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Abstract This paper proposes an efficient and reliable topol-
ogy optimization method that can obtain a black and white
solution with a low objective function value within a few
tens of iterations. First of all, a transformation of variables
technique is adopted to eliminate the constraints on the de-
sign variables. After that, the optimization problem is con-
sidered as aiming at the minimum compliance in the space
of design variables which is supposed to be solved by itera-
tive method. Based on the idea of the original gradient pro-
jection method, the direct gradient projection method (DGP)
is proposed. By projecting the negative gradient of objec-
tive function directly onto the hypersurface of the constraint,
the most promising search direction from the current posi-
tion is obtained in the vector space spanned by the gradients
of objective and constraint functions. In order to get a bal-
ance between efficiency and reliability, the step size is con-
strained in a rational range via a scheme for step size mod-
ification. Moreover, a grey elements suppression technique
is proposed to lead the optimization to a black and white so-
lution at the end of the process. Finally, the performance of
the proposed method is demonstrated by three numerical ex-
amples including both 2D and 3D problems in comparison
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1 Introduction

Efficiency and reliability are the two dominating preferences
of structural topology optimization. However, these two prop-
erties of an optimization method are contradictory in a sense.
So far, most of the topology optimization methods put em-
phasis on reliability, endeavoring to get to the theoretical
optimal solution as close as possible. Whereas an efficient
method with fast convergence is preferred in industrial ap-
plications (Sigmund 2007; Rozvany 2009). This paper is
dedicated to conceive a topology optimization method with
a balance between efficiency and reliability.

In early days, some benchmark problems of topology
optimization were solved by analytical method (e.g. Michell
1904; Rozvany 1998). Owing to the development of finite
element theory and computer technique, numerical methods
for topology optimization have taken the place of analytical
methods, and allow to solve topology optimization problems
of large and complex systems. By discretizing the design
domain into elements, the density variables of the elements
can be used as design variables to interpret all the potential
structural forms in this domain.

Generally speaking, topology optimization is a constrained
nonlinear programming problem, aiming to find the mini-
mum feasible point in an Euclidean N-dimensional space
of design variables. Considering the high costs of objec-
tive function evaluations and the relatively low costs of first
derivatives calculations, an efficient method should make
full use of the evaluation and first-order information of the
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objective and constraint functions to generate the next most
promising point.

Density variables of structural topology optimization are
usually expected to have the discrete value 0 or 1, as is set
in Evolutionary Structural Optimization method (ESO, Xie
and Steven 1993). However, this setting will cause oscilla-
tion or even failure in programming when the gradient of
the objective function (i.e. sensitivity with respect to den-
sity variable) changes greatly between consecutive iterations
(Rozvany 2009). Therefore, continuity is generally indis-
pensable for the density variables during the process of op-
timization.

Based on the continuity of design variables, optimal-
ity criteria method (OC, Bendsøe 1989), the Convex Lin-
earization method (CONLIN, Fleury 1989) and the Method
of Moving Asymptotes (MMA, Svanberg 1987) have been
proved reliable in many topology optimization problems. As
a matter of fact, the OC method is the same as the solu-
tion of structural topology optimization with the CONLIN
method, while the CONLIN method can be obtained as the
special case of MMA when the lower asymptotes are set
to 0 (Le = 0) and the upper asymptotes are set to positive
infinite (Ue = ∞). These methods perform linearization with
respect to the reciprocal of design variables so that the trans-
formed subproblem, which is a simple convex programming
problem, can be solved by a dual method. In consequence
of the linear approximation, the updated design may devi-
ate more or less from the most promising direction. Further-
more, though parameter Le and Ue in MMA are related to the
convergence rate of the optimization process, none of these
existing methods efficiently control the step size for each it-
eration according to the feature of topology optimization.

The gradient projection method (Rosen 1960, 1961) is
a direct nonlinear programming method without linear ap-
proximation. By taking a step in the direction of the projec-
tion of the negative gradient of the objective function onto
the tangent hyperplane of the currently active constraint, a
feasible point with a lower objective function value is ex-
pected to be obtained in each iteration. The conventional
gradient projection method was considered to be inadequate
for structural optimization (Fleury 1989) for the reason that
a large number of iterations are usually required for conver-
gence. However, the weakness can be conquered according
to the special property of the given structural optimization
problem (Vanderplaats and Moses 1973).

The transformation of variables technique is employed
to eliminate the constraints on design variables. Since there
is only one constraint of volume left, the direct gradient pro-
jection method is proposed to obtain a new feasible point
with a lower value of objective function directly.

