that is applicable for different kinds of actors. This path-finding method
has to operate on a voxelized model which is a geometrical, topological
and semantical representation of an indoor environment. Next to that, the
path-finding method should be fast enough to perform this path-finding
real-time or near real-time.

The following main research question has been formulated based on this
research objective:

• Is it possible to develop a single, uniform path-finding method that is
applicable for different kind of actors?

To answer this research question, the following sub questions have to be
answered:

• What kind of actors exist in an indoor environment?

• What requirements does each kind of actor have on the computed
path?

• What parameters can describe the required path of an actor?

• In what data structure should the voxels be stored to facilitate path-
finding?

• What is the influence of the model’s resolution on the path-finding?

• What implementations could improve the performance of the path-
finding method?

1.3 scope of this thesis
This research focuses on 3D indoor path-finding. The path-finding method
accepts a voxelized model as is input. This voxelized model must be a

1.4 outline of this thesis 3

Cartesian grid in which each voxel has the shape of a cube. Other types
of 3D representations (e.g., boundary representation) are not considered.
The path-finding method derives a model from the input model which is
used for path-finding. This model is static (i.e., can not be altered when the
indoor environment changes) and has to be generated for each distinct kind
of actor.

1.4 outline of this thesis
This thesis has 6 chapters. The next chapter (Chapter 2) describes the the-
oretical background and presents related work. Chapter 3 describes the
methodology of the newly developed path-finding method. The implemen-
tation of this methodology is described in Chapter 4. The path-finding
method has been tested on two types of actors: a walking person and a fly-
ing drone. The results of these tests are presented in Chapter 5 along with
an analysis of the results. The research questions are answered in Chapter 6

followed by the conclusion. A discussion and recommendations for future
work are also presented in Chapter 6.

2 THEORAT ICAL BACKGROUND &
RELATED WORK

2.1 theoratical background

2.1.1 Grid or graph

A path-finding algorithm requires a topological model. It defines relations
between spaces and determines what steps an actor can make when it
moves. In general, two types of topological models are used: a grid or
a graph. A voxelized model is a grid and can therefore be considered a
geometrical and topological model at the same time. Each voxels has neigh-
bours that determine the connectivity within the model. Other 3D represen-
tations like boundary representation (b-rep) and constructive solid geome-
try (CSG) are merely geometrical models and a graph must be derived from
these models to enable path-finding. Deriving a graph comprises two steps:
First, a set of nodes must be defined that represent locations in space or cells
of space. Secondly, connectivity between these nodes must be determined.
The exact methodology for these two steps is dependent on the application
and the type of graph that is required.

2.1.2 Grid connectivity

A voxel is a single element in a voxelized model. It can have various shapes
depending on the voxelized model. In a Cartesian grid – which is a rectilin-
ear grid – has each element the shape of a cube.

Figure 2.1: Voxel connectivity. From left to right: face-connectivity (6); face and
edge-connectivity (18); face, edge and vertex-connectivity (26)

The connectivity between a voxel and its neighbouring voxels can be de-
fined by the faces, edges and vertices of the cube. Face-connectivity implies
that the voxel is connected to neighbouring voxels with whom it shares a
face. Edge-connectivity and vertex-connectivity respectively imply the same
for edges and vertices. Usually these types of connectivity are combined as

5

6 theoratical background & related work

depicted in Figure 2.1. The chosen connectivity determines the steps that
an actor can make when it moves through the grid: along the grid, diagonal
while staying inside the same horizontal/vertical plane or freely to any of
the 26 neighbours.

2.1.3 Static or dynamic model

A model in which a path has to be computed can be static or dynamic.
A static model does not change over time whereas a dynamic model can
change over time. A dynamic model is required for any path-finding appli-
cation in a changing environment. One example of such an application is
navigation during an emergency evacuation. Due to a disaster, like a fire or
flooding, parts of the indoor environment can become inaccessible over time.
This requires a dynamic model that can be quickly updated when such an
event occurs. The updated model can then be used to quickly re-compute
the path of the actor. The actor can then continue its way to its destination.

2.1.4 Single actor or multi actor

Finding a path between two points can be done for a single actor or for
multiple actors. Finding a path for a single actor often only requires con-
sideration of the static environment. Finding a path for multiple actors also
requires consideration of each actor’s volume because actors should not col-
lide with each other. Next to that, the methodology used for finding a path
for one actor is not efficient enough to do for hundreds of actors simulta-
neously. This would require too much computational power and a (near)
real-time solution would not be feasible. Finding a path for multiple agents
therefore requires a different approach.

2.2 related work

2.2.1 Shortest path algorithms

Shortest path algorithms lie at the basis of path-finding. It refers to finding
the shortest path between two endpoints while avoiding obstacles. Over the
past decades various search algorithms have been proposed such as Dijk-
stra’s algorithm, breadth first search, depth first search and A* algorithm.
Although these algorithms (most notably A*) are quite efficient, more effi-
cient solutions are still required to solve path-finding in complex environ-
ments with limited time and resources [Cui and Shi, 2011].

Bushfire algorithm

A well-known shortest path algorithm is the bushfire algorithm [Latombe,
1990]. This algorithm works in two stages. In the first stage a navigation
front is generated and in the second stage this front is traversed from start
to goal. The navigation front is generated by starting an expansion from the
starting point. Each voxel in the navigation front has an enumeration level
that indicates the number of expansion iterations from the start. Neighbour-
ing voxels of the navigation front are appended to the front and are assigned
the current enumeration level + 1. In the resulting navigation front voxels
nearby the start have a low enumeration level and voxels further away a

2.2 related work 7

high enumeration level. A path is then found by traversing the navigation
front from ending point to starting point by following the steepest descent
in enumeration levels.

The bushfire algorithm is equivalent to breadth first search and Dijkstra’s
algorithm [Dijkstra, 1959] which are graph searches. It guarantees to give
the shortest path, but it is not very efficient because it enumerates a large
number of voxels before reaching the ending point.

Greedy best-first search

Another shortest path algorithm is the greedy best-first algorithm [Doran
and Michie, 1966]. Opposed to the bushfire algorithm this algorithm does
not keep track of the distance to the starting point, but to the ending point.
It relies on heuristic to expand the navigation front in the direction of the
ending point. The heuristic function estimates the cost from the current
position to the ending position and may, for example, be the Euclidean
distance or Manhattan distance.

This greedy best-first algorithm is faster than the bushfire algorithm be-
cause it reduces the number of voxels to enumerate, but it does not guaran-
tee to give the shortest path.

A* algorithm

The A* algorithm [Hart et al., 1968] combines the principles of the bushfire
algorithm and greedy-best first search. It keeps track of the distance to
the starting point like the bushfire algorithm and introduces a heuristic like
greedy-best first search. It hereby significantly improves the computational
efficiency and yet guarantees to give the shortest path. When expanding the
navigation front it uses the following function to prioritize the voxels.

f (n) = g(n) + h(n)

In which g(n) represents the exact cost from starting point to n and h(n)
represents the estimated cost from n to the ending point. Voxels with the
lowest f value are expanded first.

According to [Hart et al., 1968] A* is guaranteed to find the optimal path
if h(n) is less than or equal to the actual shortest path cost, but according to
[Rabin, 2000] a slightly overestimated cost usually results in a faster search
with a reasonable path.

Although A* is an optimal shortest path algorithm, it still requires opti-
mizations for complex environments. For example, in a voxelized model of
500x500x500 voxels, there is still a search space of 125 million voxels. Op-
timizations can be accomplished in various ways. First of all, the heuristic
function could be altered. If more information about the (dynamic) envi-
ronment is known, then a better estimation of the cost to the ending point
could be made. Secondly, the memory consumption of A* could be lowered.
A* requires a certain amount of memory to store the data structure that
is involved with the path-finding. In Iterative Deepening A* [Korf, 1985]
the whole path is computed in smaller pieces to reduce the memory load.
Thirdly, the search space could be reduced by introducing a hierarchical
data structure in which path-finding is performed from a higher level to a
lower level. See Section 2.2.3 for hierarchical path-finding.

8 theoratical background & related work

Distance transformation

Another important method for shortest path computation is based on a dis-
tance transformation. A distance transformation produces a field in which
each point indicates the distance from that point to one or more other points.
These other points can be on the boundary of objects, but it can also be the
ending point of a path. The produced field is a discretization of space, i.e.,
a raster. A distance transformation is a typical raster operation while the
previously described algorithms involve graph operations.

There are many implementations for a distance transformation. In [Grevera,
2007] and [Jones et al., 2006] a good overview is given. Each implementa-
tion has its own characterizations like memory consumption, computation
time, dimensionality and accuracy. One commonly applied implementation
is the Chamfer distance transformation (CDT) [Borgefors, 1986]. This imple-
mentation approximates the Euclidean distance by shifting a mask over the
input model similar to a convolution filter in image processing. The dis-
tance value is calculated by adding up the value of the previous position
with the corresponding value in the mask. If this value is less than the value
on the current position, then the current position is replaced by this newly
computed value. Only two passes of the filter in opposite direction are re-
quired to compute the distance field. The distance values are propagated
recursively through the model by the mask. CDT can be applied on an image
with an arbitrary number of dimensions. Figure 2.2 shows the algorithm on
a one-dimensional image.

Figure 2.2: Chamfer distance transform

As introduced by [Dorst and Verbeek, 1986] CDT can also be used to find
the shortest path in an n-D image. A navigation front can be generated by
computing the distance field in which each location indicates the distance
to the ending point. The computation of such a distance field requires more
than two passes. The number of passes depends on the complexity of the
indoor environment because the mask should be iterated over the image
until no more changes occur.

Configuration space

Configuration space is another important aspect for path-finding. Configu-
ration space finds it origin in the domain of robotics and is also called robot
state space. Configuration space comprises all the possible configurations of
an actor (position and orientation) in a higher dimensional model. Simply
put, each degree of freedom of the actor becomes a dimension in configu-
ration space. The problem of path-finding – including rotational movement

2.2 related work 9

of the actor – is thereby reduced to finding a collision-free path in configu-
ration space. This makes it possible to consider the dimensions of the actor
and its orientation in the path-finding process.

Finding the shortest path in configuration space requires a path-finding
method that is applicable for an arbitrary number of dimensions. In [Ver-
beek et al., 1986] the CDT is used to compute a collision-free path in config-
uration space.

The problem of configuration space is the shortest path algorithm’s com-
plexity. As stated by [Canny., 1988], the complexity of such a shortest path
algorithm is exponential to the number of degrees of freedom of the mov-
ing actor. This makes the configuration space approach too slow for (near)
real-time path-finding.

2.2.2 Graph generation

Path-finding can be performed directly on a voxelized model, but often a
graph is derived for this purpose. This choice is based on the requirements
of the path-finding method. For example, the fine granularity of the vox-
elized model may not be desired or ground patches should be considered
only instead of the whole volumetric space.

Graph generation is a two-step process. First, regions of space have to
be identified that act as nodes in the graph. Secondly, connectivity between
these regions has to be found and represented as edges in the graph. In
this process the geometrical or semantical properties of the regions can be
assigned to the nodes and edges of the graph. This makes it possible to take
these properties into account when path-finding is performed.

Pillar based

There are multiple ways to form regions of space. One of them is by creating
pillars of empty space in the horizontal plane as is done by [Xiong et al.,
2015] and [Yuan and Schneider, 2010]. These pillars all have the same width
and length, but may vary in height. Each pillar is also assigned a type like
floor, obstacle or stairs. Regions of space are then formed by grouping pillars
together. Pillars can be grouped together if they are adjacent, have the same
type and are on the same elevation.

