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ABSTRACT

In this research, a stochastic model for attenuation in Computer Tomography is developed. This model gives
rise to the idea of using path dependent variance of the measurements (instead of constant variance) to im-
prove image reconstruction. The distribution of the measurements in this model is determined and a differ-
ence with the current literature is found, which leads to a refinement of the noise or measurement errors in the
model.

To use the information about the variance of the measurements in the image reconstruction, a numerical
model is considered in which a discretization is made of the tomographic image that has to be reconstructed,
i.e., the unknown attenuation coefficients. Incorporating weights to reflect the relation between the area that
is traversed by an X-ray beam and the entire area of a pixel in the grid results in a linear system of equations.
Because the measurements are not exact, noise is added to this linear system of equations, which leads to a
perturbed problem.
A transformation of the measurements is needed to obtain the desired linear system of equations. The Delta
Method is used for this purpose. Another method used for the transformation of stochastic models, variance
stabilization, is briefly considered.

The log-likelihood of the unknown attenuation coefficients is determined under different assumptions for the
mean and variance of the measurements. A connection is made between the log-likelihood and the (weighted)
Least-Squares Estimation, leading to different ideas for the adjustment of the current reconstruction algorithm.

Several new reconstruction algorithms are developed to improve the image reconstruction by using the path
dependent variance of the noise. Most of these new algorithms result in a better reconstruction than the current
algorithm, but a problem is found when the convergence of the iterative algorithms is considered.
In addition to the relative error, the log-likelihood function and the weighted sum of squared errors are used
to investigate the convergence of the iterative reconstruction algorithms. Relaxation is incorporated into the
iterative reconstruction algorithm to improve the convergence. A slightly better convergence is obtained, but
progress could be made if a convergent iterative algorithm is found.
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1
INTRODUCTION

The goal of this bachelor project is to use the path dependent variance of the measurements to improve the im-
age reconstruction. In the current algorithm used for the reconstruction, the variance of the errors is assumed
to be constant. This algorithm will be adapted to a fixed point algorithm, which uses the path dependent vari-
ance and hopefully results in a more accurate image reconstruction.

1.1. RESEARCH OBJECTIVES
In order to reach the goal of this bachelor project, more knowledge is obtained about Computer Tomography
and the underlying mathematical model. It is made clear what kind of ‘noise’ we are dealing with during the
image reconstruction. A stochastic model which incorporates this noise is constructed. From this model, more
information about the ‘noise’ or measurement errors is obtained. This information is used to improve the im-
age reconstruction.

To use this information about the measurement errors, a connection should be made between the stochastic
model and the numerical model. The Delta Method could be used to this end.
For a more accurate image reconstruction, it has to be determined how the current algorithm can be changed
to take information about the measurement errors into account. The Maximum-Likelihood Estimation (espe-
cially the log-likelihood function) and the Least-Squares Estimation could be deployed to obtain more insight
in the possible improvements.

1.2. STRUCTURE OF THE REPORT
Firstly, an introduction to Computer Tomography is given in Chapter 2. We will give some background infor-
mation about Computer Tomography and the numerical model that is currently used. Also some remarks are
made on measurement errors, linking the numerical model to the stochastic model.

Subsequently, a stochastic model for attenuation will be derived in Chapter 3. This model will be built up from
scratch and will give rise to the use of the path dependent variance of the measurements. We will also compare
this result with the current literature.
To link the stochastic model to the numerical model as seen in Chapter 2, a transformation of the data is
needed. What the consequences of this transformation are for the distribution of the measurements will be-
come clear by using the Delta Method. At the end of this chapter, we will make some remarks about variance
stabilization.

In Chapter 4 the log-likelihood of the attenuation coefficients will be derived. The relation between the Maximum-
Likelihood and Least-Squares Estimation will be illustrated under different assumptions for the variance of the
measurements.
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2 1. INTRODUCTION

Next, a brief description is given in Chapter 5 of the numerical methods we will use. We will explain what kind
of problem we are dealing with and why we use certain functions to solve this problem. Finally we will give a
description of the algorithms we have used for the image reconstruction.

Thereafter, we will look in Chapter 6 at the results of the image reconstruction and we will compare the results
with these of the current reconstruction algorithm.

Finally, conclusions are drawn and stated in Chapter 7. A summary of all results is given to get a overview of this
bachelor project. In Chapter 8 we will argue which improvements could have been made, but were too much
for the scope of this project.

1.3. NOTATION
For clarification, a list of mathematical notations used in this report can be found in Table 1.1.

Mathematical Object Notation Example
Vector Bold or bold Greek x, θ
Matrix Bold capital A
Transpose Superscript T AT

Random variable Capital Yb , Sb

Observed value (of a random variable) Lowercase yb , sb

Absolute value Single vertical line | · |
Euclidean norm (2-norm) Double vertical line || · ||

Table 1.1: Notations used in report.

An exception to this notation is made for the measurement errors εi in the numerical model. These εi ’s are
random variables, but will not be written as uppercase.



2
WHAT IS COMPUTER TOMOGRAPHY?

2.1. INTRODUCTION TO COMPUTER TOMOGRAPHY
Computer Tomography (CT) is an imaging method that uses X-rays to create tomographic images reflecting
the amount of X-ray attenuation in some part of the human body. To this end the body part of interest is di-
vided into a large number of transverse sections and for each section a two-dimensional image of the X-ray
attenuation is constructed. Combining all these two-dimensional images belonging to the transverse sections
gives a three-dimensional representation of the X-ray attenuation of the body part and hence of the soft tissue
structure.

A series of X-ray attenuation measurements is obtained at different angles around the body part of interest,
by means of radiation detectors. From these data, the two-dimensional CT-images can be reconstructed by
a computer algorithm. These measurements can contain noise and this should be taken into account in the
image reconstruction. [Ter-Pogossian, 1977]

2.2. TRANSMISSION COMPUTED TOMOGRAPHY
In transmission computed tomography, a beam of X-ray radiation passes through a patient and is detected on
the other side. The measurements are obtained at different angles and can be used to construct a CT-image.
This sectional image therefore represents the distribution of the attenuation of X-rays in the examined tissue.

An X-ray tube of conventional design is energized and thus produces multiple beams of radiation. This fan-
shaped collection of X-ray beams passes through the patient and is detected by a scintillation detector. The
latter is connected to an electronic circuit. The X-ray tube and the detector are always placed opposite of each
other and thus the body part of interest is scanned in a linear translational motion, see Figure 2.1. After one
scan, the X-ray tube and the detector are rotated by 1° about an axis perpendicular to the section to be im-
aged, and another scan is performed. Typically, this procedure is repeated 180 times such that data is collected
for a total of 180°. The measured data consists of a series of profiles of the attenuation of X-rays in the tissue
traversed at the 180 different angles. From these profiles a CT-image can be reconstructed by a computer algo-
rithm.

Transmission CT offers great advantages in diagnostic radiology: not only offers CT the possibility to construct
a three-dimensional image for radiological examinations, but it also provides a quantitatively accurate distri-
bution of X-ray attenuation in the section imaged. [Ter-Pogossian, 1977]
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4 2. WHAT IS COMPUTER TOMOGRAPHY?

Figure 2.1: Schematic representation of a transmission CT-scan. [CyberPhysics]

2.3. NUMERICAL MODEL
To work with the obtained measurements of the X-ray attenuations, the following numerical model is used:

First of all, a discretization is made of the sectional image where the fan-shaped collection of X-ray beams is
passing through. The measurements, θi , with i = {1,2, . . . , M }, are discretized due to the design of the detector
array based on a set of discrete detector elements. The tomographic image that has to be reconstructed consists
of a discrete array of unknown variables, φ j , with j = {1,2, . . . , N }, i.e., the unknown attenuation coefficients.
This leads to the following situation for N = 9 and motivates the set-up of a corresponding system of linear
equations:
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Figure 2.2: A grid for algebraic reconstruction, with N = 9 pixels. If the grid that is to be reconstructed is finer, more projections have to be
measured. [Buzug, 2008]

Looking at the diagonal travelling rays, a difference is apparent compared with the horizontal and vertical trav-
elling rays: the path length through each element of the object is obviously different. This has to be taken into
account in the linear system of equations, so a system of linear equations as stated in Figure 2.2 is not accurate.

Assume that the transmitted X-ray beam has a certain width ∆ξ. Only a part of each pixel that has to be recon-
structed is passed through by the beam. Therefore, weights ai j have to be introduced that reflect the relation
between the area that is illuminated by the beam and the entire area of the pixel:

ai j = illuminated area of pixel j by ray i

total area of pixel j

Clearly, 0 ≤ ai j ≤ 1. The next figure is added to clarify the introduced variables:

Figure 2.3: The X-ray beam of width ∆ξ does not traverse all pixels of size b2 equally. Therefore, the area of the pixel that has actually been
passed through must be included into the linear system of equations as a weight. [Buzug, 2008]
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This leads to the following linear system of equations:

N∑
j=1

ai jφ j = θi for all X-ray beams i ∈ {1, . . . , M }

Writing all measurements as column vector

θ = (θ1, . . . ,θM )T ,

writing the (unknown) attenuation values that are to be reconstructed as a column vector as well

φ= (φ1, . . . ,φN )T ,

and collecting the weights in an M ×N matrix

A =


a11 a12 . . . a1N

a21 a22 . . . a2N
...

...
. . .

...
aM1 aM2 . . . aM N

 ,

the system of equations becomes
Aφ= θ

where A in CT often is referred to as the system matrix. A is normally large, sparse and not square. [Buzug, 2008]

2.3.1. MEASUREMENT ERRORS
The measurements, θi , with i = {1,2, . . . , M }, consist of the loss of intensity of the X-rays recorded by the detec-
tor. Let I0 denote the source intensity, let Ii denote the intensity of the i th X-ray after having passed through
the body part of interest, and let φ(x) denote the linear attenuation coefficient at x ∈R2.
Then [Hansen and Saxild-Hansen, 2012] claims that the line integral of φ(x) along the j th ray satisfies

θi =
∫

ray i
φ(x) d`= log

{
I0

Ii

}
for i = {1,2, . . . , M }.

However, these measurements are not exact and can obtain some noise which is not taken into account. Hence,
a more realistic model of the measurements could be

θi +εi =
∫

ray i
φ(x) d`+εi = log

{
I0

Ii

}
for i = {1,2, . . . , M },

where εi represents the measurement error in the i th measurement.

Using the discretization described above, we obtain for the i th X-ray

θi +εi =
∫

ray i
φ(x) d`+εi ≈

N∑
j=1

ai jφ j +εi = log

{
I0

Ii

}
for i = {1,2, . . . , M }.

Defining ψi = log
{

I0
Ii

}
for i = {1,2, . . . , M } and combining all M measurements, the linear system of equations

becomes
Aφ+ε=ψ.

The question, now, arises: if more information about ε is available, could this improve the image reconstruction
in the presence of noise? Therefore, a stochastic model for attenuation will be constructed in the next chapter.