This paper is organized as follows. In Section 2 the math-
ematical formulations of structural topology optimization
and the transformation technique of density variables are

elaborated. The original gradient projection method and the
direct gradient projection method are interpreted in Section 3.
Besides, the convergence of the proposed direct gradient
projection method is also discussed. Section 4 proposes sev-
eral implementation techniques that can improve the effi-
ciency and stability of the algorithm. An overview of the
algorithm is presented in Section 5. Section 6 presents three
selected numerical examples to demonstrate the performance
of the proposed method in both 2D and 3D structural topol-
ogy optimization problems. Some discussion about the re-
sults of numerical examples is finally given in Section 7.

2 Mathematical framework

2.1 Material interpolation scheme

Structural topology optimization adopts the same physical
model as that in the finite element analysis, except that an
artificial material defined by an interpolation scheme is em-
ployed. The Solid Isotropic Material with Penalization for
intermediate densities method (SIMP, Bendsøe 1989) is the
most effective and widely used material interpolation scheme.
With the power-law penalization of the Young’s modulus for
an intermediate density material, a black and white solution
without too many grey elements can be attained. The SIMP
material interpolation scheme is defined as follows:

Ee(ρe) = ρ p
e E0, ρe ∈ [0,1] (1)

where E0 is the stiffness of the material, p (typically p = 3)
is the penalization factor, ρe is a density variable assigned to
element e that is constrained to be between 0 and 1, and Ee
is the Young’s modulus of element e corresponding to the
density variable ρe.

2.2 Problem formulation

The compliance of a structure, C, is usually adopted as the
objective function, and the volume is constrained. There-
fore, on the basis of the physical model, the general math-
ematical model can be described by the following formula-
tion (Bendsøe and Sigmund 2003):

min
ρρρ

: f (ρρρ) =C = FT U =
N

∑
e=1

Ee(ρe)uT
e k0ue

s.t. : g(ρρρ) =V (ρρρ)−V ∗ =
N

∑
e=1

ρe −V ∗ ≤ 0

KU = F
ρe ∈ [0,1]

(2)

where ρρρ is the density vector whose components are ρe ,
N is the number of elements, U and F are the displacement
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vector and force vector respectively, K is the global stiff-
ness matrix determined by the density vector ρρρ , k0 is the
element stiffness matrix with unit Young’s modulus, ue is
the displacement vector for the element e, V (ρρρ) is the total
volume of the structure corresponding to the density vector
ρρρ and V ∗ is the constrained volume that is given beforehand.
Assuming uniform element meshes, all the element volumes
are equal to the density variable ρe. The first derivatives with
respect to the density variables can be derived as follows:

∂ f
∂ρe

=−uT
e

∂ke

∂ρe
ue =−pρ p−1

e uT
e k0ue ≤ 0 (3)

∂g
∂ρe

=
∂V
∂ρe

= 1 > 0 (4)

Form (3) it can be concluded that every component of the
gradient of the objective function is always negative, which
means additional material in any element decreases the value
of the objective function. Therefore the minimum is on the
hyperplane of the volume constraint and ‘≤’ in the con-
straint formulation can be replaced by ‘=’.

2.3 Transformation technique

Transformation technique is a common mathematical tech-
nique widely used in extremum problems. An explicit con-
straint formulation can be satisfied automatically by making
a transformation of the independent variables.

As for topology optimization, the density variables are
usually adopted as design variables directly. Whereas, it will
tremendously facilitate the optimization if the constrained
range [0,1] of design variables is expanded to be infinite
and the monotonicity is maintained. Hence, a transforma-
tion scheme is devised as follows (Rao 2009):

ρe =
1

1+ e−xe
(5)

where ρe is still the density variable of element e while xe is
the new design variable which has an infinite range. Thus the
design variables ρρρ in (2) is replaced by x, and the constraints
on the design variables are eliminated, such that:

min
x

: f (x) =C = FT U =
N

∑
e=1

Ee(xe)uT
e k0ue

s.t. : g(x) =V (x)−V ∗ = 0

KU = F

(6)

Other than the global equilibrium equation, there is only one
constraint of volume left.

At the expense of the beneficial reduction of constraints,
there are two defects for optimization brought by the trans-
formation scheme. Firstly, the range of the density variables
is converted from [0,1] to (0,1), i.e. it is impossible for a

density variable to be 0 or 1. Secondly, the constraint equa-
tion of volume is changed from linear to nonlinear. However,
the first defect is negligible which can be demonstrated later
by the numerical examples. The second defect indeed brings
some difficulties to the original gradient projection method,
so the direct gradient projection method is proposed to cir-
cumvent it in the following section.