The pillar model is easily derived from a voxelized model, but it is hard
to derive this model from a vector model. The methodology of [Xiong et al.,
2015] starts with a vector model, but the first step is voxelization to enable
this pillar construction.

Figure 2.3: Subdivision of space in pillars as described in [Yuan and Schneider,
2010]. A pillar in a cell with regular shape (a), pillars in a pyramid
shaped cell (b) and pillars representing stairs (c).

10 theoratical background & related work

In [Xiong et al., 2015] the pillars are grouped together by using a water-
shed algorithm. In this algorithm regions are created at the centers of empty
spaces and then expanded outwards until they reach the borders. A navi-
gation mesh (graph) is then generated by applying a triangulation on the
footprints of these regions. This process is depicted in Figure 2.4.

(a) (b) (c)

Figure 2.4: Graph generation as descibe in [Xiong et al., 2015]. Space subdivision in
pilars (a), contours of region footprints (b) and final triangulation (c).

In [Yuan and Schneider, 2010] the pillars are grouped together by merging
them in the horizontal directions as is depicted in Figure 2.5 A. This is an
elaborate process and the final outcome heavily depends on the orientation
of the model because it can not handle diagonal geometries very well.

The resulting regions of the merging process may be touching or overlap-
ping with each other. That means they are connected and should be denoted
by an edge in the graph. The width and height of the shared face between
two regions can be assigned as attributes to the corresponding edge. This
makes it possible to state the maximum actor size in the graph.

Figure 2.5: Pillar merging as descibed in [Yuan and Schneider, 2010] to generate
larger blocks.

Distance field based

Another method for region forming relies on a distance field that can be
computed by applying a distance transformation on a voxelized model like
CDT. In such a distance field every location marks the distance to the nearest
geometry. From this distance field cells of empty space can be derived in
multiple ways.

In [Vandapel et al., 2005] spheres are created at local maxima in the dis-
tance field. The radii of these spheres are equal to the distance values at
the center of these spheres. The resulting spheres are completely empty and
form a skeleton in the empty space as depicted in Figure 2.6. Each sphere
represents a node in the graph and the intersection of two spheres repre-
sents an edge in the graph. The intersection of two spheres is a circle and
the radius of this circle is assigned to the edge as an attribute. In this way

2.2 related work 11

the size of the actor can be considered, but only one value (the radius) may
not be accurate enough to represent an actor’s dimensions.

(a) (b)

Figure 2.6: Subdivision of space in spheres as described in [Vandapel et al., 2005]. A
subset of all spheres (a) and a subset of spheres constituting a path (b).

cell-and-portal graph In [Andújar et al., 2004] cells (regions) are cre-
ated by applying a watershed transformation on the distance field. These
cells are then used to construct a cell-and-portal graph (CPG) in which cells
correspond to rooms and portals correspond to openings (e.g. doors and
windows). An implementation of CPG generation is described in [Haumont
et al., 2003]. Generation of a CPG is described here step by step.

1. Distance transformation

CPG generation involves 5 steps. The first step is a distance transformation.
In both [Andújar et al., 2004] and [Haumont et al., 2003] CDT is used for this
purpose because it is relatively fast and the approximation of the Euclidean
distance is accurate enough if a 5x5x5 filter is used.

2. Cell generation

The second step is cell generation. In this step a watershed algorithm is
used to segment the distance field into cells as is depicted in Figure 2.7.
This algorithm iterates over the distance values in descending order and
then performs two steps for each iteration:

1. Existing cells are expanded by appending adjacent voxels with a dis-
tance value equal to that of the iteration.

2. New cells are created by grouping all remaining voxels with a distance
value equal to that of the iteration.

At the end of the iteration all voxels with a distance value greater than 0

will be assigned to a cell.
One problem with this approach is that furniture and other objects can

have a strong influence on the distance field. They can cause many local
maxima in the distance field which may lead to over-segmentation of the
cell decomposition. The existence of these local maxima also depends on
the resolution of the model. A high resolution model is prone to have more

12 theoratical background & related work

Figure 2.7: Watershed transformation

local maxima in the distance field compared to a lower resolution model. To
resolve this problem there are two options. The first option is to simplify
the scene by manually removing the objects. This approach provides a good
result, but the manual elimination can become a tedious task. The second
option is to incorporate a tolerance value in the cell growing process that
decreases as the cell grows. As a result small variations in the distance field
near the cell origin do not impact the cell generation. However, it is unclear
what this tolerance should be exactly and how fast it should decrease over
the enumeration.

3. Cell merging

The third step is cell merging. Cell merging improves the cell decomposition
by merging uninterested cells. There are a number of rules that can be
applied in this merging process. For example, in [Andújar et al., 2004] cells
are merged if they do not meet a required minimum size. Next to that, cells
are merged if the sum of shared faces with another cell exceeds a given
maximum size.

4. Portal detection

The fourth step is portal detection. Portal detection comprises finding shared
faces between cells to form portals. Shared faces are found by iterating over
all cell voxels and comparing the cell ID of the current voxel with neighbor-
ing voxels. Once all shared faces have been found they can be assigned to
a portal. If a pin point position of the portal is needed, then there are two
possible methods for determining this position. The first method is to take
the average XYZ-positon of the shared faces and snap this position to the
nearest face of the portal. The second method is to take the XYZ-position in
the portal with the maximum distance value.

5. Graph generation

The fifth step is graph generation. In this step a graph node is defined for
each cell. These nodes are connected to each other if the corresponding cells
are connected by a portal.

2.2 related work 13

2.2.3 Hierarchical path-finding

The computational effort of path-finding increases with the search space.
This makes path-finding in (near) real-time almost impossible for large mod-
els. Consider a model of 500 x 250 x 200 voxels. A shortest path algorithm
such as A* could give us the shortest path, but it would require a fair amount
of time because CPU resources and memory are limited. This problem can
be solved by introducing abstraction. The complexity of the path-finding
problem is then reduced by using a hierarchical approach.

Consider that a shortest path has to be found from one room to another
room in a large building. Given a space decomposition like a grid, an A*
implementation could give the optimal route. This may be an expensive
computation given the sheer number of voxels in the model. The complexity
of this computation can be reduced by solving the problem in three steps.
First, finding the route from the starting point to the door that connects
to the hallway. Second, finding the route through the hallway to the door
of the other room. Third, finding the route from the door to the ending
point. The first and third step require a fine grid while the second step only
requires an abstract map. This hierarchical search is not guaranteed to find
the shortest path, but it is much faster.

In [Botea et al., 2004] a method for hierarchical path-finding on grid-
based maps is presented. This method is called Hierarchical Path-finding
A* (HPA*) and creates an abstraction by subdividing a map into linked lo-
cal clusters. It uses a domain independent way for abstraction and therefore
supports multiple abstraction levels. However, this method only works for
two-dimensional grids and the methodology for subdividing can not be ex-
tended to 3D.

(a) (b)

(c) (d)

Figure 2.8: Topological abstraction of grid. Grid (a), clusters (b), transitions between
clusters (c) and abstracted graph (d).

14 theoratical background & related work

Pre-processing a grid

The first step of HPA* is to define a topological abstraction of the grid. This
grid abstraction is then used to build an abstracted graph. The topological
abstraction is created by forming clusters. Figure 2.8a and Figure 2.8b show
a 20 x 20 grid that is grouped into 4 clusters of size 10 x 10. For each
border line between two adjacent clusters, a set of entrances is identified that
connects them. An entrance is a line of empty grid tiles along the common
border. In Figure 2.8c the two clusters on the left side are connected by two
entrances with width 3 and 6. For each entrance, one or two transitions
are defined, depending on the width. If the width is less than a predefined
constant (6 in this example), then one transition is defined at the center of
the entrance. Otherwise two transitions are defined at the borders of the
entrance. A transition is defined as two points that both reside in a different
cluster while they remain adjacent to each other.

The transitions are used to build an abstract graph as depicted in Fig-
ure 2.8d. For each transition two nodes are defined and connected by an
edge. This edge (inter-edge) has a length of 1. Within one cluster all transi-
tion nodes are connected to each other by edges (intra-edges). The lengths of
these edges are computed by finding the shortest paths between the nodes
in that cluster.

Transition

Entrance

Graph

Node

- hierarchyLevel: int

Edge

- hierarchyLevel: int
- distance: int

Cluster

Grid

1

1..21

1..*

2 1

2..*
1..*

2 0..*

Figure 2.9: Classes and relations as defined by [Botea et al., 2004].

On-line search

Searching the optimal path in the abstract graph involves 3 steps. First, a
new node is created at the starting position and then connected to the graph.
Second, a new node is created at the goal position and then connected to
the graph. Third, the shortest path is found in the graph using A*.

This search provides an abstract path in which the actor moves from the
starting position to the border of that cluster, through the graph to the clus-
ter of the goal position and from the border of that cluster to the goal posi-
tion.

2.2 related work 15

The following two steps are optional. First, the path can be refined by
finding the shortest path within each cluster that is crossed by the abstract
path. Secondly, the quality of the path-refinement can be improved by path-
smoothening.

2.2.4 Space subdivision for indoor navigation

In [Zlatanova et al., 2014] a conceptual framework is presented with formal-
isation of indoor spaces. It also tries to develop guidelines for automatic
partitioning of indoor spaces for various indoor navigation applications.
This conceptual framework describes indoor spaces, agents that operate in
these spaces and activities that take place in these spaces. This framework
presents the following concepts:

indoor space Indoor space is an enclosed volume bordered by physical
elements. Space is continuous and can have a semantic meaning.

sub-spaces Space can be partitioned into sub-spaces. These sub-spaces
are non-overlapping, may or may not have semantic meaning and can be
navigable or inert (non-navigable).

agents Agents are clients that engage in activities. They are able to move
between sub-spaces. Agent are typically human, but can also be robots.
The navigable space of an agent depends on its mobility, shape and size.
Agents are characterised by their dimension (2D, 3D), individual character-
istics (size, age, gender, locomotion mode) and preferences (e.g. shortest
path).

3 METHODOLOGY

This chapter describes the methodology of the newly developed path-finding
method. This methodology combines techniques from three papers. First
of all, the same concepts are used as defined in [Zlatanova et al., 2014].
Secondly, the methodology of [Haumont et al., 2003] is used for cell decom-
position. Thirdly, the methodology of [Botea et al., 2004] is used for graph
generation. Next to that, an algorithm is developed that semi-automatically
assigns semantic labels to the empty space.

The conceptual framework of this research is analogue to the conceptual
framework of [Zlatanova et al., 2014]. Space is partitioned into semanti-
cally labelled sub-spaces (cells) and agents (actors) move through these sub-
spaces. As stated by [Zlatanova et al., 2014], the navigable space of an
actor depends on its mobility, shape and size. The shape of the actor is
represented in this research by a cylinder. The diameter and height of this
cylinder define the size of the actor. The mobility of the actor is defined
by its mode of locomotion. Distinction is made between three modes of
locomotion: driving, walking and flying.

The navigable space of an actor is decomposed into cells (sub-spaces) by
using an adapted version of the cell decomposition algorithm of [Haumont
et al., 2003]. These cells make it possible to construct a graph later on and
enable hierarchical path-finding. The cells are assigned to one of the seman-
tic classes: floor, stairs or obstacle. These classes indicate whether or not the
cell is above a floor, stairs or obstacle.

