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Abstract—Current vehicular Intrusion Detection and Preven-
tion Systems either incur high false-positive rates or do not
capture zero-day vulnerabilities, leading to safety-critical risks.
In addition, prevention is limited to few primitive options like
dropping network packets or extreme options, e.g., ECU Bus-
off state. To fill this gap, we introduce the concept of vehicular
Intrusion Resilience Systems (IRS) that ensures the resilience of
critical applications despite assumed faults or zero-day attacks,
as long as threat assumptions are met. IRS enables running a
vehicular application in a replicated way, i.e., as a Replicated State
Machine, over several ECUs, and then requiring the replicated
processes to reach a form of Byzantine agreement before changing
their local state. Our study rides the mutation of modern
vehicular environments, which are closing the gap between simple
and resource-constrained ’real-time and embedded systems”, and
complex and powerful ”information technology” ones. It shows
that current vehicle (e.g., Zonal) architectures and networks are
becoming plausible for such modular fault and intrusion toler-
ance solutions—deemed too heavy in the past. Our evaluation
on a simulated Automotive Ethernet network running two state-
of-the-art agreement protocols (Damysus and Hotstuff) shows
that the achieved latency and throughout are feasible for many
Automotive applications.

Index Terms—Intrusion resilience, fault masking, cybersecu-
rity, Byzantine agreement, automotive

I. INTRODUCTION

Three trends, Automation, Digitization, and Connectivity
are disrupting the ways modern vehicles are designed and
used. While these trends can bring notable features like safety,
efficiency, and convenience, they could turn into a curse if
security and resilience are left as afterthoughts. Unfortunately,
reality shows that safety and security incidents are doubling
annually during the past three years, causing up to half Trillion
dollars by 2024 due to cyberattacks [17], and leading to
millions of car recalls [6]. Such trend, if not contradicted,
jeopardizes the sought features and puts human safety at
risk [14]. We need novel approaches to improve vehicles’
resilience: ensuring that an acceptable service prevails, even in
uncertain environment conditions, or in the presence of faults
or attacks that might not have been predicted (a.k.a, 0-days).

This work is motivated by two main observations in the
automotive industry. The first is that the automation and
digitization trends increase the complexity of vehicles and the
likelihood of software faults and vulnerabilities. Digitization
suggests software-defined vehicle systems (compute nodes,
networks, and software) as a main enabler to automation, sup-
porting features like x-by-wire, Advanced Driver Assistance
Systems (ADAS), and Telematics. This involves a considerable
number of distributed software components running on over

3 Jérémie Decouchant
Delft University of Technology
j-decouchant@tudelft.nl

4™ Paulo Esteves-Verissimo
RC3, KAUST
paulo.verissimo@kaust.edu.sa

a hundred embedded compute devices, Electronic Control
Units (ECU), which communicate via in-vehicle networks,
e.g., CAN bus, Automotive Ethernet, FlexRay, etc. [18]. This
results in a complex system with an enormous number—
estimated to exceed 100 Millions—of Software Lines of
Code (SLoC) in mainstream vehicles [6], [20]. Experience
shows that human errors are positively correlated with both
system’s complexity and code footprint, and this increases the
likelihood of benign faults and intrusions.

The second observation is that connecting the vehicle to
the cyberspace is becoming a mainstream. Connectivity is
established in several networking forms like Vehicle to Ev-
erything (V2X), Cellular, 5G, Bluetooth, WIFI, GPS, or even
through hardware memory sticks or USB connectivity [7].
This raises substantial security challenges as it enlarges the
attack surface and entry points of the vehicle system, and
thus makes it highly prone to intrusions induced by (the well
experienced) attackers in the cyberspace, via exploiting the
existing vulnerabilities [16], [26].

