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Turbulent fiber suspension channel flow is studied using direct numerical simulation. The effect of
the fibers on the fluid mechanics is governed by a stress tensor, involving the distribution of fiber
position and orientation. Properties of this function in channel flow are studied by computing the
trajectories and orientations of individual particles, referred to as the particle method. It is shown
that, due to computer restrictions, the instantaneous stress in channel flow cannot be simulated
directly with the particle method. To approximate the stress we compute the second-order moment
of the fiber distribution function. This method involves an unknown subgrid term, which is modeled
as diffusion. The accuracy of the moment approximation is studied by comparing Reynolds
averaged stress to results obtained from the particle method. It is observed that the errors are �1%
for y+�20, and �20% for y+�20. The model is improved by applying a wall damping function to
the diffusivity. The moment approximation is used to simulate drag-reduced channel flow. A
simplified model for fiber stress is introduced as fiber viscosity times rate of strain, where fiber
viscosity is defined as the ratio of Reynolds averaged dissipation due to fiber stress and Reynolds
averaged dissipation due to Newtonian stress. Fluid velocity statistics predicted by the simple model
compare very well to those obtained from the moment approximation. This means that the effect of
fibers on turbulent channel flow is equivalent to an additional Reynolds averaged viscosity. © 2007
American Institute of Physics. �DOI: 10.1063/1.2800041�

I. INTRODUCTION

Suspended linear polymers, with a large length to diam-
eter ratio, can induce significant changes in the flow proper-
ties of the carrier fluid at volume concentrations as low as
10−5. Most striking is the reduction of the drag coefficient in
turbulent pipe flow.1

A distinction can be made between rigid and flexible
polymers. Rigid polymers �fibers� affect the carrier fluid
through viscous effects only, whereas flexible polymers in-
duce both viscous as well as elastic effects.2 Numerical re-
search points out that elasticity has an adverse effect on drag
reduction,3,4 which implies that polymer-induced drag reduc-
tion is most likely due to viscous effects. Attributing drag
reduction to viscous effects is further confirmed by simula-
tions showing that rigid polymers5 and flexible polymers6

induce very similar changes in the turbulent structures.
A qualitative explanation of drag reduction based on vis-

cosity arguments was provided by Lumley.7 It is based on the
shear thinning property,2 causing polymer viscosity to be ap-
proximately zero in the viscous sublayer. Outside this layer
turbulence induces nonzero polymer viscosity which in turn
dampens the turbulence. This effect induces a thickening of
the viscous sublayer and consequently a reduction of the
drag. More recent studies confirmed that drag reduction can
be predicted by assuming an additional viscosity which is

zero in the viscous sublayer and increases with
wall-distance.8,9

The problem of drag reduction is of extreme complexity
since it involves the combination of polymer dynamics and
turbulence. It is for this reason that a quantitative theory is
still lacking, despite numerous experimental, numerical and
theoretical works, conducted over the past 50 years. This
paper deals with direct numerical simulation �DNS� of fiber
suspension channel flow. The aim is to provide a simplified
picture of the fiber stress tensor, which accounts for the ef-
fect of the fibers on the fluid mechanics. Section II deals with
numerical details of the channel flow simulation and the
mathematical description of fiber stress. This stress is gov-
erned by a constitutive equation, involving the statistical dis-
tribution of fiber position and orientation. Properties of this
function are derived using a particle method, i.e., by comput-
ing the trajectories and orientations of individual particles.
From the analysis it follows that a direct computation of fiber
stress is unfeasible. We investigate an approximate method to
compute fiber stress in Sec. III. The method consists of solv-
ing the second-order moments of the distribution function,
referred to as moment approximation. The accuracy of this
method is determined by making a comparison to the “exact”
particle method. In Sec. IV the moment approximation is
used to simulate drag-reduced channel flow. A simplified
model for fiber stress is introduced as an additional viscosity.
This so-called fiber viscosity is defined such that the addi-
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tional dissipation equals the dissipation due to the “exact”
fiber stress. The model is verified by a comparison to the
simulation using the moment approximation. Conclusions
are given in Sec. V.