The cell decomposition is used to build a graph by applying the methodol-
ogy presented in [Botea et al., 2004]. This graph and the cell decomposition
are then used to perform path-finding on two levels. First, an initial path is
found in the graph. Secondly, the path is refined by finding the shortest path
in each individual cell that is visited by the initial path. [Botea et al., 2004]
states that finding a path with this methodology is 10 times faster compared
to highly-optimized A* and the resulting path is within 1% of the optimal
path. However, their methodology operates on a 2D grid and the algorithm
that decomposes the grid into clusters is not extendable to 3D. Therefore, it
was chosen to use the methodology of [Haumont et al., 2003] to decompose
the space into cells. This methodology can fully automatically decompose
the space into cells based on the input geometry. An alternative approach
for space decomposition is the pillar based approach of [Yuan and Schnei-
der, 2010], but this approach can not handle diagonal geometries very well
because of its orthogonal merging algorithm.

Figure 3.1 shows the data flow of the methodology. The operations that
are applied on the data (gray blocks) are build up of smaller individual
steps. These steps are explained in later sections of this chapter.

The input model in which path-finding has to be performed is a three-
dimensional grid. Each voxel in this model has a value. Empty space has
value 0 and non-empty space has value 1.

17

18 methodology

Figure 3.1: Data flow

dilation This input model is dilated to incorporate the size of the actor.
That means a horizontal buffer added around the geometry and the geom-
etry is extruded downwards. The navigable space of an actor is hereby
formed based on its size. A more detailed explanation of the dilation is
given in Section 3.2.

semantic labelling Next step of the methodology is to assign semantic
labels to the empty space (voxels with value 0). These semantic labels in-
dicate whether or not the space is above a floor, stairs or obstacle and they
are later used to determine the navigable space of an actor. The navigable
space of an actor depends on its mode of locomotion because the mode of
locomotion determines what spaces are accessible. Table 3.1 shows what
semantically labelled spaces are accessible for each mode of locomotion. A
more detailed explanation of the semantic labelling is given in Section 3.3.

Semantic class
Mode of locomotion Floor Stairs Obstacle

Drive + - -
Walk + + -
Fly + + +

Table 3.1: Accessibility of semantically labelled space based on mode of locomotion.

cell generation The third step of the methodology is to generate cells
from the dilated geometry and semantically labelled space. Each generated
cell is a cluster of voxels and each cell belongs to one semantic class. See
Section 3.4 for a detailed explanation of the cell generation.

graph generation The fourth step of the methodology is to build a
graph based on the cells. This graph is not analogue to the CPG of [Haumont
et al., 2003] in which cells are represented by nodes and portals by edges. In-
stead, it is analogue to the abstract graph of [Botea et al., 2004]. Portals are
identical to transitions and are represented by two nodes connected by an
edge. Either of these nodes resides in a different cell and connectivity with

3.1 input parameters 19

other portals is determined by finding a path within the respective cells. A
more detailed explanation of the graph generation is given in Section 3.5.

path-finding The final step of the methodology is finding the actual
path. This step is commonly executed multiple times with different start
and end positions defined. The computation time of this step is therefore
crucial. The previous steps have to be performed only once for each distinct
actor and are therefore less time crucial. See Section 3.6 for a detailed expla-
nation of the path-finding.

The path-finding method requires certain parameters to operate. These
parameters describe the characteristics of the actor and are used throughout
all steps. These parameters have to be defined before any of the steps can
be performed. The input parameter are described in Section 3.1.

The path-finding methodology has been tested on a single model. The
applied methodology for this testing is described in Section 3.7.

3.1 input parameters
The following parameters serve as input for the path-finding method. These
parameters describe the actor and the environment in which the actor navi-
gates.

• Actor diameter (width & length)
• Actor height
• Mode of locomotion
• Vertical footspan

actor diameter & height The actor is a three-dimensional object that
can move through space. Its shape is represented by a vertical cylinder and
the size of the actor is defined by the cylinder’s diameter and height. The
diameter of the cylinder corresponds to the width and the length of the
actor. The width and length are therefore always equal. The diameter and
height of the actor are two parameters for the path-finding methodology.

actor mode of locomotion A distinction is made between three differ-
ent modes of locomotion: driving, walking and flying. The navigable space of
an actor is limited by its mode of locomotion. Driving actors can only nav-
igate over relatively flat ground surfaces, walking actors can also navigate
over stairs and flying actors can also navigate over obstacles. The empty
space in the model is semantically labelled with those three classes (floor,
stairs, obstacle). It is therefore possible to represent the mode of locomotion
by three Boolean parameters. Each of these parameters indicate whether or
not a semantically labelled space is accessible. Table 3.1 shows what these
parameter values should be for each mode of locomotion.

vertical footspan Walking actors have legs and are therefore capable
of stepping up and down. This enables them to navigate over surfaces
with small height differences like a staircase. The vertical footspan is the
maximum displacement of an actor in the vertical direction for one step. It
is expressed as a number of voxels and should be at least the height of one
stair in a staircase.

20 methodology

3.2 dilation
The size of an actor limits its navigable space. Actors can not enter passages
which are too narrow or too low. Dilation of the geometry is therefore used
to ensure that the actor only accesses spaces that are large enough to hold
the actor’s size. The dilation adds a horizontal buffer around the geometry
and extrudes the geometry downwards. The size of the horizontal buffer
and the downward extrusion depend on the size of the actor. The radius
of the horizontal buffer should be equal to the radius of the actor and the
downward extrusion should be the height of the actor minus 1.

An example can be seen in Figure 3.2. In this example an actor with
height 4 and width 3 (orange lines) is placed under a single geometry voxel
(gray). A horizontal buffer with radius 1 is added to the geometry and the
geometry is extruded downwards by 3 voxels. The remaining empty space
is navigable for the actor with respect to its size. The actor can now be
considered as if it occupies only a single voxel.

(a) (b) (c)

Figure 3.2: Dilation. A single non-empty space voxel and an actor (a), horizontal
buffer added to voxel (b) and downward extrusion of voxels (c).

This methodology for considering the actor’s size has some limitations.
First of all, the shape of the actor is always represented as a cylindrical
shape and the diameter of this cylinder is always an odd number. Secondly,
the entire model has to be updated. Thirdly, the size of the actor can not
change during path-finding. On the other hand, this methodology is rela-
tively simple and the size of the actor does not have to be considered during
the actual path-finding.

3.3 semantic labelling
Semantically enriching the geometrical model with the three classes floor,
stairs and obstacle can be done automatically in most cases. The geometrical
features of the model are used to make a distinction between floor, stairs
and obstacles. The semantic labelling process is depicted in Figure 3.3.

1. extraction of horizontal surfaces Horizontal surfaces are ex-
tracted from the model by selecting all non-empty space voxels that have
an empty space voxel above it. Only these voxels are required for the se-
mantic labelling process. See Figure 3.3a.

2. segmentation of horizontal surfaces The horizontal surfaces are
segmented using a flood-fill algorithm. This flood-fill algorithm starts at the

3.3 semantic labelling 21

(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Semantic labelling. Horizontal surfaces (a), neighbourhood used in seg-
mentation of horizontal surfaces (b), selection of floor segment obstacle
segments (c), slope estimation of floor (d), stairs labelling based on slope
(e) and upwards propagation of labels (f).

voxel with the lowest elevation and then expands in all directions. Adjacent
voxels are assigned to the same segment whereas disconnected voxels are
assigned to new segments. The flood-fill algorithm is capable of expanding
upwards and downwards by a given predefined number (vertical footspan).
This ensures that the floors and stairs are assigned to the same segment. See
Figure 3.3b.

In most situations embodies the first (and largest) segment the floors and
stairs. This first segment is labelled floor and all other segments are labelled
obstacle. See Figure 3.3c. The floor segment is colored blue and the obstacle
segment(s) yellow.

3. slope estimation Distinguishing between floor and stairs is done by
computing the slope of the surface voxels. The slope is estimated by fitting a
plane through the neighbourhood of a voxel. The angle between the normal
vector of this plane and a vertical up vector gives the slope. The radius of
the neighbourhood is a predefined number and depends on the resolution
of the model. See Figure 3.3d.

All voxels with a slope above a given threshold are labelled stairs. The
other voxels remain labelled as floor. See Figure 3.3e. Stairs voxels are
colored red.

4. upwards propagation of classes All horizontal surfaces are now
labelled as one of the three classes: floor, stairs or obstacle. These labels
are propagated upwards to also label the empty space above the horizontal
surfaces. Propagation of the labels is accomplished by iterating through
the voxelized model from bottom to top and assigning the last encountered
label to the empty space. See Figure 3.3d.

22 methodology

3.4 gell generation
Figure 3.4 shows the steps involved in the cell generation. Cells are gen-
erated by applying a watershed transformation on a distance field of the
dilated model. These cells are afterwards merged if they do not meet cer-
tain criteria. This methodology originates from [Haumont et al., 2003], but
an addition is made to incorporate the semantic classes. This addition en-
sures that all voxels added to a certain cell belong to the same semantic
class.

The resulting cells need to represent parts of the navigable space. There-
fore, they need to be compressed for walking and driving actors. The com-
pressed cells have a thickness of one voxel and are located just above hor-
izontal surfaces. This is the space where walking and driving actors can
navigate through. The compression is skipped for flying actors.

Figure 3.4: Cell generation flow

Each step of the cell generation is described here in more detail.

1. distance transformation The distance field is computed using CDT

described in Section 2.2.1. Each location in the distance field indicates the
distance to the nearest geometry. The maximum distance values are most
often near the centers of rooms, but this can be heavily affected by furniture.
The low distance values are close to the floor, ceiling, walls and obstacles.

2. watershed transformation The distance field is segmented into
cells using the watershed transformation described in Section 2.2.2. The
distance values are iterated in descending order and for each iteration two
steps are performed. First, existing cells are expanded by appending adja-
cent voxels with a distance value equal to that of the iteration. Secondly,
new cells are created using a flood-fill algorithm on all remaining voxels
with a distance value equal to that of the iteration.

The semantic model is also used in the watershed transformation. Newly
created cells receive the same semantic label as the very first voxel of the
cell and adjacent voxels may only be appended to the cell if they have the
same semantic label.

3.5 graph generation 23

The entire empty space is decomposed into cells after the watershed trans-
formation and each of these cells has a unique identifier.

3. cell compression All cells together represent the entire empty space.
This is the navigable space for a flying actor, but not for walking and driving
actors. Walking and driving actors are only capable of navigating through
the space just above a ground surface. Therefore they require an additional
step to limit the navigable space. This additional step compresses the cells
downwards to a thickness of 1 voxel so that only the voxels above a surface
remain. The cells are compressed by iterating through the cells from top to
bottom and deleting any cell voxels that have another cell voxel underneath.

4. cell merging Cells are required to have a minimum size for the fol-
lowing steps. Portal detection, which is part of the graph generation, re-
quires cells with a minimal size. Cells are therefore merged with adjacent
cells if they are too small. The cells are always merged with adjacent cells
that have the same type (floor, stairs or obstacle) or another type that is also
valid for the actor’s mode of locomotion. For example, cells of type floor and
stairs may be merged for a walking actor because they are both accessible
for that type of actor. If there are no adjacent cells to merge with, then the
cell is deleted.

3.5 graph generation
The graph is derived from the generated cells. This involves two steps. First,
portals are defined on the boundaries between two cells to imply connectiv-
ity. Secondly, graph nodes and edges are defined based on these portals and
the connectivity between them.

Edge

- distance: int

Portal

Node

Graph

CellVoxelizedModel

2

0..*

2

2..*

1..*

1

1 1..*

Figure 3.5: Defined classes and relations

Figure 3.5 shows the conceptual classes that define the objects in this
methodology. A portal is a boundary between two cells. It is the set of
voxels that share a face with the voxels of one other cell. A portal has a
center point that is used to define the positions of the nodes in a graph. A

24 methodology

portal is represented in the graph by two nodes connected by an edge. Both
nodes reside in a different cell on either side of the boundary. The edge that
connects them has length 1. A portal is identical to a transition defined in
[Botea et al., 2004] and a cell can be seen as a cluster.

