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A B S T R A C T   

Solid-liquid phase transformation of a phase change material in a rectangular enclosure with corrugated fins is 
studied. Employing a physics-based model, the influence of fin length, thickness, and wave amplitude on the 
thermal and fluid flow fields is explored. Incorporating fins into thermal energy storage systems enhances the 
heat transfer surface area and thermal penetration depth, accelerating the melting process. Corrugated fins 
generate more flow perturbations than straight fins, improving the melting performance. Longer and thicker fins 
increase the melting rate, average temperature, and thermal energy storage capacity. However, the effect of fin 
thickness on the thermal characteristics seems insignificant. Larger fin wave amplitudes increase the heat 
transfer surface area but disrupt natural convection currents, slowing the melting front progress. A surrogate 
model based on an artificial neural network in conjunction with the particle swarm optimisation is developed to 
optimise the fin geometry. The optimised geometry demonstrates a 43% enhancement in thermal energy storage 
per unit mass compared to the case with planar fins. The data-driven model predicts the liquid fraction with less 
than 1% difference from the physics-based model. The proposed approach provides a comprehensive under-
standing of the system behaviour and facilitates the design of thermal energy storage systems.   

1. Introduction 

Latent heat thermal energy storage (LHTES) systems are a type of 
thermal energy storage technology that store and release energy through 
the phase transition of a material [1–3], typically a phase change ma-
terial (PCM), such as paraffin, salt hydrates, or eutectic mixtures [4]. 
During the charging process, the PCM absorbs heat and undergoes a 
phase change from solid to liquid or from liquid to gas, which allows the 
system to store large amounts of energy at a nearly constant tempera-
ture. Conversely, during discharge, the PCM solidifies or condenses and 
releases the stored energy, providing a continuous and stable source of 
thermal energy. LHTES systems have shown great potential for various 
applications, such as in solar thermal power plants [5,6], district heating 
[7,8], building HVAC systems [9,10], and battery thermal management 
systems [11,12], due to their high energy storage density, low mainte-
nance requirements, and improved energy efficiency [3]. As the demand 
for sustainable and efficient energy solutions continues to grow, the 
development and optimisation of these systems are becoming increas-
ingly important. 

The development of LHTES systems faces several challenges that 
need to be addressed to optimise their performance and ensure their 
successful implementation [13]. One of the primary challenges is the 
selection of a suitable PCM with high energy storage densities, appro-
priate phase change temperatures, and long-term stability to meet the 
specific requirements of the application [14]. Another challenge is the 
integration of PCM into practical and efficient systems that can with-
stand repeated cycling without degradation [15,16]. Moreover, the 
thermal conductivity of PCM is generally low, which can limit the rate of 
energy transfer and reduce the overall efficiency of the system. To 
overcome these challenges, various strategies have been explored [17], 
such as using high-performance PCM (e.g. nanocomposite PCM) 
[18–20], optimising the storage system design [21–26], and employing 
encapsulation techniques [27–29]. 

Extended surfaces, commonly known as fins, have been widely used 
to optimise the storage system design and enhance the performance of 
LHTES systems. A comprehensive overview of the fin designs employed 
in the literature to improve the performance of latent heat thermal en-
ergy storage systems is presented by Ye et al. [26] and Zhang et al. [30]. 
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Fins increase the surface area of the storage container, which generally 
improves the rate of heat transfer between the PCM and the surrounding 
environment, reduces the time required for charging and discharging, 
and improves the overall efficiency of the system [31–36]. Fins can be 
attached to the outer surface of the container or embedded within the 
PCM to create a composite material. Fins with different geometries and 
materials have been investigated to optimise their performance. For 
instance, triangular [37], rectangular [36], and helical [38] have been 
used within the PCM to improve heat transfer rates. Additionally, ma-
terials such as copper, aluminium, and stainless steel have been 
employed as fin materials due to their high thermal conductivity [26, 
30]. However, embedding fins in LHTES systems may increase the 
complexity of the system design and require additional maintenance 
efforts [39] and can disrupt the molten material flow and convective 
heat transfer in the container [33]. Additionally, the use of fins may 
increase the risk of leakage or damage to the storage container due to the 
stress caused by thermal expansion and contraction [39]. Furthermore, 
if the fins are not properly designed, they may result in the formation of 
undesired thermal gradients within the PCM, leading to reduced effi-
ciency and even material degradation [40]. Therefore, while fins can 
improve the performance of latent heat thermal energy storage systems, 
particular attention should be paid to their design, materials, and 
installation to minimize the potential drawbacks and ensure optimal 
system performance [41–43]. 

Physics-based computational modelling of melting and solidification 
is a powerful tool to design and optimise the fin geometry and config-
uration for LHTES systems. These models enable the prediction of the 
complex fluid flow, heat transfer, and solid-liquid phase transformations 
in LHTES and provide insights into the effects of fin design parameters 
on the system performance. For instance, several studies have employed 
computational modelling to optimise the design of fins embedded in a 
PCM for improving the thermal performance of LHTES systems [44–48]. 
Computational models can also be coupled with optimisation tech-
niques, such as topology optimisation, to find the optimal fin design that 
minimises the cost or maximizes the efficiency of LHTES systems [34, 
49–51]. While physics-based computational models are valuable tools 
for fin design optimisation in latent heat thermal energy storage sys-
tems, these models are often computationally expensive, particularly for 
three-dimensional problems with large domains and fine meshes, 
limiting their applicability for (near) real-time optimisation of LHTES 
systems. 