II. GOVERNING EQUATIONS AND NUMERICAL
DETAILS

A. Channel flow

Fiber suspension flow is governed by the incompressible
Navier-Stokes equations, supplemented by the divergence of
the fiber stress tensor � �Ref. 2�,

�
Du

Dt
= � · �− �� + 2�S + ��, � · u = 0. �1�

Here u is the fluid velocity vector, t is time, � is the gradient
operator in physical space, D /Dt=� /�t+u ·� is the material
derivative, � is the unit tensor, S= 1

2 ��uT+�u� is the rate of
strain tensor, � is the pressure, � is the solvent mass density,
and � is the solvent dynamic viscosity.

Equation �1� is integrated numerically in the channel ge-
ometry. The simulations discussed in Secs. II and III are
one-way coupled, meaning that fiber dynamics are influ-
enced by the flow, but not vice versa, i.e., �=0 in Eq. �1�.
The flow is driven by means of a constant pressure gradient
between two parallel no-slip walls separated a distance H in
the y-direction. Periodic boundary conditions are imposed in
the homogeneous directions x and z. We use a pseudospectral
flow solver. Spatial derivatives are computed with a Fourier-
basis for the homogeneous directions and a second-order
central finite differences scheme for the wall normal direc-
tion. Time integration is achieved with the second-order ex-
plicit Adams-Bashforth scheme. Conservation of mass is en-
sured using a projection method. Poisson’s equation is
transformed to Fourier space in the homogeneous directions
and a tridiagonal solver is used for the resulting tridiagonal
matrices. The variables are discretized on a nonequidistant
staggered mesh. Pressure and the velocity components in the
homogeneous directions are defined in the cell centers. The
wall normal velocity component is defined on the cell faces.

The Reynolds number Re=�U�H /�=360 is based on

the friction velocity U�, with U�
2= �1/2��−d�̄ /dx��H /��. The

overbar denotes Reynolds averaging.10 The channel dimen-
sions and resolutions in x �streamwise�, y �wall-normal�, and
z �spanwise� are 1.5H�H�0.75H and 48�192�48, which
are similar to Ref. 11. We have chosen to use this small
domain, since it allows performing simulations, using rela-
tively little computer resources. The small domain influences
the numerical solution quantitatively, while qualitatively the
solution resembles the solution on large domains.11 In the
present study quantitative details are of less importance,
since the aim is to compare different fiber stress models. The
grid is nonuniform in the y-direction such that y of the ith
grid-point is given by 0.5�1+arctan�3�i /192
−0.5�� / arctan�1.5��. The grid-spacing in � /U�-units at the
wall and in the channel center are 11�0.88�5.6 and 11
�2.9�5.6, where the kinematic viscosity equals �=� /�.
This resolution resembles the one used in Ref. 12, which is

generally regarded as sufficient resolving all important spa-
tial scales. The time step is 	t=3.6�10−2� /U�

2. According
to Reynolds decomposition ¯, �¯��, and �¯�rms denote
mean part, fluctuating part, and standard deviation. A vari-
able with superscript + is scaled with �, �, and U�.

In Fig. 1 fluid velocity statistics are compared to the data
of Ref. 12, who also performed DNS of turbulent channel
flow at Re=360. The differences are due to different channel
dimensions, which is supported by the results of a simulation
performed on a larger domain with dimensions 6H�H
�3H. In Fig. 1 it is shown that the corresponding results
agree very well with Ref. 12, which verifies our simulation
code.

B. Fibers

We assume a suspension of buoyantly free, cylindrical
rods of length L and diameter D, with aspect ratio r
=L /D�1. The effects of a finite r and Brownian motion are
ignored. Furthermore it is assumed that the fibers are nonin-
teracting, massless and substantially smaller than the Kol-
mogorov length-scale.