The two steps of graph generation are described here in more detail.

1. portal generation Cells are simply clusters of voxels. They do not
imply any adjacency or connectivity between each other. Portals are gener-
ated on the boundaries between cells to imply this adjacency. A portal is
always between two cells and does not necessarily have to be convex.

Portals are detected by finding adjacent voxels with different cell IDs. This
combination of two different cell IDs forms a tuple and is unique for every
portal. Portals are formed by grouping voxels together with the same tuple
of cell IDs.

The centroid has to be computed for each portal. This centroid is com-
puted by taking the mean of all voxels in the portal. The resulting centroid
may lie outside the portal if the portal is non-convex. Therefore the centroid
is snapped towards the closest portal voxel.

(a) (b)

(c) (d)

Figure 3.6: Portal detection. Two cells (a), voxels of right cell that are part of bound-
ary with left cell (b), mean of bounary voxels (c) and graph (d).

2. graph generation A graph is derived from the cells and portals. In
this graph is each portal is represented by two connected vertices. Each
of these vertices resides in a different cell and they are connected by an
edge of length 1. The connectivity between two portals of the same cell is
represented by forming an edge between the corresponding vertices. This
edge is assigned a weight that corresponds to the length of the path between
the two vertices. This path is computed using A* on the cell voxels.

Each vertex and edge is also assigned the cell ID it resides in. This cell ID
is used in the path-finding process.

3.6 path-finding

Path-finding is performed on two levels in consecutive order. First on the
graph (level 1) and then on the voxels that constitute a cell (level 2). Path-

3.6 path-finding 25

Figure 3.7: Example graph

finding on level 2 is optional and is only required if a fine path is requested.
This path-finding process is depicted in Figure 3.8.

(a) (b) (c) (d)

Figure 3.8: Path-finding in graph. Two nodes created at start and end position (a),
nodes connected to the graph (b), shortest path in graph (c) and refined
path in cells (d).

3.6.1 Path-finding in graph

Path-finding in the graph involves 2 steps. First, the start and end point are
inserted into the graph as nodes. Second, a shortest path is found in the
graph between the two newly inserted nodes.

Insert nodes in graph

The start and end point are inserted into the graph by creating two new
nodes (Figure 3.8a). Each of these nodes resides in a certain cell of the cell
decomposition. Connectivity with already existing nodes is determined by
finding the shortest path between the newly inserted nodes and already
existing nodes in the same cell. If such a path exists, then an edge is created
and the length of the path is assigned to this edge (Figure 3.8b).

Shortest path in graph

The shortest path between the two newly inserted nodes is found by running
the A* algorithm (Figure 3.8c). The resulting path is a sequence of nodes
that is visited when the path is traversed. Each of these nodes resides in a

26 methodology

certain cell and therefore the path can also be seen as a sequence of visited
cells.

3.6.2 Path-finding in cell

The found path can be refined by finding the exact path between two nodes
in the graph (Figure 3.8d). This requires the path-finding method to operate
on the voxels that constitute a cell. Which cell this would be can be deducted
from the sequence of visited cells determined in the previous step. It is
possible to refine the path for all cells at once, but it is also possible to refine
the path cell by cell whenever a finer path is requested for that particular
cell. In this implementation the former was chosen.

3.7 testing
In this section the methodology is described for testing the newly develop
path-finding method. The results of these tests can be found in Chapter 5

3.7.1 Input model

The input model for the test is a 2-storey building with furniture inside.
A floorplan of this model can be seen in Figure 3.9. Doors and windows
are omitted from the model and are therefore represented by openings or
closed surfaces. The ground floor consists of 5 rooms: a hallway, living
room, dining room, kitchen and lounge room. The second floor consists
of 6 rooms: a hallway, 2 bathrooms and 3 bedrooms. The two floors are
connected through a staircase. The height of a step in the staircase is 17 cm.
The lounge room on the ground floor is connected to the kitchen through 2

steps with the same height.
Three different versions of this model exist with each a different resolu-

tion. These resolutions are 10, 20 and 40 cm.

3.7.2 Input actor

Two different actors are defined for testing. These actors are listed in Ta-
ble 3.2. Each actor has a different mode of locomotion to ensure that the
path-finding method is applicable for each of these modes.

Actor
Dimensions
(w x h) (cm)

Mode of
locomotion

Adult pedestrian 50 x 190 Walking
Rotary wing drone 40 x 20 Flying

Table 3.2: Input actors

3.7.3 Paths

Three paths are computed for each actor. The start and end points of these
paths are defined in Table 3.3. These points are located in the centers of the
rooms just above the ground surface.

3.7 testing 27

Path Start position End position

1 Lounge room Bedroom 1

2 Bedroom 2 Living room
3 Bathroom 1 Bathroom 2

Table 3.3: Paths

(a)

(b)

Figure 3.9: Input model floorplan. Ground floor (a) and second floor (b).

3.7.4 Procedure

All steps described in this chapter are performed to test the developed path-
finding method.

1. The input parameters are defined based on the actor and model.

2. The input model is dilated based on the size of the actor.

3. The semantic model is generated from the dilated model.

4. The cell decomposition is computed.

28 methodology

5. The graph is derived from the cell decomposition.

6. The path is found in the graph and then refined in the cells.

To test the effect of the hierarchical approach, it is compared to a non-
hierarchical approach. In this non-hierarchical approach the same path is
computed using the A* algorithm directly on the voxelized model. These
two paths are then compared by their length and computation time.

4 IMPLEMENTAT ION

4.1 development environment

The path-finding method is implemented in Python and the application Par-
aView has been used as development environment. ParaView is an open-
source, multi-platform data analysis and visualization application. This ap-
plication follows a pipeline principle in which data is manipulated by apply-
ing one or more filters in consecutive order. The application itself is highly
extensible by the use of scripting language Python. New filters can be writ-
ten in Python and the scene can be manipulated directly through a Python
shell.

4.1.1 ParaView data types

ParaView is based on the Visualization Toolkit (VTK). VTK is an open-source
software system for 3D computer graphics, image processing and visualiza-
tion. It provides several data formats for 3D data including:

• vtkImageData

• vtkPolyData

• vtkMutableUndirectedGraph

vtkimagedata vtkImageData is an image data type. It can store data as
raster (voxels). Internally the raster data is stored as a one-dimensional
array. The elements of this array can be of any type defined by the user like
char, integer or float. ParaView is capable of mapping this array as a scalar.
That means the rendered transparency and color of a voxel is determined
by its value.

vtkpolydata vtkPolyData is a polygonal data type. It can store vector
data as vertices, edges and faces. This type of data is used to output the
constructed graph.

vtkmutableundirectedgraph vtkMutableUndirectedGraph is a graph
data type. This type of graph is mutable and undirected. That means the
graph can be edited programmatically and edges can be traversed in both
directions. Internally the graph is stored as three arrays: one array with the
vertex indices, one array with the vertex coordinates and one array with the
edges. Each vertex index is a positive integer value and each edge is a tuple
of two vertex indices. Attributes can be added to the vertices and edges by
constructing additional arrays and passing these to the vtkMutableUndirect-
edGraph object.

29

30 implementation

4.2 data model
Figure 3.1 in Chapter 3 shows the data flow in the methodology. There are
4 different types of data being used:

• Grid

• Cell

• Graph

• List

grid A grid stores all voxels of the model. Its extent has the shape of a
cuboid and covers the whole model. Both empty space voxels as well as
non-empty space voxels are stored, i.e., it is not a sparse data structure. The
grid data type is used for 3 different datasets in the methodology:

Model Voxel values

Input model
0 (empty space), 1 (non-empty space)

Dilated model
Semantic model Semantic label (See Table 4.3)
Distance field Distance value

Table 4.1: Grid models

A grid is implemented by the data type vtkImageData described in the
previous section.

cell A cell stores a selection of all voxels. This makes it a sparse data
structure and the shape of it can be arbitrary. It is defined by an object
definition (class) and has three fields as shown in Figure 4.1. The first field
is the unique identifier of the cell, the second field is the type of the cell
(semantic class) and the third field is a Python dictionary which contains
the voxels that constitute the cell.

Cell

- id: int
- type: int
- voxels: dict

Figure 4.1: Cell object definition

A Python dictionary is an implementation of a hash table. A hash table
is a data structure that allows storing values by custom indices (i.e. keys).
In such a data structure the tuple (x, y, z) can be used as a key to access a
voxel. An advantage of a hash table is that it is able to store only a subset
of the total number of voxels. For example, all non-empty space voxels may
be stored in a hash table while the empty space voxels are omitted. This can
reduce the memory consumption substantially.

Cells are constructed by the cell generation step and then used for the
graph generation and path-finding step. All cells together are stored in a

4.3 python scripts 31

hash table and the unique identifier of the cell is used as key. This makes it
possible to quickly retrieve a cell by its ID. This is a necessity for the path-
refinement step because this step has to find the shortest path through a
single cell.

graph A graph is a topological model consisting of nodes and edges. A
graph is implemented by the data type vtkMutableUndirectedGraph de-
scribed in the previous section. A graph is created by the graph generation
step.

list A list is a sequence of voxels. Each element in the list is a tuple of
three indices. One index for each dimension (X, Y, Z).

A portal has no data type definition. It is only a conceptual data type. It is
represented in the implementation by two nodes connected by an edge.

4.3 python scripts
The path-finding method is implemented in ParaView by 14 programmable
filters. These filters have to be executed in consequtive order as depicted
in Figure 4.2. Each of these filters is described here briefly. More in-depth
information about the underlying algorithms can be found in Section 4.4.

The source code has been released under an open license and can be
found at https://github.com/martijnkoopman/thesis.

Figure 4.2: Python script execution order

https://github.com/martijnkoopman/thesis

32 implementation

dilation Adds horizontal buffer to the geometry and extrudes the geom-
etry downwards. This script requires two user-defined input param-
eters: the radius of the horizontal buffer & the amount of downward
extrusion.

horizontal surfaces Extracts all voxels that are part of a horizontal sur-
face.

segmentation Segments all horizontal surface voxels using a flood-fill al-
gorithm. This script requires one user-defined input parameter: the
vertical footspan. See Section 4.4.1 for more information on the imple-
mentation.

floor labelling Labels one segment as floor and others as obstacle. This
script requires one user-defined input parameter: the segment number
to label as floor.

stairs labelling Labels floor voxels as stairs based on their slope. The
slope is estimated using plane fitting. This script requires two user-
defined input parameters: the radius of the neighborhood to fit a plane
through & a threshold for the maximum angle between a vertical up
vector and the normal vector of the plane.

propagate labels up Labels the empty space above floor, stairs and ob-
stacles by propagating the labels upwards.

infinity Assigns infinity (a very large number) to empty space voxels and
0 to non-empty space voxels. This configuration is required for the
following distance transformation.

distance transformation Computes distance field using CDT. See Sec-
tion 4.4.2 for more information on the implementation.

cell generation Generates cells from the distance field and semantic la-
bels. See Section 4.4.3 for more information on the implementation.

cell compression Compresses cells downwards to a thickness of 1 voxel.
This filter is only required for ground surface actors (i.e., walking and
driving actors).

cell merging Merges or deletes cells if they do not meet certain criteria.
This script requires two user-defined input parameters: the allowed
semantical classes for cells & the vertical footspan. The allowed se-
mantical classes depend on the actor’s mode of locomotion and can
be found in Table 4.4. See Section 4.4.4 for more information on the
implementation.

portal detection Finds boundaries between cells (portals) and assigns
an ID to each boundary. This script requires one user-defined input
parameter: the allowed semantical classes.

graph generation Generates a graph from the cells and portals.

path-finding Finds the shortest path between two points by utilizing the
cells and the graph. See Section 4.4.5 for more information on the
implementation.