Recent developments in data-driven models based on artificial neu-
ral networks (ANNs) and deep learning have shown great potential for 
optimising the design of fins in LHTES systems [52]. Deep learning, a 
subset of ANNs, uses multiple layers of neurons to extract features and 
learn hierarchical representations of the input data [53]. Deep learning 
can be used to optimise the design of fins by learning from large datasets 
of simulated or experimental data and identifying the most effective fin 
geometries and configurations for enhancing the performance of the 
thermal energy storage system [52]. Deep learning can also overcome 
some of the limitations of physics-based models by providing fast and 
accurate predictions without requiring explicit knowledge of the un-
derlying physical mechanisms [54]. Moreover, deep learning can cap-
ture complex and non-linear relationships between the design variables 
and the system performance that may be difficult to model using con-
ventional physics-based approaches. Several recent studies have 
demonstrated the potential of ANNs and deep learning for fin design 
optimisation in latent heat thermal energy storage systems. For instance, 
Ermis et al. [55] developed a feed-forward back-propagation artificial 
neural network with three layers, an input layer, a hidden layer, and an 
output layer. They trained the ANN model using an experimental dataset 
and predicted the total stored energy and Nusselt number in a 
finned-tube thermal energy storage system for different operating con-
ditions and fin parameters. Using a similar approach, Motahar [56] 
developed an ANN model to predict the Nusselt number and the volume 
fraction of molten material in a rectangular enclosure subjected to a 

uniform heat flux. In a recent study, Darvishvand et al. [33] performed 
physics-based numerical simulations to investigate the effects of fin 
height and number on the unsteady melting process of PCM in an LHTES 
system with rectangular enclosures. Using the outcomes of the simula-
tions, they trained an ANNs model to correlate the instantaneous liquid 
fractions and stored energy in the system to the fin design parameters. 

The solid-liquid phase transformation of a phase change material 
(RT82) in a latent heat thermal energy storage (LHTES) system with 
corrugated fins is studied in the present work. A physics-based compu-
tational model is developed to simulate the transient thermal and fluid 
flow fields in a rectangular enclosure with corrugated fins varying in 
length, amplitude, and thickness. The effect of fin geometries on the heat 
transfer performance and energy storage capacity of the LHTES system is 
thoroughly analysed using the physics-based model. To enhance the 
computational efficiency and reduce the computational cost associated 
with fin design optimisation, a feed-forward neural network (FFNN) is 
constructed as a surrogate model. The surrogate data-driven model 
correlates the instantaneous liquid fraction, energy stored in the system, 
and fin design parameters. The particle swarm optimisation (PSO) 
technique is applied to explore the design space and identify the optimal 
fin geometry that minimises the LHTES system charging time. The 
combination of the physics-based model, surrogate data-driven model, 
and optimisation techniques represents a promising approach for 
enhancing the performance of LHTES systems. The present work pro-
vides a systematic and robust methodology for designing and optimising 
LHTES systems with fins, which can improve their applicability in 
various thermal energy applications. The results of this work also 
contribute to advancing the fundamental understanding of phase change 
phenomena within LHTES systems, leading to more efficient and reliable 
thermal energy storage technologies. 

2. Problem description 

The evolution of thermal and fluid flow fields during the solid-liquid 
phase transformation of a phase change material (Rubitherm RT82) in a 
rectangular enclosure equipped with three equally spaced corrugated 
fins is studied in the present work. The schematic of the problem is 
shown in Fig. 1, where the enclosure has a length (Le) of 120 mm and a 
height (He) of 50 mm. Fig. 1 also shows the boundary conditions 
employed in the simulations. The bottom surface of the enclosure is 
subjected to a constant temperature of Tw, while the other outer walls 
are thermally insulated. The corrugated fins are made of copper and 
have a sinusoidal shape, which is defined by three parameters: the fin 

Fig. 1. Schematic of the thermal energy storage unit with three corrugated fins.  
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length Lf, the wave amplitude Af, and the fin thickness Wf. Table 1 
provides the thermophysical properties of both Rubitherm RT82 and 
copper utilised in the simulations, which were obtained from Refs. [57, 
58]. 

The phase change material in the enclosure has an initial tempera-
ture (Ti) of 300.15 K, which is lower than its melting temperature. The 
simulation involves the sudden increase of temperature of the heated 
wall to a value above the melting temperature of the phase change 
material (Tw = 363.15 K) to replicate the charging process. Subse-
quently, the temperature of the heated wall is decreased to its initial 
value (Tw = Ti = 300.15 K) to simulate the discharging process. In the 
simulations, the solid walls are modelled as no-slip walls. Simulations 
are conducted to investigate the impact of fin design on the performance 
of system. A well-structured design of experiment (DoE) was constructed 
using the Design Expert software to efficiently and systematically 
explore the effects of geometrical variables on the system’s performance. 
The Box-Behnken design method from the response surface methodol-
ogy (RSM) category of DoE was employed for this purpose. The design 
space was bounded by the ranges [20, 40 mm], [5, 15 mm] and [1, 3 
mm] for length, wave amplitude, and thickness of the fins respectively. 
Table 2 presents a summary of the cases the cases that were simulated 
using the physics-based model. 