3
STOCHASTIC MODEL FOR ATTENUATION

3.1. PROBLEM
During a CT-scan the transmitted X-rays will be attenuated, due to the density of the tissue they are travelling
through. This attenuation is desirable, because it gives certain information about the path the X-rays have
traveled. But the attenuation can also contribute to noise in the model. When an X-ray beam is transmitted,
the X-ray photons decay with a certain probability in the traversed tissue and hence the measurements can
contain some noise.

In numerical mathematics this noise is assumed to be standard normally distributed, but the reason why this
assumption is made is questionable. In this chapter we will construct a stochastic model for the attenuation
and hence for the noise.

3.2. FREQUENTLY USED VARIABLES AND TERMS
In this chapter, lots of variables are used in combination with terminology that might not be intuitively clear to
the reader. Therefore, the most frequently used variables and terms are listed in this section.

Term Corresponding variable Explanation

Attenuation - Loss of intensity of an X-ray beam.

Attenuation coefficient φ j Discretization of the attenuation function φ(x),

with j = {1,2, . . . , N }.

Attenuation function φ(x) Function for x ∈R2, defining the attenuation in

each position x.

Bernoulli distribution Bernoulli (p) Discrete probability distribution of a random variable

which takes value 1 with probability p and value 0

with probability 1−p.

Binomial distribution Binomial (n, p) Discrete probability distribution with n independent

trials, each of which yielding success with probability
p.

Box - Grid used to discretize the density function φb(x)

Cell - Grid used to discretize the attenuation function φ(x).

Density function φb(x) Function for x ∈R on the path that the X-ray photons

in beam b travel, defining the attenuation in x for

beam b = {1,2, . . . , M }.

7



8 3. STOCHASTIC MODEL FOR ATTENUATION

Normal distribution Normal (µ,σ2 ) Continuous probability distribution of a random

variable with expected value µ and variance σ2.

X-ray beam b Transmitted beam of X-rays over one angle.

X-ray photon j Elementary particle in an X-ray.

Table 3.1: Frequently used terms with their corresponding variable and explanation.

Variable Explanation

M Total number of X-ray beams transmitted during a CT-scan.

m Number of X-ray photons in each beam b = {1,2, . . . , M }. Because I0 is constant for each beam b,

we assume that m is also the same in each beam.

N Number of cells used to discretize the attenuation function φ(x).

nb Number of boxes used to discretize the path that the X-ray photons in beam b travel.

lb Length of the path that the X-ray photons in beam b travel. Because we are dealing with fan-

beam tomography, the path length is different for each beam b.

pi Probability that an X-ray photon survives in box i .

D j Random variable; detection variable for X-ray photon j .

Ib Measured intensity of the transmitted X-ray beam b after having passed through the body part

of interest.

I0 Source intensity of the transmitted X-ray beams b = {1,2, . . . , M }.

Sb Random variable; number of detections from beam b.

sb Observed value of the random variable Sb .

Yb Random variable; proportion of detected photons in beam b.

yb Observed value of the random variable Yb .

θb The line integral
∫ lb

0 φb(x) dx for beam b (exact measurement).

ψb Measurement of log
{

I0
Ib

}
for beam b (measurement with noise).

Table 3.2: Frequently used variables with their explanation.

3.3. DERIVATION OF THE MODEL
Consider an X-ray beam b, with b = {1,2, . . . , M }. First of all, the path that the X-ray photons in beam b travel
is discretized by a grid of nb boxes. Note that this is not the grid used to discretize the attenuation coefficients
as in Figure 2.3. As a start only one X-ray photon will be considered. Figure 3.1 illustrates the idea. To obtain a
realistic model, the number of boxes nb should be large. Also, because an X-ray photon is incredibly small, the
illustrated square boxes will be small and could almost be seen as a line.
Let pi be the probability that an X-ray photon survives in box i , with i = {1,2, . . . ,nb}. Then the probability of
decay of the X-ray photon in box i is 1−pi . This decay will be called an attenuation event. Let lb be the length
of the path that the X-ray photon in beam b travels (and thus the length of all boxes together). Assume that all
the attenuation events are independent.

What is the probability that an X-ray photon does not decay anywhere on its path and thus will be detected?

Define the detection variable D j as:

D j =
{

1 if detection takes place of the j th X-ray photon

0 otherwise

Thus the probability that the j th X-ray photon in beam b will be detected is:

P (D j = 1) = p1 ·p2 · · ·pnb =
nb∏

i=1
pi
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Figure 3.1: Discretisation of a path travelled by a transmitted X-ray photon.

How can the probability pi be defined? pi is dependent on the length of each box it travels and of the density
of the tissue in these boxes.

Letφ : S →R be the attenuation function of the tissue, where S ⊂R2 is the whole two-dimensional section of the
body part of interest. Let φb : [0, lb] →R be the density function of the tissue traversed by an X-ray photon from
beam b. To make a connection between these two functions, we have to parametrize beam b. Let xstart ∈R2 be
the first point on the path that an X-ray photon in beam b travels and let xend ∈R2 be the last point on the path.
Let x ∈ R2 be an arbitrary point on the path that an X-ray photon in beam b travels. Then the corresponding
parametrisation is:

x = xstart + λ

lb
(xend −xstart) for some λ ∈ [0, lb].

Hence, a connection can be made between the functions φ and φb :

φb(λ) =φ
(

xstart + λ

lb
(xend −xstart)

)
A large value of φb(x) should indicate a large density at x. Assume that φb(x) is constant in each box for a grid
small enough, so for each x in box i the value of φb(x) is the same.

To illustrate these definitions, take a look at Figure 3.1. φ(x) is defined over the whole picture, while φb(x) is
only defined over the red grid. For each x in a box of the red grid, the value of φb(x) is constant. For the rest
of this section, we will look at φb(x) only as a function in R over a line, but keep in mind what its connection is
with φ(x).
We assume that the probability of attenuation is proportional to the density. The larger φb(x) is (and hence the
attenuation coefficient) in a certain box, the smaller the probability that an X-ray photon will survive in this box.

This leads to the following definition of pi :

pi = 1− lb

nb
φb

(
i lb

nb

)
for an X-ray photon in beam b.

Here, lb
nb

is the length of the path that the X-ray photon travels in each box i , with i = {1,2, . . . ,nb}. The argument
i lb
nb

is used such that in each box i the function φb(x) is considered.

The probability that the j th X-ray photon in beam b will be detected is:

P (D j = 1) =
nb∏

i=1
pi =

nb∏
i=1

(
1− lb

nb
φb

(
i lb

nb

))
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Taking the logarithm of this expression results in:

log { P (D j = 1) } = log

{
nb∏

i=1

(
1− lb

nb
φb

(
i lb

nb

)) }

=
nb∑

i=1
log

{
1− lb

nb
φb

(
i lb

nb

) }

≈
nb∑

i=1
− lb

nb
φb

(
i lb

nb

)

=−
∫ lb

0
φb(x) dx

We will give a brief explanation of the steps we use in this derivation.

Recall the Taylor expansion: log{1+ x} = x − x2

2 +O (x3), such that log{1+ x}− x =O (x2). Hence, there is a C ∈R
such that ∣∣ log{1+x}−x

∣∣≤C
∣∣x2∣∣=C x2 for x >−1.

Define xi =−lb φ
(

i lb
nb

)
, then∣∣∣∣∣ nb∑

i=1

(
log

{
1+ xi

nb

}
− xi

nb

) ∣∣∣∣∣ ≤
nb∑

i=1

∣∣∣∣ log

{
1+ xi

nb

}
− xi

nb

∣∣∣∣ ≤
nb∑

i=1
C

(
xi

nb

)2

= C

n2
b

nb∑
i=1

x2
i .

This means that, because nb is large, the approximation in the second to last step of the derivation is permitted.
Note that in the last step the resulting summation defines a Riemann sum.

Because log { P (D j = 1) } ≈−∫ lb
0 φb(x) dx we choose as a model

P (D j = 1) = exp

[
−

∫ lb

0
φb(x) dx

]
and this gives us the desired probability of survival for the j th X-ray photon in beam b.

Of course we are dealing with more than one X-ray photon during a CT-scan. What can we say about the distri-
bution of a large number of X-ray photons?

During a CT-scan, multiple X-ray beams are transmitted and detected on the opposite site of the body part of
interest, where the measurements take place. Assume that m X-ray photons are transmitted in beam b, with
m large. Then the number of detections Sb resulting from the measurement of beam b is equal to Sb =∑m

j=1 D j .

Recall that the attenuation events are independent for each photon and

D j ∼ Bernoulli

(
exp

[
−

∫ lb

0
φb(x) dx

] )
.

Hence,

Sb ∼ Binomial

(
m, exp

[
−

∫ lb

0
φb(x) dx

] )
.

Because we are dealing with a large number m of X-ray photons in beam b, we have approximately, by the
Central Limit Theorem:

Sb ∼ Normal (mpb , mpb(1−pb)) with pb = exp

[
−

∫ lb

0
φb(x) dx

]
. (3.1)

We can define the random variable Yb = Sb
m as the proportion of detected photons in beam b. Because of (3.1),

we have

Yb = Sb

m
∼ Normal

(
pb ,

1

m
pb(1−pb)

)
with pb = exp

[
−

∫ lb

0
φb(x) dx

]
in beam b.
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Note that, for large m, the variance of Yb becomes small which is beneficial for the reconstruction. The mea-
sured proportion of photons that survived in beam b will be close to the underlying probability pb .

To obtain enough information to reconstruct a CT-image, multiple X-ray beams are transmitted with different
angles towards the body part of interest. Assume that the number of X-ray beams transmitted is equal to M ,
so there are b = {1,2, . . . , M } beams. The random variables Sb are independent for each beam b, but not identi-
cally distributed. The parameter pb for each beam is path dependent and hence different for all the M beams
transmitted.
Each measurement yb , with b = {1,2, . . . , M } gives, with a certain variance, a value for pb = exp

[
−∫ lb

0 φb(x) dx
]

.

We are interested in the true values of
∫ lb

0 φb(x) dx for each beam b = {1,2, . . . , M }.

Discretizing φ(x) over N cells as described in Section 2.3 results in a discrete array of unknown variables, φ j ,
with j = {1,2, . . . , N }. Properly scaled, the φ j ’s can be seen as attenuation coefficients. Figure 3.2 illustrates this
idea for N = 16. Here, an X-ray beam is drawn as a red line (compare with Figure 3.1).

From this discretization of φ(x) it is possible to write θb = ∫ lb
0 φb(x) dx ≈ ∑N

j=1 ab jφ j , where ab j denotes the
length of the path that an X-ray photon from beam b travels through the cell of the discretized attenuation
coefficient φ j .
Combining these M line integrals results in an estimation for the unknown attenuation coefficients φ j for
j = {1,2, . . . , N }.

Figure 3.2: Discretisation of φ(x) of the body part of interest, for N = 16

Our problem now reduces to estimating the unknown θb = ∫ lb
0 φb(x) dx for each beam b.

One way of finding a suitable estimation for θb is the use of the method of Maximum-Likelihood Estimation
(MLE). These results can be found in Appendix A.