Under these conditions the fibers translate as material
points and rotate as material lines,2

ẋ = u, ṗ = �uT · p · �� − pp� . �2�

Here x is the particle position vector, p is the particle orien-
tation unit vector and the overdot represents time differentia-

FIG. 1. Comparison of mean �a� and standard deviation �b� of fluid velocity
as a function of wall distance, Kim et al. �Ref. 12� �circles�, 1.5H�H
�0.75H channel �dashed lines�, 6H�H�3H channel �solid lines�.
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tion. From Eq. �2� it follows that the particle volume fraction
c is homogeneous, since the distribution of material points in
incompressible turbulent channel flow evolves towards ho-
mogeneity, independent of the initial distribution.10 In the
following the restrictions of the above mentioned assump-
tions are discussed.

The effects of finite r on rotary motion,13

ṗ =
r2 − 1

r2 + 1
�uT · p · �� − pp� +

2

r2 + 1
� · p , �3�

are of order r−2 and can therefore be ignored for r
100.
Here �= 1

2 ��uT−�u� is the vorticity tensor.
Brownian motion induces diffusion on fiber position and

orientation, where the latter is most pronounced.2 Adding
diffusion to fiber rotation gives

ṗ = �uT · p · �� − pp� − dr�p ln f , �4�

where f�p ,x , t� is the probability of finding a fiber with ori-
entation p at position x at time t. The rotary diffusivity dr

=1/ tB, where tB is a diffusion time scale,2

tB �
���L3

�ln�r� − 0.8�3kBT
, �5�

with kB�1.4�10−23 m2 kg s−2 K−1 the Boltzmann constant
and T the temperature. Paschkewitz et al.5 simulated fiber
suspension channel flow at Re�700, c=7.5�10−3, r=100,
and tB / tL�25, with tL the large eddy turnover time tL

��H2 /��Re−1 �Ref. 10�. The drag coefficient was 18.5%
smaller than the corresponding value in Newtonian flow. In-
creasing tB / tL from 25 to � induced a further marginal
change of 0.6% to the drag coefficient. This means that in the
study of drag reduction Brownian motion can be neglected
for tB / tL
100. We can recast this condition into a minimum
fiber length. If we assume Re=360, r=100, T=3�102 K,
�=1�10−6 m2 s−1, �=103 kg m−3, and H=5�10−2 m, then
L
3�10−8 m, in order for the neglect of Brownian motion
to be justified. This constraint is met by commercially avail-
able rigid-rod like polymers. For instance xanthan polysac-
charide and schizophyllum polysaccharide used in drag re-
duction experiments14 have a length of L�1�10−6 m.

The assumption that the particle length L is smaller than
the Kolmogorov length scale lK�H Re−3/4 �Ref. 10� is valid
when L /H�Re−3/4. Assuming fiber length to be smaller than
one-tenth of the Kolmogorov length scale at Re=360 and
H=5�10−2 m gives L
6.0�10−5 m.

The neglect of inertia is justified when the particle re-
sponse time tp���p /��D2 /� �Ref. 15� is smaller than the
Kolmogorov time scale tK��H2 /��Re−3/2 �Ref. 10�, i.e.,
when D /H�Re−3/4. Here �p is the particle mass density,
which is assumed to be equal to the fluid mass density �.
This condition is automatically satisfied when L is smaller
than the Kolmogorov length scale, since r=L /D�1.

When considering interactions, it is convenient to distin-
guish between different regimes of concentration.2 In the di-
lute regime cr2
1, the distance d between a fiber and its
nearest neighbor d
L and interactions can be neglected. In
the semidilute regime cr2
1
cr, the spacing between the
fibers is d
L but d
D. Although physical contacts are rare,

the fibers are affected by hydrodynamic interactions. In the
concentrated regime cr
1, the spacing is d
D, and fibers
are in constant physical contact with each other. Drag reduc-
ing suspensions fall within the semidilute regime. Folgar and
Tucker measured fiber orientation in laminar shear flow of
semidilute suspensions with r=83 and cr2 ranging between
�3−40� �Ref. 16�. They interpreted the effect of interactions
as a rotary diffusivity dr proportional to the characteristic
shear �,

dr = CI�, � = 	2S:S . �6�

The proportionality constant CI defines the relative impor-
tance of hydrodynamic interactions on fiber motion. This pa-
rameter was found to range between �3−4��10−3. These
rather low values suggest that neglecting interactions does
not introduce errors that are too large.