3. Physics-based model 

The physics-based computational model is constructed based on the 
finite-volume method within the framework of ANSYS Fluent to study 
the two-dimensional heat and molten material flow during charging and 
discharging processes. The molten material is modelled as Newtonian 
and incompressible, while the flow in the enclosure is assumed to be 
laminar. Thermal buoyancy effects are incorporated into the model 
using the Boussinesq assumption [59]. Melting and solidification of the 
phase change material are modelled using the enthalpy-porosity method 
[60]. Accordingly, the unsteady equations governing the conservation of 
mass, momentum, and energy are formulated respectively as follows: 

∇ • V = 0, (1)  

∂
∂t
(ρV)+∇ • (ρVV)= μ∇2V − ∇p+ ρβg(T − Tr) − C

(1 − λ)2

λ3 + ε
V, (2)  

∂
∂t
(ρH)+∇ • (ρVH)=∇ • (k∇T), (3)  

where V is the velocity vector, t is the time, ρ is the density, μ is the 
dynamic viscosity, p is the pressure, β is the thermal expansion coeffi-
cient, g is the gravitational acceleration vector, T is the temperature, Tr is 
the reference temperature, C is the mushy-zone constant, ε is a constant 
equal to 10− 3, H is the total enthalpy of the material, and k is the thermal 
conductivity. The value of the mushy-zone constant is set to 107 kg m− 2 

s− 2, according to the criterion suggested by Ebrahimi et al. [61]. The 
total enthalpy of the material (H) is the sum of the sensible heat (Hs) and 
the latent heat (Hl), and is defined as follows [62]: 

H =Hs +Hl =

⎛

⎝hr +

∫T

Tr

cpdT

⎞

⎠+ λHf . (4)  

Here, hr is the enthalpy of the material at the reference temperature Tr, 
cp is the specific heat capacity, Hf is the latent heat of fusion, and λ is the 
local liquid fraction. The value of the local liquid fraction λ is assumed to 
depend on temperature only and is defined as follows [62]: 

λ(T)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0
T − Ts

Tl − Ts

1

T < Ts
Ts ≤ T ≤ Tl

T > Tl

, (5)  

where Ts and Tl indicate solidus and liquidus temperatures, respectively. 
A nonuniform mesh with 3.4 × 104 quadrilateral cells was used to 

discretise the computational domain, which according to our previous 
study [63] results in grid-independent predictions. For spatial dis-
cretisation and time integration, the second-order accurate QUICK 
scheme [64] and the first-order implicit scheme were applied, respec-
tively. A constant time-step of 1 s was adopted in the simulations, 
following our previous study [63]. The PRESTO scheme [65] was 
employed for pressure interpolation, and the velocity-pressure coupling 
was achieved by the SIMPLE algorithm. The convergence criteria were 
set as 10− 5, 10− 5, and 10− 7 for the scaled residuals of the mass, mo-
mentum, and energy equations, respectively. The validity of the present 
physics-based model in predicting the melting behaviour of 
phase-change material in a finned rectangular enclosure is demonstrated 
in our previous work [63]. The simulations were performed on a per-
sonal computer with an Intel Core i7 processor, employing six cores, and 
having a memory capacity of 16 GB. 

4. Data-driven model 

Predicting the quantities of interest using the physics-based 
computational model can be computationally expensive and time- 
consuming and often requires high-performance computing facilities. 
To enhance the computational efficiency and reduce the computational 
cost of executing the physics-based numerical model, a feed-forward 
neural network (FFNN) is constructed to establish a relationship be-
tween the instantaneous liquid fraction, the energy stored in the system 
and the fin design parameters. An FFNN is a class of artificial neural 
network consisting of multiple layers of neurons connected by weighted 

Table 1 
Thermophysical properties of Rubitherm RT82 and copper used in the 
simulations.  

Property Rubitherm RT82 [57, 
58] 

Copper 
[57] 

Unit 

Density ρ 950 (solid phase) 8978 kg m− 3  

770 (liquid phase)   
Specific heat capacity cp 2000 381 J kg− 1 

K− 1 

Thermal conductivity k 0.2 387.6 W m− 1 

K− 1 

Dynamic viscosity μ 0.03499  Pa s 
Latent heat of fusion Hf 176,000  J kg− 1 

Solidus temperature Ts 351.15  K 
Liquidus temperature Tl 355.15  K 
Thermal expansion 

coefficient β 
0.001  K− 1  

Table 2 
Summary of the cases studied using the physics-based computational model and 
the corresponding fin parameters.  

Case ID Lf [mm] Af [mm] Wf [mm] Af/Lf [− ] 

F0 (straight fin) 20 0 2 0 
F1 30 15 2 0.5 
F2 30 10 2 0.333 
F3 20 10 2 0.5 
F4 40 5 3 0.125 
F5 20 5 1 0.25 
F6 30 10 3 0.333 
F7 40 5 1 0.125 
F8 40 10 2 0.25 
F9 20 5 3 0.25 
F10 20 15 1 0.75 
F11 20 15 3 0.75 
F12 40 15 3 0.375 
F13 30 10 1 0.333 
F14 30 5 2 0.166 
F15 40 15 1 0.375  
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links, where each neuron performs a nonlinear transformation of its 
inputs and passes the output to the next layer [66]. The FFNN is used as a 
surrogate model to approximate the solution of the physics-based nu-
merical model with much less computational resources. 

