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SUMMARY

Atmospheric aerosols are solid or liquid particles suspended in the air. The majority of them are
produced by natural processes, including sea salt from oceans, mineral dust from (semi-)arid regions,
carbon containing particles from wildfires, and sulfates and ash from volcanic activities. Anthropogenic
aerosols are produced by industrial activities, power generation, transportation, agriculture, and
human-induced biomass burning events. Depending on the meteorological conditions, aerosol
particles can stay in the atmosphere for several hours to several months and can be transported over
long distances, causing adverse effects on human health, visibility and climate.

This thesis focuses on the aerosol optical properties, particularly the light absorption of the aerosol
particles that has significant effects on the Earth’s climate system.

This thesis starts with a general introduction of atmospheric aerosols, including its sources, cate-
gories, physical properties and measurement techniques (Chapter 1). Next, the Ultra-Violet Aerosol
Index (UVAI) is introduced, which is calculated from satellite measurements of the radiance at two
wavelengths in the UV. UVAI contains information of aerosol absorption, and it has a very long and
almost continuous data record starting in 1978. Direct use of UVAI is challenging because it is not a
geophysical quantity, but a numerical index. The objective of this thesis is to derive quantitative prop-
erties on aerosol absorption from the UVAI (e.g. single scattering albedo, absorption aerosol optical
depth) that can be directly used in aerosol radiative transfer assessments. Two types of methods have
been developed, i.e. physically-based methods and statistically-based methods. The first compares the
observed UVAI to the one simulated by radiative transfer models. The second uses Machine Learning
algorithms trained by existing data sets.

The physically-based methods have been applied to quantify aerosol absorption of several large
scale wildfires (Chapter 2 and 3). An important challenge of these method is that assumptions have to
be made on the aerosol micro-physical properties, leading to significant uncertainties in the results,
whereas the Machine Learning-based methods can avoid this kind of assumptions. Chapter 3 investi-
gates the feasibility to quantify aerosol absorption from UVAI using a Machine Learning algorithm.
Despite the higher computational efficiency and better results, the application of such data-driven
methods is still restricted by the limited data on the aerosol vertical distribution. Therefore, in Chapter
4, a database of aerosol height is created from a chemistry transport model. This database is applied in
Chapter 5, where a Deep Neural Network method is used to derive the quantitative aerosol absorptive
properties from the OMI/Aura UVAI for the period from 2006 to 2019. In comparison to ground-based
observations, the results of the Deep Neural Network agree better than satellite retrievals and also
better than chemistry transport model simulations.

This thesis demonstrates the feasibility of deriving quantitative aerosol absorptive properties from
the satellite retrieved UVAI. We use traditional radiative transfer simulations meanwhile investigating
the new possibilities of data-driven methods in aerosol remote sensing. Although the retrieval results
are encouraging, there remain limitations and challenges which need to be addressed. These are
discussed in Chapter 6 with corresponding suggestions and prospects. Despite the challenges, it is
expected that a synthetic database of global aerosol absorption can be derived from UVAI observations
provided by multiple satellite products. Such a data set will make great contributions to quantify the
effect of absorbing aerosols on the climate system.
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SAMENVATTING

Atmosferische aërosolen zijn vaste of vloeibare deeltjes die in de lucht zweven. De meeste daar-
van worden geproduceerd door natuurlijke processen, waaronder zeezout afkomstig van oceanen,
mineraalstof afkomstig van (semi-)aride gebieden, koolstofhoudende deeltjes geproduceerd door bos-
branden en sulfaat en as van vulkanische activiteit. Antropogene aërosoldeeltjes worden geproduceerd
door industriële activiteiten, energieopwekking, transport, landbouw, en door de mens veroorzaakte
verbranding van biomassa. Afhankelijk van de meteorologische omstandigheden kunnen aërosoldeel-
tjes meerdere dagen in de atmosfeer verblijven en over lange afstanden worden getransporteerd, met
nadelige gevolgen voor de menselijke gezondheid, het zicht en het klimaat.

Dit proefschrift richt zich op de optische eigenschappen van aërosolen, met name van lichtabsorp-
tie, welke een significant effect heeft op het klimaatsysteem van de aarde. Dit proefschrift begint met
een algemene introductie over atmosferische aërosolen, inclusief de bronnen, categorieën, fysische
eigenschappen en metingen (hoofdstuk 1). Vervolgens wordt de Ultraviolet Aerosol Index (UVAI) geïn-
troduceerd, welke wordt bepaald uit satellietmetingen van de UV-straling bij twee golflengtes. De UVAI
bevat informatie over absorptie aërosol deeltjes en heeft een zeer lange en bijna continue meetreeks
vanaf 1978. Direct gebruik van UVAI is beperkt doordat het geen geofysische grootheid is, maar een
numerieke index. Het doel van dit proefschrift is om kwantitatieve grootheden over aërosolabsorptie
uit de UVAI af te leiden (bijv. de enkelvoudige verstrooiingsalbedo en de absorptie optische diepte van
het aërosol), die direct kunnen worden gebruikt om de effecten daarvan op het stralingstransport in de
atmosfeer te bepalen. Er zijn twee soorten methoden gebruikt, namelijk fysisch-gebaseerde methodes
en statistisch-gebaseerde methodes. De eerste vergelijken de waargenomen UVAI met die gesimu-
leerd door stralingstransportmodellen. De tweede maken gebruik van Machine Learning-algoritmen
getraind op bestaande datasets.

De fysische methodes zijn toegepast om aërosolabsorptie van verschillende grootschalige bos-
branden te kwantificeren (Hoofdstuk 2 en 3). Een belangrijke uitdaging voor deze methodes is dat
er aannames gemaakt moeten worden over de microfysische eigenschappen van de aërosoldeeltjes,
wat leidt tot aanzienlijke onzekerheden in de resultaten, terwijl de op Machine Learning gebaseerde
methodes dit soort aannames kunnen vermijden. Hoofdstuk 3 onderzoekt de haalbaarheid om aëroso-
labsorptie uit de UVAI te kwantificeren met behulp van een Machine Learning-algoritme. Ondanks
de hogere rekenefficiëntie en goede resultaten, wordt de toepassing van dergelijke methoden beperkt
door de beperkte gegevens over de verticale verdeling van de aërosoldeeltjes. Daarom is een database
van aërosolhoogtes afgeleid uit simulaties met een chemietransportmodel (Hoofdstuk 4). De verkre-
gen database is toegepast in Hoofdstuk 5, waar een Deep Neural Network-methode wordt gebruikt
om kwantitatieve eigenschappen van aërosolabsorptie af te leiden uit de OMI/Aura UVAI metingen
voor de periode van 2006 tot 2019. De resultaten van het Deep Neural Network vergelijken beter met
waarnemingen vanaf de grond dan bepalingen met satellietwaarnemingen gebaseerd op een fysische
methode, en ook beter dan simulaties met een chemietransportmodel.

Dit proefschrift demonstreert de haalbaarheid om kwantitatieve aërosolabsorptie eigenschappen
af te leiden uit satellietmetingen van de UVAI. Daarbij is zowel gebruik gemaakt van traditionele
methodes m.b.v. stralingstransport, als van nieuwe mogelijkheden van data-gestuurde methoden.
Hoewel deze bemoedigend zijn, blijven er beperkingen en uitdagingen die verder moeten worden
onderzocht. Deze worden in hoofdstuk 6 besproken met bijbehorende suggesties en vooruitzichten.
Ondanks de uitdagingen is de verwachting dat een dataset van de wereldwijde aërosolabsorptie
eigenschappen kan worden afgeleid uit de UVAI datareeks vanaf 1978, die gemeten is door meerdere
satellieten. Een dergelijke dataset zal een belangrijke bijdrage leveren om het effect van absorberende
aërosolen op het klimaatsysteem te kwantificeren.
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2 1.1. ATMOSPHERIC AEROSOLS

1.1. ATMOSPHERIC AEROSOLS
The Earth’s atmosphere contains tens of millions of liquid droplets and solid particles that may have
significant impacts on the Earth’s climate and our health, the so-called atmospheric aerosols. The
largest contribution to the mass of aerosols is from natural processes, with a best estimate emission
rate of natural aerosols is 3062 T g /yr , while the best estimate of anthropogenic particles emission rate
is only 386 T g /yr [Hidy, 2003].

Directly emitted particles are also called primary aerosols, including sea salt, mineral dust, volca-
nic debris (ash and sulfates), biological materials, carbonaceous particles due to combustion processes.
Materials generated from atmospheric chemical processes (gas-to-particle conversion), are termed
secondary aerosols. Pollutant gases from either natural or anthropogenic processes, such as sulfur
dioxide, nitrogen oxides, ammonia and reactive volatile organic compounds (VOCs), are common
precursors for the secondary aerosols [Boucher et al., 2013].

The emitted particles are (internally or externally) mixed and aged in the atmosphere, becoming
complicated mixtures. The internal mixture contains only homogeneous aerosol composition (inclu-
ding water-coated form), while the external mixture contains more than 2 types of aerosols. Figure
1.1 shows the phases of aerosol growth. Particles converted from gases (sulfates, ammonium salt,
nitrates, organic carbon, etc.) usually have the smallest size (nucleation mode, diameter of 10-100
nm). The lifetime of these particles is short as they grow rapidly into accumulation mode (diameter of
100-1000 nm) through condensation and coagulation of gases and water vapour. Accumulation mode
aerosols are usually removed from the atmosphere via scavenging by cloud droplets and raindrops.
The representative aerosols of this kind are coagulated nuclei-mode aerosols, smog, soot and smoke
particles from combustion processes. The nucleation mode and accumulation mode are together
termed fine mode. Fine aerosols have a much longer lifetime of days to weeks (in the stratosphere
volcanic sulfate aerosols can even stay months to years [Holzer-Popp et al., 2013]). Suspended in the
atmosphere for longer time, they are the major contributor to the atmospheric visibility reduction.
Particles larger than 1000 nm are termed coarse mode, and usually composed of mechanical-forming
sea salt, mineral dust, volcanic ash, and those from agriculture and surface mining. Due to their large
size, the coarse aerosols sediment at a significant rate, adding another pathway for deposition apart
from rain-outs [Seinfeld and Pandis, 1998]. As a result, the lifetime of coarse aerosols is typically hours
to days (fine volcanic ash can stay for months in stratosphere [Vernier et al., 2016]).

Geographically localized sources and sinks give aerosols an extreme spatial and temporal inhomo-
geneity in the atmosphere. The state-of-the-art satellite remote sensing techniques can provide maps

Figuur 1.1: Aerosol dynamics adapted from https://allaboutaerosol.com/aerosol-in-the-atmosphere/.

https://allaboutaerosol.com/aerosol-in-the-atmosphere/
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Figuur 1.2: Global average distribution of aerosols from June 2000 through May 2010, based on measurements of
MISR. Source: https://earthobservatory.nasa.gov/features/Aerosols

of the global aerosol distribution. For example as shown in Figure 1.2, the aerosol optical depth (AOD,
a measure of columnar aerosol amount) is largest in Asia and Africa. The major sources in eastern Asia
are anthropogenic sulfates and carbonaceous aerosols produced by economic activities (e.g. industry,
agriculture, transportation, daily life, etc.). The largest natural aerosol source over land is the Sahara
Desert. The dust particles can even cross the Atlantic Ocean and reach the Amazon Basin via the
northeasterly winds [Bristow et al., 2010]. The seasonal biomass burning events in tropical Africa and
southeast Asia due to agricultural activities also present significant signals in the annual climatology
map. On a vertical scale, the majority of aerosols are well-mixed within the boundary layer and decay
rapidly with altitude in the troposphere. But sometimes, aerosol particles can also be elevated with
a peak concentration at significant height above the surface, e.g. soil particles can be easily injected
into free troposphere by large-scale vertical advection; smoke plumes generated by forest fires can lift
into the upper troposphere by thermal radiative energy [Xu et al., 2018a]. The stratospheric aerosol
loading is mainly due to volcanic activities. In 1991, the eruption of Mount Pinatubo in the Philippines
ejected more than 20 million tons of sulfur dioxide to an altitude over 30 km, enhancing the aerosol
concentration from an negligible ambient value to near 20-100 µg /m3 [Hidy, 2003, Zhao et al., 1995].

1.2. EFFECTS OF AEROSOLS
Atmospheric aerosols have profound effects on air quality and public health, atmospheric visibility,
local weather and global climate.

1.2.1. AEROSOL EFFECTS ON AIR QUALITY
In the context of environmental sciences, aerosol particles are one of the major pollutants and well-
known as particulate matter (PM). Depending on the aerodynamic diameter (da ), aerosols particles
are normally divided into PM2.5 (da ≤ 2.5µm) and PM10 (da ≤ 10µm) [Davidson et al., 2005]. Smaller
particles consist of the gas-converted aerosols, combustion-produced particles and re-condensed
organic and metal vapours. The larger particles also contain earth crust materials and fugitive dust
from roads and industries. Both PM2.5 and PM10 are inhalable particles that can penetrate and lodge
deep inside lungs, while PM2.5 is more health-damaging as it can penetrate into the alveolus and
enter the blood system. A chronic exposure to these particles contributes to the risk of developing
cardiovascular and respiratory diseases, as well as of lung cancer [Davidson et al., 2005, WHO, 2003,
2006]. The WHO air quality guideline levels of PM2.5 are 10 µg /m3 (annual mean) and 25 µg /m3 (24
hour mean), and that of PM10 are 20 µg /m3 (annual mean) and 50 µg /m3 (24 hour mean) [WHO,
2006].

Moreover, aerosols are also an important pathway for viruses transmission. Studies have shown

https://earthobservatory.nasa.gov/features/Aerosols
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that there are many respiratory diseases spread by airborne aerosols such as tuberculosis, measles,
chickenpox and influenza [Davidson et al., 2005, Escombe et al., 2007, Hammond et al., 1989, Leclair
et al., 1980, Tellier, 2006, 2009]. It is also suggested that the coronavirus disease pandemic in 2019
(COVID)-19 could be transmitted via airborne aerosols [Liu et al., 2020, van Doremalen et al., 2020].

1.2.2. AEROSOL EFFECTS ON VISIBILITY
The suspended particles in the atmosphere interact with electromagnetic radiation, leading to light
extinction and visibility reduction. Atmospheric visibility is defined by the ability of our eyes to
distinguish an object from the surrounding background [Horvath, 1981]. It is usually quantified by the
visual range (unit: km), which expresses how far one can see in a given direction. Objects at distances
over hundreds of kilometers can be observed under high visibility conditions, while targets only a few
kilometers ahead can be detected under low visibility conditions [Hyslop, 2009]. Visibility lower than
100 m is considered as 0.

Figure 1.3 show two cases of impaired visibility due to the high loading of particulate matter.
Particles with diameters in the range of 0.1-1.0 µm are the most effective at degrading visibility [WHO,
2006], i.e. accumulation mode in Figure 1.1, as the lifetime of this aerosol regime is longer than the
nucleation and coarse modes. Atmospheric visibility is important to traffic safety in all forms (roads,
sailing and aviation).

Moreover, visibility is also an indicator of air quality. It is found that clear sky visibility has decreased
globally over land from 1973 to 2007 [Wang et al., 2009]. One of the most famous efforts to improve the
visibility is the ’Blue Sky Project’ in 1998 that investigated by how much emissions should be reduced
to increase the blue sky frequency in Beijing, where the 2008 Summer Olympic Games was hosted.
Many actions had been taken (some of them continues until now), including mitigating high-polluted
industries outside Beijing, temporally shutting down some industries, replacing coal fuels and leaded
gasoline, and road space rationing (a travel demand management strategy, also called no-drive days),
etc. The ’Blue Sky Days’ continued increasing yearly from 100 days in 1998 to 246 in 2007 [Andrews,
2008].