3.4. DIFFERENCE WITH CURRENT LITERATURE
Let I0 denote the source intensity of the transmitted X-ray beam b and let Ib denote the intensity of the beam
after having passed through the body part of interest. Then [Hansen and Saxild-Hansen, 2012] claims that:∫ lb

0
φb(x) dx = log

{
I0

Ib

}
⇐⇒ Ib

I0
= exp

[
−

∫ lb

0
φb(x) dx

]
= pb (3.2)

Because Sb ∼ Binomial(m, pb), the Maximum-Likelihood Estimator for pb based on one observation of the
proportion of detected photons in beam b is p̂b = Sb

m = Yb . It turns out that in CT-scans not the number of
detected photons is measured, but only the percentual loss of intensity of the X-rays.
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From [Waseda et al., 2011] it is known that each X-ray photon has an energy E , which is proportional to its
frequency,

E = hv

where h is the Planck constant (6.6260×10−34 J · s) and v is the frequency of the photon. Furthermore, inten-
sity is equal to energy per unit time per unit area and we assume that all transmitted X-ray photons have the
same frequency. Hence, the intensity is directly proportional to the number of X-ray photons. Therefore, Ib

I0
is

equal to the proportion of detected photons in beam b and we can take p̂b = yb = Ib
I0

as Maximum-Likelihood
Estimation for pb .

If it is possible to find out what the number of photons m is in the transmitted X-ray beam with source intensity
I0, then p̂b satisfies approximately

p̂b = Yb ∼ Normal

(
pb ,

1

m
pb(1−pb)

)
with pb = exp

[
−

∫ lb

0
φb(x) dx

]
in beam b.

Hence, approximately

p̂b −pb = Yb −pb ∼ Normal

(
0,

1

m
p̂b(1− p̂b)

)
= Normal

(
0,

Ib

mI 2
0

(I0 − Ib)

)

where we use the estimation p̂b to compute the variance.

Determining m from I0 can be hard, because the constant of proportionality of the intensity and number of
photons is unknown. In that case we can still use our model by stating that the ‘noise’ is approximately

p̂b −pb ∼ Normal

(
0, c

Ib

I 2
0

(I0 − Ib)

)
with c unknown

Note that for each scan in a different beam p̂b and pb are different, but the noise can still be modeled as stated
above.

This consideration leads to a refinement of (3.2) which only approximately holds, where the noise is modeled.
For larger m, the approximation gets better, but the equality still does not hold.

3.5. DELTA METHOD
Define the random variable Eb , the error between Yb and the unknown pb , as

Eb = Yb −pb = Yb −exp

[
−

∫ lb

0
φb(x) dx

]
. (3.3)

In the previous sections, it was found that approximately

Eb ∼ Normal

(
0,

1

m
p̂b(1− p̂b)

)
. (3.4)

For the numerical analysis, a system of equations of the form

Aφ+ε=ψ (3.5)

is desired, as seen in Section 2.3.1.

How can we use (3.4) to determine the distribution of the εi , for i = {1,2, . . . , M }, in equation (3.5)?

Recall from Section 2.3.1 that

θb +εb =
∫ lb

0
φb(x) dx +εb = log

{
I0

Ib

}
=−log{Yb} =ψb for b = {1,2, . . . , M },
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and hence

εb =ψb −θb =−log{Yb}−
∫ lb

0
φb(x) dx for b = {1,2, . . . , M }.

We are interested in the distribution of εb , but there is only information available about Eb . The following
transformation is needed:

εb =−log{Yb}−
∫ lb

0
φb(x) dx

=−log{Yb}−
(
−log

{
exp

[
−

∫ lb

0
φb(x) dx

]} )
=−log{Yb}− (−log

{
pb

})
In [Papanicolaou, 2009] the following theorem is found, which is known as the ‘Univariate Delta Method’:

Theorem 1. Let Yn be a sequence of random variables that satisfies
p

n(Yn −θ) → Normal
(
0, σ2

)
in distribution.

For a given function and a specific value of θ, suppose that g ′(θ) exists and is not 0. Then,

p
n

(
g (Yn)− g (θ)

)→ Normal
(
0, σ2g ′(θ)2) in distribution

Define g (x) =−log(x), then g ′(x) =− 1
x . For εb it is possible to write

εb =−log{Yb}− (−log
{

pb
})= g (Yb)− g (pb) for b = {1,2, . . . , M }

and from Theorem 3.5 with n = 1 and equation (3.4) it is found that

εb ∼ Normal

(
0,

1

m

1− p̂b

p̂b

)
which gives the desired distribution of the εb for b = {1,2, . . . , M }.

3.6. VARIANCE STABILIZATION
In the previous section, the Delta Method was used to determine the distribution of the errors εb for b =
{1,2, . . . , M } in the linear system of equations Aφ+ ε =ψ. But this method can also be used for another im-
portant purpose.
In some situations, it might be desirable to have errors with a constant variance. In this case the Delta Method
can be used to transform the data such that errors with the same constant variance remain.

Let Eb , the error between Yb and the unknown pb , be defined again as in (3.3) such that

Eb ∼ Normal

(
0,

1

m
p̂b(1− p̂b)

)
.

Suppose that we want to obtain errors εb , with b = {1,2, . . . , M }, that all have the same constant variance 1
m . To

use the Delta Method for this purpose, a function h(x) has to be found such that

h′(x) = 1p
x(1−x)

because this results in

σ2h′(p̂b)2 = 1

m
p̂b(1− p̂b)

(
1√

p̂b(1− p̂b)

)2

= 1

m

After some calculus, the desired function h(x) was found:

h(x) = arcsin(2x −1)

and note that this function is defined on the interval [0,1] as desired. This function h(x) that can be used to
transform the data such that errors with constant variance remain is called the variance-stabilizing transfor-
mation.
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Applying this variance-stabilizing transformation to the data results in

εb = h(Yb)−h(pb) = arcsin(2Yb −1)−arcsin(2pb −1) for b = {1,2, . . . , M }.

From Theorem 3.5 with n = 1 and equation (3.3) it follows that

εb ∼ Normal

(
0,

1

m

)
and, because m is the same for each beam b, errors εb , with b = {1,2, . . . , M }, are obtained that all have the same
constant variance.



4
LOG-LIKELIHOOD AND LEAST-SQUARES

ESTIMATION

Recall the normal distribution: this continuous distribution has probability density function

f (x) = 1p
2πσ2

exp

[
− (x −µ)2

2σ2

]
on the real line. Here, µ represents the mean or expected value of a random variable and σ2 denotes the vari-
ance.
Let yb = Ib

I0
, with b = {1,2, . . . , M }, be the measurements of a CT-scan.

In Section 3.3 the model

Yb ∼ Normal

(
pb ,

1

m
pb(1−pb)

)
with pb = exp

[
−

∫ lb

0
φb(x) dx

]
in beam b

was derived. Using the discretisation described in Section 2.3, it is possible to write

∫ lb

0
φb(x) dx ≈

N∑
j=1

ab jφ j in beam b,

where φ j , with j = {1,2, . . . , N }, is the discretisation of the attenuation function φ(x) for x ∈R2 (see Table 3.1).
Hence, Yb ∼ Normal

(
µb ,σ2

b

)
with

µb =µb(φ) = exp

[
−

N∑
j=1

ab jφ j

]
(4.1)

σ2
b =σb(φ)2 = 1

m
exp

[
−

N∑
j=1

ab jφ j

](
1− exp

[
−

N∑
j=1

ab jφ j

])
(4.2)

In this chapter, the relation between the log-likelihood and the Least-Squares Estimation (LSE) will be illus-
trated.

4.1. LOG-LIKELIHOOD OF φ
For a Maximum-Likelihood Estimation, the log-likelihood of φ is maximized over the parameter space. Be-
cause Maximum-Likelihood Estimation and Least-Squares Estimation are closely related, it is useful to deter-
mine the log-likelihood of φ and to check if the value of the log-likelihood increases with better Least-Squares
Estimations of φ. Ideally, the log-likelihood of φ would increase until it reaches its maximum value: then the
Maximum-Likelihood Estimation is obtained.

15
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Letφ= (φ1,φ2, . . . ,φN )T be a vector that contains the unknown attenuation coefficients. Then the correspond-
ing likelihood of φ is equal to

L (φ; y1, y2, . . . , yM ) = f (y1, y2, . . . , yM |φ) =
M∏

i=1
f (yi |φ)

=
M∏

i=1

1√
2πσi (φ)2

exp

[
− (yi −µi (φ))2

2σi (φ)2

]
Taking the natural logarithm of the likelihood results in the log-likelihood

`(φ; y1, y2, . . . , yM ) = ln{L (φ; y1, y2, . . . , yM )}

=
M∑

i=1

(
ln

{
1√

2πσi (φ)2

}
− (yi −µi (φ))2

2σi (φ2)

)

=
M∑

i=1

(
−1

2
ln

{
2πσi (φ)2}− (yi −µi (φ))2

2σi (φ)2

)
Substituting µi (φ) and σi (φ)2 in the log-likelihood gives:

`(φ; y1, y2, . . . , yM ) =
M∑

i=1

(
−1

2
ln{2π}− 1

2
ln

{
1

m

}
+ 1

2

N∑
j=1

ai jφ j − 1

2
ln

{
1−exp

[
−

N∑
j=1

ai jφ j

]}

−
m

(
yi −exp

[
−∑N

j=1 ai jφ j

])2

2 exp
[
−∑N

j=1 ai jφ j

]
−2 exp

[
−∑N

j=1 ai jφ j

]
 (4.3)

In the numerical analysis, the log-likelihood will be evaluated for the different values of φ. Comments on the
Maximum-Likelihood Estimation can be found in Appendix A.

In the next sections, the log-likelihood ofφwill be derived under different assumptions for the mean and vari-
ance of the measurements. These different scenarios will be taken into account during the numerical analysis
of the reconstruction.

4.2. CONSTANT VARIANCE σ2

Suppose that σ2
b =σ2 is constant, known and not path dependent for all beams b = {1,2, . . . , M }. Let µb =µb(φ)

be path dependent for each beam b and defined as in (4.1). This situation would correspond to a constant φ
on a circular object that is concentric with the circular scanner. The corresponding likelihood of φ is equal to:

L (φ; y1, y2, . . . , yM ) =
M∏

i=1

1p
2πσ2

exp

[
− (yi −µi (φ))2

2σ2

]

=
(

1p
2πσ2

)M

exp

[
− 1

2σ2

M∑
i=1

(yi −µi (φ))2

]

Taking the natural logarithm of the likelihood results in the log-likelihood of φ:

`(φ; y1, y2, . . . , yM ) = ln
{
L (φ; y1, y2, . . . , yM )

}
=−M

2
ln{2π}− M

2
ln{σ2}− 1

2σ2

M∑
i=1

(yi −µi (φ))2

=−M

2
ln{2π}− M

2
ln{σ2}− 1

2σ2

M∑
i=1

(
yi −exp

[
−

N∑
j=1

ai jφ j

])2

For the Maximum-Likelihood Estimation the log-likelihood has to be maximized over φ. Because the first two
terms in the log-likelihood of φ are constant, this is equal to minimizing

M∑
i=1

(
yi −exp

[
−

N∑
j=1

ai jφ j

])2
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which reduces the problem to a (non-linear) Least-Squares Estimation with constant weights.