The architecture of the fully connected multilayer perceptron (MLP) 
artificial neural network used in the present study is shown in Fig. 2, 
consisting of 4 input neurons, 4 hidden layers of 16 neurons each, and 2 
output neurons. The input neurons represent the fin design parameters 
(i.e. length, thickness, and wave amplitude) and the flow time. The 
output neurons represent the energy stored in the system, which is 
related to the instantaneous liquid fraction and the mean temperature of 
the phase change material (T) by an energy balance equation. The 
hidden layers are responsible for learning the complex nonlinear map-
ping between the inputs and the outputs. The artificial neural network 
used in the present work is implemented using MATLAB software. The 
FFNN is trained using a dataset generated by running the physics-based 
numerical model for different combinations of fin design parameters and 
measuring the corresponding energy stored in the system. The ADAM 
optimiser [67] was employed to increase the speed and stability of the 
learning process with learning rate of 0.001. The rectified linear unit 
(ReLU) activation function [66] is used. The trained FFNN was 
employed to predict the energy stored in the system for any given fin 
design parameters. 

Approximately 1.2 × 105 data points were generated using the 
physics-based numerical simulations, which were partitioned into 
training (70% of data point), validation (15%), and testing (15%) sub-
sets. The model acquires knowledge from the training dataset, which 
consists of input-output pairs that exemplify the desired behaviour of the 
model. The validation dataset aids in optimising hyperparameters, 
which are parameters that control the learning process and affect the 
model’s complexity and performance. The testing dataset measures the 

model’s performance on unseen data, which are data that are not used 
for training or validation. It is vital to separate these datasets to ensure 
that the model is both accurate, meaning that it minimises the error on 
the training data, and generalisable, meaning that it can perform well on 
new inputs that may differ from the training data. The data were nor-
malised to the range [0, 1] using the minimum and maximum values to 
enhance the network accuracy and stability. The data points employed 
for training the neural network were selected through a random sam-
pling process from the generated database. This random selection 
approach helps to ensure that the training dataset represents a diverse 
and unbiased subset of the entire dataset. Randomly selecting data 
points also reduces the potential for introducing systematic biases into 
the training process and contributes to the model’s ability to generalize 
effectively to unseen data. 

The accuracy of the neural network was assessed using three metrics: 
root mean square error (RMSE), mean absolute error (MAE), and cor-
relation coefficient (R), which are given by: 

RMSE=

(
∑N

i=1

(ŷi − yi)
2

N

)1
2

, (6)  

MAE=
∑N

i=1

|ŷi − yi|

N
, (7)  

R=
1

N − 1
∑N

i=1

(
ŷi − ξ̂

σ̂

)(
yi − ξ

σ

)

, (8)  

where N is the total number of data, yi and ŷi are the predicted and 
ground truth values of the i-th data point respectively, ξ and ξ̂ are the 
mean deviation values of the predicted and ground truth data respec-
tively, and σ and ̂σ are the standard deviation values of the predicted and 
ground truth data respectively. 

5. Optimisation algorithm and procedure 

To optimise the geometry of the fins, the particle swarm optimisation 
(PSO) technique [68] was employed, which is a metaheuristic technique 
that mimics the collective behaviour of swarms of animals or insects. 
The PSO algorithm operates on a population of potential solutions, 
called particles, that are randomly initialised and iteratively updated 
according to their own and the swarm’s best positions in the search 
space. The objective function to be minimised or maximised by the PSO 
algorithm is called the fitness function. The PSO algorithm used in the 
present study is based on the algorithm proposed by Kennedy and 
Eberhart [69], with modifications suggested by Mezura-Montes and 
Coello [70] and Pedersen [71]. The main steps of the PSO algorithm are:  

1. Initialise a swarm of particles with random positions and velocities in 
the search space.  

2. Evaluate the fitness function for each particle. 
3. Update the personal best position (pbest) for each particle as its cur-

rent position if its fitness value is better than its previous personal 
best position.  

4. Update the global best position (gbest) for the swarm as the position of 
the particle with the best fitness value among all global best 
positions.  

5. Update the velocity and position of each particle using the following 
equations: 

v
(t +1)
i,j = wv

(t )

i,j + c 1r 1

(
pbest i,j − x

(t )

i,j

)
+ c 2r 2

(
gbest j − x

(t )

i,j

)
, (9)  

x
(t +1)
i,j = x

(t )

i,j + v
(t +1)
i,j , (10)  

where v(t )i,j and x (t )

i,j are the velocity and position of the j-th dimension 
Fig. 2. The architecture of the fully connected multilayer perceptron (MLP) 
artificial neural network used in the present study with 4 input neurons, 4 
hidden layers of 16 neurons, and 1 output neuron. 
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of the i-th particle at iteration t , respectively; w is an inertia weight 
that controls the exploration and exploitation abilities of the swarm; 
c1 and c2 are acceleration coefficients that determine how much the 
particles are influenced by their own and the swarm’s best positions; 
r 1 and r 2 are random numbers uniformly distributed in the range of 
[0, 1]; pbest i,j and gbest j are the personal and global best positions of the 
j-th dimension, respectively.  

6. Repeat steps 2 to 5 until a termination criterion is met, such as a 
maximum number of iterations or a maximum fitness value. 