The automotive community has been recently focusing on
consolidating the network security layer, leaving the higher
software layers insufficiently addressed. Of particular interest
is the introduction of new network security controls and tools
(e.g., Gateways, Firewalls), and hardening the security of exist-
ing networks, e.g., FlexRay, CAN XL, Automotive Ethernet
(100BASE-T1, 1000BASE-T1, and 10BASE-T1s), etc. [18].
This is also supported by using endpoint tools like Intrusion
Detection Systems (IDS) and Intrusion Prevention Systems
(IPS) [13]. Nevertheless, IDS systems of either “school”—
signature-based and anomaly-based IDS—have limitations in
the context of in-car systems, respectively blindness to zero-
day vulnerabilities, and being difficult to define a “normal
behavior”. Not to mention the problem of real-time reac-
tion/mitigation, which haunts IPS, and makes these ad-hoc
response techniques currently very limited (e.g., detaching
a vulnerable ECU from the network bus using the Bus-off
state [13], [19]). In addition, since the network PHY/MAC
protocols and tools (IPS/IDS) are application-agnostic, they
can neither detect the anomalies and intrusions occurring at
the upper layers nor stop their propagation to other ECUs.

In this paper, we introduce the concept of Intrusion Re-
silience Systems (IRS) for modern vehicles. IRS aims at
contributing to a timely revolution in current in-vehicle com-
puter and network architectures, by extending the security
and safety properties of component-based architectures (e.g.,
AUTOSAR). We propose SW-implemented fault and intru-
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sion tolerance, leveraging available sets of failure-independent
ECUs, e.g., multi-vendor Zonal ECUs with different AutoSAR
implementations. The approach is inline with the increasing
demand for automotive computing and network channel redun-
dancy, i.e., ASIL Decomposition, as part of the ISO 26262v.2
safety standard [11], [12].

IRS is the first system-level automotive component that
allows running multiple and possibly diverse replicas of a
state-full application process on different ECUs, forming a
resilient deterministic Replicated State Machine [25]. Replicas
are required to agree on a common state through a variant
of Byzantine Agreement [4] protocols (today widely used in
Blockchain) prior to changing their local state. As long as
the process is deterministic, agreement is reached despite
the existence of benign or intrusion faults in a minority
of replicas. Distributed applications like door locks, window
control, software Over-the-Air (OTA) update verification are
few examples on feasible applications on top of IRS.

IRS gives a quantum leap from IDS/IPS functions. First, it
can work at a higher level of abstraction, targeting application
software level anomalies and intrusions. Second, it follows
an error masking approach which virtually captures all faults,
even unknown ones, unlike IDS systems. Third, contrary to
IPS whose response often degrades or suspends some system
components or functions [13], [19], IRS makes it possible
to roughly maintain the application functionality and quality
under failures or attack.

In this work, we present a preliminary IRS Zonal architec-
ture, and we drive a logical reasoning for its feasibility, given
the recent technological advancements in modern vehicles.
To demonstrate the concept, we apply it to a multi-vendor
AutoSAR-based Zonal system, thus leveraging the diversity
thereof, to improve the independence of failures of ECUs—
which is a requirement for Byzantine agreement.

We conducted an empirical evaluation for two state-of-the-
art Byzantine agreement protocols, namely Damysus and Hot-
stuff —introduced in the Distributed Systems area. Our results
show that IRS is feasible for modern Automotive Ethernet,
since the achieved latency is less than 100ms for thousands
of simultaneous operations. We argue that if more lightweight
and efficient protocols are built especially for automotive, it
is even possible to support time-critical applications.

The rest of the paper is organized as follows. Section II
presents the concept and the architecture of IRS. Section III
analysis the feasibility conceptually, while Section IV shows
the empirical feasibility. The paper concludes in Section V.

II. INTRUSION RESILIENCE SYSTEM
A. Systems and Threat Models

Consider an in-vehicle system of N nodes. A node is
composed of an computing device, i.e., an ECU, a correspond-
ing software stack, and a (critical) soft real-time vehicular
application for simplicity. (This can be generalized to many
applications.) A node can communicate with its counterparts
through messaging via a vehicular network, either through
a direct link, a switch, or via a gateway. A sent message

is assumed to eventually reach its destination node despite
network failures or attacks (e.g., after re-transmissions). A
node has a unique identity in the system to verify message
authenticity and integrity using lightweight cryptography prim-
itives, like Elliptic Curve Cryptography (ECC). A node, or the
application therein, is assumed to be deterministic. However,
an application can fail by crashing or behave arbitrarily or ma-
liciously when subject to an intrusion. We assume that at most
a fraction F' of N nodes can fail at a time, which implicitly
assumes some independence of failures between nodes. This
can be achieved by employing ECUs from diverse vendors,
different libraries, software stack, and implementation, etc.,
which is not uncommon in the automotive setting. Finally,
we assume the existence of a technique to detect Denial of
Service (DoS) jamming attack in multi-hop bus networks like
CAN and 10BASE-T1s [13], [18].