4.4 implemented algorithms 33

4.4 implemented algorithms

4.4.1 Flood-fill algorithm

The horizontal surfaces are segmented using a flood-fill algorithm. This
flood-fill algorithm searches for the voxel with the lowest elevation and then
adds it to a queue. For each voxel that is removed from the queue the
following actions are undertaken:

1. The voxel is assigned the current cell ID.

2. The neighbours of the voxel are added to the queue.

When the queue is empty this means there are no more voxels adjacent
to the cell. When this happens the next voxel with the lowest elevation is
searched and added to the queue. The current cell ID is then also incre-
mented.

The used connectivity for finding neighbours is vertical footspan + 4-connectivity.
This means 4-connectivity is used on multiple elevations relative to the cur-
rent position. The vertical footspan defines this range of elevations. For
example, a vertical footspan of 2 means that the neighbours of the 2 voxels
above and below the current position have to be checked. This ensures that
segmentation can go up the stairs. The same type of connectivity is also
used for path-finding in a cell.

4.4.2 Distance transformation

The distance transformation implements CDT described in Section 2.2.1. This
algorithm shifts a mask over the model and replaces the values of infinity
by the calculated distance values. Already calculated distance values can be
overridden in the second pass if the outcome of that calculation is less than
the distance value calculated in the first pass. Figure 4.3 shows the masks
that are used in the implementation.

(a)

(b)

Figure 4.3: CDT masks. Forward pass mask (a) and backward pass mask (b).

The numbers a to f should represent the Euclidean distance from the
center of the mask. Table 4.2 shows the calculation of these distances for
each mask element.

34 implementation

Position Axis 1 Axis 2 Axis 3 Length

a 1 0 0

√
12 + 02 + 02 =

√
1 = 1

b 1 1 0

√
12 + 12 + 02 =

√
2 = 1.41

c 1 1 1

√
12 + 12 + 12 =

√
3 = 1.73

d 2 1 0

√
22 + 12 + 02 =

√
5 = 2.24

e 2 1 1

√
22 + 12 + 12 =

√
6 = 2.45

f 2 2 1

√
22 + 22 + 22 =

√
9 = 3

Table 4.2: Euclidean distances of CDT 5x5x5 mask

The resulting distances are floating point numbers, but integer numbers
are preferred because integer arithmetic is computationally less expensive.

Good integer values are: a = 22, b = 31, c = 38, d = 49, e = 54. The average
difference between these integer values and the floating point values is only
0.0871 and the standard deviation is 0.0749.

4.4.3 Watershed transformation

The cells are generated from the distance field and semantic labels by apply-
ing a watershed transformation as described in Section 2.2.2 and Section 3.4.

This algorithm performs a process that is synonym to plunging a per-
forated surface in an ocean of water. The lower parts of this surface (val-
leys) flood and start forming basins. These basins grow as the surface sinks
deeper and at some points these basins start to merge. To avoid this merg-
ing, dams are built. At the end of this process the entire surface is flooded
and segmented into basins.

In practice, the elevations in the plunged surface correspond to the in-
verted distance values in the distance field. The watershed transformation
produces a cell decomposition in which each cell is a cluster of empty space.
Each cell should have one of the three semantic classes: floor, stairs or obsta-
cle. Therefore, a constraint is added to the watershed transformation. This
constraint states that voxels being added to a cell must have the same se-
mantic label as the cell itself. Algorithm 4.1 shows the implementation of
the algorithm in pseudocode.

The algorithm iterates all distance values in descending order and then
performs two steps:

1. Expand existing cells
2. Create new cells

New cells are created using a similar method as the flood-fill algorithm
described in Section 4.4.1. This method utilizes a queue data structure to
process the voxels in an ordering that is based on the adjacency.

The semantic labels, used to assign a cell to a semantic class, are just
numbers. Table 4.3 shows the semantic labels for each class.

4.4.4 Cell merging

Cells are merged if they meet at least one of the following criteria:

1. The cell contains less than 5 voxels.

2. Two of the cell’s dimensions (like width and height) are less than 2.

4.4 implemented algorithms 35

Algorithm 4.1: Watershed transformation
Data: Distance field D (volume); Semantic labels S (volume)
Result: Cells C (list)

1 C = []
2 cellNum = 1

3 for iso from Max(D) to Min(D) do

// Expand existing cells

4 foreach cell in C do
5 foreach voxel in cell do
6 foreach neighbour of voxel do
7 if D(neighbour) = iso and S(neighbour) = cell.type

then
8 cell.voxels.append(neighbour)
9 D(neighbour) = 0

10 S(neighbour) = 0

// Find new cells

11 startVoxel = FindVoxelWithValue(D, iso)

12 while startVoxel do
13 cell = Cell(cellNum, startVoxel.type) ; // Create new cell

14 cellNum += 1

15 queue = [startVoxel]
16 while queue.length > 0 do
17 voxel = queue.pop()
18 if D(voxel) = iso and S(voxel) = cell.type then
19 cell.voxels.append(voxel)
20 D(neighbour) = 0
21 S(neighbour) = 0

22 foreach neighbour of voxel do
23 queue += neighbour

24 C += cell
25 startVoxel = FindVoxelWithValue(D, iso)

3. More than 33% of the cell’s voxels are part of a boundary with another
cell.

A cell is merged with a neighbouring cell that has the same semantic
label. If no such neighbour exists, then the cell is merged with a neighbour
that has a different semantic label, but this label has to belong to one of
the allowed semantic classes. The allowed semantic classes depend on the
actors mode of locomotion. Table 4.4 shows the allowed semantic classes for
each mode of locomotion. The cell is always merged with the neighbouring
cell with whom its shares the most faces.

4.4.5 A* path-finding

Path-finding is performed in two steps: First, the shortest path is found in
the graph. Secondly, the path is refined. Path-refinement involves finding

36 implementation

Class Label

Non-navigable space 0

Floor 1

Stairs 2

Obstacle 3

Table 4.3: Labels of semantic classes

Mode of locomotion Allowed semantic classes

Driving Floor
Walking Floor & stairs
Flying Floor, stairs & obstacle

Table 4.4: Allowed semantic classes for each mode of locomotion

the shortest path in one cell between two graph nodes. The shortest path
is found in either situation by using the A* algorithm. The implementation
of the A* algorithm is an adaption of the source code available at http:

//www.redblobgames.com/pathfinding/.
The implementation uses a priority queue to process voxels or graph nodes

in a prioritized order. Each element (voxel or node) that is added to the
queue has a priority number (f). This number is the sum of the traveled
distance (g) and the estimation of the distance to the end point (h). Elements
with the lowest priority number are popped from the queue first.

http://www.redblobgames.com/pathfinding/
http://www.redblobgames.com/pathfinding/

5 RESULTS & ANALYS IS

In this chapter the results of the path-finding method are presented. These
results have been acquired by applying the methodology described in Chap-
ter 3. This chapter is divided in three sections. The first two sections give
the results for two types of actors: a walking person and a flying drone. The
third section gives an analysis based on the results for the two actors.

The datasets which were generated by the methodology can be found on-
line at https://github.com/martijnkoopman/thesis/tree/master/data

5.1 walking person

5.1.1 Dilation of the model

The walking person has the following dimensions: 50 x 190 cm. Table 5.1
shows the radius of the horizontal buffer and the extent of the downward
extrusion for a given resolution.

Resolution
Horizontal dilation radius
(Represented diameter)

Downward extrusion
(Represented height)

10 2 (50 cm) 18 (190 cm)
20 1 (60 cm) 9 (200 cm)
40 0 (40 cm) 4 (200 cm)

Table 5.1: Dilation parameters for walking person

The higher the resolution, the more accurate the dimensions of the actor
can be represented. In the 20 cm and 40 cm resolution model the actor is
represented slightly taller than it is supposed to be. Notice that the repre-
sented diameter and height are always a multitude of the resolution and the
diameter of an actor is always represented by an odd number of voxels.

(a) (b)

Figure 5.1: Dilation result. Cross section of input geometry (a) and cross section of
dilated geometry (b).

37

https://github.com/martijnkoopman/thesis/tree/master/data

38 results & analysis

Figure 5.1 shows the result of the dilation methodology applied on the 10

cm resolution model.

5.1.2 Semantic labelling

The semi-automatic semantic labelling process uses a flood-fill algorithm to
select the floor segments and the connecting stairs. This algorithm relies on
the vertical footspan which defines the number of voxels that the growing
algorithm can go up or down. This ensures the growing algorithm can go
up the stairs and assign different floors to the same segment. The vertical
footspan is dependent on the resolution of the model and should represent
the height of one stair (17 cm). Table 5.2 shows the vertical footspans that
have been used during the semantic labelling.

Resolution
Vertical footspan
(Represented height)

10 2 (20 cm)
20 1 (20 cm)
40 1 (40 cm)

Table 5.2: Vertical footspans for walking person

(a) (b)

(c) (d)

Figure 5.2: Semantic labelling. Horizontal surfaces (a), segmented floor and obstacle
surfaces (b), labelled floor, stairs & obstacle surfaces (c) and upwards
propagation (d).

Figure 5.2 shows the results of each step on the 10 cm resolution model.
All horizontal surfaces present in the dilated model are colored blue in Fig-
ure 5.2a. These horizontal surfaces are segmented and one segment is se-
lected as floor segment. This is the blue segment in Figure 5.2b. The other
segments are labelled as obstacle and are colored yellow in the figure. Dis-
tinction between floor and stairs is made by estimating the slope of the
surfaces. Figure 5.2c shows the voxels labelled as stairs in red. The seman-
tic labels are propagated upwards to also label the empty space above the
surfaces. Figure 5.2d shows the final semantic model.

5.1 walking person 39

(a) (b)

(c)

Figure 5.3: Semantic labels on various resolutions: 10 cm (a), 20 cm (b) and 40 cm
(c). Floor is blue, stairs is red and obstacle is yellow.

Figure 5.3 shows the results of the semantic labelling for all three reso-
lutions (without the upward propagation). It is noticeable that the higher
the resolution of the model, the better the vertical footspan can represent
the height of a stair and the better the algorithm can distinguish between
obstacle and stairs. On a resolution of 20 cm also small obstacles with a
maximum height of 30 cm are labelled as stairs like a part of the bathtub.
On a resolution of 40 cm also larger obstacles with a maximum height of
60 cm are labelled as stairs like the couches in the lounge room and some
furniture in the living room. On a resolution of 10 cm the algorithm can
distinguish between obstacle and stairs fairly well. Only some baseboards
around the hallway and living room are seen as stairs also.

5.1.3 Graph generation

Table 5.3 shows the statistics of the graph generation. It shows that the
navigable space constitutes only a small percentage of the entire model. This
is because only the voxels just above the floor and stairs are marked as
navigable space. Next to that, an unexpected large amount of cells is formed
in the 20 cm model. After the merging process there are almost as many cells
in the 20 cm model as in the 10 cm model. The only real difference between
the two is that the cells in the 10 cm model consist of more voxels.

Figure 5.4 shows the graphs that result from the graph generation. The
number of nodes and edges in these graphs are directly related to the num-
ber of generated cells and that number is dependent on the resolution of the
model.

40 results & analysis

Resolution 10 cm 20 cm 40 cm

Voxels in model 1780200 222525 27676

Voxels in navigable space 11092 (0.6%) 2456 (1.1%) 734 (2.7%)
Initial cells 125 107 39

Cells after merging 91 (73%) 90 (84%) 26 (67%)
Ratio cells to navigable voxels 1 : 122 1 : 27 1 : 28

Portals 67 69 9

Graph vertices 134 138 18

Graph edges 354 229 18

Table 5.3: Statistics of graph generation for walking person.