But, from Section 3.3, it is known that the variance σb(φ) is different for each X-ray beam b = {1,2, . . . , M }. In
the next section, the non-constant variance is evaluated to see if this leads to a different (and hopefully better)
Least-Squares Estimation.

4.3. NON-CONSTANT KNOWN VARIANCE σ2
b

Suppose that σ2
b is non-constant but known in advance for all X-ray beams b = {1,2, . . . , M }. The σ2

b could for
example be chosen as the length of the path that the X-ray photons have travelled in beam b, giving a larger
weight to the measurements obtained from the beams that form a shorter path through the body part of inter-
est. Let µb = µb(φ) be path dependent for each X-ray beam b and defined as in (4.1). Then the corresponding
likelihood of φ is equal to:

L (φ; y1, y2, . . . , yM ) =
M∏

i=1

1√
2πσ2

i

exp

[
− (yi −µi (φ))2

2σ2
i

]

=
(

1p
2π

)M

 M∏
i=1

1√
σ2

i

exp

[
−1

2

M∑
i=1

(yi −µi (φ))2

σ2
i

]

Taking the natural logarithm of the likelihood results in the log-likelihood of φ:

`(φ; y1, y2, . . . , yM ) = ln
{
L (φ; y1, y2, . . . , yM )

}
=−M

2
ln{2π}− 1

2

M∑
i=1

(
ln

{
σ2

i

}+(
yi −µi (φ)

σi

)2 )

=−M

2
ln{2π}− 1

2

M∑
i=1

 ln
{
σ2

i

}+
 yi −exp

[
−∑N

j=1 ai jφ j

]
σi

2 
Again, for the Maximum-Likelihood Estimation the log-likelihood has to be maximized overφ. Because the first
term in the log-likelihood ofφ and also the first term of the summation is constant, this is equal to minimizing

M∑
i=1

 yi −exp
[
−∑N

j=1 ai jφ j

]
σi

2

which reduces the problem to a weighted (non-linear) Least-Squares Estimation.

4.3.1. PATH DEPENDENT VARIANCE σb(φ0)2

Suppose that σ2
b = σb(φ0)2 is non-constant but known in advance, path dependent for each X-ray beam b =

{1,2, . . . , M } and defined as in (4.2). We could, for example, use an initial estimation φ0 for φ and calculate
σb(φ0) by (4.2). Let µb = µb(φ) also be path dependent but unknown in advance for each X-ray beam b and
defined as in (4.1).
Then the same likelihood and log-likelihood ofφ are found as in Section 4.3 and again, the Maximum-Likelihood
Estimation is equal to the following weighted (non-linear) Least-Squares Estimation:

M∑
i=1

 yi −exp
[
−∑N

j=1 ai jφ j

]
σi (φ0)

2
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4.4. NON-CONSTANT UNKNOWN PATH DEPENDENT VARIANCE σb(φ)2

Suppose that σ2
b = σb(φ)2 is non-constant and unknown in advance, path dependent for each X-ray beam

b = {1,2, . . . , M } and defined as in (4.2). Let µb = µb(φ) also be path dependent and unknown in advance for
each X-ray beam b and defined as in (4.1).
Then the same likelihood and log-likelihood of φ are found as in Section 4.3, but now we have to minimize:

M∑
i=1

 ln
{
σi (φ

}+
 yi −exp

[
−∑N

j=1 ai jφ j

]
σi (φ)

2  (4.4)

The most important difference here is that not a standard least-squares problem is found. In this case,φ has to
be estimated to minimize (4.4), where it is used in both the numerator and denominator and in the preceding
term. This leads to a more complex optimization problem that we will not consider any further.



5
NUMERICAL METHODS

5.1. PROBLEM
In Computer Tomography, we want to find a solution x to the following system of linear equations:

Ax = b

Usually this problem does not have an unique solution. Hence, a numerical method is needed to compute a
minimum norm solution x to the following linear least-squares problem:

minimize ||Ax−b||.
Here, A is a real matrix with M rows and N columns and b is a real vector of length M . These variables corre-
spond with the problem from Section 2.3. A will normally be large and sparse.

5.2. THE MATLAB FUNCTION lsqr
In Matlab the function lsqr is used to find a minimum norm least-squares solution of the given problem. This
function is based on a numerical method, to be called Algorithm LSQR in [Paige and Saunders, 1982], which
uses a bidiagonalization procedure that will be stated in the next subsection. Because the derivation of this
procedure is beyond the scope of this project, the interested reader is referred to [Golub and Kahan, 1965].

5.2.1. BIDIAGONALIZATION PROCEDURE
Let the matrix A and the starting vector b be given. The aim of the bidiagonalization procedure is to reduce the
problem to lower bidiagonal form, i.e., to find matrices Uk, Vk and Bk such that

AVk = Uk+1Bk with Bk =



α1

β2 α2

β3
. . .
. . . αk

βk+1

 (5.1)

for some scalars αi and βi . In [Paige and Saunders, 1982], the bidiagonalization procedure is stated as

β1u1 = b

α1v1 = AT u1

βi+1ui+1 = Avi −αi ui

αi+1vi+1 = AT ui+1 −βi+1vi

}
, i = 1,2, . . . (5.2)

Here, the scalars αi ≥ 0 and βi ≥ 0 are chosen such that ||ui|| = ||vi|| = 1. Rewriting the recurrence relation (5.2)
gives

Avi =αi ui +βi+1ui+1

AT ui+1 =αi+1vi+1 +βi+1vi

}
, i = 1,2, . . . (5.3)

19
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Defining Uk = (u1 u2 · · · uk), Vk = (v1 v2 · · · vk), and Bk as in (5.1), we see from (5.3) that we can write the
recurrence relation as

Uk+1(β1e1) = b (5.4)

AVk = Uk+1Bk (5.5)

AT Uk+1 = VkBk
T +αk+1vk+1eT

k+1 (5.6)

where e1 and ek+1 are the standard basis vectors. This gives the desired lower bidiagonal form.

5.2.2. ALGORITHM LSQR
Define the residual rk as rk = b−Axk. The Algorithm LSQR method generates a sequence of approximations
{xk} such that the residual norm ||rk|| decreases monotonically.
In [Paige and Saunders, 1982] is explained how the bidiagonalization procedure can be used for the Algorithm
LSQR. Let the quantities

xk = Vkyk

rk = b−Axk

tk+1 =β1e1 −Bkyk

be defined in terms of some vector yk. It readily follows from (5.4) and (5.5) that

rk = Uk+1tk+1

We want ||rk|| to be small, and because Uk+1 is bounded and theoretically has orthonormal columns, this sug-
gests choosing yk to minimize ||tk+1||. This leads to the least-squares problem

min ||β1e1 −Bkyk||

which forms the basis for Algorithm LSQR.

5.3. RECONSTRUCTION ALGORITHMS
In the algorithm for the image reconstruction, the Matlab function lsqr will be frequently used. In this sec-
tion, the reconstruction algorithm is given in a general form. The corresponding Matlab code can be found in
Appendix C.
We will consider three different scenario’s:

1. Constant variance.

In the current reconstruction method, the assumption is made that the noise is standard normally dis-
tributed and thus has constant variance. This leads to a least-squares problem with constant weights.
The minimum norm least-squares solution is computed with the Matlab function lsqr. See also Section
4.2.

2. Non-constant variance: path length.

An alternative reconstruction method uses the length of the path that the X-ray photons have travelled
in a beam, giving a larger weight to the measurements obtained from the beams that form a shorter
path through the body part of interest. This leads to a weighted least-squares problem with weights
corresponding to the path length. The Matlab function lsqr is used to compute the minimum norm
least-squares solution to this problem. See also Section 4.3.

3. Non-constant path dependent variance.

Under the assumption of non-constant path dependent variance, four reconstruction algorithms are de-
veloped.

In the first reconstruction method, the exact solution is used to compute the variance in each beam.
Next, the square of the variance is used as weights in the corresponding weighted least-squares problem.
The minimum norm least-squares solution is computed with the Matlab function lsqr.
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Starting with the minimum norm least-squares solution from the former reconstruction method, an it-
erative reconstruction algorithm is developed. In each iteration the Matlab function lsqr gives a new
minimum norm least-squares solution to the weighted least-squares problem with weights based on the
previous solution. The algorithm stops when the solution is converged or when the maximum number
of iterations is reached.

Because this iterative reconstruction algorithm does not appear to be convergent, we use relaxation for
the next algorithm. The same approach is used as in the iterative algorithm, but now the new solution is
in each iteration computed as the weighted average of the previous solution and the solution obtained
by the Matlab function lsqr for the weighted least-squares problem.

Finally, the same approach is used as in the former reconstruction algorithm, but starting with the mini-
mum norm least-squares solution from the algorithm with constant variance to calculate the variance in
the first iteration instead of the exact solution.

See also Section 4.3.1.

This leads to the following algorithms:

Reconstruction algorithms

1. (Constant variance.)

Compute the minimum norm least-squares solution xlsqr to Ax = b.

2. (Path length.)

Define wi := path length of beam i :=∑N
j=1 ai j . Let B be an empty M by N matrix and c an empty vector

of length M .

for i = 1 : M

if wi = 0

Row i of matrix B = row with all elements 0

Element i of vector c = 0

else

Row i of matrix B = row i of matrix A
wi

Element i of vector c = element i of vector b
wi

end if

end for

Compute the minimum norm least-squares solution xpath to Bx = c.

3. (Path dependent variance.)

(a) (Exact variance.)

Define

σi (x) := standard deviation of the noise in beam i :=
√

1

m

1−pi

pi
with pi = exp

[
−

N∑
j=1

ai j x j

]

where x is a minimum norm least-squares solution of the problem. Let D be an empty M by N
matrix and e an empty vector of length M . Suppose that we know the exact solution xexact of the
problem. Apply the following algorithm:

ALGORITHM

Input: σi (xexact), D, e

Output: x1
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for i = 1 : M

if σi (xexact) = 0

Row i of matrix D = row with all elements 0

Element i of vector e = 0

else

Row i of matrix D = row i of matrix A
σi (xexact)

Element i of vector e = element i of vector b
σi (xexact)

end if

end for

Compute the minimum norm least-squares solution x1 to Dx = e.

(b) (Iterative algorithm.)

Define σi (x) as in (a) and let x1 be the minimum norm least-squares solution of (a).

i = 0

max = 50

x0 = vector of length M with all elements 0

while ||xi −xi+1|| > 10−6 and i < max

Compute σi (xi+1) for each beam i = {1,2, . . . , M }

Construct an empty M by N matrix E and an empty vector f of length M .

Apply ALGORITHM

Input: σi (xi+1), E, f

Output: xi+2

i = i +1

end while

(c) (Relaxation.)

Define σi (x) as in (a) and let x1 be the minimum norm least-squares solution of (a).

i = 0

max = 50

α= 0.7

x0 = vector of length M with all elements 0

xrelax0 = x0

xrelax1 = x1

while ||xrelaxi −xrelaxi+1 || > 10−6 and i < max

Compute σi (xrelaxi+1 ) for each beam i = {1,2, . . . , M }

Construct an empty M by N matrix E and an empty vector f of length M .