The PSO algorithm utilised in the present study was implemented 
using MATLAB. The PSO algorithm was applied to find the optimal 
values of length, height and thickness of the fins that maximise the 
average liquid fraction, hence the stored energy in the system, in 1 h. 
The search space was bounded by the ranges [20, 40 mm], [5, 15 mm] 
and [1, 3 mm] for length, wave amplitude, and thickness of the fins 
respectively. The fitness function was defined as: 

f
(
Lf ,Af ,Wf

)
=

1
3600

∫ 3600

0
λ(t)dt, (11)  

where λ(t) is the liquid fraction value at time t. To evaluate the fitness 
function for each particle at each iteration, the predictions obtained 
from the data-driven model were used. This way, running costly physics- 
based simulations was avoided for each particle, reducing the compu-
tational time of the optimisation process. 

6. Results and discussion 

6.1. Validation of the physics-based model 

The validity of the physics-based model in predicting the solid-liquid 
phase transformation of PCM in LHTES systems was examined in our 
previous study [63]. In the present work, the numerical results obtained 
from the model are compared with numerical [36] and experimental 
data [72] reported in the literature, and the results are shown in Fig. 3. 
The problem involves melting of lauric acid in a rectangular enclosure 
equipped with three straight fins. The enclosure has a length of 120 mm 
and a height of 50 mm. The fins, made of aluminium, possess dimensions 

of 4 mm in thickness, and 25 mm in length. The bottom wall of the 
enclosure is subjected to a constant temperature (Tw = 333.15 K) to 
supply sufficient thermal energy to melt the material, while the 
remaining walls are thermally insulated. Additional information 
regarding the problem setup can be found in Refs. [36,72]. The time 
evolution of the liquid fraction in the enclosure, as predicted by the 
present model, demonstrates a satisfactory agreement with both the 
experimental and numerical data. The maximum absolute deviation 
between the predicted values and the experimental data is less than 6%. 
This indicates that the model accurately captures the phase trans-
formation process and effectively reproduces the observed behaviour. 

6.2. Results of the physics-based model 

Fig. 4 shows the evolution of the temperature and velocity fields and 
the solid-liquid interface in the enclosure for the case with straight fins 
(F0) and cases with corrugated fins of different lengths (F2, F3 and F8). 
The addition of fins augments the effective heat transfer area and the 
depth of thermal penetration, accelerating the melting process in the 
enclosure. The effective heat transfer area is proportional to the fin 
length, which leads to a higher melting rate in the enclosure. As the 
melting advances, natural convection becomes more dominant in the 
energy transfer mechanism in the enclosure, resulting in a further 
enhancement of melting rate. Natural convection is driven by the 
buoyancy force due to the density difference between the hot and cold 
regions of the fluid. As more material melts, the buoyancy force becomes 
more significant compared to viscous forces, leading to stronger con-
vection currents. Thermal plumes are buoyant jets of molten material 
that rise from the hot regions near the bottom wall and fins to the cold 
regions near the solid material, carrying thermal energy with them. 
When these plumes reach the solid-liquid interface, they transfer ther-
mal energy to the solid material by convection, causing local melting 
and deformation of the interface. This results in the formation of a wavy 
solid-liquid interface that reflects the underlying flow structure. The 
predicted velocity field shows that the maximum velocity in the liquid 
region increases with time as more material melts, which is due to the 
intensification of natural convection in the enclosure. The maximum 
velocity in the enclosure with straight fins is similar to that in the 
enclosure with corrugated fins (||V||Max ≈ 0.5 ± 0.02 mm s− 1 at t =
3600 s), but the corrugated fins induce more flow perturbations. These 
flow perturbations increase the mixing of hot and cold flows and heat 
transfer coefficients in the liquid region, improving the overall melting 
performance. 

Fig. 5 presents the effect of fin length on the temporal variations of 
average liquid fraction and average temperature in the enclosure. A 
longer fin length enhances the melting rate and average temperature in 
the enclosure, thus increasing the amount of thermal energy stored in 
the system at a given time during charging. The results indicate that 
increasing the length of the corrugated fins increases the discharge rate. 
Moreover, the results show that employing corrugated fins improves the 
rate of energy extraction from the molten material compared to the case 
with straight fins. 

Fig. 6 shows the effect of fin thickness (Wf) on the evolution of the 
temperature and velocity fields and the solid-liquid interface in the 
enclosure. The results suggest that employing thicker corrugated fins 
enhances the average velocity of the molten material in the enclosure. 
The predicted velocity field at t = 3600 s shows that the maximum ve-
locity in the liquid region increases by about 34% (from 0.38 mm s− 1 to 
0.51 mm s− 1) when the fin thickness increases from 1 mm to 3 mm. This 
implies that the heat transfer coefficient between the fin and the liquid 
increases due to the intensification of natural convection, leading to a 
faster solid-liquid phase transformation in the enclosure. However, the 
fin thickness in the present problem has a negligible effect on the heat 
transfer surface area. Hence, the effect of fin thickness on the variations 
of average liquid fraction and average temperature in the enclosure 
seems insignificant, as shown in Fig. 7. 