(a) (b)

(c)

Figure 5.4: Generated graphs for walking person on various resolutions: 40 cm (a),
20 cm (b) and 10 cm (c).

5.1.4 Path-finding

Figure 5.5 shows the quantitative results of the path-finding computations.
For each path the length and computation time are plotted in a diagram.
The computation time is the average of 10 runs. The exact numbers can
be found in the appendices in Table A.1. It was not possible to measure
the computation time for the third path with the 40 cm resolution model.
The path-finding script ended so quickly that the timer returned 0. This
probably has to do with the precision of the timer. The timer was unable to
measure the elapsed time under 15 milliseconds.

5.1 walking person 41

(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Path-finding results (length and computation time) for walking person.
Path 1 (a & b), path 2 (b & c) and path 3 (e & f).

42 results & analysis

5.2 flying drone

5.2.1 Dilation of the model

The flying drone has the following dimensions: 40 x 20 cm. Table 5.4 shows
the radius of the horizontal buffer and the extent of the downward extrusion
for a given resolution.

Resolution
Horizontal dilation radius
(Represented diameter)

Downward extrusion
(Represented height)

10 2 (50 cm) 1 (20 cm)
20 1 (60 cm) 0 (20 cm)
40 0 (40 cm) 0 (40 cm)

Table 5.4: Dilation parameters for flying drone

The dimensions of the actor can not be represented correctly on any reso-
lution. This is due to the creation of the horizontal buffer. The diameter of
the actor is always represented as an odd number of voxels when a buffer
is used to incoporate the size of the actor. The dimensions of the actor are
represented most accurately on the 10 cm resolution.

5.2.2 Semantic labelling

The semantic labelling process is identical to that of the walking person. See
Section 5.1.2.

5.2.3 Graph generation

Table 5.5 shows the statistics of the graph generation. It shows that the
navigable space is a large percentage of the entire model. This is because all
empty space voxels are marked as navigable space. This has consequences
for the rest of the graph generation compared to the walking person. First
of all, there are a lot more cells generated. Secondly, each cell consists of a
lot more voxels. This leads to a very high ratio between the number of cells
and the number of navigable space voxels within these cells.

Resolution 10 cm 20 cm 40 cm

Voxels in model 1780200 222525 27676

Voxels in navigable space 1298416 (73%) 153144 (69%) 19466 (70%)
Initial cells 368 219 97

Cells after merging 141 (38%) 80 (37%) 56 (58%)
Ratio cells to navigable voxels 1 : 9209 1 : 1914 1 : 348

Portals 206 84 56

Graph vertices 980 168 112

Graph edges 412 297 195

Table 5.5: Statistics of graph generation for flying drone.

Figure 5.6 shows the graphs that result from the graph generation. Each
graph actually consists of 2 or 3 smaller disconnected graphs. There are
multiple graphs for each model because there are multiple disconnected
parts of navigable space. The first part of navigable space is the interior of

5.2 flying drone 43

building, the second part is the space above the building and the third part
is the space in the attic.

A noticeable thing in the graphs is the vertical positions of the nodes.
Nodes are created at the center of portals and most portals constitute a wall
of voxels. The center of such a portal is somewhere in the middle between
the floor and ceiling. However, there are variations between the portals
and therefore there are also variations between the elevations of the portal
centers. This results in the wavy pattern as can be seen clearly in the figure.

(a) (b)

(c)

Figure 5.6: Generated graphs for flying drone on various resolutions: 40 cm (a), 20

cm (b) and 10 cm (c).

5.2.4 Path-finding

Figure 5.7 shows the quantitative results of the path-finding computations.
For each path the length and computation time are plotted in a diagram.
The computation time is an average of 10 runs. The exact numbers can be
found in Table A.2.

44 results & analysis

(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Path-finding results (length and computation time) for flying drone.
Path 1 (a & b), path 2 (c & d) and path 3 (e & f)

5.3 analysis 45

Figure 5.8 shows the path with the greatest difference in length between
the hierarchical and non-hierarchical approach. This path (path 2) starts
on the floor in the lounge room and ends on the floor in bedroom 2. The
path of the hierarchical approach tends to follow the centerline of a storey
because this is where the graph resides. The path of the non-hierarchical
approach goes directly towards the ceiling, to the staircase and then over
the floor towards the ending point. In this particular case is the path of the
hierarchical approach 40% longer. In another case (path 3) is the path of the
hierarchical approach only 13% longer.

(a) (b)

Figure 5.8: Path difference between hierarchical (red) and non-hierarchical (blue) ap-
proach. Side view (a) and top view (b).

5.3 analysis

5.3.1 Graph generation

Cell generation

The graph generation decomposes space into cells, identifies portals and
derives a graph from these portals and cells.

The number of cells is dependent on the resolution of the input model.
As stated in [Haumont et al., 2003], a high resolution model tends to have
more local maxima in the distance field causing more cells to emerge when
the watershed transformation is applied. The ratio between the number of
generated cells and the number of voxels in each cell also increases with
the resolution of the model. This is an important fact because the number
of cells has a direct effect on the number nodes and edges in the derived
graph.

The generated cells have irregular shapes and are seldom convex. They
do not represent familiar building volumes like rooms. Their existence and
shape depend on the computed distance field, but are also affected by the
semantic labels. Each cell has to belong to a single semantic class (e.g., floor,
stairs or obstacle) and therefore the semantic label acts as a constraint. Cell
borders appear on locations where there is a transition between two seman-
tic labels. For example, cell borders exist on the edge of a table because the
cells above the table are labelled as obstacle while the surrounding cells are
labelled as floor.

46 results & analysis

Cell merging

(a) (b)

Figure 5.9: Cross section of cell decomposition for flying drone. Initial cells (a) and
merged cells (b).

The cell merging process reduces the number of cells substantially. For
the actor walking person around 75% of the cells remain and for the actor
flying drone around 44%. Figure 5.9 shows the cell decomposition before
and after the cell merging. Small cells are merged and the remaining cells
become more regularly shaped.

5.3.2 Path-finding

5.3.3 Path length

It can be concluded from both tests that the length of the path computed us-
ing the hierarchical approach is longer compared to that of the non-hierarchical
approach. This fact was also stated in [Botea et al., 2004]. The extent of this
difference differs between the two actors. The difference is greater for the
flying actor than it is for the walking person. This results from the fact that
the computed path has to go through the nodes of the graph according to
the methodology of [Botea et al., 2004]. The graph of the flying drone re-
sides near the centerline of a storey in the middle between the floor and the
ceiling and will therefore force the path through this area. This has a great
influence on the path length for a flying actor (Figure 5.8). This problem is
less prominent for the walking actor because this graph resides just above
the ground surface exactly where the walking actor normally moves.

The graph forces the actor to move through a two-dimensional surface
that coincides with the graph itself. Therefore, it does not really support
actors that should be able to move up and down in space (e.g. flying actors).

5.3.4 Computation time

The purpose of the hierarchical approach is to reduce the time complexity.
The hierarchical approach fulfils this purpose for both actors, but the time
reduction is not as substantial as claimed in [Botea et al., 2004]. They claim

5.3 analysis 47

to be 10 times faster than standard A*. The results show that the imple-
mented methodology is 4 times faster for the flying actor and 3 times faster
for the walking actor.

The time reduction depends on the ratio between the number cells and
the number of voxels within each cell. It is not exactly clear what this ratio
should be, but a high ratio appears to be more promising because this is
the case in the 10 cm resolution model. The difference in computation time
between the hierarchical and non-hierarchical approach is greatest in the 10

cm resolution model.
It is assumed that at some point, when the ratio becomes very high, the

time reduction will decrease again. This means extra levels of abstraction
are required. However, this is not implemented in the methodology. Only
one level of abstraction is supported.

6 CONCLUS ION , D ISCUSS ION AND
FUTURE WORK

6.1 research questions
In this section the research questions are answered based on the results of
this thesis. First the subquestions are answered and then the main research
question.

What kind of actors exist in an indoor environment?

There are many different actors that require path-finding in an indoor en-
vironment. One example is a walking person that visits a building for the
first time. The computed path could be presented to this person through
a screen on a handheld device to enable navigation. Not all people in an
indoor environment are walking. Some of them make use of a transporta-
tion device like a wheelchair, Segway or hoverboard. These people have a
different mode of locomotion: driving.

In recent years there has been emerging a new group of non-human actors.
These are the robots that fulfill some kind of function in a building like floor
cleaning, guiding people or assisting people. Most of these robots drive, but
some of them fly like Blue Jay (https://www.bluejayeindhoven.nl/) which
is a drone supposed to help people in everyday life.

What requirements does each kind of actor have on the computed path?

Each actor has several characteristics that influence the required path. One
of these characteristics is the size of the actor. The size of the actor limits
the actor from going through spaces which are too small. For example, a
person can not go underneath a table while a vacuum cleaner robot can.

Another characteristic is the mode of locomotion of an actor. There are
many modes of locomotion possible like rolling, jumping, crawling and
gliding, but the most obvious modes of locomotion are walking, driving
and flying. An important aspect of the mode of locomotion is the avail-
able navigable space. Walking and driving actors are bound to a ground
surface and therefore the navigable space of these actors can be seen as a
two-dimensional surface in three-dimensional space. In contrast, the naviga-
ble space of a flying actor is truly three-dimensional as the actor can move
up and down.

Apart from these two physical characteristics, there is also a third less
descriptive characteristic that has influence on the path-finding. This is the
actor’s notion of the best path. The notion of the best path varies between
actors and is sometimes hard to define. For example, the best path for a
walking person may be the shortest path, but may also be the path with
the least turns or the path through the most appealing surroundings. Other
actors have a more easily determinable best paths like that of a vacuum
cleaner robot. This path should visit every location at least once to ensure
that the entire floor is cleaned.

49

https://www.bluejayeindhoven.nl/

50 conclusion, discussion and future work

A path-finding method should adhere to the characteristics of an actor to
find the most suitable path.

What parameters can describe the required path of an actor?

Parameters that describe the requirements of each actor for path-finding
are defined to generalize the problem. These parameters allow a generic
path-finding solution that covers all aspects described by the parameters.

First of all, some parameters have to describe the shape and size of the
actor. The actor is a three-dimensional object and therefore the bounding
box of the actor can be represented by three parameters: width, length and
height. The number of parameters can be reduced to one or two parameters
also. For example, if two parameters are used, then the length and width
of the actor are represented by the same parameter and therefore they are
always equal. If the length of the actor is included in the parameters and the
length of the actor is greater than the width of the actor, then the orientation
of the actor has to be considered also. In this scenario the overall width of
the actor increases when the actor makes a turn due to its length. That
means a fourth parameters must be included to represent the rotation of the
actor around the vertical axis. However, Canny [Canny., 1988] stated that
the complexity of finding a shortest path is exponential to the number of
degrees of freedom. It is therefore better to represent the shape and size
by only two parameters (diameter and height) instead of four. This reduces
the path-finding problem substantially, but does not support actors that are
longer than they are wide (or vice versa).

Other parameters have to describe the mode of locomotion or, more specif-
ically, the navigable space for a certain mode of locomotion. To realize this,
the space must be semantically labelled by one of the following classes: above
floor, above stairs and above obstacle. If the space is semantically labelled in
such a manner, then it is possible to declare the navigable space for each
mode of locomotion based on the semantic classes. For example, driving
actors can navigate through space labelled as above floor and walking actors
can also navigate through space labelled as above stairs. In this way the
navigable space of an actor can be represented by three Boolean parame-
ters. One for each semantic class. This approach supports the three most
common modes of locomotion: walking, driving and flying.