Apply ALGORITHM

Input: σi (xrelaxi+1 ), E, f

Output: xi+2

xrelaxi+2 =α xi+1 + (1−α) xi+2

i = i +1

end while
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(d) (New reconstruction algorithm.)

Defineσi (x) as in (a) and let xlsqr be the minimum norm least-squares solution of 1. (Constant vari-
ance.).

i = 0

max = 50

α= 0.7

x0 = vector of length M with all elements 0

xrelax0 = x0

Let D be an empty M by N matrix and e an empty vector of length M .

Apply ALGORITHM

Input: σi (xlsqr), D, e

Output: x1

xrelax1 = x1

while ||xrelaxi −xrelaxi+1 || > 10−6 and i < max

Compute σi (xrelaxi+1 ) for each beam i = {1,2, . . . , M }

Construct an empty M by N matrix E and an empty vector f of length M .

Apply ALGORITHM

Input: σi (xrelaxi+1 ), E, f

Output: xi+2

xrelaxi+2 =α xi+1 + (1−α) xi+2

i = i +1

end while

Note that, when the standard deviation is equal to zero, there is chosen to set the corresponding weights (in the
weighted least-squares sense) equal to zero. This might feel counter-intuitive, because a standard deviation
of zero means an exact measurement. But in this case the standard deviation is equal to zero if and only if∑N

j=1 ai j x j = 0. The vector with unknown attenuation coefficients is not equal to zero, so x j 6= 0 for some j and
all matrix coefficients ai j ≥ 0 because they denote the length of the travelled path (see Section 2.3). This leads
to the conclusion that the standard deviation is equal to zero if in row i of matrix A all coefficients are zero and
thus no X-ray beam has travelled that path. It is therefore beneficial to set the i th element in the vector with
measurements equal to zero, because only noise could have been measured there.





6
RESULTS

In this chapter, the knowledge gained in the previous chapters is used to find a better reconstruction algorithm
for the CT-scan. Several experiments are performed to see if improvements can be made on the current recon-
struction method.

Because real data is not available, the Shepp-Logan phantom is used for the experiments. This standard test
image created by Larry Shepp and Benjamin F. Logan serves as the model of a human head. It is widely used
in the development and testing of image reconstruction algorithms. This phantom is implemented in Matlab.
For the experiments, a slightly smaller phantom is used as test problem to speed up the calculations.
In this test problem, M = 12,780 measurements are available to reconstruct the attenuation coefficients φ j , for
j = {1,2, . . . , N }, discretized over N = 2,500 cells. The number of rays per beam is equal to 71 and a beam angle
spacing of 2° is used. In each experiment, a noise level of 10% is used and the maximum number of iterations
is set to 100. Furthermore, the accuracy is set to 10−6 and a seed number is used for the random number
generators such that it is possible to compare the results of the experiments. The corresponding Matlab code
can be found in Appendix C.
For the results the relative error is calculated by

||φexact −φ||
||φexact||

(6.1)

where φ is the minimum norm least-squares solution obtained from the different reconstruction methods.

6.1. CURRENT RECONSTRUCTION METHOD
As a start, the current reconstruction method will be evaluated. This method uses the assumption that the noise
is standard normally distributed. The LSQR algorithm then gives the minimum norm least-squares solution to
the corresponding problem.

Figure 6.1: Current reconstruction method with standard normally distributed noise.
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From Figure 6.1 we can see that the image reconstruction gives a good result. The relative error of this recon-
structed solution is equal to 0.34636.
But we know from Section 3.3 that the assumption of standard normally distributed noise is not true. Therefore,
we will now use the theoretical noise distribution and see if the current reconstruction algorithm still performs
well.

6.1.1. THEORETICAL NOISE DISTRIBUTION
Recall from Section 3.5 that for the linear system of equations

Aφ+ε=ψ
the noise is distributed as

εb ∼ Normal

(
0,

1

m

1−pb

pb

)
with pb = exp

[
−

∫ lb

0
φb(x) dx

]
in beam b.

Using the exact solution to compute pb and applying the theoretical noise distribution to the problem gives a
more realistic situation. A value of m = 10,000 is chosen for the number of photons in each X-ray beam. The
image reconstruction obtained from the current reconstruction method can be found in Figure 6.2.

Figure 6.2: Current reconstruction method with the theoretically distributed noise.

This time the current reconstruction method gives a much worse result. The relative error of the reconstructed
solution is now equal to 0.66723.
Because the current reconstruction method is no longer adequate, we will take a look at alternative recon-
struction methods in the next sections. From now on, only the theoretical distribution is used for noise in the
model.

6.2. PATH LENGTH
One alternative reconstruction method uses the length of the path that the X-ray photons have travelled in
beam b, giving a larger weight to the measurements obtained from the beams that form a shorter path through
the body part of interest. This gives rise to a weighted least-squares problem

M∑
i=1

(
ψi − (Aφ)i

wi

)2

=
M∑

i=1

(
εi

wi

)2

where wi , for i = {1,2, . . . , M }, is the path length corresponding to the i th beam. The LSQR algorithm gives the
minimum norm least-squares solution to this problem.

Looking at Figure 6.3 it can be seen that the current LSQR reconstruction and the reconstruction that uses the
path length as weights perform almost equally bad. The relative error of the weighted LSQR is 0.53277 and
hence this reconstruction is actually slightly better than the standard LSQR reconstruction, which has a rela-
tive error of 0.66723.

Because this alternative reconstruction method is not as good as we hoped, another approach will be consid-
ered in the next section.
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Figure 6.3: Weighted LSQR reconstruction based on the length of the path that the X-ray photons travel.

6.3. NON-CONSTANT EXACT VARIANCE

In Section 4.3.1 it was found that for non-constant path dependent variance the square root of the variance
could be used as weight in the weighted least-squares problem instead of the path length. This idea forms the
basis for the next reconstruction algorithm.

Let σi (φ)2 be the path dependent variance of the noise for each X-ray beam i = {1,2, . . . , M }. We assume that
σi (φ0)2 is known in advance, for example from an initial estimation φ0. Then the corresponding weighted
least-squares problem is:

M∑
i=1

(
ψi − (Aφ)i

σi (φ0)

)2

=
M∑

i=1

(
εi

σi (φ0)

)2

(6.2)

In the first reconstruction method, σi (φexact)2 is calculated by using the exact solution φexact. If this method
does not improve the image reconstruction whilst using the exact solution in computing σi (φexact)2, it is use-
less to try to obtain also a better image reconstruction using a non-exact solution.

Figure 6.4: Weighted LSQR reconstruction based on the square root of the path dependent variance of the noise, σi (φexact), calculated
with the exact solution φexact for each beam i = {1,2, . . . , M }.

Fortunately, we can see in Figure 6.4 that the image reconstruction is a lot better when we use the square root
of the non-constant path dependent variance σi (φexact) as weights. A relative error of 0.51476 is found for this
reconstruction method.

This improvement in the reconstruction gives reason to continue with the weighted least-squares problem
from (6.2). In the next section, an iterative algorithm will be used to compute a minimum norm least-squares
solution to the weighted least-squares problem.
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6.3.1. ITERATIVE ALGORITHM
Starting with the minimum norm least-squares solution φ0 from the previous reconstruction method, with
non-constant exact variance σi (φexact)2 as weights, we want to set up an iterative algorithm which converges
to the optimal solution. In the first iteration a new minimum norm solution φ1 is calculated to the weighted
least-squares problem (6.2) with weights σi (φ0)2. The solution φ1 obtained from this problem is used in the
next iteration to compute the varianceσi (φ1)2 and again the minimum norm least-squares solutionφ2 to (6.2)
is calculated. This procedure is repeated until the solution converges or until a maximum number of iterations
is reached. In Section 5.3 this iterative reconstruction algorithm was described in more detail.
In Figure 6.5 the result of this iterative algorithm is shown. A relative error of 0.40862 is found for this recon-
struction method, which is even better than the previous reconstruction method.

Figure 6.5: Iterative weighted LSQR reconstruction based on the square root of the path dependent variance of the noise, σi (φ), calculated
with the previous solution φ in each iteration.

To see if this iterative method converges, we will use several ‘measures of convergence’:

1. The log-likelihood function; see (4.3).

2. The relative error; see (6.1).

3. The weighted sum of squared errors; see (6.2).

For each iteration the values of these measurements are calculated and plotted in the following graphs:
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Figure 6.6: Log-likelihood of φ, calculated in each iteration step.
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Figure 6.7: Relative error, calculated in each iteration step.
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Figure 6.8: Weighted sum of squared errors, calculated in each iteration step.

In Figure 6.6 we can see that the log-likelihood of φ does not monotonically increase, but is alternating. The
same observation can be made for the relative error and the weighted sum of squared errors: for convergence
both of these measures should be more or less monotonically decreasing, but from Figure 6.7 and 6.8 we can
see that we get the same alternating behaviour as for the log-likelihood.
This leads to the conclusion that our current reconstruction algorithm does not converge and that the good
result obtained for the image reconstruction could be just a coincidence. Therefore, we will add relaxation to
the reconstruction algorithm to try to get a converging algorithm.

6.3.2. RELAXATION
The alternating behaviour of the ‘measures of convergence’ from the previous section could be caused by the
fact that the minimum norm least-squares solution in each iteration goes past the optimal solution but cannot
converge to it. Therefore, relaxation could be used to help establish convergence. We will briefly explain how
this relaxation works.
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Assume that we can write for the original iteration process

φn+1 = f (φn )

then the relaxation of this iteration process would be

φn+1 =αφn + (1−α) f (φn )

for some α ∈ (0,1).

To find out which value of α is best for the relaxation, several values of α are tested in the relaxation of a similar
(but slightly smaller) problem. The three different measures of convergence are then considered to determine
the best value of α. The results can be found in Appendix B.1. A value of α= 0.7 was chosen as best.

Figure 6.9: Iterative weighted LSQR reconstruction with relaxation and weights based on the square root of the path dependent variance
of the noise, σi (φ), calculated with the previous solution φ in each iteration.

Adding this relaxation to the reconstruction algorithm and calculating the minimum norm least-squares solu-
tion results in Figure 6.9. Although the image reconstruction might look not so good, a relative error of 0.55792
was found, which is smaller than the relative error of the LSQR reconstruction. But is the adjusted algorithm
convergent?
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Figure 6.10: Log-likelihood of φ for the relaxation, calculated in each iteration step.
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Figure 6.11: Relative error for the relaxation, calculated in each iteration step.
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Figure 6.12: Weighted sum of squared errors for the relaxation, calculated in each iteration step.

Again the three ‘measures of convergence’ are considered for the reconstruction. When we look at the log-
likelihood of φ in Figure 6.10 we see that a better result is obtained: although the log-likelihood still does not
increase monotonically, the previous alternating behaviour remains limited.
For the relative error and the weighted sum of squared errors in Figure 6.11 and 6.12 the results are slightly
better than without the relaxation, although the alternating behaviour remains.

6.4. NEW RECONSTRUCTION METHOD
In reality, the exact solution is unknown when performing a CT-scan. Therefore, the method described in the
previous section cannot be used in its current form. Luckily, only a small adjustment has to be made: instead
of using the exact solution φexact to calculate the variance in the first iteration step, we use the solution φlsqr

obtained by the LSQR algorithm.
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Figure 6.13: Iterative weighted LSQR reconstruction with relaxation and weights based on the square root of the path dependent variance
of the noise, σi (φ), calculated with the LSQR solution φlsqr in the first step and the previous solution φ in each following iteration.