1.2.3. AEROSOL EFFECTS ON CLIMATE
The aerosol-radiation interactions also have impacts on the Earth’s climate system. Aerosol particles
can directly scatter or absorb solar radiation and absorb thermal infrared radiation. Most aerosols are
non-absorbing, such as sulfates, nitrates, and sea salt, etc. They reflect nearly all the incoming sunlight
into the outer space, resulting in a cooling effect on the Earth’s climate. Dark-colored aerosols (black

(a) 24-Feb-2019 in Nanjing (b) 13-May-2017 in Shanghai

Figuur 1.3: Two cases of visibility reduction due to high loading of particulate matter. The dominant pollutant in
both cases is PM2.5. (a) PM2.5 was 101 µg /m3 in Nanjing on 24-Feb-2019, 06:00 a.m.; (b) PM2.5 was 64 µg /m3 in
Shanghai on 13-May-2017, 05:30 a.m. (Data source: https://www.zq12369.com).

https://www.zq12369.com
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carbon), mineral dust and some organic aerosols can directly absorb the solar radiation, the solar
radiation reflected by the surface-atmosphere-cloud system and thermal radiation, posing a positive
radiative forcing to the climate [Haywood and Boucher, 2000, Takemura et al., 2005]. Absorption of
long-wave thermal infrared radiation is negligible except for large particles like mineral dust [Highwood
et al., 2003].

Aerosols also have an in-direct effect on clouds. Some particles, such as sulfates [Hegg et al.,
1993], organic aerosols [Rivera-Carpio et al., 1996] and sea salt [Feingold et al., 1999], work as cloud
condensation nuclei (CCN), affecting the cloud albedo and lifetime [Haywood and Boucher, 2000].
The increased particle number concentration can decrease the cloud droplet effective radius, leading
to higher cloud albedo and cloud optical depth [Twomey et al., 1974]. Moreover, the reduced cloud
droplet effective radius is less likely to form precipitation, which increases the liquid water content, the
cloud lifetime and the cloud thickness [Albrecht, 1989, Pincus and Baker, 1994].

Like scattering aerosols, absorbing particles also have indirect effects on climate by changing the
number of liquid cloud droplets, enhancing precipitation in mixed-phase clouds, and changing ice
particle number and cloud extent. Besides, absorbing aerosols heat up the atmosphere at the same
time reducing the sunlight absorption by surface, leading to higher static stability at low-level and
lower surface moisture fluxes. This further reduces the low-cloud coverage, or the probability of cloud
formation [Hansen et al., 1997, Ramanathan et al., 2001]. The above is considered as the so-called
semi-direct effect of absorbing aerosols on clouds. Soot inside the clouds droplets and ice crystals can
also decrease the albedo of clouds by increasing the absorption by droplets and ice crystals [Bond et al.,
2013, Ramanathan and Carmichael, 2008]. Moreover, dark-colored aerosols dim the surface albedo by
depositing on ice and snow, and the heat produced by light absorption speeds up the ice/snow melting
process [Hansen and Nazarenko, 2004, Nair et al., 2013].

According to IPCC, atmospheric aerosols have a dominating cooling effect on climate with a
partially warming offset [Pachauri et al., 2014] (Figure 1.4). The anthropogenic aerosol effective
radiative forcing due to interaction with radiation and clouds from 1750 to 2011 is -0.9 [-1.9 to -0.1]
W /m2 (medium confidence), among which the aerosol direct effects on climate is accessed to be –0.45
[–0.95 to +0.05] W /m2. The contribution of absorbing aerosols deposited on bright surfaces is +0.04
[+0.02 to +0.09] W /m2. Despite improvements have been achieved with observational and modelling
breakthroughs, aerosols are still regarded as the largest uncertainty to the total radiative forcing
assessment [Pachauri et al., 2014] (for comparison, the radiative forcing of well-mixed greenhouse
gases is 2.83 [2.54 to 3.12] W /m2). The aerosol effect on climate is not fully understood, due to the
complex aerosol optical properties, high variability in space and time, and the poor understanding
of aerosol emissions and dynamic processes (particularly aerosol-cloud interactions) [Carslaw et al.,
2013, Loeb and Su, 2010, McComiskey and Feingold, 2008, McComiskey et al., 2008, Penner et al., 2001,
Watson-Parris et al., 2020].

1.3. AEROSOL OPTICAL PROPERTIES
Aerosol optical properties are one of the major error sources in the aerosol radiative forcing assessment.
Depending on the chemical composition, the particle size distribution and the morphology (spherical
or non-spherical, regular or irregular), aerosols present various levels of capability in absorption and
scattering. Besides, the environmental relative humidity can also influence the aerosol chemical
composition and size distribution via multiple processes (e.g.aqueous-phase reactions, gas-particle
partitioning, etc.) [Sun et al., 2013].

1.3.1. SCATTERING REGIMES

The type and magnitude of scattering depend on the relationship between the particle size (represented
in diameter, D, unit: usually expressed in nm or µm) and the incident radiative wavelength (λ, unit:
usually expressed in nm or µm), represented by a dimensionless size parameter X [Feingold et al.,
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Figuur 1.4: Radiative forcing (RF) of climate change during the Industrial Era shown by emitted components from
1750 to 2011. The picture is taken from IPCC Climate Change 2013 The Physical Science Basis [Stocker et al., 2013].

1999]:

X = πD

λ
(1.1)

Depending on X , there are three major scattering regimes. When X is considerably larger than
1, which means the particle size D is much larger than the wavelength of incident radiation λ (unit:
usually expressed in nm or µm), geometric scattering happens. This is usually the cases for the larger
water droplets (e.g. clouds, drizzle, raindrops, D > 10µm) in the visible to mid-infrared bands (0.4 to 8
µm). Geometric scattering is non-selective, i.e. it scatters all wavelengths equally. That is why clouds
look white. If clouds are optically thick enough, little light can penetrate through the clouds and the
cloud bases appear dark (Figure 1.5a).

By contrast, when the particle size is far smaller than the wavelength of incident radiation (X << 1),
Rayleigh scattering occurs. Rayleigh scattering is mainly contributed by small gas molecules (D <
0.1µm) and is highly wavelength-dependent ( λ−4). The scattering in ultra-violet to blue channels (0.2
to 0.5 µm) is stronger than that in longer wavelengths, thus the color of the sky is highly-saturated
blue (if no particles exist, Figure 1.5b). At dawn and dusk, the incoming solar radiation travels a longer
distance so that the shorter blue band is completely scattered, resulting in a reddish sunrise or sunset
(Figure 1.5c).

When X is near one (also called resonant regions [Barber and Yeh, 1975]), i.e. the particle size and
the wavelength are of similar magnitude, then Mie scattering applies. Mie scattering influences the
spectrum ranging from near ultra-violet to the mid-infrared band (0.3 to 8 µm). Aerosols and small
cloud particles (0.1 < D < 10µm) are the major contributor to Mie scattering. The spectral dependence
of Mie scattering is much weaker than Rayleigh scattering. Thus, in the aerosol-abundant regions, the
sky looks gray or white (Figure 1.5d). Mie scattering is also responsible for glares around the sun.
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(a) White clouds with dark bases due to geometric scattering. (b) Blue sky due to Rayleigh scattering.

(c) Red sunrise due to Rayleigh scattering. (d) Low saturation of view and reduced visibility due to Mie
scattering.

Figuur 1.5: Examples of scattering: (a) picture taken in Utrecht, the Netherlands on 11-Aug-2018 (geometric
scattering); (b) picture taken in Utrecht, the Netherlands on 04-Apr-2020 (Rayleigh scattering); (c) picture taken in
De Bilt, the Netherlands on 22-Jan-2019 (Rayleigh scattering); (d) picture taken in Tokyo, Japan on 14-Jan-2017 (Mie
scattering).

1.3.2. CALCULATION OF AEROSOL OPTICAL PROPERTIES

Maxwell’s equations are the basis of theoretical and computational methods describing light scattering.
Given the aerosol refractive index, particle size distribution, morphology and relative humidity, the
aerosol optical properties, i.e. the single scattering albedo (ω0) and the phase function (or asymmetry
parameter g ) and the optical depth (τ), can be calculated via different methods that solves the Maxwell’s
equations.

For extreme small particles and large particles, Rayleigh scattering and geometric optics give
approximation solutions of Maxwell’s equations. In Mie scattering regimes, the German physicist
Gustav Mie developed an analytical solution that is used for spherical particles, known as the Mie
Theory [Mie, 1908]. Although the Mie Theory is satisfactory to model optical properties for the
majority of aerosols, non-spherical dust aerosols shows significantly different properties compared
with Mie calculations [Dubovik et al., 2002a, 2006, Hu et al., 2017]. Now with the improvement of
computational efficiency, many exact computational solutions for non-spherical particles have been
proposed and applied, e.g. the Finite-Difference Time-Domain (FDTD) [Kane Yee, 1966], the Discrete
Dipole Approximation (DDA) [Purcell and Pennypacker, 1973] (used in CALIOP [Liu et al., 2005]),
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T-matrix [Mishchenko et al., 1996, Waterman, 1965] (used in MODIS [Remer et al., 2006] and OMAERO
[Torres et al., 2002b]), etc.

The following sections focus on how to calculate optical properties for spherical particles using the
Mie Theory.

1.3.3. MICRO-PHYSICS OF A SINGLE AEROSOL PARTICLE (MIE THEORY )
Given a certain relative humidity (RH, unit: %), the chemical composition of a particle determines its
complex refractive index mλ = nλ+kλi, where nλ is the real part of the refractive index at wavelength
λ determined by the light travelling speed through a medium. The real part is the scattering component,
and the imaginary part of the refractive index kλ is responsible for absorption. A particle with kλ = 0
means purely scattering.

For a spherical particle with diameter of D or radius r (D = 2r , unit: usually expressed in nm or
µm) and complex refractive index mλ = nλ+kλi, the scattering, absorption and extinction efficiency
(Qsca , Qabs and Qext , dimensionless) can be calculated by the Mie Theory. Scattering redirects the
incoming electromagnetic radiation, while absorption transfers the radiation into longer-wavelength
internal energy heating the surroundings. The summed effect of scattering and absorption is called
extinction (or attenuation).

The corresponding extinction cross section (σext , unit: usually expressed in nm2 or µm2) is
calculated (similar relationships for σsca and σabs ):

σext ,λ = πD2

4
Qext ,λ =πr 2Qext ,λ (1.2)

The scattered intensity of radiation is angular-dependent, which is described as the scattering
phase function (P (Θ,λ)) [Seinfeld and Pandis, 1998]:

1

2

∫ π

0
P (Θ,λ)sinΘdΘ= 1 (1.3)

whereΘ is the scattering angle between the incident and scattered radiation. The phase function
can be concisely presented by the asymmetry parameter g ( −1 ≤ g ≤ 1, dimensionless), defined as:

gλ = 1

2

∫ π

0
sin(θ)cos(θ)P (θ,λ)dθ (1.4)

g describes the tendency of forward scattering of a particle. Forward scattering refers to g > 0
while backward scattering refers to g < 0. Aerosol and cloud particles tend to have a relatively large
and positive g , i.e. strong forward scattering. That is why the scene of aerosols and clouds looks bright
if an observer is looking at the forward scattered light.

1.3.4. MICRO-PHYSICS OF A GROUP OF PARTICLES (MIE THEORY )
So far only optical properties of a single particle have been discussed. In reality, the aerosol properties
are measured for a larger number of particles with different types. Thus, for each aerosol type i , a
particle size distribution function (N i (r )) is introduced:

N i (r ) =
∫ r 2

r 1
n(r )dr (1.5)

The size distribution function N i (r ) can be mathematically characterized by different functions,
such as a power-law, gamma and log-normal function, etc. The concept of effective radius (re , unit:
usually expressed in nm or µm) is proposed to represent the particle size of the whole bulk of aerosols:

re =
∫ r 2

r 1 πr 3n(r )dr∫ r 2
r 1 πr 2n(r )dr

(1.6)
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At a given relative humidity, the volume extinction coefficients (βext ,λ, unit: usually expressed in
nm−1 or µm−1) for a group of mixed particles is the summation of the integrated optical properties
over size distribution functions for all aerosol types (similar calculations for volume scattering βsca,λ
and absorption coefficient βabs,λ):

βext ,λ =∑
i

∫ r 2

r 1
σi

ext ,λ(r )N i (r )dr (1.7)

, where σi
ext and N i (r ) are the extinction cross section and the size distribution function for an

aerosol type i . The single scattering albedo (SSA, ω0, dimensionless), which describes the fraction of
scattering of the total extinction, is defined as:

ω0,λ = βsca,λ

βext ,λ
= βsca,λ

βsca,λ+βabs,λ
(1.8)

The value of ω0 is between 0 and 1. ω0 of 1 indicates purely scattering and ω0 of 0 indicates that all
light is absorbed. The bulk phase function is weighed by scattering cross section σi

sca of each aerosol
type:

P (Θ,r,λ) =∑
i

∫ r 2
r 1 P i (Θ,r,λ)σi

sca,λ(r )N i (r )dr∫ r 2
r 1 σ

i
sca.λ(r )N i (r )dr

(1.9)

The corresponding gλ can be calculated by Equation 1.4.

The total light attenuation due to atmospheric aerosols is presented by the aerosol optical depth
(AOD, τ, dimensionless), which is the calculated as the aerosol extinction coefficients βext from the
surface to the top of the atmosphere (TOA):

τλ =
∫ T O A

0
βext ,λ(z)d z (1.10)

Under single scattering approximation, the Beer-Lambert Law can be applied to calculate the τλ,
thus:

I

I0
= exp(−βext ,λz) = exp(−τλ) (1.11)

where I and I0 are the irradiance at any distance z and the incident irradiance, respectively. The
aerosol extinction due to absorption is presented by the absorption aerosol optical depth (AAOD, τa,λ,
dimensionless):

τa,λ = τλ× (1−ω0,λ) (1.12)

The wavelength dependence of τλ is described by the Ångström Exponent (ÅE, α, dimensionless):

α=− log(τλ1
/τλ2

)

log(λ1/λ2)
(1.13)

ÅE is reversely related to the aerosol particle size. The smaller the particle, the larger ÅE, i.e. the
stronger wavelength-dependence. Likewise, the spectral dependency of τa,λ (dimensionless), i.e.
absorption Ångström Exponent (AÅE, αa , dimensionless), can be calculated by:

αa =− log(τa,λ1
/τa,λ2

)

log(λ1/λ2)
(1.14)
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1.3.5. AEROSOL MODELS IN APPLICATIONS
Aerosol models are used in chemical transport models and/or atmospheric retrieval algorithms. Aerosol
models describe the aerosol chemical, physical and/or optical properties as a function of wavelength
and relative humidity.

In reality, aerosol particles will not consist of a single substance, but are a mixture of different
substances (externally mixed). That is why aerosol models in the majority of operational satellite
retrieval algorithms are named by aerosol optical properties (scattering or absorbing), combined with
information of sources (natural or anthropogenic, oceanic or continental, rural or urban), instead of
using individual chemical component (e.g. [Liu et al., 2005, Remer et al., 2006, Torres and Chen, 2013,
Torres et al., 2002b]). Note that even if the same naming used, the assumed chemical compositions and
the calculated optical properties can be different among algorithms. For example, the biomass burning
aerosols in OMAERO has a mean fine radius of 0.07 µm and a mean coarse radius of 0.87 µm [Torres
et al., 2002b], while those in CALIOP aerosol retrieval algorithm are 0.14 µm and 3.73 µm, respectively
[Liu et al., 2005].