B. Architecture and Concept

a) Concept: The IRS concept is based on the idea of
intrusion error masking rather than detection and prevention
as in IPS/IDS. By running multiple (/V) replicas/versions of
an application and comparing their outputs on different nodes
(ECUys), it is possible to mask any error caused by accidental
or malicious faults occurring on F' faulty nodes, by adopting
the output state of an uninfected majority (N — F'). This
is possible through running a Byzantine agreement protocol
across application replicas. In this approach, the state of a
critical application can only be modified upon the agreement of
at least IV — F’ counterparts. This exploits the current replicated
vehicle functionalities, often used for coordinated actuation
and notification, to improve intrusion resilience.

b) Architecture: We present the IRS system view archi-
tecture in Fig. 1, A. The System View shows a number N of
IRS nodes (N = 4, in this case) replicated over N ECUs. For
clarity, we use Zonal Control Units (ZCU) as ECUs to host
different applications (e.g., door locks and window control)
on the same ECU. On the other hand, Fig. 1, B presents
the Node View at one of the nodes (i.e., node 2) describing
its components and relation within the Hardware/Software
(HW/SW) stack.

In particular, the IRS is a system component, i.e., a module
or service, used by those critical applications that require
intrusion resilience. N versions of the application are employed
over N different nodes, making use of the IRS module. The
core module of the IRS seeks to ensure agreement on requests
issued by the application via an IRS proxy. The proxy encapsu-
lates the authentication, peer information, and the function to
be made resilient through IRS in an application-agnostic way.
The agreement module runs the main Byzantine agreement
protocol to ensure (1) fotal ordering on the application state
and (2) output validation (i.e., comparison of results from
counterpart nodes on other ECUs). The agreement module
benefits from three underlying modules, namely, Discovery,
Broadcast, and Overlay to facilitate the membership manage-
ment and networking with the peer nodes as a separate layer.
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Fig. 1: Intrusion Resilience System (IRS) Architecture.

Note that IRS can make use of these modules if made available
by other frameworks, e.g., in the AutoSAR architecture.

IRS offers modular and incremental fault and intrusion
tolerance [21]. Not all node applications—or even functions
of an application—are supposed to use the IRS, as they might
not be critical, e.g., the case of App4 in the figure. Likewise,
applications using IRS may resort to different models of
replication (from crash to Byzantine fault tolerance), as well as
different sizes of tolerance quorums (#(IN)). For instance, an
application that controls the remote door locks is much more
critical than the mirror tilting application. Similarly, an Over-
the-Air (OTA) update application is highly critical compared
to infotainment social network (e.g., chatting) update.

IRS runs on top of other basic services and abstractions,
such as those defined in the AutoSAR standard [1]. This
way, it facilitates the integration of resilience in the existing
component-based automotive architecture philosophy. At this
layer, other tools like IDS, IPS may operate as well. Finally,
the bottom layer encapsulates the PHY network protocols (e.g.,
CAN, FlexRay, Automotive Ethernet) typically managed by
the physical controller. ECUs are connected via a network that
could be multidrop, node-to-node, or switch-based network as
long messages sent by one node are eventually delivered at
the destination node.

c) Byzantine Agreement: IRS encapsulates a distributed
voting logic using an intrusion tolerant protocol category based
on the concept of Byzantine Agreement/Consensus. Initial
practical protocols [4] would require N = 3F + 1, had
quadratic (O(n?)) messaging complexity, and were computa-
tionally demanding due to the heavy use of cryptography. The

following generation was architecturally hybrid [3], featuring
the use of trusted-trustworthy components [8], [27], dramati-
cally reducing complexity, and requiring a smaller quorum of
N = 2F + 1. Later, the advent of Blockchain inspired yet
another generation of intrusion tolerant protocols, becoming
even more efficient and lightweight [9]. The current state of
affairs makes them feasible for environments with moderate
capacities like modern vehicles (more on this in the next
section). Describing a specific protocol is out of the scope
of this position paper; however, we provide a brief overview
of two recent protocols, namely Hotstuff and Damysus [9],
[28], that are used in the evaluation of IRS in Section IV.