C. Fiber distribution function

The probability f�p ,x , t� of finding a fiber with orienta-
tion p at position x at time t is governed by2

� f

�t
+ � · �ẋf� + �p · �ṗf� = 0, 
 fd� = 1, �7�

where �p is the gradient operator on the unit sphere � and ẋ
and ṗ are given by Eq. �2�. The first equality in Eq. �7� is
referred to as the Fokker-Planck equation. It describes the
advection of probability in fiber position and orientation
space. The second equality in Eq. �7� is needed due to ho-
mogeneity of the Fokker-Planck equation. It expresses that
the spatial fiber distribution is homogeneous.

A particle method is used to identify properties of f in
turbulent Newtonian channel flow. The simulations are one-
way coupled. The method is similar to the one used in Ref.
17 and involves computing fiber trajectories in position and
orientation space, governed by Eqs. �1� and �2�. Fluid veloc-
ity and velocity gradient values at the position of the par-
ticles are interpolated. The interpolation scheme uses the
Fourier-basis in the streamwise direction and a third order
polynomial fit in spanwise and wall-normal directions. We
use expensive Fourier interpolation rather than polynomial
interpolation in the streamwise direction, since the latter in-
duces large wiggles with period 	x /ux in the time signal of
particle velocity. Here 	x is the grid-spacing in the stream-
wise direction. The position and orientation of the fibers is
advanced in time with the second-order Adams-Bashforth
scheme.

First, we approximate the p-dependence of f on an indi-
vidual point, by computing p�t� of 104 fibers which follow
the same material point x�t�. The initial conditions for the
orientation of the fibers are random. Figure 2�a� shows the
development of the eigenvalues aii of �pp�. Here the average
�¯� is taken over particles positioned on the same point. By
definition, a11+a22+a33=1 and a11�a22�a33�0. It appears
that f develops from the isotropic initial distribution �a11

=1/3� via a planar distribution �a33=0� into a unidirectional
distribution �a11=1�. This demonstrates that after a finite
time interval the orientation of a fiber does not depend on its
initial conditions. By considering many such traces as shown
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in Fig. 2�a�, this interval is estimated as 103� /U�
2. After this

time interval the distribution function has the following
form:

f�p,x,t� = ��p − q�x,t�� , �8�

with ��¯� the Dirac-delta function and q�x , t� the direction
of a fiber at position x at time t. It is noted that the same
behavior occurs �not shown� when the effects of finite aspect
ratio are taken into account in the description of fiber rota-
tion, i.e., when rotation is given by Eq. �3�.

Next the x-dependence of q is studied. For this purpose a
simulation is carried out of Eqs. �1� and �2� for 106 particles
with initial random x and p. After 103� /U�

2 time units, fiber
orientation is assumed independent of initial conditions.
Samples of q�x , t� are taken from which the two-point corre-

lation ��
dx 
 �=qq�x , t� :qq�x+dx , t�=cos2 � is computed.
The angle � is between the orientation vectors of two fibers.
The average ¯ is taken over all particle pairs separated a
distance 
dx
 at several time instances. Fully correlated and
uncorrelated orientations correspond to �=1 and �=1/3, re-
spectively. The statistical errors, related to the finite sample
size, restrict the range for which � is accurately determined
to 
dx
+
0.05. It means that the number of particle pairs,
which are separated a distance 
0.05 from each other, is
inadequate to obtain an accurate prediction for ��
dx 
 �. The
result in Fig. 2�b� shows that ��
dx
+=0.05�=0.88. This in-
dicates that there are significant variations of qq over a spa-
tial separation of 0.05 � /U�-units. This suggests that in tur-
bulent flow q�x� is discontinuous, similar to the
concentration of a passive scalar at zero diffusivity.18 This
hypothesis is strengthened by the power spectrum of qq, de-
fined as the Fourier-transform of �, given in Fig. 2�c�. For
wavenumber k�2� / lK, the spectrum decays as k−1, similar
to the energy spectrum of a passive scalar in turbulent flow at
small diffusivity.18 Here lK is the Kolmogorov length scale,
estimated as 2� / lK

+ �2� Re−1/4�1.4.