Instead of aerosol models for mixtures, it is easier to understand optical properties of aerosols
consisting of homogeneous chemical composition, which is usually used in chemical transport models.
Below, aerosols of five representative types are introduced, i.e. sea salt, sulfates, mineral dust, black
carbon and organic carbon based on the aerosol models in the chemical transport model (CTM)
MERRA-2 [Randles et al., 2017] and CAMS [Bozzo et al., 2017]. In addition, although excluded in many
global CTMs [Bauer et al., 2007a, Bian et al., 2017, Dall’Osto et al., 2009], the nitrate aerosols will also
be introduced in this section as they have significant impacts on tropospheric chemistry and aerosol
radiative forcing [Adams et al., 2001, Bellouin et al., 2011, Liao et al., 2003]. Besides, with the trend of
decreasing sulfur dioxide and increasing ammonia emission, nitrate aerosols are expected to become
more important in the future [Bian et al., 2017]. Below the aerosol optical properties are reported at
(approximately) 550 nm by default, unless specifically indicated.

SEA SALT

Sea salt particles are generated by natural bubble bursting and sea spray. They are widely distributed
and account for about 30% of the global column AOD [Holzer-Popp et al., 2013]. Sea salt particles are
highly hygroscopic (tend to take up water and increase in size with increasing relative humidify), and
they are considered as efficient cloud condensation nuclei [Boucher et al., 2013, Solomon, 2007]. The
chemical composition of sea salt is complex and varies with location and time, but mainly includes
chemical ion of N a+, C l−, K+, M g 2+, C a2+, SO2−

4 , etc. [Tang et al., 1997].
Sea salt has a wide size range from fine to coarse particles. The dry effective radius (re ) can have

orders of difference in magnitude from 0.01 to 10 µm. The asymmetry factor g varies from 0.2 to 0.9,
depending on particle size and relative humidity. Sea salt is assumed to be purely scattering, thus its
single scattering albedo ω0 is near unity and barely varies with wavelength (within the visible band,
λ≤ 1µm) and relative humidity [Bozzo et al., 2017, Randles et al., 2017].

In operational algorithms, sea salt is included in the category oceanic aerosols (or marine aerosols).
The oceanic aerosols also contain the non-sea-salt sulfates (mainly from dimethyl sulfide, i.e. DMS)
and nitrates (both marine and continental sources), organic matters, and mineral dust from continents
[Fitzgerald, 1991, O’Dowd et al., 1997]. Despite of the presence of absorbers, the oceanic aerosols are
still predominantly scattering [Liu et al., 2005, Remer et al., 2006, Torres et al., 2002b].

SULFATES

Sulfates are usually formed by gas-to-particle conversions of sulfur dioxide (SO2) from geological
(volcanic eruption) and anthropogenic activities (industrial pollution), as well as DMS from biogenic
processes [Ghahremaninezhad et al., 2019]. Sulfate aerosols consist of sulfuric acid (SO−2

4 ) or ammo-
nium sulfate ((N H4)2SO4), depending on the ammonia availability [Boucher et al., 2013]. Note that
sea salt is also a source of sulfates, but usually it is not included in the sulfate aerosol model.
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Sulfates are a part of industrial aerosol (urban aerosols) in some algorithms [Liu et al., 2005, Remer
et al., 2006, Torres et al., 2002b] (industrial/urban aerosols may also consist of nitrates, black carbon
and organic carbon, dust, etc. that produced by anthropogenic processes), but in some algorithms
they are treated as an individual category (OMAERUV).

Sulfates are hygroscopic, thus their size varies with relative humidity. Nevertheless, the dry sulfate
particles are relatively small with re at magnitude of 0.15 µm. Their g varies from 0.6 to 0.8 (slightly
decreases with wavelength and increases with relative humidity). Sulfate particles are also efficient in
scattering. The typical value of ω0 is near unity and barely changes with wavelength (within the visible
band) and relative humidity [Bozzo et al., 2017, Randles et al., 2017].

MINERAL DUST

Mineral dust consists of naturally-formed particles over desert, dry lake beds and semi-arid regions,
as well as that produced by agricultural activities, and industrial activities like transportation, coal
combustion, cement manufacturing, metallurgy and waste incineration [Boucher et al., 2013, Solomon,
2007]. Mineral dust has the largest mass emission rates, column mass burden and optical depth among
all aerosol types [Satheesh and Krishna Moorthy, 2005]. In retrieval algorithms, dust aerosols usually
indicate desert dust [Liu et al., 2005, Remer et al., 2006, Torres et al., 2002b]. Note that dust particles
are usually non-spherical. Thus, instead of the Mie Theory, the optical properties of dust aerosol are
calculated by DDA (used in CALIOP, [Liu et al., 2005]) or T-matrix (used in OMAERO, [Remer et al., 2006,
Torres et al., 2002b]).

Compared with other aerosol types, dust particles are rather coarse, with re at magnitude from 0.1
to 100µm, but only those with size smaller than 10µm are subject to long-range transport [Moosmüller
et al., 2009]. Dust aerosols are hydrophobic, which means their optical properties do not change with
relative humidity. The g of dust particles is usually larger than 0.7, presenting a strong forward
scattering tendency. The absorption of dust is driven by iron oxide content and increases towards the
shorter wavelengths [Moosmüller et al., 2009]. The ω0 of dust usually varies between 0.6 and 0.9 at 550
nm and increases with wavelength within the visible band [Bozzo et al., 2017, Randles et al., 2017].

BLACK CARBON

Black carbon, also referred to as elemental carbon, is mainly produced by incomplete combustion of
biomass and fossil fuels of both natural and anthropogenic processes [Albrecht, 1989, Boucher et al.,
2013, Solomon, 2007]. Unlike other aerosol types, black carbon is dark-colored, indicative of its strong
capability of light absorption from the UV-visible band [Hyslop, 2009].

Freshly emitted black carbon particles are hydrophobic and mostly externally mixed with non-
refractory compounds. However, these particles acquire hygroscopic materials from condensation of
sulfates and organic matter, or coagulation with hygroscopic particles or cloud drops, which is called
the coating process of black carbon [McMeeking and Coe, 2011]. The coated black carbon can serve as
the cloud condensation nuclei. The absorption is significantly enhanced by the coating. According to
Shiraiwa et al. [2010], the mass absorption cross section (at near 532 nm) can be doubled if the shell
size is two times of the core size.

The dry black carbon is fine particles with re of 0.05 µm. Since they are small, the scattering
direction is less forward (g of 0.3). Black carbon is a strong absorber with a constant imaginary
refractive index of about 0.8 within the visible band [Bond and Bergstrom, 2006] (i.e. AÅE≈1). Its ω0 is
usually less than 0.4 at 550 nm and slightly decreases with wavelength (within the visible band) [Bozzo
et al., 2017, Randles et al., 2017]. For hydrophilic particles, not only the absorption increases during the
aging process, but also the particle size and scattering cross section [Cheng et al., 2014].

ORGANIC CARBON

Organic carbon is usually generated together with black carbon [Boucher et al., 2013, Solomon, 2007].
The directly produced organic carbon from combustion is also called primary organic aerosol. The
secondary organic aerosol is formed as the oxidation products of certain volatile organic compounds
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(VOCs) condense on existing aerosols [Chung and Seinfeld, 2002]. Organic carbon can also be separated
into water-soluble and water-insoluble. The former accounts for 20%-70% of the total organic carbon
and is mainly secondary organic aerosols. Similar to hydrophilic black carbon, water-soluble organic
carbon also serves as the cloud condensation nuclei [Tang et al., 2016].

The dry organic carbon particles have a re of 0.1 µm. Its g is typically 0.6, showing a moderate
forwarding scattering. Unlike black carbon, organic carbon has a ω0 usually larger than 0.95 which
slightly decreases with wavelength (within the visible band, λ≤ 1µm) [Bozzo et al., 2017, Randles et al.,
2017]. Both g and ω0 increase with relative humidity for hydrophilic organic carbon.

Although organic carbon is considered to be scattering-efficient, several studies have shown that
the brown carbon, a sub-group of organic carbon, is also a light absorber [Kirchstetter et al., 2004,
Mukai and Ambe, 1986, Patterson and McMahon, 1984]. It is produced by tar materials from smoldering
fires or coal combustion, breakdown products from biomass burning, organic compounds emitted
from soil, and VOCs emitted by vegetation [Yan et al., 2018]. Brown carbon is less absorbing than
black carbon, but its absorption has a stronger spectral dependence (absorption decreases towards
longer wavelength). The AÅE of brown carbon can larger than 3 while that of black carbon is near unity
[Yang and Huebert, 2009]. The large variation of AÅE is due to the mixture of black carbon and brown
carbon. It has been reported that combustion aerosols with a low SSA have an AÅE near unity, whereas
combustion aerosols with a high SSA have an higher AÅE [Lewis et al., 2008]. In satellite retrieval
algorithms, black carbon and organic carbon are the major components of biomass burning aerosols
(also called smoke, soot, carbonaceous aerosols). Due to the presence of absorbing particles, biomass
burning aerosols are also referred to as fine absorbing aerosols (corresponding to the mineral dust, the
coarse absorbing aerosols).

NITRATES

Nitrates are usually chemically formed from ammonia (N H3) and nitrogen acid (H NO3), and photo-
chemical products of the oxidation of nitrogen oxides (NOx ) [Hauglustaine et al., 2014]. The common
sources of N H3 and NOx consist of both natural and anthropogenic processes, including excreta from
domestic and wild animals, synthetic fertilizers, oceans, biomass burning, crops, human populations
and pets, soils, lightening, industrial processes and fossil fuels [Bauer et al., 2007a, Bouwman et al.,
1997]. Compared with other aerosols, less attention was given to ammonia (N H3) and ammonium
(N H+

4 ) aerosols because of their complex chemical formation and reactions [Bian et al., 2017, Dall’Osto
et al., 2009, Myhre et al., 2013]. However, with the decreasing SO2 and increasing N H3 emission in
future, less N H3 is needed to neutralize the the strong sulfuric acid (H2SO4), yielding more NO−

3 and
N H+

4 . As a result, recently there is an increasing number of CTMs that include these two components
[Bian et al., 2017].

Studies have shown that the light-scattering properties of nitrates do not significantly differ from
that of sulfates as long as their dry particles have the same size distribution [Tang and Munkelwitz,
1994, Tang et al., 1997, Tang, 1996]. Some studies treat the micro-physical properties of nitrates in the
same way as sulfates (e.g. [Drugé et al., 2019, Lowenthal et al., 2000]). Nitrates usually have a constant
ω0 of near unity and g between 0.6 and 0.8 with wavelength (within the visible band) and relative
humidity. Nitrates particles in the nucleation mode are small with r of the order of 0.015 µm, while
they can coat onto the existing particulate matter to form coarse particles with r of typically 0.15 µm
[Bauer et al., 2007b, Zhang et al., 2012].

In operational satellite retrieval algorithms, nitrates are usually included together with sulfates in
the industrial/urban aerosol group [Liu et al., 2005, Remer et al., 2006, Torres et al., 2002b].

1.4. AEROSOL MEASUREMENT PRINCIPLES
Aerosol properties can be measured in laboratory experiments, or by in situ and remote sensing
techniques. In situ measurements require contacting with the target objects (e.g. an air parcel),
whereas remote sensing techniques derive information from propagating signals (e.g. light) without
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physical interactions with the targets. Satellite measurements, one of the remote sensing techniques,
have the advantage of global coverage. Satellite remote sensing techniques developed in recent years
play a key role in the global monitoring of aerosols.

Deriving physical parameters from remote sensing is an inverse problem: the properties that we
want to know are not directly measured but have to be derived from the measured signals. Inverse
problems are usually ill-conditioned, in other words, the amount of information in the measurements
is not sufficient to derive a unique solution. To find a solution, the observations have to be combined
with assumptions on one or more parameters, which is commonly referred as a priori information.

The following subsections will introduce the basic principles and techniques of tropospheric
aerosol measurements with a particular emphasis on satellite remote sensing.

1.4.1. PASSIVE SENSORS (SHORTWAVE)
Passive sensors measure the Earth’s reflectance at the top of the atmosphere (TOA), which is written as:

R(λ) = πI (λ)

µ0E0(λ)
(1.15)

where I and E0 are the outgoing radiance and the solar irradiance as a function of wavelength
λ at TOA; µ0 is the cosine of the solar zenith angle. In the simplest case, by assuming a cloud-free
horizontally homogeneous atmosphere over a Lambertian surface (isotropically reflecting), the TOA
reflectance is affected by the interaction between photons and the Earth’s atmosphere-surface system:

R(λ) = Ra (λ)+ As (λ)

1− As (λ)s(λ)
T (λ) (1.16)

where Ra is the atmospheric contribution (molecules and particles) to the total TOA reflectance,
As is the surface albedo, s is the spherical albedo of the atmosphere, and T is the direct and diffuse
transmittance of the atmosphere. The factor 1/(1− As (λ)s(λ)) represents the multiple interactions
between the atmosphere and the surface. Note that all terms are dependent on the solar and viewing
geometries. Except for As , all other terms also depend on the surface pressure. Note that the Equation
1.16 does not hold if the surface reflectance is significantly non-isotropic. In such cases, the surface
reflectance has to be described by the bidirectional reflectance distribution function (BRDF). Due to
the simplicity of Equation 1.16, the Lambertian surface assumption is often applied in satellite remote
sensing retrievals.

In practice, satellite instruments only measure the total TOA reflectance. The molecular contri-
bution (Rayleigh scattering) can be calculated with known pressure and temperature profiles [Torres
et al., 2002b], but determining the surface contribution is challenging, particularly over land where the
surface reflectivity in the visible and near-infrared is much higher than that over water [Kaufman et al.,
1997a]. As as result, when a sensor observes a scene from only one direction, assumptions usually have
to be made on the surface reflectance.

Due to the ill-posed inverse problem, not all aerosol properties mentioned in Section 1.3.4 can
be retrieved simultaneously from the observed reflectance, and there is a hierarchy between various
parameters [Kaufman et al., 1997a]. A single measurement is limited to retrieving a singular para-
meter, and the priority is usually given to AOD. Multiple measurements with multi-angle and/or
polarization techniques allow to retrieve additional aerosol properties, but depending on what is to
be retrieved and what measurements are made, assumptions have to be made on one or more of
the following parameters: particle size distribution, refractive index, aerosol vertical distribution and
surface reflectance.

1.4.2. ACTIVE SENSORS
Active Light Detection and Ranging (lidar) is widely used to determine vertical profiles of aerosol optical
properties. A lidar emits laser pulse and measures the backscattered signals from which extinction
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coefficient profiles and other aerosol optical properties can be estimated. Under cloud-free conditions,
the lidar equation that relates the backscattered light power and the signal detected by the lidar receiver,
can be written as (molecular absorption is ignored):

P (R) = E0ηL

R2
O(R)β(R)exp

[
−2

∫ R

0
α(r )dr

]
(1.17)

, where P (unit: W sr−1) is the signal due to molecules and particles from distance R (unit: km);
E0 is the transmitted laser energy (unit: J ); ηL describes the efficiency of the optical and detection unit
(unit: kms−1); O is the overlap between the outgoing beam and the field of view of the receiver (unit:
km2), which is usually assumed to be complete (i.e. O(R) = 1); β (unit: km−1sr−1) and α (unit: km−1)
are the backscatter coefficient and extinction coefficient, respectively.