While the above protocols assume a partial-synchrony net-
work model, special real-time protocols are needed for bus
networks like FlexRay and CAN. A good start is validating the
two variants of Byzantine Resilient Real-Time protocols like
PISTIS [15]. Unlike other intrusion tolerant protocols, which
are non-synchronous, these real-time protocols are suited for
hard or soft real-time environments as they have Timeliness
properties to guarantee delivery/execution given a defined
probabilistic time-bound.

IITI. FEASIBILITY DISCUSSION

While the need for building resilient systems is very well
understood, applying redundancy-based solutions like IRS
may look infeasible for in-vehicular systems. Nevertheless, we
argue that this is no longer the case as the three trends automa-
tion, digitization, and connectivity have changed modern ve-
hicular systems dramatically. In this section, we try to alleviate
these concerns by driving a conceptual analysis demonstrating
the potential feasibility of IRS to modern vehicles.

A. Distributed and Redundant Applications

The current application landscape in automotive is very rich
and complex, spanning ADAS & Safety Systems, Infotain-
ment, Body Electronics, Powertrain, and Telematics. At a fine-
grained level, these applications incur millions of functionali-
ties. For instance, a Volvo modern vehicle “contains 10 million
conditional statements as well as 3 million functions, which
are invoked some 30 million places in the source code” [6].
Many of these applications are becoming naturally distributed
across the vehicle to manage the dependencies between func-
tionalities and to synchronize the similar ones across the
vehicle. For instance, a vehicle may have applications running
four steering, braking, tyre pressure processes; four/five door
lock and window processes; four light sets of processes, two
mirror processes, several airbag processes, etc. Nevertheless,
these processes are currently only synchronized in a passive
way, i.e., propagating notifications, where “decisions”, e.g.,
changing an actuator state, are only made locally. Given
this, the overhead of enforcing distributed control through
agreement protocols prior to changing the application state
would be reasonably low since replicas are already being used.
This is sound for safety/security critical applications that are
soft-real time, in particular, like door lock/unlock, window
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open/close, and OTA update validation by different processes
on different ECUs.

On the other hand, using redundancy to boost vehicle
safety is becoming increasingly required [12]. Indeed, the
ASIL Decomposition mechanism drafted in the ISO 26262v.2
automotive safety standard [11], [12] suggests using redundant
computing nodes and network channels to improve safety and
reduce the costs (e.g., by using redundant cheap nodes).

B. Distributed Architecture

The vehicular architecture has become heavily distributed
as more ECUs are being added over time to cope with the
application demands. Considering the evolution of distributed
architectures [20], applications are becoming more aggregated
in larger ECUs: (1) Domain-based ones aggregate applications
with similar functionalities; (2) Zonal-based ones aggregate
based on the vehicle zone, e.g., a Door Control Unit hosts
many applications (like door locks, motors, windows, theme
lights) at the door proximity; and (3) Centralized. The for-
mer two are considered very convenient environments to run
replicated protocols as the agreement protocol suggested in
IRS. In addition, multiple aggregated applications can directly
benefit from the IRS being a middleware/service. Indeed, while
the replication cost has always been an adoption barrier in
the IT world, the costs (surprisingly) look lower in vehicular
architectures being natively distributed. The latter centralized
architecture is getting more traction recently. We do not
recommend this architecture from a security perspective, being
a single point of failure/attack. Nevertheless, transforming the
central controller into a distributed cluster could be a trade-off
solution to mitigate this risk significantly.

C. Efficient and Secure Networks

Vehicular networks, especially the CAN bus, have always
been considered slow and the weakest spot in a vehicle. In
particular, the classical baud rate of CAN bus cannot be higher
than 1Mbps, and the payload is only 8 bytes per packet [18].
This prohibits an IRS-like solution where the agreement
meta-data size (identifiers, signatures, cryptographic digests,
clock) is high. On the other hand, CAN frames lack the
sender/receiver identifiers which makes authentication and
integrity a non-trivial task. Nevertheless, as shown in the next
table, the new versions of CAN, i.e., CAN FD and XL, have
larger frame’s payload size of 64B and 2KB, and baud rate
to 2Mbps and 10Mbps, respectively. These are considered
acceptable for soft real-time applications, e.g., like door locks
and OTA updates, as response time is not critical. Furthermore,
novel networks like Time-Triggered Ethernet (SAE AS6802),
a.k.a., Automotive Ethernet and FlexRay have native security
support and an order of magnitude higher bit rate. We believe
that these advancements mitigate the concerns regarding the
feasibility of IRS to such environment.