D. Fiber stress

The fiber stress � in Eq. �1� equals the rate of strain
projected on the fiber directional vectors by means of a
double contraction with the fourth-order moment of the fiber
distribution function,2

� = 2��S:�pppp�, � �
4cr2

3�ln r − 0.8�
. �9�

Equation �9� involves averaging �¯� over fibers contained in
a volume V, surrounding the point at which the stress is to be
determined. The average can be expressed as an integral over
� and V, weighted with f ,

�¯��x,t� =
1

V



V

dV

�

d�f�p,y,t� ¯ . �10�

By definition the dimensions of V are smaller than the
smallest length-scales of �u, such that �u may be consid-
ered constant in V �Ref. 2�. The number of particles needed
to accurately compute stress in turbulent channel flow is es-
timated by assuming that �u does not change appreciably
over 10 � /U�-units, being the grid spacing in streamwise
direction in well-resolved simulations.12 Figure 2�b� shows
that 1−��
dx
+=10��0.45 indicating that fiber orientation
within a grid-cell is distributed with standard deviation �1.
The standard deviation of the sum of N orientations is there-
fore �1/	N �Ref. 10�. Thus for a 10% accuracy in stress
�102 particles per grid-cell are necessary. A direct numerical
simulation of channel flow at low Re requires �106 grid-
cells. To simulate ten large eddy turnover times H /U�, our
computer code would take �100 years on an AMD Opteron
2 GHz processor.

Due to the inadequate number of particles, instantaneous
stress cannot be computed from our particle simulation. On
the other hand, Reynolds averaged stresses can be computed
and are plotted in Fig. 3�a�, using �=1. To compute these
averages it is assumed that �¯�=¯. It is noted that these

FIG. 2. �a� Development of the first and third eigenvalues a11 and a33 of
�pp� along a fluid path. �b� The two-point correlation � of qq�x , t�, with q
defined in Eq. �8�. �c� Absolute value of the Fourier transform of � �dots�.
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stresses are not coupled to the fluid equations of motion. An
interesting feature is that at the wall all stress components are
zero, i.e., fibers oriented in the direction of zero strain. This
is related to the fact that at the wall S=Sxy�exey+eyex�
+Syz�eyez+ezey� and the observation that at the wall py =0, as
shown in Fig. 3�b�. Here ei are the Cartesian unit vectors.

III. MOMENT APPROXIMATION

A. Moment evolution equation

As pointed out in the previous section, instantaneous fi-
ber stress cannot be computed using a particle method. A
statistical method based on Eq. �7� can be used. Due to its
discontinuous nature, f cannot be solved directly and ap-
proximations are needed. In this work the so-called moment
approximation is investigated.

The transport equation for the second moment of f is
derived by multiplying Eq. �7� by pp and applying the aver-
aging operator �Eq. �10�� to the result,

1

V



V

dV

�

d��pp� � f

�t
+ � · �uf�

+ �p · ��uT · p · �� − pp�f��� = 0. �11�

Applying Eq. �8� and integrating over � yields

1

V



V

dV� �qq

�t
+ � · �uqq� − �uT · qq − qq · �u

+ 2�u:qqqq� = 0. �12�

Applying Eq. �10� and assuming �u to be constant in V
yields

D�pp�
Dt

− �uT · �pp� − �pp� · �u + 2�u:�pppp� = s , �13�

with

s = −
1

V



V

dV� · ��u�y� − u�x��qq�

= −
1

V



V

dV� · ��u�x� · �y − x�qq� . �14�

Here y is a position vector varying over V, x is the position
of the center of V, �u�x� is the velocity gradient at x and
�pp� and �pppp� are the second and fourth-order moments of
f . Equation �13� cannot be solved directly. Two unknowns
have to be modeled: the fourth-order moment and the
subgrid-term s.