Fig. 3. Comparison of time evolution of the liquid fraction in a rectangular 
enclosure with three straight fins predicted by the present computational model 
(solid line) with available numerical [36] (squares) and experimental data 
[72] (diamonds). 
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Fig. 8 shows the effect of fin wave amplitude (Af) on the evolution of 
the temperature and velocity fields and the solid-liquid interface in the 
enclosure. A larger fin wave amplitude increases the effective heat 
transfer surface area of the fin, which contributes to the improvement of 
the overall melting performance. However, a larger fin wave amplitude 
also disrupts the natural convection currents that transfer thermal en-
ergy from the hot surfaces to the solid material in the upper region of the 
enclosure. This is evident from the results shown in Fig. 8, which shows 
that the progress of the melting front in the enclosure slows down when 
Af increases at any given time. The predicted velocity field at t = 3600 s 
indicates that the maximum velocity in the liquid region decreases by 
about 36% (from 0.57 mm s− 1 to 0.42 mm s− 1) when Af increases from 5 
mm to 15 mm. These observations imply that the fin wave amplitude 
should be carefully designed to achieve the desired melting 

performance. Fig. 9 shows the effect of the fin wave amplitude on the 
temporal variations of average liquid fraction and average temperature 
in the enclosure. A more corrugated fin reduces the melting rate and 
average temperature in the enclosure, thus decreasing the amount of 
thermal energy stored in the system at a given time. 

The thermal energy stored in the system consists of the latent and 
sensible heat of the phase change material (PCM) and the fins. Since the 
fins occupy less than 5% of the total volume of the system and have a 
much lower specific heat capacity than the PCM used (i.e. Rubitherm 
RT82), the thermal energy is mainly stored in the PCM. Therefore, 
incorporating properly designed fins in latent heat thermal energy 
storage systems can enhance their performance by increasing the heat 
transfer surface area and influencing the natural convection currents, 
despite reducing the PCM volume in the system. Neglecting the thermal 

Fig. 4. Thermal and fluid flow fields in the enclosure for different fin lengths at t = 1800 s (left column) and t = 3600 s (right column). The solid-liquid interface is 
indicated by grey lines. 

Fig. 5. Temporal variations of average liquid fraction (a) and average temperature (b) in the enclosure for different fin lengths.  
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energy stored in the fin, the thermal energy per unit mass stored in the 
system can be calculated as follows: 

Es = λHf + cpPCM • (TPCM − Ti), (12)  

where T is the average temperature, Ti is the initial temperature, and 
subscript ‘PCM’ indicates phase change material. Fig. 10 shows the 
dimensionless thermal energy per unit mass stored in the system at t =
3600 s for different cases, predicted by the physics-based model. The 
results show that the maximum amount of thermal energy is stored in 
cases F4 and F12, which have a fin length and thickness of 40 mm and 3 
mm respectively but different fin wave amplitudes. Among all the cases 
simulated using the physics-based model, the case F10 (Lf = 20 mm, Af 
= 15 mm, and Wf = 1 mm) has the lowest amount of stored thermal 
energy. The results demonstrate that the total thermal energy stored in 
the system is directly proportional to the volume of molten material in 
the system, which is represented by the liquid fraction λ. 

6.3. Optimisation of the fin geometrical parameters using the data-driven 
model 

The complexity and capacity of a neural network are determined by 
the number and size of its hidden layers. A neural network is composed 
of interconnected nodes that process and transmit information. Each 
node has a weight that represents its influence on the output of the 
network. During the learning process, these weights are adjusted to 
minimize a loss function, which quantifies the difference between the 
actual and desired outputs of the network. A feedforward neural 
network is a type of neural network that has no feedback loops, meaning 
that the information flows only in one direction, from the input layer to 
the output layer. The hidden layers are the intermediate layers between 
the input and output layers, where the nonlinear transformations of the 
data take place. The optimal number of hidden layers and neurons in 
each layer depends on the complexity of the problem solved by the 
neural network. The impact of the number of hidden layers and neurons 
on the performance metrics of the network was studied to identify the 
optimal neural network architecture for data-driven modelling. The 
performance metrics used in the present study are root mean square 

Fig. 6. Thermal and fluid flow fields in the enclosure for different fin thicknesses at t = 1800 s (left column) and t = 3600 s (right column). The solid-liquid interface 
is indicated by grey lines. 

Fig. 7. Temporal variations of average liquid fraction (a) and average temperature (b) in the enclosure for different fin thicknesses.  
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Fig. 8. Thermal and fluid flow fields in the enclosure for different fin wave amplitudes at t = 1800 s (left column) and t = 3600 s (right column). The solid-liquid 
interface is indicated by grey lines. 

Fig. 9. Temporal variations of average liquid fraction (a) and average temperature (b) in the enclosure for different fin wave amplitudes.  

Fig. 10. Dimensionless thermal energy per unit mass stored in the system at t = 3600 s for different cases, predicted by the physics-based model. The thermal energy 
is normalised by the latent heat of fusion (Hf) of the phase change material. 
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error (RMSE), mean absolute error (MAE), and correlation coefficient 
(R). These metrics measure how well the network can predict the output 
values from the input values. Table 3 summarises the values of RMSE, 
MAE, and R for different combinations of hidden layers and neurons. 
Based on these results, a neural network that consists of 4 hidden layers 
with 16 neurons each was selected as the best architecture for the pre-
sent problem. 

The effect of the number of epochs of the learning process on the 
performance metrics (RMSE, MAE, and R) and the learning time is 
presented in Table 4. An epoch is a complete cycle of presenting all the 
training data to the neural network. The learning time is the duration of 
the learning process for a given number of epochs. The learning time 
increases almost linearly with increasing the number of epochs. More-
over, the values of RMSE and MAE decrease with increasing the number 
of epochs. For epoch values less than 200, the value of RMSE and MAE 
decreases significantly with an increase in the number of epochs, indi-
cating improvement in the neural network performance. For epoch 
values greater than 200, changes in the value of RMSE and MAE are 
insignificant, indicating that the neural network has reached its optimal 
performance. In other words, choosing an epoch number greater than 
200 increased the computational cost without significantly increasing 
the accuracy of the neural network. Therefore, an epoch number of 200 
was selected as the appropriate number for the learning process. 