D. Decent HW/SW Stack

It can be assumed that running IRS agreement protocols
in a constrained device (like a micro-controller-based ECU)

TABLE I: Modern automotive networking capabilities.

Network MAX Baud rate Max Frame size
CAN-FD 8Mbps 64Bytes
CAN-XL 10Mbps 2048Bytes
FlexRay 10Mbps 254Bytes
10BASE-T1 10Mbps 1500Bytes
100BASE-T1 100Mbps 1500Bytes
1000BASE-T1 1000Mbps 1500Bytes

and networks would be an overkill due to the heavy use of
cryptography. Despite being challenging, modern automotive
ECUs (microprocessor-based and multi-core) are getting high
computational and storage capacities that could be compared
to a Raspberry Pi or a mobile phone!. This is correct, in
particular, for main ECUs like domain and zone controllers,
gateways, telecommunication units, etc. On top of this hard-
ware, the software stack [23] is also getting more mature while
we observe more UNIX, POSIX, and Linux-based RTOS/OS,
e.g., AGL, RTLinux, QNX, and Android Auto. This also
means that a lot of IT/IoT libraries could now be adapted
or used in automotive. New architectures are widely adopting
the virtualization hypervisor technology, which facilitates ap-
plication deployments on an ECU, and thus, replication in our
case [23]. Therefore, the modern HW/SW stack of modern
vehicles is decent enough to support a solution like IRS.

E. Diversity

Independence of failures between replicas (i.e., ECU HW
and SW) is a key challenge for the effectiveness of any
Byzantine Agreement based system like IRS [2], [5], [10],
[22]. The reason is that without avoiding common-mode
vulnerabilities or faults, many replicas can fail at the same
time, thus violating the assumption of the correctness of a
majority of replicas (N-f). While N-version programming is
deemed an intuitive, but costly, approach to build software with
independent implementations that have the same specification,
it has been shown that diversifying the components, e.g., the
operating systems or virtual machines, of the application’s
underlying layers is very effective to improve independence
of failures [10], [22].

Leveraging this, we argue that diversity in automotive is
less challenging than IT systems because of two reasons. First,
the automotive SW/HW supply chain is big and multi-vendor,
which provides a rich source of off-the-shelf black-box
solutions to build diversity. For instance, it is not uncommon
to have ECUs or MCUs of the same specifications, diverse
software libraries, operating systems and hypervisors from
many vendors. These are often used as underlying layers for
applications to simplify their design and reduce the likelihood
of leaving bugs or vulnerabilities. For a more conservative
approach, the critical functions of an application can be
chosen to run over IRS, which may optionally require only
these functions to be implemented by different teams, e.g.,
using N-version programming. The second reasons is referred
to the extensive use of standardized solutions in automotive.

Thttps://www.emobility-engineering.com/focus-ecus/
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Fig. 2: A zonal architecture of four Zonal Control Unit
replicas with diverse AutoSAR implementations. The figure
demonstrates how IRS can be integrated with AutoSAR to
ensure intrusion resilience and leverage the AutoSAR standard
to improve independence of failures between replicas.

By design, this facilitates the integration of these modules as
long as the APIs are defined and the specifications respected.
We explain this by providing a case study using the AutoSAR
standard [1].

Case Study on AutoSAR. We provide a case study showing
how to leverage the AutoSAR standard [1] to build diversity
with intrusion resilience. In Fig. 2, we provide a possible
integration of the AutoSAR architecture with IRS (depicted in
a generic way in Fig. 1). Particularly, we build a zonal architec-
ture of four Zonal Control Unit (ZCU) replicas, Zone 1-4, that
use different implementations of the AutoSAR specification
at all layers: from the Microcontroller Abstraction Layer at
the bottom through the Runtime Environment (a hypervisor)
at the top. We select four different implementations (out of
many [24]) that are currently provided by well-known vendors
following the AutoSAR standard. Each implementation is
typically composed of up to more than 100 modules. This can
generate a high level of diversity as it is less likely for one
module to fail at the same time as its counterpart in the other
ZCU replicas. Each Runtime Environment provides platform-
agnostic access to the different modules and capabilities in
the ECU Microcontroller Abstraction, ECU Abstraction and
Services layers. The services layer is suggested as a good fit
where the IRS modules are included. The same applications
can run on top of the four ZCUs, whereas their agreement is
ensured by the IRS modules and protocols. Notice that one can
yet build more diversity by choosing different microcontrollers
from different vendors at the HW layer as well.