The fourth moment appears in the equation of change for
the second moment due to the nonlinear dependence of fiber
rotation on fiber orientation �Eq. �2��. To obtain a closed set
of equations a model must be adopted to express �pppp� in
terms of �pp�. Accurate models have been developed by pa-
rameterizing the distribution function19 and by fitting “exact”
solutions of the Fokker-Planck equation.20,21 In this work, we
use the closure developed by Wetzel,22 who extended the
method introduced by Cintra and Tucker.20 The closure ex-
presses the principal values of �pppp� as functions of the
principal values of �pp� by means of a fit to numerical solu-
tions to Eq. �7� for simple flows. The fit coefficients are
constrained to produce correct �pppp� for the three limiting
cases of isotropic, biaxial, and uniaxial distribution
functions.

The subgrid term s represents the effects of the unre-
solved variations of qq on �pp�. The length-scales of these
variations are smaller than the linear dimensions of V. We
use diffusion to model this term,

s = D�2�pp� , �15�

where D is referred to as the artificial diffusivity. This is the
conventional approach used in numerical simulations of
polymer moment equations5,6 since it ensures stable and
smooth numerical solutions.23

B. Performance

The accuracy of the moment approximation �Eqs. �1�,
�9�, �13�, and �15�� is investigated by comparing Reynolds
averaged stress to the “exact” values obtained from the par-
ticle simulation.

FIG. 3. Mean fiber stress using �=1 �a� and mean fiber orientation �b� in
Newtonian flow, computed with the particle method.
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The accuracy is determined by two factors: the fourth-
order moment closure and the subgrid model. In a previous
work, we studied the accuracy of the fourth-order moment
closure separately.24 Very accurate results in turbulent chan-
nel flow were obtained using the closure scheme developed
by Cintra and Tucker,20 which is believed to be less accurate
than the scheme used here.22 Therefore we assume that errors
introduced by the moment approximation are mainly due to
the inadequacy of the subgrid model.

The numerical methods to solve Eqs. �13� and �15� are
similar to the methods used for Eq. �1� as described in Sec.
II A. In addition the moment and stress components are de-
fined in the cell-centers and zero wall-normal derivatives at
the walls are used as boundary conditions for these variables.
Simulations are carried out for different values of the artifi-
cial diffusivity D. This parametric study revealed that the
error in mean stress decreases with decreasing D. However,
for D
�, the solution �pp� exhibits spurious wiggles. In Fig.
4 the stress for D=� is compared to the “exact” stress. The
moment approximation predicts accurate stress for y+�20,
while it overestimates stress for y+�20. The moment ap-
proximation does not predict zero stress at the wall, in con-
trast to the “exact” result. In Fig. 4 it is demonstrated that by
damping the diffusivity in the near-wall region �y+�30�,

s = D� · fw��pp�, fw = �sin2��y+/60� if y+ � 30

1 if y+ � 30

�16�

the moment approximation is improved to predict zero stress
at the wall, as well as a qualitatively correct behavior in the
near wall region.

IV. DRAG-REDUCED FLOW

A. Comparison to Newtonian flow

The moment approximation �Eqs. �1�, �9�, �13�, and
�16�� is used to simulate non-Newtonian fiber suspension
channel flow. The simulations are two-way coupled, i.e., the
fluid affects the fibers and vice versa. The parameters are �
=20, D=�, and Re=360. Further simulation details are given
in Sec. II A. In Figs. 5�a� and 5�b� fluid velocity statistics in
fiber suspension flow and Newtonian flow are compared. The
larger mean velocity in the fiber suspension implies that the
fibers reduce the drag coefficient CD= �U� /Ub�2. The bulk
velocity is defined as Ub= �1/H��0

Hūdy. The outward shift of
the intercept of the linear profile �y+�10� and the logarith-
mic profile �40�y+�100� indicates a thickening of the vis-

FIG. 4. Mean stress components using �=1 in Newtonian flow, computed with the particle method �solid lines�, moment approximation using subgrid model
Eq. �15� �dashed lines�, and moment approximation using subgrid model Eq. �16� �dashed-dotted lines�.
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cous and buffer layers. The parallel upward shift of the mean
velocity profile in the logarithmic layer �40�y+�100� indi-
cates that the flow is in the “small drag reduction” �SDR�
regime, whereas in the “large drag reduction” regime the
slope increases.25 Typical for SDR-flow, the turbulent veloc-
ity intensity urms is increased in x and reduced in y and z.
These results are consistent with findings of previous nu-
merical research.5