3 Gradient projection method

The constrained nonlinear optimization problem (6) is usu-
ally solved on the basis of the following iterative scheme
(Rao 2009; Arora 2004):

Xi+1 = Xi +λSi (7)

where Xi and Xi+1 represent the current point and the next
point in the space of design variables respectively, and λ is
the step size in the search direction Si. For the sake of explic-
itness, the search direction Si is usually converted to a unit
vector. The key problem of the algorithm is decomposed into
how to decide the search direction and the step size that can
obtain a new feasible point with a lower objective function
value in the design space.

3.1 Original Gradient projection method

The negative gradient of the objective function is the steepest-
descent direction for unconstrained optimization problems.
However, this direction is usually infeasible when some con-
straints exit. In order to satisfy the constraints, the constrained
steepest-descent direction, which is actually the projection
of the steepest-descent onto the constraint hyperplane, is
taken as the search direction in the original gradient pro-
jection method (Rosen 1960).

When at least one of the active constraint functions is
nonlinear, the search direction is converted to be the pro-
jection of the steepest-descent onto the tangent hyperplane
of the constraints (Rosen 1961). Due to the nonlinearity of
the constraints, the new point obtained along the negative
projected gradient direction is still infeasible. Therefore, a
correction procedure that brings the infeasible point X ′ back
to the constraint hypersurface is required, as shown in Fig.
1.

Furthermore, the original gradient projection method pro-
poses a rational step size scheme corresponding to the cur-
vature of the objective and constraint functions, the linear
independence of the objective and constraint functions and
the Euclidean norm of the projection vector. Since it requires
the second-order information (curvature) of the compliance
function which is difficult to calculate in a structural prob-
lem, it is inappropriate for structural topology optimization.
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Fig. 1 Finding a feasible and useful point in the original gradient pro-
jection method

3.2 Direct Gradient projection method

In the original gradient projection method, in order to sat-
isfy the nonlinear constraints, the steep-descent is firstly pro-
jected onto the tangent hyperplane of the constraints and
then a further constraint correction process is executed . This
two-step procedure is tedious when there is only one con-
straint existing, so the direct gradient projection method that
can obtain the feasible point directly is proposed in this sec-
tion.

Next to the evaluations of the objective and constraint
functions, their first derivatives with respect to the design
variables can be obtained at each successive iteration. Ac-
cording to (3) and (4), the first derivatives with respect to
the transformed design variables, also termed as sensitivi-
ties, can be obtained by the chain rule:

∂ f
∂xe

=
∂ f
∂ρe

∂ρe

∂xe
=−puT

e k0ue
1

(1+ e−xe)p+1exe
< 0 (8)

∂g
∂xe

=
∂g
∂ρe

∂ρe

∂xe
=

1

(1+ e−xe)2exe
> 0 (9)

The negative gradients of the objective and constraint func-
tions are respectively the directions in which the objective
and constraint functions decreases most rapidly at the cur-
rent point. Hence, a feasible and useful step λS can be ob-
tained in the vector space spanned by the gradients of the
objective and constraint functions:

λS =−α∇ f −β∇g (10)

The updated point Xi+1 is expected to be on the hyper-
surface of constraint g = 0, so the step λS is a vector con-
necting two feasible points on the hypersurface of the con-
straint.The step vector λS is considered as the direct projec-
tion of the negative gradient of the objective function onto
the hypersurface of the constraint, as shown in Fig. 2. Hence,
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Fig. 2 Finding a feasible and useful point in the direct gradient projec-
tion method

the proposed algorithm is termed as direct gradient projec-
tion method (DGP).

Now, for the reason that the constraint formulation is not
linear, the step size λ and the search direction S are not inde-
pendent. The problem of finding a feasible and useful step
λS is converted to the determination of α and β in (10).
Both α and β are proportional to the step size λ and can
be adopted as a step size multiplier to control the step size.
Considering that the gradient of the constraint function ∇g is
more stable than the gradient of the objective function ∇ f , β
is chosen as the step size multiplier. Once the step size mul-
tiplier β is determined, the other variable α can be calcu-
lated by the bisection method so that the constraint equation
is satisfied. The modification of α is inexpensive because it
only requires constraint function evaluations that have ex-
plicit formulations.

Generally, the optimization of the step size multiplier
is needed via one dimensional search. However, it requires
tremendous times of evaluation of the objective function which
make it unacceptable considering the limit of the computa-
tion cost. Thus, an acceptable step size multiplier is deter-
mined at the beginning of each iteration. As a consequence,
a better point can not be guaranteed for each iteration. In or-
der to keep the step size within a rational range, a scheme
for step size multiplier modification is introduced in Section
4.