For elastic backscatter lidar (i.e. the emitted and the received pulse are at the same wavelength),
the molecular contribution to the total signal can be determined from the temperature and pressure
profiles or approximated from the standard atmosphere. The variables in the lidar equation α and β
are the target to be derived from the lidar signals. One of the most common solutions, also called Klett
method [Ansmann and Müller, 2005, Fernald, 1984, Klett, 1981], is introducing the concept of aerosol
extinction to backscatter ratio, i.e. lidar ratio (unit: sr ):

Laer (r ) = αaer (r )

βaer (r )
(1.18)

Laer depends on particle size, shape and chemical compositions (typical values at 532 nm of
marine/oceanic aerosol: 20-30 sr ; biomass burning/smoke aerosol: 40-70 sr ; dust aerosol: 50-60 sr ;
urban/industrial aerosol: 40-60 sr ) [Kim et al., 2018, Liu et al., 2005, Müller et al., 2007, Omar et al.,
2009].

In practice, Laer is always a first guess without knowing the truth, which becomes the major
uncertainty in determining the aerosol extinction profiles. This unsatisfactory situation can be im-
proved with the Raman lidar (the received signal has a wavelength shift relative to the emitted one)
and the high spectral resolution lidar (HSRL). They can directly and unambiguously determine the
vertical profiles of αaer , βaer and thus Laer , without making assumptions on atmospheric scattering
properties [Ansmann and Müller, 2005, Eloranta, 2005, Müller et al., 2007].

1.4.3. POLARIMETRY
Electromagnetic radiation is a transverse wave, whose electric field of light (E) oscillates perpendicu-
larly to the direction of propagation (Z ). Sunlight, lamps, and candle flames are usually unpolarized as
the direction of their electric fields fluctuate randomly in time. On the contrary, a polarized wave (e.g.
a laser) has a preferred orientation over time.

Transforming unpolarized light into polarized light is known as polarization, which can be done
through transmission, reflection, refraction and scattering. In the context of atmospheric remote
sensing, polarization is mainly caused by scattering. The unpolarized sunlight passes through the
atmosphere, strikes the air molecules and particles and vibrates their electrons perpendicularly to the
light travelling direction. The vibrating electrons then produce an electromagnetic wave that is radiated
outward in all directions and strikes neighboring atoms, leading to their electrons into vibrations at the
same frequency. Through scattering, the unpolarized sunlight eventually becomes partially polarized
skylight (dominated by Rayleigh scattering) [Talmage and Curran, 1986, Zhou et al., 2013] (Figure 1.6a).
The partial polarization of scattered light leads to photographs characterized by a washed-out sky,
which can be corrected by a Polaroid filter to block the polarized light (Figure 1.6b).

Depending on the orientation of an electric field, polarization can be categorized into linear,
circular and elliptical polarization (Figure 1.7). A linearly polarized light is when its electric field is
confined to a plane along the propagation direction. If the electric field has a constant amplitude but its
direction rotates at a constant rate along the propagation direction, then the wave is circularly polarized.
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(a) (Source: https://courses.lumenlearning.com/
physics/chapter/27-8-polarization/))

(b) (Source: https://www.goldenvisionclinic.com/
optical-boutique/

Figuur 1.6: Partially polarized skylight.

Circular polarization consists of two linear components with a same amplitude, and perpendicular
directions with a phase difference of π/2. The elliptical polarization results from the combination of
two linear components with differing amplitudes and/or a phase difference that is not π/2. Both the
circular and linear polarized light are special cases of elliptically polarized light [Hansen and Travis,
1974, Sekera, 1957, Talmage and Curran, 1986].

The state of polarized light at a given wavelength can be described by the Stokes parameters [Stokes,
1851]:

I =


I
Q
U
V

=


I0◦ + I90◦
I0◦ − I90◦

I45◦ + I135◦
I++ I−

 (1.19)

where Iα denotes the relative intensity at orientation α with respect to light traveling direction; +
and − are the right and left-handed circular polarization components; I is the total intensity of the
incident light beam; Q and U are the magnitude and orientation of the linear polarization; V describes
the circularity of the polarization ellipse. The state of the scattered light can be written as the a linear

Figuur 1.7: Polarization types.

https://courses.lumenlearning.com/physics/chapter/27-8-polarization/
https://courses.lumenlearning.com/physics/chapter/27-8-polarization/
https://www.goldenvisionclinic.com/optical-boutique/
https://www.goldenvisionclinic.com/optical-boutique/
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transformation of the incident light:
Is

Qs
Us
Vs




F11(Θ) F12(Θ) 0 0
F21(Θ) F22(Θ) 0 0

0 0 F33(Θ) F34(Θ)
0 0 F43(Θ) F44(Θ)




I0
Q0
U0
V0

 (1.20)

where the matrix F consisting of elements Fi j (Θ), is the scattering matrix;Θ is the scattering angle;
the subscript s and 0 indicate the scattered and incident light. For radiative transfer calculations
in the atmosphere, F11(Θ) is the scattering phase function as mentioned previously (Equation 1.3);
F12(Θ) = F21(Θ) and F34(Θ) = −F43(Θ). The ratio −F12(Θ)/F11(Θ) represents the degree of linear
polarization if the incoming light is unpolarized [Boesche et al., 2006]. Polarization is dominated
by small particles (radii≤ 0.5µm), thus a high degree of polarization implies that small particles are
dominant [Tanré et al., 2011]. The circular polarization is negligible compared with linear counterparts
[Hasekamp and Landgraf, 2007, Talmage and Curran, 1986, Waquet et al., 2009], as a result, F34(Θ),
F43(Θ) and F44(Θ) can be ignored.

The scattering matrix F highly depends on the aerosol micro-physical properties [Hansen and
Travis, 1974]. Compared with intensity (I ) that measured by many traditional sensors, the linear
polarized terms (Q and U ) are more sensitive to the particle size, shape and refractive index, allowing
retrieval of detailed aerosol physical information in addition to AOD [Boesche et al., 2006, Chen et al.,
2020a, Hasekamp and Landgraf, 2007, Mishchenko and Travis, 1997].

The passive sensors equipped with polaroids can measure the polarized radiance, from which
the Stokes parameters (excluding the circular components) can be derived (Equation 1.20). The
dominant molecular contribution to the polarized radiance can be parameterized and removed before
the aerosol properties inversion [Herman et al., 2005]. Lidar can actively transmit linearly (nearly
100%) polarized beams and measure the degree of the linear polarization of the returned signal. The
backscatter coefficients are separated by a beam-spilter into a parallel and a perpendicular component
with respect to the plane of the outgoing pulse. The ratio between the two components (perpendicular
to parallel) gives the volume linear depolarization ratio from which the particle shape-related aerosol
depolarization ratio can be calculated [Nishizawa et al., 2007, Winker et al., 2007]. A large depolarization
ratio usually indicates non-spherical particles.

Polarization can provide additional constraints on aerosol retrievals, resulting from lower sensitivity
to the surface reflectance and higher measurement accuracy. The contribution of the surface to
the total polarized light is uniform and constant, and less important compared to the atmospheric
contribution [Nadal and Breon, 1999, Tanré et al., 2011]. Moreover, polarimetric sensors also benefit
from instrumental design and calibration advantages. The linear polarization is just a ratio of two
orthogonal intensity components (Equation 1.20) [Mishchenko and Travis, 1997]. A well-designed
polarimetric instrument can reach a high accuracy of 0.2% on an operational basis [Chowdhary et al.,
2002]. Polarimetric remote sensing is one of the most promising techniques to characterize the aerosol
properties and has increasing applications in the modern remote sensing era [Dubovik et al., 2019].

1.5. OVERVIEW OF AEROSOL SATELLITE REMOTE SENSING
Satellite measurements of aerosol properties can be categorized into three major aspects: (1) columnar
aerosol optical depth (AOD); (2) other columnar aerosol optical properties except for AOD; and (3)
aerosol vertical distribution. This section will show the major missions that fall into the above three
categories.

Kaufman et al. [1997a] summarized the fundamental aerosol remote sensing techniques, which
are: (1) a single measurement, (2) multi-wavelength measurement, (3) multi-angle measurement, (4)
polarization, (5) active lidar, (6) limb scanning and (7) occultation. Due to the ill-posed inverse problem,
there is a hierarchy between the importance of various parameters in the observed reflectance. (1-2)
techniques are commonly used to retrieve AOD; but now it is also possible to retrieve the aerosol
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layer height (ALH) using some particular channels. (3-4) allow to retrieve additional information on
particle size and refractive index. (5-7) are used to measure the aerosol vertical profiles. The last two are
limited to stratospheric aerosols as the extinction along the light path is very large in the troposphere,
which may lead to high uncertainties [Kaufman et al., 1997a]. Combinations of above basic techniques
are also common in the modern remote sensing era (after 21st century), which will be introduced in
following subsections.

1.5.1. MEASUREMENT OF AEROSOL OPTICAL DEPTH
The columnar AOD is the primary parameter derived from satellite observations, with assumptions
made on other aerosol properties [Kaufman et al., 1997a]. Mono-spectral measurements can only
retrieve AOD at a certain wavelength without guaranteeing high retrieval accuracy [Mishchenko and
Travis, 1997], while multi-spectral measurements cannot only retrieve the wavelength-dependent AOD
with improved accuracy, but also derive ÅE that contains the information on particle size.

The first global view of AOD was at a single wavelength (0.63µm) over ocean provided by AVHRR/TIROS-
N (launched in 1978) [Husar et al., 1997]. Later AVHRR instruments applied multi-channel measure-
ments and retrieved additional information on particle size [Geogdzhayev et al., 2002, 2005]. Efforts
were also made on AOD retrieval over land [Hauser et al., 2005a,b, Hsu et al., 2017, Li et al., 2013].
TOMS, another early sensor (the first one was launched on the Nimbus-7 in 1978), retrieved AOD over
both land and ocean but is limited to the ultra-violet band [Torres et al., 2002a]. Modern satellite instru-
ments, such as MODIS/Terra and Aqua [Levy et al., 2013, Remer et al., 2006, 2008], the family of ATSRs
(ATSR/ERS-1, ATSR-2/ERS-2 and AATSR/ENVISAT) [Flowerdew and Haigh, 1995, Llewellyn-Jones et al.,
2001, Veefkind et al., 1998], VIIRS/Suomi-NPP and NOAA-20 [Jackson et al., 2013], SeaWiFS/OrbView-
2 [Hooker and McClain, 2000], MERIS/ENVISAT [Bezy et al., 2000], OMI/Aura [Torres et al., 2007],
MISR/Terra [Kahn et al., 2009], POLDER/ADEOS I, ADEOS II and PARASOL [Deuzé et al., 2000, Dubovik
et al., 2011, Herman et al., 1997b], ABI/GOES-R series [Schmit et al., 2017], CALIOP/CALIOPSO [Winker
et al., 2009], SLSTR/Sentinel-3 [P.Coppo et al., 2010], etc., make great contributions to map the global
wavelength-dependent AOD climatology.

An important source providing global AOD data is the AERONET direct sun product (ground-
based) [Holben et al., 1998]. AERONET is a sun photometer network initialized by NASA and is greatly
expanded by collaborators from national agencies, institutes, universities, individual scientists, and
partners. Although it is a global network, the distribution of AERONET sites is uneven (Figure 1.8).
Most sites measure aerosols over land, whereas the AOD over ocean is mainly provided by the Maritime
Aerosol Network (MAN) component of AERONET by the ship-borne Microtops II sun photometers
(since 2004, [Smirnov et al., 2009]). AERONET has provided a long-term (since 1993), continuous
and readily accessible database of aerosol optical and radiative properties for aerosol research and
characterization, validation of satellite retrievals and model simulations, and synergism with other
databases.

Figuur 1.8: AERONET site distribution (will be changed later). Most sites are located in North America and West
Europe, while there are less sites in the rest of the world.



1

18 1.5. OVERVIEW OF AEROSOL SATELLITE REMOTE SENSING

The AERONET measures either direct solar irradiance or sky radiance (will be introduced in Section
1.5.2). The direct sun measurements are made in 8 spectral bands (340, 380, 440, 500, 670, 870, 940
and 1020 nm). The AOD is retrieved by the Beer-Bouguer Law, where attenuation due to Rayleigh
scatter, and absorption by ozone, and gaseous pollutants are estimated and removed [Kinne, 1999].
The estimated near-real time AOD has a bias up to 0.02 with a standard deviation uncertainty of 0.02
[Giles et al., 2019].

1.5.2. MEASUREMENT OF MICRO-PHYSICS
The wavelength-dependent radiance measurements from a fixed viewing geometry cannot ensure
reliable retrievals of aerosol micro-physical properties, as the absolute surface reflectance or its spectral
variation at different wavelengths are usually unknown thus have to be pre-described [Chu et al., 2002,
Hsu et al., 2006, Kaufman et al., 2002a]. Multi-angular measurements can put more strict constraints
on aerosol characteristics and remove much ambiguity in decoupling the aerosol and the surface
radiance [Kaufman et al., 1997a]: by viewing the same ground pixel from different angles within
a relatively short period, the atmospheric conditions can be assumed to be constant. Multi-angle
technique also provides information on the aerosol scattering phase function [Kahn and Gaitley, 2015,
Kalashnikova et al., 2005, Kalashnikova and Kahn, 2006]. A representative multi-spectral and multi-
angular instrument is MISR/Terra [Diner et al., 1991]. MISR is equipped with multiple cameras with
one pointing to the nadir and others at forward and backward viewing angle of 26.1◦, 45.6◦, 60.0◦ and
70.5◦) [Diner et al., 1998].

The aerosol size and type can be retrieved with higher accuracy by the multi-angle technique
compared with single viewing measurements. However, as the multi-spectral measurements, multi-
angular technique only measures the intensity of the radiance (i.e. the Stoke parameter I ). As a result, it
still leads to ambiguous solutions for the aerosol refractive index and effective radius [Chowdhary et al.,
2002, Mishchenko and Travis, 1997]. To overcome this, in addition measurements of the polarization
is necessary. The merit of polarization is the high measurement accuracy and the high sensitivity to
particle size, shape and refractive index as a function of scattering angle and wavelength [Chowdhary
et al., 2002, Mishchenko and Travis, 1997].

Experience with polarimetry remote sensing on planetary missions has demonstrated that the
measurement of polarization and intensity together can resolve the non-uniqueness problem [Mis-
hchenko and Travis, 1997]. Currently, there are several sensors applying polarimetry: POLDER/ADEOS
I, ADEOS II and PARASOL [Deschamps et al., 1994, Goloub et al., 1999], APS/Glory (failed) [Mishchenko
et al., 2007, Peralta et al., 2007], GOME/ERS-2, GOME-2/Metop-A, Metop-B and Metop-C [Munro et al.,
2016, Veefkind et al., 2000], SCIAMACHY/ENVISAT [Burrows et al., 2011], CALIOP/CALIPSO [Winker
et al., 2009], etc.

Future sensors will focus on combined uses of multi-spectrum, multi-angle and polarization, for
example, MAIA developed by JPL that will be launched in 2022. It applies radiometric and polarimetric
measurements to characterize the sizes, compositions and quantities of particulate matter in air
pollution [Diner et al., 2018, Liu and Diner, 2017]; SPEXone Polarimeter/PACE that is scheduled for
launch in 2023. It has 5 viewing angles (0◦, ±20◦, ±50◦) and an improved the polarimetric accuracy
(0.3%) [van Amerongen et al., 2019]; 3MI/EPS-SG is planned to operate in the time-frame 2020–2040
[Fougnie et al., 2018, Marbach et al., 2015], etc. For more planned missions can refer to Dubovik et al.
[2019].

Another technique used in space-borne instruments to determine the aerosol absorption is the
ultra-violet measurements [Moosmüller et al., 2009]. Due to the presence of UV light absorbing aerosols,
it is possible to derive a qualitative parameter termed ultra-violet aerosol index (UVAI) or absorbing
aerosol index (AAI). Sensors with at least two UV channels are capable to retrieve it. Note that UVAI is
not a physical parameter like refractive index and effective radius. More detailed information will be
introduced in Section 1.7.