B. Lumley’s scenario

The aim of the present work is to provide a simplified,
yet accurate, description of the effect of fibers on fluid me-
chanics. The reduced model is based on arguments provided
by Lumley, who explains drag reduction by an additional
viscosity, i.e., by modeling fiber stress as7

� = 2� fS . �17�

Lumley argues that the fiber viscosity � f is induced by tur-
bulence. As an effect turbulence is dampened, which results
in a thickening of the viscous sublayer and consequently a
reduction of the drag. To explore this idea we begin by de-
fining � f based on the integral energy balance, which in non-
dimensional form reads

2Ub
+ = 


0

Re

��̄+ + � f
+�dy+. �18�

Here � f =S :�=2��S : �pppp� :S is dissipation of kinetic en-
ergy due to fiber stress and �̄=2�S :S is dissipation due to
Newtonian stress.

Since the drag coefficient CD=1/Ub
+2 is directly related

to the fiber dissipation � f, we define � f such that the dissi-

pation predicted by Eq. �17�, � f =2� fS :S equals the “real”
dissipation,

� f = �
� f

�̄
= ��

S:�pppp�:S
S:S

. �19�

Figure 6�a� shows � f / ���� as a function of wall distance in
Newtonian and drag-reduced flow. The normalized fiber vis-
cosity � f / ���� is smaller in drag-reduced flow as compared
to Newtonian flow. Figure 6�b� shows that this is linked to a
decrease of �̄ f /�, while �̄ is remarkably similar in both flows.

A simulation is carried out of Eqs. �1� and �17� with
� f�y� taken from the drag-reduced channel flow simulation,
given in Fig. 6�a�. Resulting non-Newtonian flow statistics
are compared to the simulation of the full constitutive equa-
tions in Figs. 5�a� and 5�b�. The striking agreement implies
that fiber-induced drag reduction can be regarded as an effect

FIG. 5. Mean �a� and standard deviation �b� of the fluid velocity. Compari-
son between drag-reduced flow computed with full constitutive equation
�solid lines�, drag-reduced flow computed with simplified constitutive equa-
tion �circles�, and Newtonian flow �dashed lines�.

FIG. 6. �a� Normalized fiber viscosity � f / ���� as a function of wall dis-
tance in drag-reduced flow �solid line� and Newtonian flow �dashed line�.
�b� Newtonian dissipation �̄+ �lines� and normalized fiber dissipation �̄ f

+ /�
�circles� in Newtonian flow �solid line and filled circles� and drag-reduced
flow �dashed line and open circles�.
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due to an additional Reynolds averaged viscosity. This
means that characteristic directions of the fiber stress tensor,
are not of key importance for drag reduction. Also its fluc-
tuations in time and space are not relevant.

V. CONCLUSIONS

It is demonstrated that a direct computation of the stress
generated by non-Brownian fibers in turbulent channel flow
is computationally unfeasible. We have approximated the
stress by computing the second-order order moment of the
fiber distribution function. The method involves a subgrid
term, which is modeled as diffusion. It is shown that the
accuracy of the method is improved by applying a wall-
damping to the diffusivity.

Non-Newtonian fiber suspension channel flow is simu-
lated and compared to Newtonian flow. The fibers induce a
reduction of the drag coefficient. A simplified constitutive
model as a viscous stress is studied. The proposed fiber vis-
cosity � f is defined such that the resulting Reynolds aver-
aged dissipation equals the dissipation of the “exact” fiber
stress. The simplified model induces changes in the flow
which are nearly identical to those predicted by the full con-
stitutive equations. It is therefore concluded that the charac-
teristic directions of the fiber stress tensor, as well as its
fluctuations in time and space can be ignored in the study of
drag reduction. Instead the effect of the fibers can be consid-
ered as a Reynolds averaged isotropic viscosity, which re-
duces the complexity of the problem considerably. This re-
sult validates important assumptions made in theoretical
efforts towards a theory of drag reduction.8,26
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