3.3 Convergence criterion

Necessary conditions for a minimum of problem (6) can be
obtained by the classical technique of Lagrange multipliers.
The Lagrangian function of the problem (6) is written as:

L(x,ν) = f (x)+νg(x) (11)
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Fig. 3 Necessary conditions for the minimum

where ν is the Lagrangian multiplier. Stationary conditions
for (11) are given by:

∂L
∂xi

=
∂ f
∂xi

+ν
∂g
∂xi

= 0 i = 1,2, · · · ,n (12)

∂L
∂ν

= g = 0 (13)

Equation (13) is the same as the equality constraint of vol-
ume in (6). It means the minimum is on the hypersurface of
the constraint. Equation (12) can also be written in the form
of gradients as:

∇ f +ν∇g = 0 (14)

which means the gradient of the objective function ∇ f and
the gradient of the constraint function ∇g are parallel, as
shown in Fig. 3.

The change of density variables between two consecu-
tive iterations (i.e. step vector in the space of density vari-
ables) is defined as:

S∗
i = ρρρ i −ρρρ i−1 (15)

Provided S∗
i = 0, from (15), (5), (7) and (10) it can be con-

cluded that:

−α∇ f −β∇g = λS = xi −xi−1 = 0 (16)

Thus, the necessary conditions for the optimality in (12) and
(13) are both satisfied, and xi is a stationary point of the
Lagrangian function.

According to the SIMP method (Andreassen et al 2011),
the convergence criterion for numerical computation is de-
fined as follows:

∆ =
∣∣s∗i,e∣∣max < 0.01 (17)

where ∆ is the index of convergence which can be consid-
ered as the step size in the space of density variables when

the step vector S∗
i is normalized, and s∗i,e is the e-th compo-

nent of step vector S∗
i . The optimization procedure is termi-

nated when the absolute value of all the components of step
vector S∗

i are less than 0.01.
Rigorously speaking, the differences between two con-

secutive design variables x might be still large, as the deriva-
tive of ρi with respect to xi is pretty small when ρi is close
to the value 1 or 0. However, in these regions of the trans-
formation function, the precision of density variable ρi is of
more practical relevance in the design than xi.

4 Implementation techniques

4.1 Density filtering

In order to save the computation cost, the simplest linear
elements are usually adopted in the structural topology op-
timization. Due to overestimating the stiffness of nodal con-
nections between finite elements and the lack of scale in-
formation, the problems of checkerboards and mesh depen-
dence will be inevitable if no restriction method is imple-
mented (Diaz and Sigmund 1995; Sigmund and Petersson
1998). Many efforts have been made to devise a regular-
ization scheme, such as filtering technique (Sigmund 1997;
Bourdin 2001), perimeter control (Ambrosio and Buttazzo
1993; Haber et al 1996) and wavelet parameterizations (Kim
and Yoon 2000; Poulsen 2002).

Density filtering (Bruns and Tortorelli 2001; Bourdin 2001)
is a kind of filtering technique which uses the blurring tech-
nique borrowed from image processing. It intends to modify
the density variables assigned to the elements with the data
of their neighborhoods, thus a homogenized layout is prone
to be obtained. Considering its efficiency and ease of imple-
mentation, density filtering is adopted in this paper. Since
a transformation technique is applied, the density variables
are replaced by the transformed design variables, formulated
as follows (Andreassen et al 2011):

x̃e =

∑
i∈Ne

Heixi

∑
i∈Ne

Hei
(18)

where xi is the original design variable of element i, x̃e is the
filtered design variable of element e, Ne is the set of elements
i that are in the neighborhood of element e and Hei is the
weight of element i in accordance with element e, defined as
follows:

Hei = max(0,rmin −dist(e, i)) (19)

Weighting function Hei is the difference between the filter
radius, rmin, and the center to center distance, dist(e, i), of
the two elements, and only the elements within the filter ra-
dius rmin of element e are considered. Though a smoother
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weighting function with the Gaussian (bell- shaped) distri-
bution is suggested by Bruns and Tortorelli (2003), this al-
ternative method does not show any advantages compared to
the linear version in some tests (Sigmund 2007). Therefore,
the simple linear weighting function is adopted for density
filtering.

Apart from the homogenization effect, the filter tech-
nique also includes some auxiliary scale information by in-
troducing the filter radius rmin to the algorithm.The topologi-
cal forms under different meshing schemes keep the same on
condition that the ratios of the filter radius to the dimension
of design domain are consistent (Andreassen et al 2011).