The ground-based AERONET instruments also make use of the multi-spectral, multi-angular and
polarization technique. They measure the sky radiance in four spectral bands (440, 670, 870 and 1020
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nm) along the solar principal plane (at constant azimuth angle, with varied scattering angles) up to
nine times a day, and along the solar almucantar (at constant elevation angle, with varied azimuth
angles) up to six times a day. The sky radiance measurements observe the same aerosol profile through
multiple scattering angles to retrieve aerosol absorption (SSA and AAOD), and other aerosol micro-
physical parameters (particle volume size distribution, complex refractive index, and scattering phase
function) [Dubovik and King, 2000]. However, the potential value of polarization is not fully employed
by AERONET [Xu and Wang, 2015]. The latest AERONET version 3 product is generated by a new
polarized radiative transfer code (SORD) that provides the potential to add polarization measurements
in inversion, but currently there are not many AERONET sites acquiring polarization measurements
due to the long time interval of measurements. Additional research is required to determine the
optimal number of the observational angles and spectral channels needed to reduce the acquisition
time of these measurements [Sinyuk et al., 2020]. As a result, despite studies that have proven that
polarization data can improve retrievals [Dubovik et al., 2006, Fedarenka et al., 2016, Li et al., 2009],
the current version 3 algorithms still employs the same inversion as version 2 which is described in
[Dubovik and King, 2000] and [Dubovik et al., 2006].

1.5.3. MEASUREMENT OF AEROSOL VERTICAL DISTRIBUTION

The vertical distribution of aerosols is strongly associated with aerosol radiative forcing assessments
[Boucher et al., 2013, Mishra et al., 2015]. Moreover, (for passive sensors) it is a unknown parameter
and has to be assumed, triggering uncertainties in retrieving other aerosol optical properties [Torres
et al., 1998, Wu et al., 2017]. Wu et al. [2016c] demonstrated that for elevated smoke or dust layers (e.g.,
altitude = 7 km), the MODIS C6_DT algorithm can negatively bias the AOD retrievals by over 10%.

The measurements of aerosol vertical distribution mainly rely on the active instruments, i.e. lidar.
There are many operational missions, such as the ground-based EARLINET [Pappalardo et al., 2014],
MPLNET [Welton et al., 2001], the space-borne CALIOP/CALIPSO [Winker et al., 2009], GLAS/ICESat
[Schutz et al., 2005], and the recently launched ADM-Aeolus [Flamant et al., 2008]. Although lidar can
provide great details in the vertical direction, the measured profiles are subject to limited spatial and
temporal coverage. Besides, the presence of clouds or optically dense aerosol layers may significantly
attenuate lidar signals, resulting in large uncertainties or missing data in the measured profiles.

Nowadays, many algorithms have been developed to retrieve the columnar aerosol layer heights
(ALH), a compact representation of aerosol profiles. Multiple angular measurements can determine
elevated aerosol plume height by stereo photogrammetry, e.g. MISR/Terra [Nelson et al., 2013] and
AATSR/ENVISAT [Virtanen et al., 2014]. ALH derived by spectrum fitting over oxygen (O2) absorption
spectroscopy is more commonly applied. Representative instruments include POLDER/PARASOL,
MERIS/ENVISAT [Dubuisson et al., 2009, Duforêt et al., 2007], SCIAMACHY/ENVISAT [Sanghavi et al.,
2012], GOME-2/ Metop-A, Metop-B and Metop-C [Sanders et al., 2015], TROPOMI/Sentinel-5P [San-
ders and De Haan, 2016], and EPIC/DSCOVR [Xu et al., 2017]. Studies also have proposed improved
solutions by adding polarization measurements [Boesche et al., 2009, Ding et al., 2016, Wang et al.,
2014]. Chimot et al. [2017] also attempted to retrieve ALH from the O2 −O2 absorption band (477
nm) of OMI/Aura. Furthermore, the absorbing aerosol layer height (AAH) has been developed as
an official product of the GOME-2 instruments [Tilstra and Stammes, 2019]. Instruments equipped
with thermal infrared (thermal IR) band, such as AIRS/Aqua and IASI/Metop-A, can retrieve height
information for dust because the thermal IR band is highly sensitive to dust aerosols [Pierangelo et al.,
2004, Vandenbussche et al., 2013]. For a detailed review of ALH retrievals from observations, one can
refer to Xu et al. [2018b]. Although extending the spatial coverage of lidar measurements, ALH retrievals
from passive sensors are only applicable under certain conditions, e.g. elevated aerosol layers, over
dark surfaces, in the absence of clouds, etc. Moreover, different retrieval algorithms may have different
assumptions on aerosol optical properties, the aerosol profile shape and the ALH definition in the
forward simulations, making it difficult to compare different ALH products. As a result, the validation
of the retrieved ALH still relies on the extinction profiles retrieved from lidar measurements.



1

20 1.6. ADVANCES IN AEROSOL REMOTE SENSING RETRIEVALS

1.6. ADVANCES IN AEROSOL REMOTE SENSING RETRIEVALS
As introduced in Section 1.4, retrieving physical parameters from remote sensing measurements is
an under-determined problem, i.e. the number of observations is less than the number of unknowns.
A unique and stable solution requires additional constraints. Conventionally, a measured signal is
calculated by a forward model based on physical processes (forward simulation). Then, by comparing
the real measurements and the calculated ones, the target parameter is numerically retrieved using
the least square methods or optimal estimation (numerical inversion). Nowadays, with the increasing
amount of the geoscience data and the improved computational capability, many data-driven retrieval
methods have been developed. By capturing the behaviors and characteristics from data and determi-
ning their underlying probability distributions, these methods can provide new knowledge regarding
the variable of interest. The following subsections introduce the above two types of retrievals in detail.

1.6.1. PHYSICALLY-BASED RETRIEVALS
At the forward simulation phase of physically-based retrievals, a forward model is built based on
physical processes (e.g. radiative transfer) with a priori assumptions on other physical parameters
(except for the target) in order to constrain the under-determined system.

As the forward simulation could be computationally intensive, many operational algorithms
use Look-Up Table (LUT) approach. A LUT is calculated beforehand for a set of nodal points of
measurement geometries and physical parameters, thus in operation it is only needed to apply the
numerical inversion. LUT has been the dominant method to retrieval aerosol properties for many
years due to its high operational processing speed [Dubovik et al., 2011, Kokhanovsky et al., 2010]. It is
widely employed in many mainstream satellite products, such as MODIS/Terra and Aqua [Remer et al.,
2006], OMI/Aura [Torres et al., 1998], MISR/Terra [Kahn et al., 2007], POLDER/ADEOS I and ADEOS II
[Lenoble et al., 2007] and CALIOP/CALIPSO [Winker et al., 2009].

But LUT approach in observations with multi-angular and/or polarization measurements reveals
deficiencies. These observations have notably higher sensitivity to the details of aerosol and surface
properties, and the retrieval of larger number of parameters is expected. This requires a comprehensive
LUT with a larger dimension that is less suitable for operational use [Dubovik et al., 2011, Kokhanovsky
et al., 2010]. One solution is creating a LUT relying only on the selected sub-set of the observations
with highest sensitivity to the aerosol parameters and retrieve reduced set of characteristics, e.g. the
POLDER operational retrieval over ocean [Herman et al., 2005] and land [Deuzé et al., 2001]. Another
method is online radiative transfer simulations, owing to the improved computational capability. In this
case, forward simulations are conducted during the retrieval process rather than computed in advance.
Applications of online radiative transfer simulations require fast and accurate radiative transfer codes.
This method has been either tentatively or operationally implemented in MERIS/ENVISAT [Katsev
et al., 2009], AATSR/ENVISAT [Grey et al., 2006, Grey et al., 2006] and POLDER/PARASOL [Dubovik
et al., 2014, Lenoble et al., 2007] retrievals. Such an inversion strategy allows for the use of a continuous
space of solutions instead of a limited set of predetermined solutions as used in LUT-based algorithms
[Dubovik et al., 2011].

1.6.2. STATISTICALLY-BASED RETRIEVALS

BIG DATA ERA OF GEOSCIENCE

Geoscience has witnessed the evolution from a data-poor field to a data-rich field, owing to the state-of-
the-art measuring techniques (e.g.satellite remote sensing), improvements of computational capability
for global-scale Earth system models, and the Internet-based democratization of data making most
geoscience data publicly available [Karpatne et al., 2019b]. The storage volumes have been beyond
the dozen of petabytes and the transmission rates exceed hundreds of terabytes per day [Reichstein
et al., 2019]. Undoubtedly, like other scientific fields with big data, geoscience is welcoming the era of
data-driven research and the Machine Learning comes into the eyes of geoscientists.

Machine Learning was first coined by Aurther Samuel in 1959 [Samuel, 1959] originally for the
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quest of Artificial Intelligence (AI). A more widely quoted Machine Learning definition was proposed
by Mitchell [Mitchell, 1997]: A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P if its performance at tasks in T , as measured by P, improves
with experience E.

Machine Learning is deeply rooted in statistics and probability theories. It extracts information and
knowledge from data deluge by building numerical models based on behaviours and characteristics
of empirical data without explicit rules [Reichstein et al., 2019]. Machine Learning has three major
types (supervised learning, unsupervised learning and reinforcement learning), among which only the
supervised learning requires the training data consisting of input features and corresponding output
variables, i.e. supervisions. Depending on whether the output parameter is categorical or quantitative,
supervised learning can be further grouped into classification and regression problems.

Lary et al. [2016a] states Machine Learning is ideal to address problems where our theoretical
knowledge is incomplete but for which there exists a great number of data. Retrieving physical
parameters from electromagnetic waves measured by satellite remote sensing is a typical problem
of such kind. Another benefit using Machine Learning is its high computational efficiency. Although
a preliminary training phase can be time-consuming for supervised learning, their applications are
essentially instantaneous once the training phase is complete [Di Noia and Hasekamp, 2018]. Early
(1990s) applications of Machine Learning in geoscience has succeeded in land and cloud classification
(e.g.[Benediktsson et al., 1990, Lee et al., 1990]). It has further thrived in event detection (e.g. [Kim et al.,
2019, Perol et al., 2018]), variable estimation (e.g. [Lary et al., 2014, Zhan et al., 2017]), data assimilation
(e.g. [Gilbert et al., 2010]), bias correction (e.g. [Just et al., 2018, Lary et al., 2009]), interpolation (e.g. Li
et al. [2011], Requia et al. [2019]), forecasting (e.g. [Rasouli et al., 2012, Sharma et al., 2011]), etc.

NEW POSSIBILITIES OF AEROSOL REMOTE SENSING RETRIEVALS

In the field of satellite remote sensing of aerosols, Machine Learning primarily carries out the following
tasks [Di Noia and Hasekamp, 2018, Dramsch, 2020, Lary et al., 2016a]:

• An approximation of forward model (radiative transfer simulations);

• An surrogate of numerical inversion;

• Object detection and classification.

Applications of Machine Learning to aerosol remote sensing bring benefits of: (1) it is more
computationally efficient than the forward simulation and/or optimal estimation; and (2) it can
build numerical models based on behaviours and characteristics of empirical data without explicitly
describe the physical processes. In other word, it is possible to retrieve aerosol optical properties
without making assumptions on aerosol micro-physics (particle size, shape and composition) that are
usually unknown.

There are many applications of Machine Learning thrive in aerosol remote sensing, including ap-
proximating radiative transfer simulations (e.g. [Berdnik and Gallyamova, 2012, Di Noia and Hasekamp,
2018, Krasnopolsky, 2007]), retrieving aerosol properties (micro-physics: e.g. [Berdnik and Loiko, 2009,
2016, Berdnik et al., 2004, Dong et al., 2020, Ishimaru et al., 1990, Taylor et al., 2014, Ulanowski et al.,
1998, Wang et al., 1999]; aerosol optical depth: e.g. [Han et al., 2006, Radosavljevic et al., 2010, Ristovski
et al., 2012, Taylor et al., 2014, Vucetic et al., 2008]; aerosol vertical distribution: e.g. [Chimot et al.,
2017, Dong et al., 2020, Nanda et al., 2019, Yao et al., 2018]), classifying aerosol types (e.g. [Niang
et al., 2006, 2003]), correcting/validating retrievals ([Lary et al., 2009, Levy et al., 2007]), detecting
volcanic ash/wildfire plume (e.g. [Donida Labati et al., 2013, Gray and Bennartz, 2015, Larsen et al.,
2020, Picchiani et al., 2011, Piscini et al., 2014]), etc.

CONCERNS ON MACHINE LEARNING APPLICATIONS IN GEOSCIENCE

Despite of the growing trend in geoscience, applying Machine Learning also encounters several
challenges that should be paid attention to [Karpatne et al., 2019b].
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The most challenging thing is that geoscience is governed by physical laws and principles, while
Machine Learning can only build numerical relations between variables. This may lead to the predicted
results that cannot be explained by physical processes. Thus, feature selection and engineering where
geoscientists can bring their domain knowledge into the Machine Learning models, are particularly
important in order to improve the physical interpretability [Guyon and Elisseeff, 2003, Weston et al.,
2001].

Another issue is the inherit properties of geo-data, e.g. spatio-temporal auto-correlation, he-
terogeneity in space and time, etc. Recent studies have paid attention to the spatial and temporal
structure of geo-data when applying Machine Learning algorithms, either by directly involving spatial
and temporal information in the feature space (e.g. [Li et al., 2017, 2016]), or combining geo-statistical
tools with Machine Learning (e.g. [Ishitsuka et al., 2018, Li et al., 2014, Michalak and Shlomi, 2013,
Singh et al., 2017, Tapoglou et al., 2014, Tarasov et al., 2018]). There is also an increasing trend using
the Convolutional Neural Network (CNN) and the Recurrent Neural Network (RNN) to present the
temporal and spatial correlation (e.g. [Biancofiore et al., 2015, Chen et al., 2020b, Wen et al., 2019]), as
these techniques can share weight parameters in space and time domain.

1.7. RESEARCH TOPIC
The research topic of my PhD project is aerosol absorption in the UV band. As introduced in Section
1.2, most aerosols can fully scatter sunlight, but there also exist aerosols transferring electromagnetic
energy into thermal energy, termed absorbing aerosols. Absorbing aerosols are responsible for air
quality degradation and visibility impairment. Moreover, the direct and semi-direct effect of absorbing
aerosols are important mechanisms influencing the Earth’s climate system. It is reported that the
black carbon deposited on snow becomes the second largest positive radiative forcing terms after the
greenhouse gases (Figure 1.4).

The single scattering albedo (SSA, Equation 3.2) is a common parameter describing the aerosol
absorption. It is defined as the ratio between particle scattering and absorbing efficiency. Scattering
aerosols usually have a SSA near unity (ω0 ≈1) from the UV ( 0.1 µm) to the short-wavelength infrared
( 3µm) band. On the other hand, SSA of absorbing aerosols varies significantly, depending on particle
chemical compositions as well as shape, size and mixing state [Bergstrom et al., 2007]. Three major
absorbing aerosol types are black carbon, brown carbon and mineral dust (see Section 3.1) [Moosmüller
et al., 2009, Samset et al., 2018].

There are three types of techniques measuring aerosol light absorptive properties (represented
by SSA, AAOD or refractive index): (1) filter methods, (2) in situ instruments and (3) remote sensing.
The former two direct contact with the measuring targets, either collecting particles or measuring
the particles in their natural suspended state (in situ instruments). Remote sensing retrieves aerosol
properties without touching the targets, thus they are potential to provide aerosol absorption on
a global scale. Although many advanced techniques have been applied to aerosol satellite remote
sensing (multi-angle, polarimetry, Raman lidar, etc. See Section 1.5.2), so far there is no practical
way to provide global, self-consistent measurements from a single source [Moosmüller et al., 2009,
Samset et al., 2018]. AERONET routinely provides information on the aerosol micro-physics, but it is a
unevenly-distributed-ground-based system that cannot produce a complete global view of aerosols.
Satellite instruments such as OMI/Aura [Torres et al., 2002b], MISR/Terra [Diner et al., 1998, Kahn et al.,
2009, Kahn et al., 2007], and POLDER/ADEOS I, ADEOS II and PARASOL [Deuzé et al., 2001, Dubovik
et al., 2014, Herman et al., 2005, Tanré et al., 2011] provide aerosol SSA or AAOD products, however,
the retrieved aerosol absorptive properties highly depend on the pre-assumed particle size, shape and
complex refractive index that are usually in the vector of unknowns.