In Figure 6.13 the image reconstruction can be found obtained by this iterative algorithm, which uses the LSQR
solution to compute the variance in the first step of the algorithm and relaxation (withα= 0.7) to help establish
convergence. The result is almost similar to the image reconstruction shown in Figure 6.9 and again, although
the image reconstruction might look not so good, a relative error of 0.59630 was found, which is still smaller
than the relative error of the LSQR reconstruction.

For the ‘measures of convergence’ a similar result is obtained as in Figure 6.10, 6.11 and 6.12. The correspond-
ing plots can be found in Appendix B.2.



7
CONCLUSION

During this research, a stochastic model for attenuation in CT-scans was derived. Discretizing the tomographic
image that has to be reconstructed gives rise to the consideration of the image reconstruction as a system of
linear equations

Aφ+ε=ψ
where

• ai j are the matrix elements of A that reflect the relation between the area that is traversed by an X-ray
beam and the entire area of a pixel in the grid;

• φ is a column vector with the unknown attenuation coefficients;

• ε is a column vector with the measurement errors;

• ψ is a column vector with the measurements.

It is found that the measurement errors are distributed as

εi ∼ Normal

(
0,c

1−pi

pi

)
with pi = exp

[
−

N∑
j=1

ai jφ j

]
in beam i

for some constant c.

Incorporating the theoretical variance of the measurement errors in the problem gives a more realistic situa-
tion, but the image reconstruction obtained from the current reconstruction algorithm is deteriorated. There-
fore, new reconstruction methods are constructed based on

1. path length;

2. non-constant exact variance;

3. non-constant not-exact variance.

The image reconstruction based on path length gives a slightly better result than the current reconstruction
method. A relative error of 0.53277 is found, while the relative error of the current image reconstruction method
is 0.66723.

When the exact solution is used to compute the variance of the measurement errors in the image reconstruc-
tion, another improvement is made: now a relative error of 0.51476 is found. Of course, in reality the exact
solution is unknown and thus does this reconstruction method not meet our requirements.
An iterative algorithm is constructed which uses the exact solution only in the first step to compute the variance
and uses the previous solution in the next step. Again improvement is made: the relative error of this image
reconstruction is only 0.40862.
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Using this iterative algorithm could be profitable, but unfortunately the algorithm does not converge. There-
fore, relaxation is added to the reconstruction algorithm. This makes the convergence a little better, but the
image reconstruction slightly worse: a relative error of 0.55792 is found.

To make a realistic new reconstruction method, the iterative algorithm with relaxation is adjusted such that the
solution of the current algorithm is used to compute the variance in the first step instead of the exact solution.
This results in a similar outcome: the relative error of this image reconstruction is 0.59630.

Because the best result is obtained by the iterative reconstruction algorithm, we conclude that it is beneficial
for the image reconstruction to use the non-constant path dependent variance of the measurement errors in
an iterative algorithm.



8
DISCUSSION

To obtain a stochastic model for attenuation in CT-scans, several assumptions were made. First of all, we as-
sume that an X-ray photon travels through the body part of interest in a straight line, while in reality its path
could change due to obstacles. We also assume that the probability that an X-ray photon decays anywhere on
its path is not changed given the part of the path it has already travelled. However, an X-ray photon could be
weaker because of the obstacles it already traversed which would increase the probability of decay.

Furthermore, the number of photons transmitted in an X-ray beam is unknown. In the reconstruction algo-
rithms this number is arbitrarily chosen as 10,000, but it might be way larger in reality. We should also keep
in mind that for the image reconstruction here only a standard test image is used and that the noise is added
manually. The developed reconstruction algorithms could work a lot worse for realistic data, because the image
that has to be constructed is far more complex than this test image and the variance of the noise could differ
from the theoretical distribution.

To measure the convergence of the reconstruction methods, the log-likelihood function, the relative error and
the weighted sum of squared errors are used. It could be argued that other measures of convergence should
be taken into account. Also, the relaxation parameter was chosen based on subjective observations and not
objectively. The new reconstruction algorithm does not give the desired result, but great improvements could
be made when an iterative reconstruction algorithm which does converge is found.

In future work it would be interesting to investigate if the theoretical variance of the measurement errors cor-
responds to the real behaviour of the errors. There could be experimented with the number of X-ray photons
to see what the effects are for the image reconstruction and to see if using the exact number of photons results
in a more accurate reconstruction.

Alternative modeling of the variance of the measurements could be done by using available data or standard
knowledge on anatomy. These known solutions could be combined to an estimation of the solution from which
we can compute the variance. Then the same approach as with the exact solution could be used to see if the
image reconstruction can be improved.

More research on numerical methods is needed to improve the convergence of the iterative reconstruction
algorithm and to find a better solution for the image reconstruction. Also, it could be considered to estimate
the attenuation coefficient by minimizing over both the mean as the variance as stated in Section 4.4.
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A
MAXIMUM-LIKELIHOOD ESTIMATION

A.1. MAXIMUM-LIKELIHOOD ESTIMATION OF θb =
∫ lb

0 φb(x) d x
Recall the normal distribution:

f (x) = 1p
2πσ2

exp

[
− (x −µ)2

2σ2

]
Because θb = ∫ lb

0 φb(x) dx we have pb = e−θb . Hence, Yb ∼ Normal( µb , σ2
b ) with

µb =µ(θb) = e−θb

σ2
b =σ(θb)2 = 1

m
e−θb (1−e−θb )= 1

m
e−θb − 1

m
e−2θb .

Let θ = (θ1, . . . ,θM )T be a vector that contains the unknown θb for all beams b = {1,2, . . . , M }. Then the corre-
sponding likelihood of θ is equal to

L (θ; y1, y2, . . . , yM ) = f (y1, y2, . . . , yM | θ) =
M∏

i=1
f (yi | θi )

=
M∏

i=1

1√
2πσ(θi )2

exp

[
− (yi −µ(θi ))2

2σ(θi )2

]
Taking the natural logarithm of the likelihood results in the log-likelihood

`(θ; y1, y2, . . . , yM ) = ln{L (θ; y1, y2, . . . , yM )}

=
M∑

i=1

(
ln

{
1√

2πσ(θi )2

}
− (yi −µ(θi ))2

2σ(θi )2

)

=
M∑

i=1

(
−1

2
ln

{
2πσ(θi )2}− (yi −µ(θi ))2

2σ(θi )2

)
Substituting µ(θi ) and σ(θi )2 in the log-likelihood gives:

`(θ; y1, y2, . . . , yM ) =
M∑

i=1

(
−1

2
ln{2π}− 1

2
ln

{
1

m

}
+ 1

2
θi − 1

2
ln{1−e−θi }

− m(yi −e−θi )2

2e−θi −2e−2θi

)
Taking the derivative of the log-likelihood with respect to θi results in

∂`

∂θi
= 1

2
− 1

2

e−θi

1−e−θi
+ m(4e−2θi −2e−θi )(yi −e−θi )2 −2me−θi (yi −e−θi )(2e−θi −2e−2θi )

(2e−θi −2e−2θi )2

= 1

2
− 1

2

1

eθi −1
− my2

i e3θi −2my2
i e2θi +m(2yi −1)eθi

2(eθi −1)2
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The extreme values of the log-likelihood can be found by setting the derivative equal to zero:

∂`

∂θi
= 0

⇐⇒

1

2
− 1

2

1

eθi −1
− my2

i e3θi −2my2
i e2θi +m(2yi −1)eθi

2(eθi −1)2
= 0

⇐⇒

−(eθi −1)−my2
i e3θi +2my2

i e2θi −m(2yi −1)eθi

2(eθi −1)2
=−1

2

⇐⇒

−my2
i e3θi +2my2

i e2θi + (−2myi +m −1)eθi +1

e2θi −2eθi +1
=−1

⇐⇒

−e2θi +2eθi −1 =−my2
i e3θi +2my2

i e2θi + (−2myi +m −1)eθi +1

⇐⇒

my2
i e3θi + (−2my2

i −1)e2θi + (2myi −m +3)eθi −2 = 0

This last expression is a polynomial of third degree for eθi and can be solved exact by using Cardano’s formula
[Schechter]:

eθi = 3
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with

a = my2
i

b =−2my2
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c = 2myi −m +3

d =−2

where m is the number of X-ray photons transmitted in each beam b = {1,2, . . . , M }.

Which of these three roots of the derivative of the log-likelihood gives the maximum?

With a little help from Maple the three solutions for θi are evaluated and it follows that two of the solutions are
complex, leaving one solution as the desired maximum:
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Because this monstrous solution for θi is found, an alternative method will be considered in the next section.

A.2. MAXIMUM-LIKELIHOOD ESTIMATION OF φ

In the preceding section an estimate for θb = ∫ lb
0 φb(x) dx was computed for every beam b. This gives us infor-

mation about the corresponding line integral, but it does not take into account that X-ray beams can cross the
defined grid diagonally, whereby only a part of each pixel that has to be reconstructed is passed through by the
beam. See Figure 2.3.

Considering the two dimensional problem and writing the attenuation function φ(x) as column vector φ =
(φ1, . . . ,φN )T can solve this problem. As discussed in section 2.3, weights ai j have to be introduced that reflect
the relation between the area that is illuminated by the beam and the entire area of the pixel:

ai j = illuminated area of pixel j by ray i

total area of pixel j

This leads to the following matrix-vector equation:

Aφ= θ with A =


a11 a12 . . . a1N

a21 a22 . . . a2N
...

...
. . .

...
aM1 aM2 . . . aM N

 , φ=


φ1

φ2
...
φN

 and θ =


θ1

θ2
...
θM

 .

Note that for beam b,

θb =
N∑

j=1
ab jφ j .

Using this notation, it is possible to compute a Maximum-Likelihood Estimate of φ. Define the log-likelihood
of φ as

˜̀(φ; y1, y2, . . . , yM )

Taking the derivative of the log-likelihood with respect to φ j results in

∂ ˜̀
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2
− 1

2
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eθk −1
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)
ak j

Naturally, ak j is zero if a beam k does not contain pixel j , so the summation will be over less than M tubes.

Because solving ∂ ˜̀
∂φ j

= 0 is even harder than solving ∂`
∂θi

= 0 from the former section, there is decided to continue

with different methods of estimating φ and θ instead of proceeding in this manner (see Chapter 4).





B
MEASURES OF CONVERGENCE

In Chapter 6 some comments were made on the convergence of the reconstruction algorithm. In this chap-
ter, some additional plots are included to support decisions we have made during the reconstruction and to
complete the results.

B.1. RELAXATION PARAMETER α
Several values of the relaxation parameter α are tested in the relaxation of the reconstruction of a slightly
smaller phantom. In the Figures B.1, B.2 and B.3, the behaviour of the ‘measures of convergence’, i.e. the
log-likelihood function, the relative error and the weighted sum of squared errors, is shown for different values
of α.
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Figure B.1: Log-likelihood of φ, calculated in each iteration step, for different values of the relaxation parameter α.
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Figure B.2: Relative error, calculated in each iteration step, for different values of the relaxation parameter α.
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Figure B.3: Weighted sum of squared errors, calculated in each iteration step, for different values of the relaxation parameter α.