The first derivatives of objective and constraint function
with respect to the filtered design variables x̃e are still given
by (8) and (9), provided that the variable xe is replaced with
x̃e. Hence the derivatives with respect to original design vari-
ables can be derived by the chain rule (Andreassen et al
2011):

∂ψ
∂x j

= ∑
e∈N j

∂ψ
∂ x̃e

∂ x̃e

∂x j
= ∑

e∈N j

1
∑

i∈Ne

Hei
H je

∂ψ
∂ x̃e

(20)

where the function ψ represents either the objective function
f (x) or the constraint function g(x).

4.2 Constraints for stability

A better point with a lower objective function value cannot
be guaranteed if the gradient of the objective or the con-
straint function varies greatly between two consecutive it-
erations. Hence, some constraint techniques are required to
improve the stability.

Huang and Xie (2007, 2010) suggest averaging the sen-
sitivity number with its historical information. Based on this
idea, the golden ratio is employed to distribute the weight
of two consecutive iterations. The modified sensitivity is ex-
pressed as:(

∂ f
∂xe

)
i,new

= 0.618
(

∂ f
∂xe

)
i
+(1−0.618)

(
∂ f
∂xe

)
i−1

(21)

Considering the different influences from current iteration
and previous iteration, the current sensitivity is given more
weight than the previous one. Though the golden ratio is
adopted arbitrarily, this distribution of weight shows great
advantage in the numerical examples. Owing to the com-
bination of the first-order information for two consecutive
iterations, the risk of failure caused by the severe difference
between the consecutive objective function gradients is re-
duced and the amplitude of the oscillation of design vari-
ables decreases during the optimization process.

This average technique of historical information is not
applied to the constraint function gradients because they are
relatively stable during the optimization process.

Since the hyperplane of constraint is linear in the Eu-
clidean N-dimensional space of density variables, the con-
straints in problem (2) will still be satisfied if the step size is
reduced in the search direction S∗

i . Generally, all the lengths
of the components of step vector S∗

i are expected to be no
more than the threshold ∆ ∗ (typically, ∆ ∗ = 0.2) in consid-
eration of the stability. Therefore, if ∆ is greater than ∆ ∗, the
step of density variables is scaled as:

S∗
i,new =

∆ ∗

∆
S∗

i (22)

Besides, the step size is halved (i.e. S∗
i,new = 0.5S∗

i ) if oscilla-
tion happens. In this paper oscillation is defined as follows:

∃e ∈ N : s∗i,e · s∗i−1,e ≤−0.5(∆ ∗)2 (23)

or Ci ≥ 1.1Ci−1 (24)

where s∗i,e is the e-th component of step vector S∗
i and Ci

is the compliance in the i-th iteration. Condition (23) is fo-
cused on the single density variable and condition (24) is
related to the performance of the whole structure. These two
kinds of oscillation can be both weakened by reducing the
step size.

4.3 Scheme for step size multiplier

Step size multiplier β is the key to control the optimization
process. On one hand, since it is an nonlinear problem and
the gradient information can only represent the most promis-
ing searching direction at current point, the next point may
deviate greatly from the optimum if the step size multiplier
β is too big. On the other hand, if the step size multiplier β
is too small, the design variables will change slowly and it
will take many more iterations to attain the optimum. There-
fore, a rational step size multiplier β must be determined on
the compromise between efficiency and reliability.

Generally, the rational range of the step size in the space
of density variables ∆ is between 0.1 and 0.2, and there is
a positive correlation between the step size multiplier β and
the step size ∆ . Hence a scheme for the step size multiplier
β aiming to control the step size ∆ within the rational range
is conceived.

The initial value of step size multiplier, β0, is set to 1,
which is considerably small for the first iteration. If the step
size multiplier β is fixed, the step size ∆ will decrease quickly
below 0.1 which is considered to be inefficient. In order to
improve the efficiency of each iteration, the step size multi-
plier β is magnified on condition that the step size ∆ is less
than 0.1 and the step size multiplier β has not reached its
ceiling:

βi+1 = 2βi (25)
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Moreover, to accelerate the process of optimization, a
shift of β in (25) will also be triggered if β has stayed the
same for 50 iterations unless the ceiling is reached. The ceil-
ing of the step size multiplier, βmax, is set to 29. Although a
bigger value can also be given to βmax, it will cause the op-
timization more difficult to converge.