Another remote sensing technique to retrieve aerosol absorption is the Ultra-Violet (Absorbing)
Aerosol Index (UVAI), also called the (Absorbing) Aerosol Index (AAI or AI) [Herman et al., 1997b].
Differing from SSA and AAOD, UVAI is a qualitative measure of aerosol absorption and it is calculated
directly from radiance contrast without assumptions on aerosol micro-physics.
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1.7.1. ULTRA-VIOLET ABSORBING AEROSOL INDEX
UV-absorbing aerosols were first paid attention to in research regarding the aerosol effects on ozone
retrievals in UV band from space [Dave, 1978]. Absorbing aerosols reduce more radiance at shorter
wavelength compared to a Rayleigh atmosphere, whereas scattering aerosols have an opposite effect.
Based on this fact, the radiance difference between two near-UV wavelengths (R340 −R380) was propo-
sed to detect the biomass burning aerosols based on the released TOMS measurements in 1996 [Hsu
et al., 1996]. Later, Herman et al. [1997a] devised the concept of UVAI which is well-known today: UVAI
is the radiance difference between the logarithm of the ratio between a measured and a calculated
radiance at two UV wavelengths λ1 and λ2 (λ1 <λ2) [Torres et al., 1998], defined as:

UV AI =−100

log10

(
Iλ1

Iλ2

)obs

− l og10

(
Iλ1

Iλ2

)Ray
 (1.21)

The radiance is calculated at a surface albedo As,λ2
found by requiring the calculated and the

measured radiance at λ2 are numerically identical (I cal
λ2

(As,λ2
) = I obs

λ2
). Then the above equation can

be rewritten into:

UV AI =−100log10

I obs
λ1

I
Ray
λ1

(As,λ2
)

(1.22)

where the I
Ray
λ1

is calculated by radiative transfer simulations assuming no aerosol present (i.e.

Rayleigh atmosphere). A positive value of UVAI indicates the presence of absorbing aerosols, while
non-absorbing aerosols and clouds yield near-zero or even negative values [Herman et al., 1997a].
UVAI is mainly determined by the interaction between an aerosol layer and the Rayleigh scattering
beneath the layer.

In the calculation of the Rayleigh atmosphere radiance, the combined effect of molecules, clouds
and surface are usually presented by a Lambert Equivalent Reflectivity (LER) model. Torres et al.
[2018] indicated that such an approximation cannot capture the angular variability associated with
the scattering phase function of clouds, which may cause the UVAI bias in across-scan direction of
OMI. They thus proposed an improvement that separates the effects of surface and clouds. The surface
contribution to the total radiance is calculated using wavelength dependent climatology of surface
albedo, and that of clouds is calculated by the Mie Theory for an assumed water cloud model. The
newly calculated UVAI shows a reduced across-scan bias, however, it is overall higher than the UVAI
calculated by LER model, especially over oceans (shown in Chapter 5).

The first UVAI product was provided by TOMS/Nimbus-7 in 1978. Since then, many space-borne
instruments have made contributions to the global UVAI record. Table 1.1 lists these sensors.

Compared with other aerosol optical parameters, UVAI can be calculated for all observations
regardless of cloudiness conditions or over bright surfaces (e.g. snow and ice) [Torres et al., 2018], thus
a global coverage is possible. Besides, the retrieval of UVAI does not require assumptions on aerosol
micro-physics that is usually unknown. The main drawback of UVAI is that it is not a geophysical
parameter like SSA that can quantitatively interpret aerosol absorption.

1.7.2. SENSITIVITIES OF UVAI
The most influential parameters to UVAI are aerosol loading, aerosol absorption and aerosol vertical
distribution [Wang et al., 2012], but viewing geometries, clouds and surface reflectance also have (but
less important) effects on UVAI calculation.

Sensitivity studies have investigated UVAI dependence on these parameters for either Rayleigh
scattering or Mie Theory calculated aerosols based on radiative transfer simulations [Colarco et al.,
2017, de Graaf et al., 2005, Herman et al., 1997a, Hsu et al., 1999, Penning de Vries et al., 2014, Sun et al.,
2018, Torres et al., 1998]. Major conclusions are summarized here. Note that the following conclusions
are not applicable to (nearly) purely scattering aerosols (ω0 ≈ 1).
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Tabel 1.1: Satellite missions with UVAI measurements.

Instrument Platform Period λ1[nm] λ2[nm]
TOMS Nimbus-7 1978-1993 340 380
TOMS METEOR-3 1991-1994 340 380
TOMS ADEOS 1996-1997 340 380
TOMS Earth Probe 1996-2005 331 360
GOME ERS-2 1995-2003 335 380
SCIAMACHY Envisat 2002-2012 340 380
OMI Aura 2004-present 354 388
GOME-2 Metop-A 2007-present 340 380
GOME-2 Metop-B 2012-present 340 380
GOME-2 Metop-C 2019-present 340 380
OMPS Suomi-NPP 2011-present 340 378.5
TROPOMI Sentinel-5P 2017-present 340/354 380/388

AEROSOL ABSORPTION

Low SSA indicates strong absorption efficiency, thus UVAI decreases with SSA. This conclusion holds
for both gray aerosols (spectrally-flat) and aerosols with a spectrally-dependent refractive index.

ASYMMETRY FACTOR (PARTICLE SIZE)
Most aerosols tend to scatter in the forward direction with the asymmetry factor g in the range from 0.4
to 0.85 [Dubovik et al., 2002b]. As g increases, more radiation is scattered forward to the surface rather
than reflected backward to TOA. With less radiance measured by satellite, the UVAI becomes larger.

AEROSOL OPTICAL DEPTH

UVAI increases with aerosol loading. As AOD increases, more radiation is absorbed and less radiation
returns back to TOA. It is found that the increase of UVAI with AOD is nearly linear with a slope
proportional to SSA [de Graaf et al., 2005, Herman et al., 1997a, Hsu et al., 1999, Torres et al., 1998].

AEROSOL VERTICAL DISTRIBUTION

UVAI and aerosol layer height (relative to the topographic surface) are positively correlated and the
dependence is nearly linear. The aerosol layer mainly interacts with radiation beneath it. The higher the
aerosol layer, the more interaction occurs, yielding a higher UVAI. The altitude dependency increases
with decreasing SSA and increasing AOD, while no significant dependence is found for non-absorbing
aerosols.

This UVAI dependence on altitude is useful to detect elevated absorbing aerosols. But note that
gray aerosols only show positive values above a certain altitude (1−2km), while non-gray aerosols can
be detected from near surface [de Graaf et al., 2005].

SURFACE REFLECTANCE AND PRESSURE

Compared with the visible band, the UV channel is less sensitive to the brightness of the surface, but
the surface effects on UVAI still exist. On the one hand, brighter surfaces directly increase reflected
radiation at the TOA, which reduces UVAI. On the other hand, higher surface albedo reflects more
radiation to the aerosol layer and thus facilitates the interaction between the aerosol layer and the
reflected radiation, yielding a higher UVAI.

Surface pressure can simulate effects of topography. With a fixed aerosol layer height relative to the
reference ellipsoid, decreasing the surface pressure is equivalent to raised topographic surface, which
reduced the amount of air below the aerosol layer. The less shielding of multiple Rayleigh scattering by
the aerosol layer leads to a smaller UVAI.



1.7. RESEARCH TOPIC

1

25

CLOUDS

The cloud effect on UVAI is similar to that of a bright surface when an aerosol layer overlies clouds.
However, when clouds are overlying an aerosol layer, the impact on UVAI is determined by the optical
properties of the clouds. If there is an optically thick cloud, it could intercept all the radiation coming
from the upper atmosphere, yielding a near neutral UVAI. In this case, detection of the underlying
aerosol layer becomes impossible.

GEOMETRIES

The scattering geometries effect on UVAI is complex as it depends on the relative locations of the
sun and the instrument as well as the particle scattering phase function. Nevertheless, UVAI varies
significantly when solar and viewing zenith angles are larger than 60 ◦, since the light path through the
atmosphere becomes longer and less certain.

OTHER INFLUENCING FACTORS

There are many possible choices of the UVAI wavelength pair (λ1 and λ2) of UVAI (Table 1.1). Most
sensors use (approximately) 340/380 nm, while others use 331/360 nm, 354/388 nm, or 335/380 nm.
If the reference wavelength λ2 is same but λ1 at a shorter wavelength, the multiple Rayleigh scattering
is more important. This is equivalent to adding more optical path through the absorbing aerosol
layer, increasing the possibility for absorption, thus UVAI increases. The UVAI calculated with 335/380
nm pair is 10% higher than that with the 340/380 nm. Besides, the larger difference between the
wavelength pair usually implies a larger contrast, i.e. larger UVAI [de Graaf et al., 2005].

The reduction of the TOA radiance due to ozone absorption has a positive effect on UVAI, but this
can be easily corrected by linear fitting.

1.7.3. APPLICATIONS OF UVAI
UVAI is a qualitative measure that is widely used for absorbing aerosol detection (e.g. smoke: [Duncan
et al., 2003a,b, Hsu et al., 1999, Israelevich et al., 2002, Spichtinger et al., 2001]; dust: [Alpert and Ganor,
2001, Chiapello et al., 1999, El-Askary et al., 2006, Ginoux and Torres, 2003, Moulin and Chiapello, 2004,
Wang et al., 2008b]; volcanic ash: [Krotkov et al., 1999, Krueger et al., 2008, Seftor et al., 1997, Yuan et al.,
2011]; mixed aerosols: [Duncan et al., 2003b]), aerosol classification (e.g. [Koukouli et al., 2006, Lee
et al., 2007, Torres and Chen, 2013]), and CTM validation (e.g. [Buchard et al., 2015, 2017, Chiapello
et al., 1999, Hammer et al., 2016]). Nevertheless, many studies also made efforts on quantitative uses of
UVAI. For example, Hsu et al. [1999] presented a linear relationship between the TOMS UVAI and the
AOD retrieved independently from the ground-based Sun-photometer over biomass burning regions
and African dust regions. Ginoux and Torres [2003] built an empirical relation between UVAI with
SSA, AOD, surface pressure and altitude of the plume for dust aerosols. The UVAI calculated by the
empirical relation correctly reproduces the daily, seasonal and inter-annual variability of the TOMS
observed UVAI over desert regions. Guan et al. [2010] found a linear relationship between UVAI and
biomass burning plume height, which allows to determine the height of elevated plume and to validate
that in CTMs.

Furthermore, UVAI is an important source holding information on long-term global aerosol
absorption. In principle, it is possible to estimate SSA under a reasonable assumption on particle size,
if UVAI, AOD and ALH are known [Jeong and Hsu, 2008]. For example, Hu et al. [2007] retrieved SSA
from the TOMS UVAI based on radiative transfer simulations with constraints of the MODIS retrieved
AOD and aerosol vertical profiles provided by CTM. Their retrieval uncertainty is 15% and shows
good correlation with AERONET; Jeong and Hsu [2008] retrieved SSA together with ALH based on a
pre-calculated LUT. Applications to biomass burning events in North American and South Asia show
that the retrieved SSA is in good agreements with AERONET measurements.
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1.8. SCOPE AND OUTLINE
Given the potential value of the long-term UVAI record and the promising results of previous studies,
the core research question of this dissertation can be formulated as: How to derive quantitative
aerosol optical properties from satellite UVAI records?

The research questions investigated in the following chapters are:

1. What are physical parameters that UVAI is most sensitive to?

2. What are the major challenges/uncertainties of deriving quantitative aerosol optical properties
using traditional radiative transfer simulations?

3. How can we best obtain an aerosol vertical distribution data set for quantitative studies of UVAI?

4. How to apply Machine Learning techniques to derive quantitative aerosol optical properties
from UVAI?

Correspondingly, this dissertation is organized in 6 chapters to answer the above questions. Chap-
ter 2 presents a case study of biomass burning event whose SSA is retrieved in combination with
ALH from the OMI UVAI, based on radiative transfer simulations. The assumptions made on aerosol
micro-physics and the lack of aerosol vertical distribution information are the major uncertainties
of this method (related to Question 2). The UVAI dependency on many physical parameters is also
studied [Sun et al., 2018] (related to Question 1).

Chapter 3 is a transitional study where both the conventional radiative transfer simulations and Ma-
chine Learning algorithms are applied to retrieve aerosol absorption from UVAI. It further investigates
the limitations of the physically-based methods and demonstrates the feasibility of data-driven method
by comparing of SSA retrieved by two methods for a common case. Although Machine Learning does
not have to make assumptions on aerosol micro-physics, it also faces the problem of the lack of aerosol
vertical distribution data [Sun et al., 2019] (related to Question 2 and 4).

Chapter 4 attempts to solve one of the major uncertainties raised in Chapter 3: how to build a
global database of the aerosol vertical distribution in order to reduce the uncertainties in aerosol
absorption prediction. Such a database of ALH is derived from MERRA-2 aerosol reanalysis based on
the investigation of the relation between UVAI and various definitions of ALH. The relation between
UVAI and ALH is also validated by various satellite ALH products [Sun et al., 2020] (related to Question
3).

Chapter 5 gathers conclusions of previous chapters and creates an aerosol absorption database
derived from the OMI UVAI between 2006 and 2019. Here, a Deep Neural Network is applied to build a
numerical relation with UVAI and AAOD. The result is in good agreement with AERONET and might be
useful for better understanding of the aerosol absorption distribution and validation of other satellite
retrievals and CTMs (related to Question 4).

In the end, Chapter 6 summarizes the experience of the quantitative derivation of aerosol absorp-
tion from UVAI and provides suggestions and recommendations for future research.
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FROM THE OMI ABSORBING AEROSOL INDEX

BY RADIATIVE TRANSFER SIMULATIONS

The content of this chapter has been published as: Sun, J., Veefkind, J. P., van Velthoven, P., and Levelt, P. F.:
Quantifying the single-scattering albedo for the January 2017 Chile wildfiress from simulations of the OMI absorbing
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2.1. INTRODUCTION
Biomass burning aerosols are generated from combustion of carbon-containing fuels by natural and
anthropogenic processes [Bond et al., 2004, Pachauri et al., 2014]. They have great impacts on the
Earth’s climate [Kaufman et al., 2002b, Koch and Del Genio, 2010, Myhre et al., 2013, Pachauri et al., 2014,
Solomon, 2007]. For example, the radiative forcing of black carbon (BC), a major component of biomass
burning aerosols, is around 0.4 W m−2 (0.05 – 0.80 W m−2). However, this value is highly uncertain
[Bond et al., 2013, Myhre et al., 2013, Ramanathan and Carmichael, 2008]. Accurate measurements
of the global aerosol single scattering albedo (SSA, symbol: ω0) are therefore important to reduce
the uncertainties in aerosol radiative forcing assessments [Hu et al., 2007]. SSA is defined as the
ratio of aerosol scattering over aerosol extinction (Equation 3.2 on page 47). Routine operational
SSA products are mainly contributed by ground-based instruments (e.g. [Corr et al., 2009, Dubovik
et al., 1998, Eck et al., 2003, Kassianov et al., 2005, Petters et al., 2003, Yin et al., 2015]). Space-borne
instruments usually derive SSA together with the aerosol optical depth (AOD, symbol: τ) retrieval
based on a priori assumptions, e.g. the near-UV aerosol product of OMI/Aura [Torres et al., 2005, 2007].
Advanced instruments also apply multi-angular (e.g. MISR/Terra [Diner et al., 1998, Diner et al., 1991])
or polarimetric (e.g. POLDER/ADEOS-1/ADEOS-2/PARASOL [Deschamps et al., 1994, Goloub et al.,
1999]) measurements to add additional constraints on the SSA retrieval.