IV. EVALUATION

The aim of this section is to drive an empirical evaluation to
assess the feasibility of IRS to automotive networks and appli-

cation requirements, i.e., throughout and latency. In particular,
we evaluate the Byzantine agreement protocol, which is the
most significant component of the IRS. Our goal is to show
that the overhead of IRS is acceptable for some automotive
applications even with current protocols, which are tailored
for the IT heavyweight setting.

A. Brief summary on the protocols

We consider two Byzantine agreement protocols as a base-
line for our performance evaluation: HotStuff and Damysus.
The former is chosen being a state-of-the-art fast protocol.
The latter represents another class of protocols that can
take advantage of hardware hybrids, e.g., Hardware Secure
Modules (HSM), common in modern ECU, to reduce the
number of replicas needed and improve the performance.
We concisely describe the main relevant features of these
protocols, necessary to understand the evaluation. We refer
the interested readers to learn about the protocols in [9], [28].

HotStuff [28] is a recent protocol optimized for high
throughput. HotStuff’s communication complexity is linear
with the number of replicas/nodes, including special ones
called leaders. HotStuff requires N > 3f+1 nodes to tolerate
f Byzantine faults. Nodes build a chain of blocks (i.e., can be
seen as batches) by voting for extensions, which are proposed
by the leaders of views (i.e., successive rounds).

Damysus [9] is a hybrid BFT protocol that builds on Hot-
Stuff and leverages two trusted components, namely a checker
and an accumulator. These can easily be implemented on
modern trusted execution environments (TEE), because they
only assume classical cryptographic functionalities and some
memory. Therefore, these can be exploited in modern ECUs
that often support HSM. The checker prevents nodes from
equivocating, while the accumulator forces a leader to extend
the most recent block. Thanks to these trusted components,
Damysus uses only N > 2f 4 1 replicas, and requires one
communication phase less than HotStuff.

B. Experimental Setting

We evaluate here a version of basic HotStuff implemented
in C++. Replicas use ECDSA signatures with prime256vi
elliptic curves (available in OpenSSL), and are connected using
the Salticidae library. The protocol is deployed within Docker
containers on a single machine equipped with an Intel Core
15-9500 CPU (3.00 GHz) with 6 cores and 32 GB of RAM.
The network latency is enforced using netem. The number of
faults is set to be 1 in all experiments, so a total of 4 replicas,
which are all directly connected with each other (i.e., no
switched topology is used). The bandwidth varies between 10,
100, and 1000 Mbps, simulating the bandwidth of 10BASE-
T1, 100BASE-T1, and 1000BASE-T1 Automotive Ethernet
networks [18]. In all experiments, we fix the network latency
to 0.4 ms, which is typical for Automotive Ethernet [29]. We
only consider Automotive Ethernet for three reasons: (1) it has
high bandwidth that is suitable for heavy-weight agreement
protocols; (2) it has similar synchrony model as the protocols
we evaluate; and (3) it is believed that Ethernet will replace
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and link latency 400us.

most in-vehicle networks in the near future. Our measurements
focus on the latency and scalability of the protocols. The first
measures the time for an ECU operation to complete, whereas
the scalability shows the throughput limit of the protocol
where latency remains acceptable under higher payloads.

C. Latency

In this experiment, we measure the latency of HotStuff’s and
Damysus’s while varying the payload size, and blocks contain
a single transaction with payload of size 8, 128, or 1024 Bytes
(B). In addition to the payload, a transaction contains 2 x 4 B
for metadata (a client id, and a transaction id), as well as
the hash value of the previous block of size 32 B, thereby
adding 40 B to each transaction in addition to its payload.
Therefore, given the above payloads, each transaction is of size
48, 168, or 1064 B. Each experiment presents the average of
10 repetitions with 30 views each (so a total of 300 instances).