The predicted liquid fraction (λ) and dimensionless average tem-
perature (T*) from the data-driven model were compared with the 
corresponding values from the physics-based model, as shown in Fig. 11. 
The results showed a good agreement between the two models, with a 
maximum deviation of less than 8%. The deviation was calculated as the 
absolute difference between the data-driven model prediction and the 
physics-based model prediction divided by the physics-based model 
prediction. The data-driven model can reproduce the physics-based 
model predictions with reasonable accuracy, as evidenced by the low 
deviation values and the close alignment of the data points along the 45- 
degree line. The data-driven model is also able to capture the main 
trends and features of the phase change process and the thermal 
behaviour of the system, as explained by the physics-based model. 

The PSO algorithm was employed with two swarm sizes (30 and 100) 
to determine the optimal values of length Lf, wave amplitude Af, and 
thickness Wf for the fins in a latent thermal energy storage system. The 
optimal values obtained by the PSO algorithm for each swarm size are: 
[Lf: 40.000 mm, Af: 11.345 mm, Wf: 3.000 mm] and [40.000, 11.344, 
3.000 mm] respectively. These values are very close to each other, 
indicating the robustness and consistency of the PSO algorithm. Physics- 
based numerical simulations were conducted to validate the predicted 
liquid fraction values by the data-driven model for the optimal geometry 
values. The predicted thermal and fluid flow fields in the enclosure with 
the optimised fin geometry are shown in Fig. 12. The average liquid 

fraction in the enclosure over a period of 1 h charging for the optimal fin 
geometry ([Lf, Af, Wf] = [40.000, 11.344, 3.000 mm]) is 0.527 (pre-
dicted using the data-driven model) and 0.523 (predicted using the 
physics-based model), with a difference of less than 1%, confirming the 
accuracy and reliability of the data-driven model. The maximum ve-
locity in the liquid region at t = 3600 s is about 0.67 mm s− 1. The 
optimal fin geometry resulted in a liquid fraction of 0.88 and an average 
temperature of 358.85 K at t = 3600 s, which corresponds to a dimen-
sionless thermal energy per unit mass stored in the system (Es/Hf) equal 
to 1.55. This surpasses all other geometries tested in the study, as re-
ported in Fig. 10. 

The effect of each geometrical parameter of the fin on the liquid 
fraction in the thermal energy storage system was studied using the data- 
driven model. Three graphs were generated to depict this relationship, 
as presented in Fig. 13, showing the predicted liquid fraction at t = 3600 
s as a function of two geometrical parameters: length, height, or thick-
ness. In each graph, one of the geometrical parameters is set to its 
optimal value obtained from the PSO algorithm, while the other two 
parameters are varied within their respective ranges. These graphs 
provide insights into how the liquid fraction changes with different 
combinations of geometrical parameters. Furthermore, they promi-
nently showcase the optimal point derived from the PSO algorithm, 
representing the combination of parameters that result in the highest 
liquid fraction and the thermal energy stored in the system. 

7. Conclusions 

This study aimed at optimising fin geometry for enhancing melting 
performance in latent heat thermal energy storage (LHTES) systems. A 
combined approach of physics-based modelling and data-driven opti-
misation was employed to analyse the solid-liquid phase transformation 
of a phase change material (PCM) in an enclosure equipped with 
corrugated fins. 

The physics-based model was validated by comparing numerical 
results with experimental and numerical data from the literature. The 
results showed a satisfactory agreement between the model predictions 
and the data, demonstrating the accuracy of the model in capturing the 
phase transformation process. The results of the physics-based model 
show that the addition of fins results in increased effective heat transfer 
area and depth of thermal penetration, accelerating the melting process. 
Natural convection is found to play a significant role in enhancing the 
mixing of hot and cold flows and heat transfer coefficients in the liquid 
region. 

The effects of different fin geometries, namely straight fins and 
corrugated fins, on the performance of the LHTES system were 
compared. It was found that corrugated fins induced more flow per-
turbations than straight fins, thereby improving overall melting 

Table 3 
The effect of the number of hidden layers and the number of neurons on the accuracy of the predictions.  

Hidden Layers No. Weights RMSE MAE R 

1st 2nd 3rd 4th Training Validation Testing Training Validation Testing Training Validation Testing 