The scheme for the step size multiplier β determines the
balance between efficiency and reliability. It can be modi-
fied according to user requirements. Moreover, since the step
size multiplier β relates the design variable and the gradient
of the constraint function, β0 and βmax may be adjusted if
equation (4) is not satisfied.

4.4 Grey elements suppression technique

In consequence of continuous density variables introduced
by the material interpolation scheme, intermediate density
elements (i.e. grey elements) will inevitably appear in the
layouts. Some post-processing method have been applied to
generate more distinct solid and void designs, such as iso-
density surface (Sigmund 2007), blurring filter (Sigmund
1997) and regularized penalty function (Borrvall and Peters-
son 2001). Nevertheless, there would be a deviation of per-
formance between the original design and the post-processed
design. Hence, a discrete design is expected to be obtained
directly by the optimization algorithm.

According to the transformation function in (5), a den-
sity variable ρe will get closer to 0 or 1 if the assigned design
variable xe is magnified. Therefore, a simple grey elements
suppression technique is devised as:

xnew = 1.2x (26)

The multiplier is chosen on the compromise of the efficiency
and reliability. A bigger multiplier will cause the optimiza-
tion converge quickly to a black and white layout, but the
solution may deviate from the optimum due to the suppres-
sion effect of the design variables. In order not to add to
much interference to the process of optimization, (26) is not
implemented until the step size multiplier has reached the
ceiling β = βmax.

In order to make a comparison of discreteness between
different methods, a so called measure of non-discreteness
(Mnd) was proposed by Sigmund (2007):

Mnd =

N
∑

e=1
4ρe(1−ρe)

N
×100% (27)

Mnd is equal to 0% if there is no grey element existing in
the design while Mnd is equal to 100% when all the density
variables are 0.5.

5 Optimization algorithm

The structural topology optimization algorithm of direct gra-
dient projection method with transformation of variables tech-
nique is devised as follows:

Step 1 Define the reference domain and decide the design
domain, solid domain and void domain. After the
partition, the reference domain is discretized into a
finite element model with equally sized elements,
and the boundary conditions and loads are defined.

Step 2 Define the optimization parameters including the con-
strained volume V ∗, the filter radius rmin, the ini-
tial and the ceiling values of step size multipliers β0
and βmax. The design variables and the density vari-
ables should be evenly initialized corresponding to
the constrained volume V ∗.

Step 3 Compute the structural performance by finite elements
analysis.

Step 4 Calculate the value of the objective function and the
first derivatives of both the objective function and the
constraint function with respect to the design vari-
ables according to (8) and (9). Then, modify the gra-
dient information with the density filtering and sta-
bility technique according to (20) and (21).

Step 5 Adjust the variable α in (10) by bisection method so
that the constraint equation is satisfied.

Step 6 Calculate the change of consecutive density variables
S∗

i and modify the step size in the space of density
variables ∆ as mentioned in Section 4.2.

Step 7 Update the design and density variables to a new
point.

Step 8 Implement the shift of step size multiplier (25) or
the grey elements suppression technique (26) if the
trigger conditions are met.

Step 9 Check the convergence of the solution. If (17) is sat-
isfied then stop, otherwise go back to Step 3.

6 Numerical examples

The behavior of the proposed method is demonstrated by
three selected examples both in 2D and 3D with a compari-
son to the typical SIMP method using the OC algorithm and
sensitivity filter (Andreassen et al 2011), which is consid-
ered to be the most mature and widely accepted method of
topology optimization by now. The DGP method and SIMP
method are both programmed with FORTRAN. The regu-
larized 4-node quadrilateral plane stress element and 8-node
brick solid element with unit length of 1m are adopted re-
spectively in 2D and 3D problems. The Young’s modules of
the solid elements is E0 = 1Pa, the Poisson’s ratio is ν = 0.3
and the penalization factor is p = 3.
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Design domain

150m

P = 1N

5
0

m

Fig. 4 Design domain and boundary conditions of MBB Beam

(a) DGP C=190.9 Nmm

(b) SIMP C=219.6 Nmm

(c) MMA C=219.4 Nmm

Fig. 5 Final layouts of the MBB beam and corresponding compliance
C obtained with different methods

6.1 2D MBB beam

The Messerschmitt-Bölkow-Blohm (MBB) beam problem
is a benchmark problem of 2D structural topology optimiza-
tion. It is a simple supported beam with a concentrated load
applied to the top middle of the span. Usually, only half of
the model is used in optimization in order to save the cost of
computation. The design domain and boundary conditions
are shown in Fig. 4. The design domain is discretized with
150× 50 elements. The filter radius is rmin = 6m and the
volume fraction is set to 0.5.