Fig. 3 presents HotStuff’s and Damysus’s latencies depend-
ing on the bandwidth of the various Automotive Ethernet (10,
100 or 1000 Mbps) and depending on the payload size (8, 128
or 1024 B). In this scenario, we evaluate the protocols’ la-
tency under minimal workload to measure the lowest possible
latency. Our measurements indicate that a request can always
be treated in between 8 and 12 ms for Hotstuff and between
4 and 6 ms for Damysus, with a bandwidth of 10 Mbps.
Increasing the Ethernet bandwidth decreases the protocols’
latency. Requests are respectively processed in less than 5.1
and 4.51 ms for Hotstuff, with a 100 Mbps and 1000 Mbps.
Damysus’s latency is as low as 3 ms in both 100BASE-T1 and
1000BASE-T1. We expected Damysus to have lower latencies
because the use of HSM abstractions reduces the message
exchange round-trips.

These results are considered very acceptable latency num-
bers for many Body, Chassis, and Power-terrain applications.
Larger requests should logically increase HotStuff’s latency,
which is the case for our experiments with 100 Mbps; however,
this effect is difficult to observe under a low workload and high
bandwidths.

D. Scalability

We then study the influence of the system’s work-
load on HotStuff and Damysus’ throughput and latency in
Fig. 4a, Fig. 4b and Fig. 4c, corresponding to 10BASE-
T1, 100BASE-T1, and 1000BASE-T1, respectively. In these
experiments, we increase the rate with which clients sub-
mit requests; hence the curve points in the figures corre-
spond to the delays between issuing subsequent operations:
900, 700, 500, 100, 50, 10, 5,0 microseconds. These rates can
represent the load on the IRS, i.e., where multiple applications
are running simultaneously. In addition, running two clients
considers the cases of concurrent views—which could incur
some race conditions. Blocks/batches are composed of 400
transactions/operations, with 0 B payloads (again, plus 40 B
for the above information). In all experiments, the protocol’s
throughput and latency increase with the request rates until
the system saturates. Under perfect settings, it is expected
that the protocol latency increases exponentially and that the
throughput remains constant.

HotStuff’s maximum throughput with 10, 100 and
1,000 Mbps networks is roughly 7, 14 and 16 Kops/sec,
respectively. More interestingly, it scales up to 4, 6 and
8 Kops/sec while acheiving latency less than 100ms. In gen-
eral, under the same settings, Damysus’ throughput is higher
at around 11, 17 and 17 Kops/sec; and 9, 18, and more (the
network is not saturated here), while keeping a latency less
than 100ms. These are very promising results, showing that the
network serves thousands simultaneous critical applications
like Door locks, OTA firmware/software update, etc. Both
throughput and latency improvements are expected because
Damysus has one communication phase less than HotStuff.

These results indicate that using an IRS for vehicles is
possible with the recent advancements in vehicle networks
and controller capabilities. This encourages more research
on devising Byzantine agreement protocol variants that are
more automotive-friendly. A promising directions seems tak-
ing advantage of the HSM hybrid to build more efficient
and lightweight protocols for Automotive Ethernet. Other
protocols may also be built for multi-hop networks like CAN-
XL and FlexRay. This requires more work on the network
synchronization modeling, that may benefit from real-time
Byzantine broadcast protocols [15] that ensure a notion of
timelines, useful for safety-critical applications.

V. CONCLUSION

We introduced the concept of Intrusion Resilience Systems
(IRS) for modern vehicles. The aim is to bridge the gap
left in security-by-design and intrusion detection and pre-
vention systems at two levels: first, it is tailored for the
software/application layer; second, it tolerates faults and O-
day attacks to roughly maintain the same service quality even
if intrusions could not be profiled. IRS uses the State Ma-
chine Replication approach in which the replicated application
can only change the local state upon Byzantine agreement
with its counterpart nodes. The paper proposed a preliminary
architecture and an analytic feasibility study that highlights
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the fact that modern vehicular technologies are closing the

gap

with IT/IoT technologies, which makes them plausible

environments to adopt a replicated solution as IRS. The
results of our empirical evaluation using two state-of-the-art
protocols, Damysus and Hotstuff, shows that IRS is feasible
for modern Automotive Ethernet, since the achieved latency is

less

than 100ms for thousands of simultaneous operations. We

invite researchers and practitioners to investigate this direction
by studying the tradeoffs of agreement protocols, architectures,
diversity, application space, etc.
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