Another parameter describing aerosol absorption is the near Ultra-Violet absorbing aerosol index
(AAI) [Herman et al., 1997a], providing an alternative solution to retrieve SSA. AAI as qualitative measure
of absorbing aerosols was first retrieved by TOMS/Nimbus-7 in 1978. Since then, various instruments
have contributed to the AAI data record.

Compared with SSA retrieved from multi-angular and polarimetric measurements, AAI is ’che-
aper’ to obtain since it only requires measured UV-radiance at two wavelengths and a radiatively
simulated Rayleigh atmosphere. The calculation of AAI is independent of assumptions on aerosol
optical properties, which significantly reduces retrieval uncertainties. Ginoux et al. [2004] suggested
that using AAI to compare model simulation and satellite retrievals to retrieve SSA allows a better
control of discrepancies than using AOD, because the only error source is from models. The near-UV
channel also brings advantages of the low surface reflectivity and the absence of significant molecular
absorption. Moreover, the sensitivity of AOD to SSA in the visible band is lower over dark surfaces
[Kaufman et al., 1997a], whereas AAI is by definition highly sensitive to aerosol absorption. In fact, it is
possible to estimate SSA if AAI, AOD and the aerosol vertical distribution are known under a reasonable
assumption on particle size [Jeong and Hsu, 2008]. Previous studies have proven the potential of
AAI in retrieving aerosol properties. For example, Torres et al. [1998] applied an inversion method to
derive AOD and SSA from the backscattered radiation. This method was validated by ground-based
observations during the SAFARI 2000 measurement campaign. The agreement between their retrievals
and AERONET measurements for AOD and SSA reached ±30% and ±0.03, respectively [Torres et al.,
2005]. Hu et al. [2007] retrieved the global columnar SSA based on the TOMS AAI with an average
uncertainty of 15%. Jeong and Hsu [2008] retrieved SSA together with the aerosol layer height (ALH,
symbol: zaer ) for biomass burning aerosols, and the results showed a good agreement with both
AERONET and CALIOP measurements.

Inspired by the above research, in this study, we use the AAI provided by OMI/Aura, the successor
of TOMS, to derive the aerosol optical properties for the biomass burning aerosols generated by the
wildfires in central Chile in January 2017. The fires were triggered by a combination of long-term
drought and high temperature, and regarded as the worst wildfire season in the national history,
leading to massive losses of the local forestry industry (pine and eucalyptus forests) [Guardian]. As
shown in Figure 2.1, the smoke plume was transported away from the continent towards the tropical
area of the Pacific Ocean by the north-westward winds.

In this study, we quantitatively retrieve the SSA together with ALH for this fire event by simulating
the OMI retrieved AAI with a radiative transfer model (DISAMAR). In Section 2.2, we provide an
introduction on AAI and its sensitivity study. The methodology and data sources are described in
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Figuur 2.1: Wildfires in central Chile (Pichilemu 34.39◦S, 72.00◦W and Consititución 35.33◦S, 72.42◦W) detected by
MODIS/Terra on 20 January 2017. (Source: NASA’s Earth Observatory https://earthobservatory.nasa.gov/
IOTD/view.php?id=89496).

Section 2.3. Section 2.4 presents the retrieved results with uncertainty analysis, followed by main
conclusions in Section 2.5.

2.2. AAI SENSITIVITY STUDIES BASED ON DISAMAR
2.2.1. ULTRA-VIOLET ABSORBING AEROSOL INDEX
AAI was derived from the spectral contrast of satellite measurements, known as the residue method
[Herman et al., 1997a]. The basic idea is that in a pure Rayleigh atmosphere, the radiance (Iλ)) decreases
strongly with the wavelength in the UV channel. The presence of light-absorbing aerosols can reduce
this spectral dependency. The change in the wavelength contrast between λ1 and λ2 (λ1 < λ2) is
presented as:

A AI =−100

l og10
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Iλ1

Iλ2

)obs

− log10
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Iλ1

Iλ2
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where obs and Ray denote the retrieved radiance and the calculated radiance, respectively. The
longer wavelength λ2 is treated as the reference wavelength where the surface albedo (as,λ2

) is deter-
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By defining ∆Iλ1
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, the above equation can also be written as:

A AI = 100log10(
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+1) (2.3)

The following sensitivity study will be based on Equation 2.3.

https://earthobservatory.nasa.gov/IOTD/view.php?id=89496
https://earthobservatory.nasa.gov/IOTD/view.php?id=89496
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2.2.2. AAI SENSITIVITY STUDY
In this part, we present a sensitivity study of AAI based on a radiative transfer model developed by
KNMI: DISAMAR. DISAMAR can perform simulations of the forward radiance spectrum in a wide
spectral coverage (from 0.27 µm to 2.4 µm) and model scattering and absorption by gases, aerosol,
clouds, and the reflection by the surface [de Haan, 2011]. It uses either the Doubling-Adding method
or the Layer Based Orders of Scattering (LABOS) for the radiative transfer calculations. In this study the
latter is employed as it is less computationally intensive [de Haan, 2011, Dehaan et al., 1987].

The sensitivity study is exclusively designed for biomass burning aerosols generated by the Chile
wildfires. Table 2.1 lists the model parameters and corresponding values. The default values of micro-
physical parameters are taken from the daily average of the AERONET station Santiago_Beauchef
(33.46◦S, 70.66◦W) on 27 January 2017. We obtain the particle size distribution function and com-
plex refractive index at 440, 675, 880 and 1018 nm from AERONET, and apply a linear interpola-
tion/extrapolation to derive the complex refractive index over the spectrum from 340 to 675 nm
(spectral resolution of 2 nm). Then we apply the Mie Theory to calculate the aerosol phase function
P (Θ) and ω0 (Θ is the scattering angle). The corresponding P (Θ) at 354 nm for different cases is pre-
sented in Figure 2.2. The aerosol profile is parameterized as a single homogeneous layer (box-shape),
with its bottom at zaer −∆z/2 and top at zaer +∆z/2, where zaer and ∆z are the geometric central
height and the geometric thickness of the aerosol layer. The whole sensitivity analysis is performed
under cloud-free condition. The default wavelength pair to compute the AAI is the same as OMI
(354/388 nm). To make the results of different situations comparable, the AAI calculated in this section
is normalized by the maximum value in each case. Note that the sensitivity study always uses the
default settings listed in Table 2.1 unless different values are explicitly mentioned.

Aerosol optical properties are determined by micro-physical properties, such as the complex
refractive index (nr and ni ) and the particle size (rg ). Figure 2.3 shows the impacts of these parameters

on AAI, ∆Iλ1
, I obs

λ1
, the corresponding ω0 and the asymmetry factor (the averaged cosine of the

scattering angleΘ, weighted by P (Θ), symbol: g ). An increasing nr directly enhances the I obs
λ1

, whereas

reduces ∆Iλ1
(Figure 2.3 (a)). This results in low values of AAI, which corresponds to a high ω0 (Figure

2.3 (b)). Conversely, ni has an opposite influence (Figure 2.3 (c, d)). The particle size distribution has
more complicated influences on AAI. As shown in Figure 2.3 (e, f), AAI primarily follows the behaviour
of ∆Iλ1

, whereas ω0 is continuously decreasing and g is continuously increasing with the particle size.
Aerosol amount and vertical distribution also have influences on AAI. AAI is positively correlated

with AOD, as I obs
λ1

measured by satellite decreases and ∆Iλ1
increases (Figure 2.4 (a)). Previous studies

show that AAI is highly sensitive to the aerosol vertical distribution [de Graaf et al., 2005, Herman et al.,
1997a, Torres et al., 1998]. Aerosol particles primarily interact with scattered photons beneath the
aerosol layer. As the aerosol layer ascends (Figure 2.4 (b)), more underlying molecular scattering is

Tabel 2.1: Parameters and their values used in the sensitivity study.

Parameters Default value Sensitivity range Unit
Geometric mean radius (rg ) 0.15 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4 µm
Geometric standard deviation (σg ) 1.5 - µm
Real part of refractive index (nr ) at 354 nm 1.5 1.3, 1.35, 1.4, 1.45, 1.5 -
Imaginary part of refractive index (ni ) at 354 nm 0.06 0.04, 0.06, 0.08, 0.1 -
Aerosol layer geometric central height (zaer ) 4.5 2.5, 4.5, 6.5, 8.5 km
Aerosol layer geometric thickness (∆z) 1 0.5, 1, 1.5, 2 km
Aerosol optical thickness (τ) at 550 nm 1 0.5, 1, 1.5, 2 -
Surface albedo (as ) at 354 and 388 nm 0.05 0.05, 0.1, 0.5, 1.0 -
Surface pressure (Ps ) 1013 1013, 963, 913, 863, 813 hPa
Solar zenith angle (θ0) 30 0, 15, 30, 45, 60, 75 ◦
Viewing zenith angle (θ) 0 0, 15, 30, 45, 60, 75 ◦
Relative azimuth angle (∆φ=φ−φ0 +180◦) 0 0, 45, 90, 135, 180 ◦
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(a) P354(Θ) as a function of nr (with rg =
0.15 µm and ni = 0.06).

(b) P354(Θ) as a function of ni (with rg =
0.15 µm and nr = 1.5).

(c) P354(Θ) as a function of rg (with nr =
1.5 and ni = 0.06).

Figuur 2.2: P (Θ) at 354 nm of the parameterized Mie scattering aerosols in sensitivity study as a function of (a) nr
(with rg = 0.15 µm and ni = 0.06), (b) ni (with rg = 0.15 µm and nr = 1.5), and (c) rg (with nr = 1.5 and ni = 0.06).
The markers in the plot correspond to the value whenΘ= 60◦,90◦,120◦,150◦,180◦.

Figuur 2.3: AAI sensitivity to micro-physical parameters: (a, b) nr , (c, d) ni , and (e, f) rg . The upper panels (a, c and

e) show the sensitivity of the normalized AAI (black), the normalized ∆Iλ1
(blue) and the normalized I obs

λ1
(red).

The lower panels (b, d and f) show SSA (ω0, blue) and g (red) at wavelength 354 (solid line) and 388 (dashed line)
nm, respectively.

Figuur 2.4: AAI sensitivity to macro-physical parameters: (a) AOD (τ) at 550 nm, (b) ALH (zaer , unit: km), and (c)
∆z (unit: km).

shielded, reducing I obs
λ1

whereas increasing ∆Iλ1
. The thickness of the aerosol layer, however, has a

positive but limited effect (up to 5%) on AAI (Figure 2.4 (c)). The reason could be that a larger ∆z allows
the sunlight to have a higher possibility to be absorbed by aerosols, slightly enhancing the aerosol
absorption.

AAI does not only depend on aerosols themselves, but also on the surface and clouds. Although
AAI is capable to distinguish absorbing and non-absorbing agents [Herman et al., 1997a] and even to
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Figuur 2.5: AAI sensitivity to surface parameters: (a) as and (b) Ps . The solid line and dashed line in (b) indicates a
terrain height at sea level (Ps = 1013hPa) and an elevated terrain height (Ps = 813hPa), respectively.

Figuur 2.6: AAI sensitivity to θ and θ0 at ∆φ = 180◦. The black dashed contour in panel (a) indicates Θ = 60◦,
90◦, 120◦, 150◦. The white dashed line in panel (a) indicates the cross section along viewing angles, with its
corresponding normalized AAI, ∆I obs and I obs

λ1
presented in panel (b).

retrieve aerosol information over clouds [Torres et al., 2012], the uncertainty triggered by clouds in the
radiance is high, thus cloudy conditions are excluded from this study. Surface conditions are described
by the surface pressure (Ps ) and the surface albedo (as ). Ps can represent the effect of topography. A
decline in Ps , or equivalently an increase in terrain height, leads to less Rayleigh scattering shielded
between the surface and the aerosol layer (Figure 2.5 (a)), which agrees with previous studies [Colarco
et al., 2017, de Graaf et al., 2005]. Besides, increasing as has two counteracting effects [de Graaf et al.,
2005]: it increases the amount of directly reflected radiation at the top of the atmosphere, i.e. a larger
I obs
λ1

; on the other hand, it enhances the role of absorption by the aerosol layer, i.e. a larger∆Iλ1
. Which

is the dominant effect depends on Ps (Figure 2.5 (b)). When the aerosol layer is relatively closer to the
sea level (Ps = 1013hPa), the first effect dominates. However, a brighter surface compensates the loss
of molecular scattering shielded by the aerosols when the terrain height rises (Ps = 813hPa), which
makes the absorbing layer more detectable.

AAI also depends on the sun-satellite geometry. Here we provide AAI as a function of the mea-
surement geometries for the default case with the relative azimuth angle ∆φ = 180◦. As presented
in Figure 2.6 (a), AAI becomes very sensitive to the geometries for the zenith angles larger than 60◦,
which confirms previous research [de Graaf et al., 2005, Herman et al., 1997a, Torres et al., 1998]. This is
mainly due to the significant growth of P (Θ) whenΘ becomes smaller (Figure 2.2). Thus, it is suggested
that satellite measurements with the solar zenith angle (θ0) or the viewing zenith angle (θ) larger than
this value should be removed due to the large variations of AAI. To analyse the radiance behaviour
as previously, we plot ∆Iλ1

and I obs
λ1

as a functions of Θ along the cross section, respectively (Figure

2.6 (b)). It is noted that I obs
λ1

increases whenΘ is larger than 90◦, whereas P (Θ) is generally low at this

range (Figure 2.2). The reason could be that the Rayleigh scattering has an increasing contribution to
the total radiance at those measurement angles.

2.3. METHODOLOGY AND DATA SETS

2.3.1. DATA SETS

OMI AND GOME-2 AAI
In this study, the OMI level 2 product OMAERO (https://disc.gsfc.nasa.gov) is used to provide
AAI, together with the corresponding viewing geometry and the surface parameters. The samples are
included in the radiative transfer simulation only if both θ0 and θ is smaller than 60◦, and satellite
pixels are not contaminated by sun-glint, clouds, and row anomalies of the instrument. The simulation
is only applied to pixels inside the biomass burning plume, which is defined as pixels with both OMI
and GOME-2 AAI larger than 1.

https://disc.gsfc.nasa.gov
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MODIS AOD
MODIS/Aqua and Terra is a sensor specifically designed for atmosphere and climate research. The
two satellites together ensure a daily global coverage. In this study, we use the MODIS/Aqua data as
its overpass time (13:30 LT) is close to that of OMI. MODIS has a spatial resolution that ranges from
0.25 to 1 km and it has 36 spectral bands from 400 nm to 14.4 µm [Remer et al., 2005]. It employs
different algorithms for aerosol retrieval over land and ocean [Hsu et al., 2004, Kaufman et al., 1997b,
Remer et al., 2005, Tanré et al., 1997]. Currently the AOD provided by MODIS is one of the most
reliable AOD sources [Lee et al., 2009, Sogacheva et al., 2020], with an estimated uncertainty of only
−0.04−10% to +0.02+10% over ocean and ±(0.05+15%) (Dark Target) / ±(0.05+20%) (Deep Blue)
over land [Levy et al., 2013, Remer et al., 2005]. Besides, the MODIS retrieved AOD is insensitive
to the aerosol layer height [Satheesh et al., 2009]. This study uses cloud-filtered AOD at 550 nm
from the Collection 6 level 2 product MYD04 as the input for radiative transfer calculations (https:
//ladsweb.modaps.eosdis.nasa.gov).