16 0 0 0 97 4.13E-02 4.15E-02 4.14E-02 3.27E-02 3.28E-02 3.29E-02 0.990427 0.990303 0.990348 
32 0 0 0 193 4.52E-02 4.57E-02 4.55E-02 3.44E-02 3.46E-02 3.46E-02 0.034578 0.034578 0.988311 
64 0 0 0 385 3.01E-02 3.02E-02 3.02E-02 2.31E-02 2.31E-02 2.32E-02 0.994926 0.994885 0.994899 
128 0 0 0 769 2.78E-02 2.78E-02 2.79E-02 2.25E-02 2.25E-02 2.27E-02 0.995680 0.995664 0.995642 
16 16 0 0 369 3.25E-02 3.26E-02 3.27E-02 2.41E-02 2.41E-02 2.43E-02 0.994057 0.994033 0.993984 
32 32 0 0 1249 2.07E-02 2.06E-02 2.09E-02 1.50E-02 1.49E-02 1.52E-02 0.997602 0.997638 0.997569 
64 64 0 0 4545 1.89E-02 1.90E-02 1.89E-02 1.41E-02 1.42E-02 1.41E-02 0.998003 0.997975 0.998002 
128 128 0 0 17,281 1.18E-02 1.18E-02 1.18E-02 8.88E-03 8.89E-03 8.93E-03 0.999233 0.999230 0.999228 
16 32 16 0 1169 1.39E-02 1.39E-02 1.39E-02 1.06E-02 1.06E-02 1.06E-02 0.998923 0.998916 0.998917 
32 64 32 0 4385 1.27E-02 1.28E-02 1.27E-02 9.38E-03 9.43E-03 9.43E-03 0.999115 0.999104 0.999113 
64 128 64 0 16,961 1.02E-02 1.02E-02 1.02E-02 7.78E-03 7.78E-03 7.84E-03 0.999426 0.999422 0.999419 
128 128 128 0 33,793 1.03E-02 1.04E-02 1.03E-02 7.90E-03 7.94E-03 7.94E-03 0.999410 0.999403 0.999408 
16 16 16 16 913 1.47E-02 1.48E-02 1.48E-02 1.11E-02 1.11E-02 1.11E-02 0.998788 0.998780 0.998778 
16 64 64 16 6385 1.34E-02 1.34E-02 1.34E-02 9.91E-03 9.93E-03 9.98E-03 0.999010 0.999006 0.998999 
64 128 128 64 33,473 9.92E-03 9.97E-03 9.96E-03 7.53E-03 7.56E-03 7.58E-03 0.999456 0.999450 0.999451  
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performance. However, larger fin wave amplitudes slowed down the 
progress of the melting front by disrupting natural convection currents. 
Thus, a careful balance between increasing heat transfer surface area 
and maintaining effective natural convection was highlighted. 

The influence of fin length, thickness, and wave amplitude on the 
temporal variations of average liquid fraction and average temperature 
was also explored. It was observed that longer fin lengths and thicker 

fins enhanced the melting rate and average temperature, increasing the 
amount of thermal energy stored in the system during charging. How-
ever, the effect of fin thickness on thermal characteristics was relatively 
insignificant. These findings provide valuable guidelines for optimising 
fin geometry in LHTES systems. By incorporating appropriately 
designed fins, the performance of such systems can be significantly 
enhanced, despite the reduction in PCM volume. 

Table 4 
The effect of the number of epochs on the learning process.  

Epoch Learning Time [s] RMSE MAE R 

Training Validation Testing Training Validation Testing Training Validation Testing 

5 1.00 2.74E-01 2.75E-01 2.74E-01 2.25E-01 2.26E-01 2.25E-01 0.424947 0.419205 0.419331 
10 2.00 1.71E-01 1.70E-01 1.71E-01 1.40E-01 1.40E-01 1.41E-01 0.884606 0.884884 0.881611 
20 5.00 5.85E-02 5.88E-02 5.84E-02 4.67E-02 4.70E-02 4.68E-02 0.980675 0.980523 0.980683 
50 11.00 3.46E-02 3.48E-02 3.46E-02 2.79E-02 2.82E-02 2.80E-02 0.993293 0.993187 0.993259 
100 26.00 1.47E-02 1.48E-02 1.48E-02 1.11E-02 1.11E-02 1.11E-02 0.998788 0.998780 0.998778 
200 54.00 1.16E-02 1.16E-02 1.16E-02 8.71E-03 8.67E-03 8.71E-03 0.999255 0.999258 0.999252 
500 138.00 1.09E-02 1.09E-02 1.09E-02 8.12E-03 8.07E-03 8.15E-03 0.999332 0.999337 0.999329  

Fig. 11. Comparison of predicted liquid fraction and dimensionless average temperature in the enclosure from the data-driven model (symbols) with the corre-
sponding values from the physics-based model (solid line). The top row shows the results for the training batch, the middle row shows the results for the validation 
batch and the bottom row shows the results for the testing batch. 
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Furthermore, a data-driven model based on a neural network in 
conjunction with the particle swarm optimisation was employed to 
optimise fin geometry. The best-performing network configuration 
consisted of four hidden layers with 16 neurons each, as identified 
through analysis of various network architectures. The data-driven 
model was able to reproduce the physics-based model predictions with 
high accuracy and was used to find the optimal fin geometry that 
maximised the dimensionless thermal energy per unit mass stored in the 
system. 

Future research can expand upon these findings by exploring various 
fin geometries, investigating the effects of different PCM, and consid-
ering the impact of external factors such as varying ambient conditions. 
Furthermore, expanding the study to other types of thermal energy 
systems and exploring novel materials for PCM can further advance the 
field of thermal energy storage and contribute to sustainable energy 
utilisation. 
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Appendix 

Figure A1 shows the computational grid used in the physics-based numerical simulations. 

Fig. 12. Thermal and fluid flow fields in the enclosure equipped with the optimised fin geometry at t = 1800 s (left column) and t = 3600 s (right column). The solid- 
liquid interface is indicated by grey lines. 

Fig. 13. The effect of different geometrical parameters of the fin on the liquid fraction in the thermal energy storage system at t = 3600 s. The data were generated 
using the data-driven model. 
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Fig. A1. The computational grid used in the simulations for (a) Case F0, and (b) Case F14.  
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