The other characteristic, notion of the best path, can not be expressed
by a parameter. This notion varies too much between actors and each no-
tion would require a different implementation. Therefore, it was chosen
to consider the shortest path as the best path because this type of path is
applicable for many applications. As stated in [Zlatanova et al., 2014], the
most commonly used strategies for path-finding are the shortest distance
and shortest time.

In what data structure should the voxels be stored to facilitate pathfinding?

Voxels can be stored in any data structure that permits accessing a voxel
by its XYZ-coordinates. One solution is to store voxels as a one- or three-
dimensional array. If a three-dimensional array is used, then the X, Y and
Z coordinates correspond to the indices of the array. If a one-dimensional
array is used, then the index of the array has to be calculated with the
following formula:

index = x + (y ∗ dimX) + (z ∗ dimX ∗ dimY)

6.1 research questions 51

In which dimX, dimY and dimZ are the extent of the array in the three
dimenions.

Constructing such an array will allocate memory for all voxels of the
volume. This may be desired, but for some applications it is not the most
effective way of storing voxels.

Another solution is to store voxels using a hash table. A hash table is a
data structure that permits storing values by custom indices (e.g. keys). In
such a data structure the tuple (x, y, z) can be used as a key to access a voxel.
An advantage of a hash table is that it is able to store only a subset of the
total number of voxels. For example, all non-empty space voxels may be
stored in a hash table while the empty space voxels are omitted. This can
reduce the memory consumption substantially.

The vtkImageData format of VTK makes use of a one-dimensional to store
the voxels. A hash table data structure is used in some of the implemented
Python scripts. For example, each generated cell of the cell generation script
is stored as a hash table. The implementation of a hash table in Python is
called a dictionary.

What is the influence of the model’s resolution on the path-finding?

The resolution of the model is a very important characteristic. It defines
how much detail can be represented and it determines the time complexity
of the path-finding problem. The higher the resolution of the model, the
more accurately the environment can be represented, but the greater the
time complexity of the path-finding problem is.

It was tried to automatically assign one of the semantic labels (floor, stairs,
obstacle) to all voxels. The methodology therefore – extracting horizontal sur-
faces, segmentation and slope estimation – works best on the 10 cm model
although it is not completely fail proof. Small objects up to 25 centimetres
are still labelled as stairs.

The size and shape of the actor are incorporated in the path-finding
method by dilating the model. This dilation is done based on the diame-
ter and height of the actor. The extent of the dilation is always a multitude
of the model’s resolution. Therefore, the dimension of an actor can be rep-
resented more precise in a high resolution model.

The results of the dilation and semantic labelling suggest that a high res-
olution model is better because it can better represent the environment and
the actor within it, but it is also computationally more expensive to find a
path in a high resolution model. Therefore, there is a tradeoff between a
good representation and fast path-finding.

What implementations could improve the performance of the pathfinding method?

The performance of a path-finding method consists of multiple aspects in-
cluding memory consumption, optimality of the path and time complexity
for finding the path. A* [Hart et al., 1968] is a commonly used shortest path
algorithm and is also implemented in the methodology of this thesis. The
memory consumption of this algorithm can be lowered by Iterative Deeping
A* [Korf, 1985] which is an extension of A*. The optimality of the path is im-
proved in Theta* [Nash et al., 2007]. Theta* performs line-of-sight analysis
during expansion of the navigation front to check whether following nodes
are reachable. If so, then a straight path is drawn to the following. This
eliminates the jagged pattern of a path in a grid.

52 conclusion, discussion and future work

The time complexity of a path-finding algorithm depends on the size of
the search space. The search space can be reduced by utilizing a hierarchical
data structure. Most hierarchical path-finding methods perform two steps.
First, a graph (tree) is built from the navigable space. Secondly, a path is
found by searching the graph.

One solution for hierarchical path-finding is HPA* from [Botea et al., 2004]
described in Section 2.2.3. HPA* offers hierarchical path-finding in a two-
dimensional grid and many hierarchical path-finding algorithms have been
developed based on HPA*. Hierarchical Annotated A* (HAA*) [Harabor
and Botea, 2008] extends HPA* by considering the dimensions of actors as
squares, DT-HPA* [Li et al., 2012] extends HPA* by using a decision tree for
hierarchical subdivision and Hierarchical Path-Finding Theta* (HPT*) [van
Elswijk et al., 2013] extends HPA* by combining it with the shortest path
algorithm Theta*. Another similar algorithm for hierarchical path-finding is
Partial Refinement A* (PRA*) [Sturtevant and Buro, 2005]. This algorithm
creates abstraction by mapping regions of 2x2 tiles to tiles on the next level.

All of these algorithms (HPA*, PRA* and its descendants) do not work in a
3D environment. Their methodology for creating abstraction is targeted on
2D grids. A single level abstraction has been realized in this thesis research
by deriving a graph from a cell decomposition.

6.2 conclusion

Is it possible to develop a single, uniform path-finding method that is applicable for
different kind of actors?

A path-finding method has been developed that supports different kinds of
actor. For each actor the size and mode of locomotion are taken into con-
sideration. The size of the actor is represented by two parameters: diameter
and height. That means the width and length of each represented actor are
always equal.

This path-finding method involves deriving a graph from a voxelized
model. This graph enables hierarchical path-finding and reduces the compu-
tation time for path-finding substantially. Constructing the graph is an elab-
orate process that has to be performed for each distinct actor. This makes the
path-finding method only suitable for a single actor in a static environment.
A semantically labelled input model is required for the graph generation.
A methodology for semi-automatic semantic labelling is proposed in this
thesis. The semantic labelling process labels all voxels correctly in a high
resolution model as long as there are no obstacles with the same height as
a stair in the staircase.

The graph is derived from a cell decomposition of the navigable space.
This cell decomposition is realized by performing a watershed transforma-
tion on a distance field of the input model. The semantic labels form an
extra constraint in this cell generation porocess. All voxels belonging to the
same cell must have the same semantic label. That means the cell decompo-
sition depends on the geometry and semantics.

The path-finding method has been tested for two different actors: a walk-
ing person and a flying drone. The results of the walking person are promis-
ing. The computation time is reduced substantially compared to a non-
hierarchical approach and the difference in path length is small. The results
of the flying drone are a bit less promising. Although the computation time

6.3 discussion 53

is reduced even more using the hierarchical approach, the difference in path
length is a lot bigger. The path is far from optimal in some situations. It can
be concluded that current methodology does not work well for flying actors
because of this big difference with the optimal path, but it does work well
for walking actors.

The methodology has not been tested for driving actors as thoroughly as
for the walking and flying actors, but it is expected that the results for a
driving actor will be very similar to that of a walking actor. Both actors
have similar properties and a similar navigable space. The only difference
is that the space above the stairs does not belong to the navigable space of a
driving actor.

6.3 discussion

6.3.1 Semantics

Three different semantic classes are used: floor, stairs and obstacle. These
classes are used to determine the navigable space of an actor based on its
mode of locomotion. Labels that correspond to these classes are assigned
to voxels and generated cells. It is hereby possible to incorporate these
semantics in the path-finding methodology.

The semantic classes are not thematic semantics. They do not tell some-
thing about the identified meaning of a space, but rather about the geo-
metrical properties of the space. The semantic labels are also automatically
derived from the geometric model. One could therefore argue that they are
not really semantic classes.

It is however possible to incorporate thematic semantics by the same
means. Each cell can be assigned one or more labels. These labels will
be propagated onto the graph during the graph generation. That means
the edges and nodes receive the same labels. It is then possible to perform
path-finding based on these labels. For example, if each cell is assigned a
label holding the room number, then each node and edge within that space
acquires the same label. This makes it possible to find a path between two
cells based on their room number.

It must be noted that the cell decomposition works based on the distance
field and the three semantic classes. Space is subdivided on the transitions
between two semantic labels. These labels can therefore be used to subdi-
vide space into meaningful cells (e.g., one cell for the food corner). If all
semantic labels are omitted, then space is subdivided based only on the
distance field (geometry).

6.3.2 Shape of actor

The shape and size of the actor have to be considered in the path-finding
method to support different kind of actors. It was chosen to dilate model
based on the actor’s properties. This makes it possible to consider the actor
as a single point during the path-finding, but it has consequences for the
represented shape of the actor.

Two different values are used for the dilation. One affects the horizontal
plane and one the vertical plane. That means the represented width and
length of the actor are determined by the same value. The actor is therefore
represented as long as it is wide. This results in the fact that the shape of

54 conclusion, discussion and future work

the actor is represented by a cylindrical shape. The diameter of this cylinder
corresponds to the actor’s width and length.

This methodology is not capable of representing an actor that is longer
than it is wide (or vice versa). That situation introduces a new problem: the
orientation of the actor. In such scenario is the navigable space of the actor
dependent on its orientation. That means the shape and size of the actor
have to be represented by 4 parameters (width, length, height and orien-
tation) instead of 2 (diameter and height). One solution for this approach
is the multidimensional approach of [Verbeek et al., 1986]. This approach
makes a 4-dimensional model in which the fourth dimension corresponds
to the actor’s orientation. However, this approach has a time complexity
that is exponentially greater due to the extra dimension [Canny., 1988].

6.3.3 Applicability for different kind of actors

As stated in [Zlatanova et al., 2014], each actor has certain preferences like the
type of path. It was chosen to consider the shortest path as preferred path
because different kinds of paths can not be realized by a single, uniform
path-finding method.

The methodology suffices for a vast variety of actors like walking people,
people in wheelchairs, robots, drones, etcetera, but some actors may require
additional information in the form of semantics. For example, a waiter in a
restaurant may require some information about the kitchen and the dining
tables. These semantics can be added to the methodology with some minor
modifications as described in Section 6.3.1.

The methodology utilizes a graph to perform path-finding on level 1. The
actor has to move through the nodes of the graph according to the method-
ology of [Botea et al., 2004]. This works very well for a walking or driving
actor because the graph coincides with its navigable space, but this does
not work well for flying actors. The navigable space of a flying actor is far
greater than the area surrounding the graph and the actor should be able
to move away from the graph (e.g., up and down). This results in a non-
optimal path for flying actors bacause the path is drawn towards the graph
which resides in the middle of a storey between the floor and ceiling. How-
ever, this may be a desired property. It may be desired that a drone flies on
this elevation to keep maximum clearance from the floor and ceiling. It is
also be possible to adapt the current methodology to set a preferred flying
height. For example, if the graph portals are constructed in such a way that
they are always located 2 meters above floor level, then this is the elevation
where the graph will be constructed and where the flying drone will be
forced to fly through.

A model is constructed for each distinct actor. This model consists of a
graph and a collection of cells. Creating this model is an elaborate process
and requires some time. In the current implementation, it may take up to
an hour because it requires some tweaking by the user and the watershed
transformation algorithm is not built on performance. The model is also
static. It does not offer capabilities to be updated when the environment
changes. The path-finding method is therefore suitable for applications in
which the properties of the actor and environment are known in advance
and do not change over time.

6.4 future work 55

6.4 future work

6.4.1 Supporting different notions of the best path

The path-finding method only supports one type of path: the shortest path.
This path is the suitable for many actors, but there are also other actors with
a different notion of the best path. Here are two examples:

firefighter When a firefighter sweeps a building he moves along the
walls of the building. Such a path can not be computed using a shortest
path algorithm like A* and requires a different approach. In this approach
the navigation front of the path-finding method should spread out along the
walls of the building. This requires the algorithm to know where walls are
and therefore the semantic labelling of the current implementation should
be extended by a fourth class: wall.

vacuum cleaner robot A vacuum cleaner robot should cover the whole
ground surface and preferably visit each location once. Such a path is the
direct opposite of the shortest path and is called the Hamiltonian path. Com-
puting this path requires a different algorithm like the Minram algorithm
[Thompson and Singhal, 1985].