The topological forms of the MMB beam problem at-
tained by different methods are the same, as shown in Fig. 5.
However, there are many grey elements existing in the lay-
out of the SIMP method while there are only solid and void
elements in the layout of the DGP method. Further, owing
to the grey elements attached to the joint of the truss, the

bending moments of the members are weakened. As a con-
sequence, the widths of the web members are almost con-
stant along the longitudinal direction.

The compliance of the solution with SIMP method is
quite close to 219.52 which is obtained by Andreassen’s 88
lines of code in MATLAB (Andreassen et al 2011). The
MMB beam problem is also solved by the SIMP method
with the MMA algorithm in MATLAB (Svanberg 1987). Al-
though the MMA algorithm obtains almost the same layout
as that obtained by OC algorithm, it takes 175 iterations to
converge. The less efficiency may be attributed to the ab-
sence of proper step size restriction in the generic version of
MMA.

6.2 3D cantilever

It is necessary to expand the structural topology optimiza-
tion program from 2D to 3D, because a layout that interprets
topological forms in all the three dimensions is usually re-
quired in actual design. The algorithm of the 3D problem
is the same as that of 2D problem, except that the element
type is changed from 2D plane stress element to 3D solid
element.

A 3D cantilever with fixed support on the right side and
an unit concentrated load at the center of lower left edge
is presented here to perform the comparison, as shown in
Fig. 6. The dimension of the design domain is 150m×7m×
15m excluding the mirrored domain. The filter radius is rmin =

3m and the volume fraction is set to 0.2.
By blanking all the elements with the density under cer-

tain threshold values (for the DGP method ρe = 0.05 and
for the SIMP method ρe = 0.3), clear layouts of material
distribution are shown in Fig. 7. The solutions for the 3D
cantilever problem are quite different from each other. First
of all, the solid material concentrates at the middle of the
domain in the layout of the DGP method while it is dis-
tributed at the two lateral sides in the layout of the SIMP
method. As there is no torsion applied to the structure, the
concentrated material distribution is more efficient for the
reason that it saves the material of the bracings between the
two lateral sides. Moreover, the angle of the bracings in the
SIMP method is bigger than that in the DGP method. Fi-
nally, there are lots of grey elements existing in the final
layout of the SIMP method, which is also inefficient due to
the penalization of intermediate material.

6.3 3D bridge

At last, a relatively complex 3D bridge problem with a pre-
set solid and void domain is performed. The bottom layer of
elements are supposed to be the deck, thus all the elements
are preset to solid and outside the design domain. Uniform
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Fig. 6 Design domain and
boundary conditions of a 3D
cantilever

2×7m

15m
150m

Design domain

Mirrored domain

Fixed support

P = 2×0.5N

Fig. 8 Design domain and
boundary conditions of a 3D
bridge

2×15m

Fixed support

P = 1N/m2

15m

11m

1m 12m

Solid domain

Void

 domain

Mirrored

 domain

3m

150m

150m

3m

vertical loads are applied to the top nodes of these elements.
The two rows of bottom nodes that are close to the edge are
fixed, as shown in Fig. 8. The middle part of the domain is
preset to void and can not be updated during the optimiza-
tion process, which indicates the vertical and horizontal ve-
hicle clearance of the bridge structure. The dimension of the
computational domain is 150m×15m×15m excluding the
mirrored domains. The thickness of the design domain is
3m, distributed in the top and right parts of the computa-
tional domain. The filter radius is rmin = 3m and the volume
fraction is set to 0.4.

Distinct topological forms are obtained by plotting the
iso-density surface with the threshold value ρe = 0.3, as
shown in Fig. 9. At the middle of span, much solid mate-
rial is distributed at the top of the design domain so that a
section with great flexural capacity is forged. While plane
members and diagonal bracing members are formed respec-
tively in the DGP and SIMP solutions at the quarter of the
span where shear force and bending moment are both rel-
atively large. The difference of the shear members between
the two methods might be attributed to the different sensitiv-

ities of filter parameter rmin (Lazarov and Sigmund 2011),
but exact explanation needs to be further discussed.

In addition, the iso-density surface of SIMP method is
smoother than that of DGP method because there is a tran-
sition domain filled with intermediate material between the
solid and void domain in the final layout of SIMP method.
This statement is also firmly supported by the material dis-
tribution layouts of the mid-span section provided in Fig. 9.

7 Results and discussion

The curves of compliance (i.e. objective function) versus
iteration and the scatter diagram of step size for the three
numerical examples with the DGP method and the SIMP
method are shown in Fig. 10. The values of mean compli-
ance are shown in logarithmic scale since it changes greatly
during the process of optimization.