For convergence the log-likelihood of φ should be increasing, while the relative error and the weighted sum
of squared errors should be decreasing. Looking at the plots we see that for α= 0.7 this more or less holds for
the log-likelihood and the relative error. Therefore, this value of α is taken as the relaxation parameter in the
reconstruction.
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B.2. MEASURES OF CONVERGENCE FOR THE NEW RECONSTRUCTION METHOD
In this section the behaviour of the ‘measures of convergence’, i.e. the log-likelihood function, the relative error
and the weighted sum of squared errors, are shown for the new reconstruction method.
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Figure B.4: Log-likelihood of φ for the new reconstruction method, calculated in each iteration step.
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Figure B.5: Relative error for the new reconstruction method, calculated in each iteration step.
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Figure B.6: Weighted sum of squared errors for the new reconstruction method, calculated in each iteration step.

When comparing these figures to Figure 6.10, 6.11 and 6.12, we see that a similar improvement is made on the
convergence of the algorithm as in the relaxation method with exact variance.



C
MATLAB CODE

C.1. CURRENT RECONSTRUCTION METHOD
Here the Matlab code that is used as starting point for the experiments is given. Because the basis of the code
is not changed in the experiments, only the adjustments are given in the next sections. In the code is specified
where the adjustments should be inserted.
For explanation of the reconstruction methods, the reader is referred to Chapter 5 and 6.

%
%
% Programmed by Martin van Gijzen, April 29, 2015
%

clear all; close all;

scrsz = get(0,’ScreenSize’);

fig1 = figure(’Position’,[scrsz(1) scrsz(4) scrsz(3) scrsz(4)]);
%fig1 = figure;
subplot(1,2,1)
im = phantom(50);
imshow(im);
title(’Exact Shepp-Logan’);

[m,n] = size(im);
N = m;
x_mod = reshape(im,N^2,1); % Exact solution for Ax = b

dtheta = 2;
p = round(sqrt(2)*N); % No. of parallel rays.
R = 2; % Distance source to center
noise = 0.1;
shift = 0;
eps = 1.e-6;
m_iter = 100;

contin = 1;

old_dtheta = 0; old_p = 0; old_R = 0;
while ( contin )

Title = ’Parameters’;

47
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prompt = {’Beam angle spacing:’,’Rays per beam:’,’Distance source: ’, ...
’Noise:’, ’Maximum iterations:’};

defaults = {num2str(dtheta),num2str(p),num2str(R), ...
num2str(noise),num2str(m_iter)};

lineNo=[1 25];
params=inputdlg(prompt,Title,lineNo,defaults);
if ( isempty(params) ) contin = 0; break; end

dtheta = str2num(char(params(1)));
p = str2num(char(params(2)));
R = str2num(char(params(3)));
noise = str2num(char(params(4)));
m_iter = str2num(char(params(5)));

compute_matrix = ( dtheta ~= old_dtheta | p ~= old_p | R ~= old_R );

if ( compute_matrix )
old_dtheta = dtheta ; old_p = p; old_R = R;
theta = 0:dtheta:360-dtheta; % No. of used angles.

%Create the test problem.
A = fanbeamtomo(N,theta,p,R);

end

[m,n] = size(A);

d = A*x_mod;

disp(’Fanbeam projections’);
disp([’Number of rays = ’,num2str(m)]);
disp([’Number of pixels = ’,num2str(n)]);
disp([’Noise = ’,num2str(noise)]);

%%% INSERT ADJUSTMENTS HERE %%%

if ( noise > 0 )
randn(’state’,0);
db = randn(size(d));
pert = noise*norm(d)/norm(db);
b = d + pert*db;

else
b = d;

end

[x_lsqr, flag, relres, iter] = lsqr( A, b, eps, m_iter );
im = reshape(x_lsqr,N,N);
subplot(1,2,2);
imshow(im);
title(’LSQR reconstruction’)
disp([’LSQR: Relative error = ’,num2str(norm(x_mod-x_lsqr)/norm(x_mod)), ...

’ Iterations = ’, num2str(iter)]);

%%% END OF ADJUSTMENTS %%%

end
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C.2. THEORETICAL NOISE DISTRIBUTION

%%% BEGIN OF ADJUSTMENTS %%%

np = 10000; % number of photons

if ( noise > 0 )
mu = zeros(length(d),1);
sigma2 = 1/np*(1-exp(-d))./exp(-d);
randn(’state’,0);
db = normrnd(mu,sigma2);
pert = noise*norm(d)/norm(db);
b = max(d + pert*db,0);

else
b = d;

end

[x_lsqr, flag, relres, iter] = lsqr( A, b, eps, m_iter );

% image reconstruction
im = reshape(x_lsqr,N,N);
subplot(1,2,2);
imshow(im);
title(’LSQR reconstruction’)
disp([’LSQR: Relative error = ’,num2str(norm(x_mod-x_lsqr)/norm(x_mod)), ...

’ Iterations = ’, num2str(iter)]);

%%% END OF ADJUSTMENTS %%%

C.3. EXPERIMENT 1: PATH LENGTH

%%% BEGIN OF ADJUSTMENTS %%%

np = 10000; % number of photons

if ( noise > 0 )
mu = zeros(length(d),1);
sigma2 = 1/np*(1-exp(-d))./exp(-d);
randn(’state’,0);
db = normrnd(mu,sigma2);
pert = noise*norm(d)/norm(db);
b = max(d + pert*db,0);

else
b = d;

end

b = sparse(b);

% lsqr
[x_lsqr, flag, relres, iter] = lsqr( A, b, eps, m_iter );

% weighted lsqr: path length
path = zeros(m,1);
B = sparse(m,n);
c = zeros(m,1);
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for k = 1:m
path(k) = sum( A(k,:) );
if path(k) < 0

path(k) = 0;
end
if path(k) > 0

B(k,:) = A(k,:)/path(k);
c(k) = b(k)/path(k);

end
if path(k) == 0

B(k,:) = 0;
c(k) = 0;

end
end

[x_pl, flag_pl, relres_pl, iter_pl] = lsqr( B, c, eps, m_iter );

% image reconstruction
im = reshape(x_lsqr,N,N);
subplot(1,3,2);
imshow(im);
title(’LSQR reconstruction’)
disp([’LSQR: Relative error = ’,num2str(norm(x_mod-x_lsqr)/norm(x_mod)), ...

’ Iterations = ’, num2str(iter)]);

im = reshape(x_pl,N,N);
subplot(1,3,3);
imshow(im);
title(’Weighted LSQR: path length’)
disp([’Weighted LSQR (path length): Relative error = ’,

num2str(norm(x_mod-x_pl)/norm(x_mod)), ... ’ Iterations = ’, num2str(iter_pl)]);

%%% END OF ADJUSTMENTS %%%

C.4. EXPERIMENT 2: NON-CONSTANT EXACT VARIANCE

%%% BEGIN OF ADJUSTMENTS %%%

np = 10000; % number of photons

if ( noise > 0 )
mu = zeros(length(d),1);
sigma2 = 1/np*(1-exp(-d))./exp(-d);
randn(’state’,0);
db = normrnd(mu,sigma2);
pert = noise*norm(d)/norm(db);
b = max(d + pert*db,0);

else
b = d;

end

b = sparse(b);
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% lsqr
[x_lsqr, flag, relres, iter] = lsqr( A, b, eps, m_iter );

% weighted lsqr: non-constant variance (exact)
j = 1:m;
p = exp(-A(j,:)*x_mod);
p = min(1,p);
p = max(0,p);
var = 1/np*(1-p)./p;
D = sparse(m,n);
e = zeros(m,1);

for k = 1:m
if var(k) < 0

var(k) = 0;
end
if var(k) > 0

D(k,:) = A(k,:)/sqrt(var(k));
e(k) = b(k)/sqrt(var(k));

end
if var(k) == 0

D(k,:) = 0;
e(k) = 0;

end
end

[x_ncve, flag_ncve, relres_ncve, iter_ncve] = lsqr( D, e, eps, m_iter );

% image reconstruction
im = reshape(x_lsqr,N,N);
subplot(1,3,2);
imshow(im);
title(’LSQR reconstruction’)
disp([’LSQR: Relative error = ’,num2str(norm(x_mod-x_lsqr)/norm(x_mod)), ...

’ Iterations = ’, num2str(iter)]);

im = reshape(x_ncve,N,N);
subplot(1,3,3);
imshow(im);
title(’Weighted LSQR: non-constant variance (exact)’)
disp([’Weighted LSQR (exact non-constant variance): Relative error = ’,

num2str(norm(x_mod-x_ncve)/norm(x_mod)), ... ’ Iterations = ’,
num2str(iter_ncve)]);

%%% END OF ADJUSTMENTS %%%

C.5. EXPERIMENT 3: ITERATIVE ALGORITHM

%%% BEGIN OF ADJUSTMENTS %%%

np = 10000; % number of photons

if ( noise > 0 )
mu = zeros(length(d),1);
sigma2 = 1/np*(1-exp(-d))./exp(-d);
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randn(’state’,0);
db = normrnd(mu,sigma2);
pert = noise*norm(d)/norm(db);
b = max(d + pert*db,0);

else
b = d;

end

b = sparse(b);

% lsqr
[x_lsqr, flag, relres, iter] = lsqr( A, b, eps, m_iter );

% weighted lsqr: non-constant variance (exact)
j = 1:m;
p = exp(-A(j,:)*x_mod);
p = min(1,p);
p = max(0,p);
var = 1/np*(1-p)./p;
D = sparse(m,n);
e = zeros(m,1);

for k = 1:m
if var(k) < 0

var(k) = 0;
end
if var(k) > 0

D(k,:) = A(k,:)/sqrt(var(k));
e(k) = b(k)/sqrt(var(k));

end
if var(k) == 0

D(k,:) = 0;
e(k) = 0;

end
end

[x_ncve, flag_ncve, relres_ncve, iter_ncve] = lsqr( D, e, eps, m_iter );

% weighted lsqr: non-constant variance (exact, iterative)
x1 = [zeros(n,1), x_ncve];
i = 1;
maxi = 50;

while norm( x1(:,i)-x1(:,i+1) ) > eps && i < maxi
p2 = exp(-A(j,:)*x1(:,i+1));
p2 = min(1,p2);
p2 = max(0,p2);
var1 = 1/np*(1-p2)./p2;
E = sparse(m,n);
f = zeros(m,1);

for k = 1:m
if var1(k) < 0

var1(k) = 0;
end
if var1(k) > 0
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E(k,:) = A(k,:)/sqrt(var1(k));
f(k) = b(k)/sqrt(var1(k));

end
if var1(k) == 0

E(k,:) = 0;
f(k) = 0;

end
end

[x1(:,i+2), flag_ncvei, relres_ncvei, iter_ncvei] = lsqr( E, f, eps, m_iter );
i = i+1;

end

% b = log(I_0/I)
y = exp(-b);

pe = exp(-A(j,:)*x_ncve);
pe = min(1,pe);
pe = max(0,pe);
vare = 1/np*(1-pe)./pe;

sumsqr = zeros(maxi-3,1);
loglik = zeros(maxi-3,1);
rel_error = zeros(maxi-3,1);
for l = 1:maxi-3

for q = 1:m
if vare(q) > 0

sumsqr(l) = sumsqr(l) + ( (b(q)-A(q,:)*x1(:,l+3))/sqrt(vare(q)) )^2;
end
loglik(l) = loglik(l) + ( -1/2*log(2*pi) - 1/2*log(1/np)

+ 1/2*( A(q,:)*x1(:,l+3) + 10^(-5) )
- 1/2*log( 1-exp( ( -A(q,:)*x1(:,l+3) + 10^(-5) ) ) )
- ( np*(y(q) - exp( ( -A(q,:)*x1(:,l+3) + 10^(-5) ) ) )^2 )
/( 2*exp( ( -A(q,:)*x1(:,l+3) + 10^(-5) ) )
- 2*exp( -2*( A(q,:)*x1(:,l+3) + 10^(-5) ) ) ) );

end
rel_error(l) = norm( x_mod - x1(:,l+3) )/norm(x_mod);

end

% image reconstruction
im = reshape(x_lsqr,N,N);
subplot(1,3,2);
imshow(im);
title(’LSQR reconstruction’)
disp([’LSQR: Relative error = ’,num2str(norm(x_mod-x_lsqr)/norm(x_mod)), ...