6.4.2 Maintain preferred flying height

For a flying actor like a rotary-wing drone it is more energy consumptive to
move up than it is to move down or in a horizontal direction. It is therefore
better to maintain a fixed elevation. A path with a fixed elevation is probably
also easier to fly because vertical movement can be neglected most of the
time.

One solution that could be investigated is by combining two navigation
fronts. The first navigation front guides the actor towards the end point and
the second navigation front guides the actor to the preferred elevation. By
accumulating the two navigation fronts a new navigation front arises that
tends to push the actor to the end point and the preferred flying height.

6.4.3 Supporting elevators

Supporting elevators requires adaptation of the current methodology, but
should be feasible. First of all, the graph should incorporate the eleva-
tors. That means new portals must be created at the locations of elevator
doors and edges must connect these portals through the elevator shaft. Path-
refinement should not occur when the path enters the elevator shaft. This
can be accomplished by introducing a fourth semantic class: elevator. This
class would obtain the numerical label 4. This label should be assigned to
cells that reside within the elevator shaft. The path-finding algorithm is
then able to skip path-refinement if it encounters a cell with this label. De-
tecting elevator doors and semantically labelling the space in the elevator
shaft may not be possible in an automated manner. It may require manual
intervention.

56 conclusion, discussion and future work

6.4.4 Testing for driving actor

The path-finding method has not been tested thoroughly for a driving actor.
It is expected that the results of a driving actor will be very similar to that
of a walking actor because they are closely related.

6.4.5 Path-smoothening

The found path tends to be jagged because of the inherent orthogonal struc-
ture of the voxelized model. This jagged path is more apparent in low-
resolution models and may not be optimal for some applications. In [Bandi
and Thalmann, 2000] and [Botea et al., 2004] a solution is offered to over-
come this problem. They smoothen a path by enumerating the path posi-
tions and checking whether subsequent path positions can be reached in a
straight line. If this happens, the straight line replaces the initial path. The
resulting path is smoother and closer to the Euclidian straight line path as
can be seen in Figure 6.1.

(a) (b)

Figure 6.1: Path-smoothening. Jagged 8-connectivity path (a) and smooth path (b).

B IBL IOGRAPHY

Andújar, C., Vázquez, P., and Fairén, M. (2004). Way-finder: Guided tours
through complex walkthrough models. Computer Graphics Forum, 23(3
SPEC. ISS.):499–508.

Bandi, S. and Thalmann, D. (2000). Path finding for human motion in virtual
environments. Computational Geometry, 15(1-3):103–127.

Borgefors, G. (1986). Distance transformations in digital images. Computer
Vision, Graphics and Image Processing, 34(344):344–371.

Botea, A., Müller, M., and Schaeffer, J. (2004). Near optimal hierarchical
path-finding. Journal of game development, pages 1–30.

Canny., J. F. (1988). The complexity of robot motion planning. MIT Press.

Cui, X. and Shi, H. (2011). A*-based pathfinding in modern computer games.
International Journal of Computer Science and Network Security, 11(1):125–
130.

Dijkstra, E. W. (1959). A Note on Two Probles in Connexion with Graphs.
Numerische Mathematik, 1(1):269–271.

Doran, J. E. and Michie, D. (1966). Experiments with the graph traverser
program. In Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, volume 294, pages 235–259. The Royal
Society.

Dorst, L. and Verbeek, P. (1986). The constrained distance transformation: A
pseudo-euclidean, recursive implementation of the Lee-algorithm, pages 917–
920. Elsevier Science Publishing.

Goldstein, R., Breslav, S., and Khan, A. (2014). Towards voxel-based algo-
rithms for building performance simulation. In Proceedings of the IBPSA-
Canada eSim Conference.

Grevera, G. J. (2007). Distance transform algorithms and their implementa-
tion and evaluation. In Deformable Models, pages 33–60. Springer.

Harabor, D. and Botea, A. (2008). Hierarchical path planning for multi-size
agents in heterogeneous environments. pages 258–265.

Hart, P., Nilsson, N., and Raphael, B. (1968). A Formal Basis for the Heuristic
Determination of Minimum Cost Paths.

Haumont, D., Debeir, O., and Sillion, F. X. (2003). Volumetric cell-and-portal
generation. Computer Graphics Forum, 22(3):303–312.

Jones, M. W., Bærentzen, J. A., and Sramek, M. (2006). 3d distance fields:
A survey of techniques and applications. Visualization and Computer
Graphics, IEEE Transactions on, 12(4):581–599.

Korf, R. E. (1985). Depth-first iterative-deepening: An optimal admissible
tree search. Artificial intelligence, 27(1):97–109.

57

58 BIBLIOGRAPHY

Latombe, J.-C. (1990). Robot motion planning (the kluwer international se-
ries in engineering and computer science).

Li, Y., Su, L.-M., and Li, W.-L. (2012). Hierarchical path-finding based on
decision tree. In International Conference on Rough Sets and Knowledge
Technology, pages 248–256. Springer.

Meijers, M., Zlatanova, S., and Pfeifer, N. (2005). 3D geoinformation indoors:
structuring for evacuation. Proceedings of Next generation 3D city models,
pages 21–22.

Nash, A., Daniel, K., Koenig, S., and Felner, A. (2007). Thetaˆ*: Any-angle
path planning on grids. In Proceedings of the national conference on ar-
tificial intelligence, volume 22, page 1177. Menlo Park, CA; Cambridge,
MA; London; AAAI Press; MIT Press; 1999.

Rabin, S. (2000). A* speed optimizations. In Game Programming GEMS, pages
264–271. Charles River Media, America.

Sturtevant, N. and Buro, M. (2005). Partial pathfinding using map abstrac-
tion and refinement. In AAAI, volume 5, pages 1392–1397.

Thompson, G. L. and Singhal, S. (1985). A successful algorithm for the undi-
rected hamiltonian path problem. Discrete applied mathematics, 10(2):179–
195.

van Elswijk, L., Sprinkhuizen-Kuyper, I., and Wiedijk, F. (2013). Hierarchical
Path-Finding Thetaˆ*.

Vandapel, N., Kuffner, J., and Amidi, O. (2005). Planning 3-D path networks
in unstructured environments. Proceedings - IEEE International Confer-
ence on Robotics and Automation, 2005(April):4624–4629.

Verbeek, P., Dorst, L., B.J.H., V., and Groen, F. (1986). Collision avoidance
and path finding through constrained distance transformation in robot
state space. In Robot State Space, pages 634–641. International Confer-
ence, Amsterdam.

Xiong, Q., Zhu, Q., Zlatanova, S., Du, Z., Zhang, Y., and Zeng, L.
(2015). Multi-Level Indoor Path Planning Method. ISPRS - International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sci-
ences, XL-4/W5(May):19–23.

Yuan, W. and Schneider, M. (2010). Supporting 3D Route Planning in In-
door Space Based on the LEGO Representation. Proceedings of the 2Nd
ACM SIGSPATIAL International Workshop on Indoor Spatial Awareness,
November:16–23.

Zlatanova, S., Liu, L., Sithole, G., Zhao, J., and Mortari, F. (2014). Space sub-
division for indoor applications. OTB Research for the Built Environment,
Delft.

A PATH-F IND ING RESULTS

Path Resolution Hierachical Length Time (microsec.)

1

10

No 178 435000

Yes 190 219000

20

No 91 71400

Yes 102 45300

40

No 48 23400

Yes 52 19000

2

10

No 139 333300

Yes 157 75000

20

No 72 60600

Yes 101 34300

40

No 38 16000

Yes 45 16900

3

10

No 99 156000

Yes 102 64400

20

No 52 24700

Yes 54 X

40

No 28 X
Yes 28 X

Table A.1: Path-finding results for walking person.

59

60 path-finding results

Path Resolution Hierachical Length Time (microsec.)

1

10

No 148 16033100

Yes 181 2837300

20

No 71 1686700

Yes 105 654700

40

No 35 192200

Yes 49 71700

2

10

No 94 13822300

Yes 131 3858300

20

No 52 1493900

Yes 83 321900

40

No 24 148600

Yes 39 43500

3

10

No 99 5644800

Yes 112 1578100

20

No 52 607900

Yes 59 159400

40

No 28 64300

Yes 41 29600

Table A.2: Path-finding results for flying drone.

B REFLECT ION

This thesis presents a new path-finding method. This method meets require-
ments that have not yet been described in literature before. First of all, the
method targets a 3D representation of an indoor environment. Secondly, it
supports different types of actors based on their dimensions and mode of
locomotion. Thirdly, a hierarchical data structure has been used to reduce
the computation time and enable (near) real-time path-finding.

This method is developed as a proof-of-concept to demonstrate whether
or not it can meet the predetermined requirements. The method has been
developed by extending existing concepts from literature.

Within the domain of geomatics is indoor path-finding an important topic
for certain applications. One example is the realisation of a navigation sys-
tem for people visiting a building. Next to that, also non-human actors like
domotica robots require indoor path-finding for fulfilling their functions in
a building. Applications like these will be emerging more and more in the
future.

In this thesis research knowledge has been applied from various MSc
Geomatics courses. Most notably Python programming and 3D modelling.
Python programming has been used to implement algorithms from litera-
ture that perform 3D spatial operations. Knowledge of 3D modelling plays
a crucial role in these algorithms.

61

	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Scope of this thesis
	1.4 Outline of this thesis

	2 Theoratical Background & Related work
	2.1 Theoratical Background
	2.1.1 Grid or graph
	2.1.2 Grid connectivity
	2.1.3 Static or dynamic model
	2.1.4 Single actor or multi actor

	2.2 Related Work
	2.2.1 Shortest path algorithms
	2.2.2 Graph generation
	2.2.3 Hierarchical path-finding
	2.2.4 Space subdivision for indoor navigation

	3 Methodology
	3.1 Input parameters
	3.2 Dilation
	3.3 Semantic labelling
	3.4 Gell generation
	3.5 Graph generation
	3.6 Path-finding
	3.6.1 Path-finding in graph
	3.6.2 Path-finding in cell

	3.7 Testing
	3.7.1 Input model
	3.7.2 Input actor
	3.7.3 Paths
	3.7.4 Procedure

	4 Implementation
	4.1 Development environment
	4.1.1 ParaView data types

	4.2 Data model
	4.3 Python scripts
	4.4 Implemented algorithms
	4.4.1 Flood-fill algorithm
	4.4.2 Distance transformation
	4.4.3 Watershed transformation
	4.4.4 Cell merging
	4.4.5 A* path-finding

	5 Results & Analysis
	5.1 Walking person
	5.1.1 Dilation of the model
	5.1.2 Semantic labelling
	5.1.3 Graph generation
	5.1.4 Path-finding

	5.2 Flying drone
	5.2.1 Dilation of the model
	5.2.2 Semantic labelling
	5.2.3 Graph generation
	5.2.4 Path-finding

	5.3 Analysis
	5.3.1 Graph generation
	5.3.2 Path-finding
	5.3.3 Path length
	5.3.4 Computation time

	6 Conclusion, discussion and future work
	6.1 Research questions
	6.2 Conclusion
	6.3 Discussion
	6.3.1 Semantics
	6.3.2 Shape of actor
	6.3.3 Applicability for different kind of actors

	6.4 Future work
	6.4.1 Supporting different notions of the best path
	6.4.2 Maintain preferred flying height
	6.4.3 Supporting elevators
	6.4.4 Testing for driving actor
	6.4.5 Path-smoothening

	A Path-finding results
	B Reflection