The curves of compliance for the SIMP method decline
rapidly at the beginning but turn to be almost horizontal
when they reach certain values. Since the convergence is de-
termined by the step size rather than the derivative of the
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Fig. 7 Final layouts of 3D cantilever and corresponding compliance C
obtained with DGP and SIMP methods

objective function, the optimization will not converge until
the step size in the space of density variables ∆ falls to less
than 0.01. In comparison, the curves of compliance for the
DGP method decline relatively slowly at the beginning but
obtain smaller values with fewer steps at last. Detailed in-
formation of the results is shown in Table 1.

The indexes Mnd of the DGP method are all quite close
to 0 which indicates no intermediate material existing in
the final layouts. Though an extended method of the SIMP
method with a Heaviside filter can also obtain a black and
white solution, between 500 and 1,000 iterations are usu-
ally required (Sigmund 2007), which add too much burden
to computation.

A comparison of computation cost is also given in Table
1. The CPU-time per iteration is the average over the first ten
iterations of the optimization, using a desktop computer with
an Intel Core i7-3770 processer, 8 GB memory, and Intel
Fortran Compiler 11.0 (32-bit). Owing to the complexity of
the transformation of design variables and density filter, the
computation time per iteration of the DGP method is slightly
more than that of the SIMP method.

The promising features of the DGP method are mainly
attributed to the proposed scheme for the step size multiplier
modification. By magnifying or constraining the step size

DGP C = 3.572×108 Nmm

SIMP C = 4.375×108 Nmm

Fig. 9 Final layouts of 3D bridge and corresponding compliance C
obtained with DGP and SIMP methods

multiplier, an efficient and reliable step with the step size
between 0.1 and 0.2 can be attained in each iteration, unless
it is close to convergence, as shown in Fig. 10. Besides, the
grey elements suppression technique accelerates the process
of convergence and leads to a black and white layout during
the last stage when the step size multiplier reaches the ceil-
ing. The scheme for step size multiplier modification is not
fixed but can be adjusted in consideration of the compromise
between the efficiency and reliability.

It should be noted that, though DGP method shows a
better quality in all these numerical examples, it does not
mean that the DGP method is better than SIMP for every
case. In the first place, the higher value of objective function
obtained by the SIMP method is partly attributed to the pe-
nalization of the intermediate material. Furthermore, owing
to their successive searching feature, the solutions obtained
by the DGP method and the SIMP method are both local
optimum points, and the DGP method is only an alterna-
tive method that may lead to a local optimum closer to the
global optimum.Finally, the DGP method proposed in this
paper can only solve the problem with a single constraint
and the applicability of the topology optimization problem
with multiple constraints requires further research.



Direct gradient projection method with transformation of variables technique for structural topology optimization 11

Table 1 Results for the numerical examples with different methods

Method It. C (Nmm) Mnd (%) CPU-time per iteration (s)

2D MBB beam
DGP 63 190.9 0.001 0.475
SIMP 95 219.6 26.295 0.421
MMA 175 219.4 26.119 —

3D cantilever
DGP 142 161.8 0.001 5.716
SIMP 428 314.0 27.507 5.036

3D bridge
DGP 101 3.572×108 0.001 5.054
SIMP 111 4.375×108 23.963 4.565

8 Conclusion

This paper presents a structural topology optimization al-
gorithm using the direct gradient projection method with
a transformation of variables technique. Transformation of
variables eliminates the constraints of the design variables
which brings great convenience to optimization. Once an
acceptable step size multiplier β is decided, a feasible and
useful step λS can be obtained by projecting the negative
gradient of the objective function onto the hypersurface of
the constraint directly without linear approximation or con-
straint correction procedure.

On one hand, some constraint measures are implemented
on condition that the step size is too big or some design vari-
ables are in a state of oscillation. On the other hand, the step
size multiplier β is magnified when the step size is too small.
Therefore, the step size ∆ is kept within a rational range
which is considered to be balanced between efficiency and
reliability. Besides, the grey elements suppression technique
also plays a significant role in accelerating the convergence
and reducing the intermediate material during the last stage
of optimization process.

Results show that the proposed DGP method achieves
a black and white solution with a lower value of objective
function within fewer steps compared to the typical SIMP
method with OC algorithm. By adding some positive inter-
ference to the rate of optimization process, the efficiency of
the algorithm is improved without compromising the relia-
bility.
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(a) 2D MMB beam
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Fig. 10 Iteration histories of topology optimization problems with dif-
ferent methods
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