’ Iterations = ’, num2str(iter)]);

im = reshape(x1(:,end),N,N);
subplot(1,3,3);
imshow(im);
title(’Weighted LSQR: non-constant variance (exact, iterative)’)
disp([’Weighted LSQR (exact iterative non-constant variance): Relative error = ’,

num2str(norm(x_mod-x1(:,end))/norm(x_mod)), ... ’ Iterations = ’,
num2str(iter_ncvei)]);
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%%% END OF ADJUSTMENTS %%%

C.6. EXPERIMENT 4: RELAXATION

%%% BEGIN OF ADJUSTMENTS %%%

np = 10000; % number of photons

if ( noise > 0 )
mu = zeros(length(d),1);
sigma2 = 1/np*(1-exp(-d))./exp(-d);
randn(’state’,0);
db = normrnd(mu,sigma2);
pert = noise*norm(d)/norm(db);
b = max(d + pert*db,0);

else
b = d;

end

b = sparse(b);

% lsqr
[x_lsqr, flag, relres, iter] = lsqr( A, b, eps, m_iter );

% weighted lsqr: non-constant variance (exact)
j = 1:m;
pe = exp(-A(j,:)*x_mod);
pe = min(1,pe);
pe = max(0,pe);
var = 1/np*(1-pe)./pe;
D = sparse(m,n);
e = zeros(m,1);

for k = 1:m
if var(k) < 0

var(k) = 0;
end
if var(k) > 0

D(k,:) = A(k,:)/sqrt(var(k));
e(k) = b(k)/sqrt(var(k));

end
if var(k) == 0

D(k,:) = 0;
e(k) = 0;

end
end

[x_ncve, flag_ncve, relres_ncve, iter_ncve] = lsqr( D, e, eps, m_iter );

% weighted lsqr: non-constant variance (exact, iterative relaxation)
x1 = [zeros(n,1), x_ncve];
x_ncvei = [zeros(n,1), x_ncve];
i = 1;
maxi = 50;
alpha = 0.7;
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while norm( x_ncvei(:,i)-x_ncvei(:,i+1) ) > eps && i < maxi
p2 = exp(-A(j,:)*x_ncvei(:,i+1));
p2 = min(1,p2);
p2 = max(0,p2);
var1 = 1/np*(1-p2)./p2;
E = sparse(m,n);
f = zeros(m,1);

for k = 1:m
if var1(k) < 0

var1(k) = 0;
end
if var1(k) > 0

E(k,:) = A(k,:)/sqrt(var1(k));
f(k) = b(k)/sqrt(var1(k));

end
if var1(k) == 0

E(k,:) = 0;
f(k) = 0;

end
end

[x1(:,i+2), flag_ncvei, relres_ncvei, iter_ncvei] = lsqr( E, f, eps, m_iter );
x_ncvei(:,i+2) = alpha*x1(:,i+1) + (1-alpha)*x1(:,i+2);
i = i+1;

end

% b = log(I_0/I)
y = exp(-b);

pe = exp(-A(j,:)*x_ncve);
pe = min(1,pe);
pe = max(0,pe);
vare = 1/np*(1-pe)./pe;

sumsqr = zeros(maxi-3,1);
loglik = zeros(maxi-3,1);
rel_error = zeros(maxi-3,1);
for l = 1:maxi-3

for q = 1:m
if vare(q) > 0

sumsqr(l) = sumsqr(l) + ((b(q)-A(q,:)*x_ncvei(:,l+3))/sqrt(vare(q)))^2;
end
loglik(l) = loglik(l) + ( -1/2*log(2*pi) - 1/2*log(1/np)

+ 1/2*( A(q,:)*x_ncvei(:,l+3) + 10^(-5) )
- 1/2*log( 1-exp( ( -A(q,:)*x_ncvei(:,l+3) + 10^(-5) ) ) )
- ( np*(y(q) - exp(( -A(q,:)*x_ncvei(:,l+3) + 10^(-5) )))^2 )
/( 2*exp( ( -A(q,:)*x_ncvei(:,l+3) + 10^(-5) ) )
- 2*exp( -2*( A(q,:)*x_ncvei(:,l+3) + 10^(-5) ) ) ) );

end
rel_error(l) = norm( x_mod - x_ncvei(:,l+3) )/norm(x_mod);

end
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% image reconstruction
im = reshape(x_lsqr,N,N);
subplot(1,3,2);
imshow(im);
title(’LSQR reconstruction’)
disp([’LSQR: Relative error = ’,num2str(norm(x_mod-x_lsqr)/norm(x_mod)), ...

’ Iterations = ’, num2str(iter)]);

im = reshape(x_ncvei(:,end),N,N);
subplot(1,3,3);
imshow(im);
title(’Weighted LSQR: non-constant variance (exact, iterative relaxation)’)
disp([’Weighted LSQR (exact iterative relaxation non-constant variance):

Relative error = ’,num2str(norm(x_mod-x_ncvei(:,end))/norm(x_mod)), ...
’ Iterations = ’, num2str(iter_ncvei)]);

%%% END OF ADJUSTMENTS %%%

C.7. EXPERIMENT 5: NEW RECONSTRUCTION METHOD

%%% BEGIN OF ADJUSTMENTS %%%

np = 10000; % number of photons

if ( noise > 0 )
mu = zeros(length(d),1);
sigma2 = 1/np*(1-exp(-d))./exp(-d);
randn(’state’,0);
db = normrnd(mu,sigma2);
pert = noise*norm(d)/norm(db);
b = max(d + pert*db,0);

else
b = d;

end

b = sparse(b);

% lsqr
[x_lsqr, flag, relres, iter] = lsqr( A, b, eps, m_iter );

% weighted lsqr: non-constant variance (not-exact)
j = 1:m;
pe = exp(-A(j,:)*x_lsqr);
pe = min(1,pe);
pe = max(0,pe);
var = 1/np*(1-pe)./pe;
D = sparse(m,n);
e = zeros(m,1);

for k = 1:m
if var(k) < 0

var(k) = 0;
end
if var(k) > 0

D(k,:) = A(k,:)/sqrt(var(k));



C.7. EXPERIMENT 5: NEW RECONSTRUCTION METHOD 57

e(k) = b(k)/sqrt(var(k));
end
if var(k) == 0

D(k,:) = 0;
e(k) = 0;

end
end

[x_ncvne, flag_ncvne, relres_ncvne, iter_ncvne] = lsqr( D, e, eps, m_iter );

% weighted lsqr: non-constant variance (not-exact, iterative relaxation)
x1 = [zeros(n,1), x_ncvne];
x_ncvnei = [zeros(n,1), x_ncvne];
i = 1;
maxi = 50;
alpha = 0.7;

while norm( x_ncvnei(:,i)-x_ncvnei(:,i+1) ) > eps && i < maxi
p2 = exp(-A(j,:)*x_ncvnei(:,i+1));
p2 = min(1,p2);
p2 = max(0,p2);
var1 = 1/np*(1-p2)./p2;
E = sparse(m,n);
f = zeros(m,1);

for k = 1:m
if var1(k) < 0

var1(k) = 0;
end
if var1(k) > 0

E(k,:) = A(k,:)/sqrt(var1(k));
f(k) = b(k)/sqrt(var1(k));

end
if var1(k) == 0

E(k,:) = 0;
f(k) = 0;

end
end

[x1(:,i+2), flag_ncvnei, relres_ncvnei, iter_ncvnei] = lsqr(E,f,eps,m_iter);
x_ncvnei(:,i+2) = alpha*x1(:,i+1) + (1-alpha)*x1(:,i+2);
i = i+1;

end

% b = log(I_0/I)
y = exp(-b);

% for weighted sum of squared errors
pe = exp(-A(j,:)*x_ncvne);
pe = min(1,pe);
pe = max(0,pe);
vare = 1/np*(1-pe)./pe;

sumsqr = zeros(maxi-3,1);
loglik = zeros(maxi-3,1);
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rel_error = zeros(maxi-3,1);
for l = 1:maxi-3

for q = 1:m
if vare(q) > 0

sumsqr(l) = sumsqr(l) + ((b(q)-A(q,:)*x_ncvnei(:,l+3))/sqrt(vare(q)))^2;
end
loglik(l) = loglik(l) + ( -1/2*log(2*pi) - 1/2*log(1/np)

+ 1/2*( A(q,:)*x_ncvnei(:,l+3) + 10^(-5) )
- 1/2*log( 1-exp( ( -A(q,:)*x_ncvnei(:,l+3) + 10^(-5) ) ) )
- ( np*(y(q) - exp(( -A(q,:)*x_ncvnei(:,l+3) + 10^(-5) )))^2 )
/( 2*exp( ( -A(q,:)*x_ncvnei(:,l+3) + 10^(-5) ) )
- 2*exp( -2*( A(q,:)*x_ncvnei(:,l+3) + 10^(-5) ) ) ) );

end
rel_error(l) = norm( x_mod - x_ncvnei(:,l+3) )/norm(x_mod);

end

% image reconstruction
im = reshape(x_lsqr,N,N);
subplot(1,3,2);
imshow(im);
title(’LSQR reconstruction’)
disp([’LSQR: Relative error = ’,num2str(norm(x_mod-x_lsqr)/norm(x_mod)), ...

’ Iterations = ’, num2str(iter)]);

im = reshape(x_ncvnei(:,end),N,N);
subplot(1,3,3);
imshow(im);
title(’Weighted LSQR: non-constant variance (not-exact, iterative relaxation)’)
disp([’Weighted LSQR (not-exact iterative relaxation non-constant variance):

Relative error = ’,num2str(norm(x_mod-x_ncvnei(:,end))/norm(x_mod)), ...
’ Iterations = ’, num2str(iter_ncvnei)]);

%%% END OF ADJUSTMENTS %%%
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