In addition, the AOD measured by OMI and MODIS are used to compare with AERONET. The
OMAERO uses multi-spectral fitting techniques, and the retrieved AOD is reported in good accordance
with AERONET and highly correlated with MODIS [Torres et al., 2007], with a correlation of 0.66 over
land and 0.79 over ocean [Curier et al., 2008]. It suffers from cloud sub-pixel contamination due
to the relatively coarse spatial resolution of OMI. Considering the wavelength difference, the AOD
measured by OMI at 442 nm has to be transferred to 550 nm using the Ångström Exponent (ÅE)
calculated between 440 and 675 nm of AERONET near the time when OMI flew over the selected site.
The AERONET data used in this study is introduced in the next section.

AERONET MICRO-PHYSICAL PARAMETERS

AERONET is a ground-based sun photometer network. With standardized instruments, calibration,
processing and distribution, AERONET provides a long-term global database for aerosol research, and
air-borne and space-borne measurement validation [Holben et al., 1998]. The system takes two basic
measurements. The AOD and ÅE are retrieved from the direct solar irradiance measurements [Eck
et al., 1998]; the particle size, the phase function, the complex refractive index, and SSA are derived
from multiple-angular measurements of sky radiance [Dubovik et al., 1998, Dubovik and King, 2000,
Nakajima et al., 1983, 1996].

The AERONET site nearest to the Chile wildfires is the Santiago_Beauchef (33.46◦S, 70.66◦W,
https://aeronet.gsfc.nasa.gov). The data used is version 2 level 1.5 product (cloud-screened but
not quality-assured). To minimize the influence of time difference, the parameters of AERONET closest
to the the OMI overpass time are used to simulate the aerosol optical properties. Note that the location
of the site is in downtown of Santiago City and close to major roads, where the presence of scattering
urban aerosols may bias the measurements as compared with lager scale satellite observations.

The AERONET retrieved AOD and SSA are used to evaluate the MODIS AOD and the retrieved SSA,
respectively. The AERONET measured AOD is transferred to 550 nm using the ÅE calculated between
440 and 675 nm, while the SSA at 550 nm is linearly interpolated by the values at 440 and 675 nm.

The complex refractive index and the particle size distribution provided by the AERONET need to
be processed into the format required by DISAMAR. First, a conversion from the volume size distribu-
tion V (rv ,σv ) provided by AERONET to the number size distribution N (rg ,σg ) used in DISAMAR is
required:

N (rg ,σg ) =V (rv ,σv )
3

4πr 3
g

e−4.5σ2
g (2.4)

The following relationships between the geometric and volumetric mean radii (rg and rv ) and
standard deviation (σg and σv ) are assumed:

rg = rv e−3σ2
g (2.5)

σg =σv (2.6)

https://ladsweb.modaps.eosdis.nasa.gov
https://ladsweb.modaps.eosdis.nasa.gov
https://aeronet.gsfc.nasa.gov
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Figuur 2.7: Retrieved complex refractive index for each case: (a) nr and (b) ni . The dashed line in lower panel is the
wavelength dependent ni provided by AERONET.

The fine and coarse mode particle size are derived by finding the two peaks of the log-normal
distribution function provided by AERONET. The complex refractive index is assumed to be the same
for both modes. Since a bi-modal aerosol is not available in DISAMAR yet, we first calculate optical
properties of two modes individually, then we externally combine the optical properties of two modes
into a bi-modal aerosol with a fraction:

w f =
N f (rg , f ,σg , f )

N f (rg , f ,σg , f )+Nc (rg ,c ,σg ,c )
(2.7)

wc = 1−w f (2.8)

Then the weights for calculating the total ω0 of the mixed aerosol are:

wσ, f =
w f σ f

w f σ f +wcσc
(2.9)

wσ,c = 1−wσ, f (2.10)

, where σ f and σc are the extinction cross section of the fine and coarse aerosols. The expansion
coefficients of the mixed aerosol are weighed by the ω0 of the fine and coarse aerosols (ω0, f and ω0,c ),
respectively:

wω0, f =
w f σ f ω0, f

w f σ f ω0, f +wcσcω0,c
(2.11)

wω0,c = 1−wω0, f (2.12)

The AERONET instrument at this site only covers the visible and infrared band (from 440 nm to
1018 nm) for sky radiance measurements, i.e. no information in the UV band. Due to the absence
of observations, assumptions have to be made on the spectral dependency of aerosol properties
to obtain their values in the UV range. The properties of biomass burning aerosols depend on the
type of fuel, the procedure producing the smoke, the age of the smoke, and also the atmospheric
conditions [Reid et al., 2005]. Using measurements to constrain the input aerosol refractive index may
reduce the uncertainties due to a priori knowledge. Our treatment of the complex refractive index is as
follows: (1) take the complex refractive index in the visible band (from 440 to 675 nm) of the AERONET
measurements; (2) linearly extrapolate the complex refractive index to the UV band. The real part
nr for radiative transfer calculation is obtained in this step. A slight wavelength dependency of nr is
found (Figure 2.7 (a)); (3) for the imaginary part ni , we multiply it (for the entire wavelength from UV
to visible) with a scaling factor as we set it as a free parameter. By varying the value of the scaling factor,
both the magnitude and the wavelength dependency of ni can change to meet the requirement for
retrieval (Figure 2.7 (b)).
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Figuur 2.8: CALIOP backscatter coefficient β at 532 nm. The solid and dashed line indicate the retrieved zaer and
∆z, respectively. The red to black dots indicate clouds and the orange dots indicate aerosol layers, respectively.

CALIOP BACKSCATTER COEFFICIENT

The CALIOP/CALIPSO launched in 2006 provides high-resolution profiles of aerosols and clouds. It has
three channels with one measuring the backscatter intensity at 1064 nm and the rest measuring ortho-
gonally polarized components at 532 nm [Winker et al., 2009]. In this study, we only use the total attenu-
ated backscatter at 532 nm from level 1B Version 4.10 Standard data to evaluate the retrieved paramete-
rized aerosol profiles (https://eosweb.larc.nasa.gov/project/calipso/calipso_table). But
note that due to the limited spatial coverage, CALIOP did not capture the plume produced by the
wildfires for all the cases where there were OMI observations.

2.3.2. METHODOLOGY
In this study, we employ the radiative transfer model DISAMAR to simulate the AAI from OMI and
to derive the ω0 for a biomass burning event, i.e. the Chile wildfires in January 2017. We select the
period from 26 to 30 January 2017 (28 January is excluded due to a lack of data) when the OMI AAI
value reached its peak during the fire event.

The forward simulation consists of two steps. First, DISAMAR calculates the Mie aerosol optical
properties with aerosol micro-physical information taken from AERONET measurements (rg , nr and
ni ). As mentioned in Section 5.2.1, we set the spectral-dependent imaginary refractive index ni as a
free parameter to vary SSA. Then, DISAMAR operates radiative transfer calculations with the input
aerosol properties and environmental conditions of OMI.

It must be noted that the observed aerosol vertical distribution information is limited for this case.
Previous research suggested that AAI cannot be quantitatively used without AOD or ALH information
[Gassó and Torres, 2016]. Therefore, we implement the same parameterization on aerosol profiles as
that used in the sensitivity study. Since AAI dependency on ∆z is minor (Figure 2.4 (c)), and to reduce
the computational cost,∆z is set to be a fixed value of 2 km based on the information from the CALIOP
backscatter coefficient measurements (β) at 532 nm (Figure 2.8). The ALH, to which the AAI is highly
sensitive, is treated as an unknown variable to be retrieved together with SSA.

With various combinations of ALH and SSA, a Look-Up Table (LUT) of the calculated AAI is
constructed by radiative transfer calculations. It should be noted that for all pixels in the plume we
assume the same aerosol micro-physical properties and the same aerosol layer height. Pixels outside
the plume (even if they have AAI values larger than 1) may have significantly different properties which

https://eosweb.larc.nasa.gov/project/calipso/calipso_table
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will affect the retrievals. Consequently, we apply a data quality control procedure before retrieving
SSA. First, we manually remove the pixels that are geographically isolated from the main plume.
Then, we remove potential outliers based on statistical analysis. We filter the data set using an outlier
detection criterion based on the inter-quartile range (IQR) of the AAI difference between the DISAMAR
simulations and the OMI observations. According to Tukey’s fences [Tukey, 1977], an AAI difference
falling outside range between Q1-1.5 IQR and Q3+1.5 IQR may be regarded as an outlier and removed,
where Q1 and Q3 are the first and third quartile of the AAI difference, and the IQR is the range between
Q1 and Q3. Only pixels passing the outlier detection criterion are used to calculate the cost function:

RMSE =

√√√√∑n
i

(
A AI

q
si m,i − A AIobs,i

)2

n
(2.13)

Here A AIi indicates the AAI for i -th satellite pixel; q means the qualified pixels passing the outlier
detection; si m and obs indicate the DISAMAR simulations and the OMI observations, respectively.
The combination of ALH and SSA that leads to the minimum residue is used as retrieval results. The
estimated ALH and SSA at 550 nm are evaluated by independent observations from CALIOP and
AERONET, respectively.

2.4. RESULTS AND DISCUSSION

2.4.1. VALIDATION OF THE RETRIEVED SSA
The OMI measurements of the plume are displayed in Figure 2.9 (first row). The satellite pixels are
presented for AAI values larger than 1, and are free of cloud contamination, sun-glint and row anomaly
of the instrument. Fortunately, the remaining data are still able to capture the plume features. It can be
clearly seen that from 26 to 30 January, the plume was transported by the south-easterly trade wind
from the continent towards the lower latitude region of the Pacific Ocean. The plume travelled over
3000 km during the period.

The vertical movement of the plume is given by in Figure 2.8. The CALIOP overpasses closest to the
plume are marked by a black dashed line in Figure 2.9. It is noted that due to the spatial coverage and
the time difference, CALIOP is not able to represent the entire plume detected by OMI. The aerosol
layer captured by CALIOP is located between 2 and 6 km, with an average height at approximately 4-5
km. The ascent of the plume was driven by the heat from the fire and aerosol sunlight absorption, as
well as the atmospheric vertical motions.

Figure 2.9 (e-h) shows the simulated AAI 2.3.2. The spatial distribution of the simulated AAI shows
similar patterns to the OMI observations. Some data points that are geographically isolated from the
plume, e.g. in case 26 and 30 January, may differ from what are observed inside the plume. Including
these outliers in the optimization could bias the retrieved aerosol properties. This can also be seen
in Figure 2.9 (i-l), where the points passing the data quality control described in Section 2.3.2 are
highlighted in red color. By removing outliers, the correlation coefficients (R) are generally no less than
0.85.

Table 2.2 lists the statistics of the qualified AAI data, including median, relative difference and
RMSE. The median of measured AAI ranges from 2 to 4 during the research period. Except for 26
January, the median of the simulated AAI is in good agreement with the measurements, with relative
differences within ±6%. The majority of the simulated AAI for 26 January is negatively biased, which
is reflected in Figure 2.9 (a, e). A systematic bias in the inputs might exist. In terms of SSA, both the
AERONET measurements and our retrievals show that aerosol absorption become weaker with time
(Table 2.2). Although the simulated and observed AAI are generally in good agreement, the difference
in SSA is significant. The mean of the retrieved SSA at 550 nm for the whole period is 0.84, whereas
that of the AERONET measurements is 0.90, which is outside the expected AERONET uncertainty of
±0.03 [Dubovik et al., 2000, 2002b].
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Figuur 2.9: The OMI AAI observations (a–d) and DISAMAR simulations (e–h) of the Chile wildfires on 26, 27, 29 and
30 January 2017. The black and red cross symbols are the AERONET station and the main fire sources (Pichilemu
W34.39◦ S72.00◦ and Consititución S35.33◦, W72.42◦), respectively. The gray dashed line indicates the CALIOP
overpasses, and the part that is used to validate the plume height are marked by black dashed line. The scatter plots
(i–l) present the OMI observations against the DISAMAR simulations for only qualified data (red dot) and all data
(blue dot), respectively.

Tabel 2.2: Summary of retrieved results (after applying IQR outlier detection).

Date 01/26 01/27 01/29 01/30
Number of pixels in the plume 44 70 82 75

AAI

AAI median (OMAERO) 2.52 2.38 4.05 2.61
AAI median (DISAMAR) 2.17 2.48 3.81 2.49
Relative difference -

13.88%
4.2% -5.93% -4.6%

RMSE 0.67 0.51 0.6 0.41

Aerosol profile
zaer [km] 4.9 4.5 4.7 4.7
∆z [km] 2 2 2 2

ni

ni at 354 nm 0.0395 0.0382 0.0388 0.0314
ni at 388 nm 0.0386 0.0366 0.0373 0.0306
Relative difference bet-
ween 354 and 388 nm

2.33% 4.37% 4.02% 2.61%

ω0 at 550 nm
ω0 (AERONET) 0.89 0.89 0.92 0.91
ω0 (DISAMAR) 0.83 0.81 0.87 0.85
Relative difference -6.74% -8.99% -5.43% -6.59%

2.4.2. ERROR ANALYSIS OF THE RETRIEVED SSA
There are many error sources contributing to the discrepancy in SSA. First, the nearest site San-
tiago_Beauchef did not directly measure the smoke plume as mentioned in Section 5.2.1. The site
is located in downtown, where reflective urban or industrial aerosols may have been mixed with the
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smoke and enhanced the SSA. This would also affect the spectral dependency of the complex refractive
index used in the radiative transfer calculations. Table 2.2 reveals that the difference of ni between 354
and 388 nm is less than 5%. This small spectral dependency of ni is mainly determined by AERONET
measurements in the visible band (dashed lines in Figure 2.7). We thus find a much weaker wavelength
dependency than Jethva and Torres [2011a], where a 20% difference of ni between the two UV wave-
lengths was applied to the OMAERUV algorithm and achieved a result 70% of the retrieved SSA falls
within the ±0.03 AERONET SSA uncertainty. This 20% spectral dependency adopted in their work
is associated with findings of [Kirchstetter et al., 2004]. According to them, the absorbing Ångström
exponent (AÅE) of biomass burning aerosols is approximately 2 between 0.3 µm to 1 µm. In terms of
ni , a 20% increase at 354 nm with respect to the value at 388 nm is equivalent to an AÅE value between
2.5 and 3, depending on the aerosol models of OMAERUV [Jethva and Torres, 2011a]. Hoffer et al.
[2006] also found a similar result. They conducted in situ measurements on humic-like substances
(HULIS) of Amazonia biomass burning aerosols and found that around 35 to 50% light absorption
occurred at 300 nm, whereas only around 15% at 400 nm. Bergstrom et al. [2007] also confirmed this
conclusion from several field programs (SAFARI 2000, ACE Asia, PRIDE, TARFOX and INTEX-A). From
the sensitivity study of [Jethva and Torres, 2011a], a stronger spectral dependency of ni between 354
and 388 nm would allow to reach the same AAI with ni at a relatively low level. In our study, this leads
to retrieve a higher SSA at 550 nm. The presence of non-absorbing aerosols may reduce the measured
ni at visible band and the linear extension would weaken the spectral dependency particularly in the
near-UV spectral range.

On the other hand, the AERONET inversion product is not error-free. The uncertainty of the size
distribution retrieval may be minor for biomass burning aerosols [Dubovik et al., 2000], but under
optically thick circumstances, even when retrievals are quality-assured (i.e. level 2 data), the reported
accuracy of complex refractive index is 0.04 for nr and 30-50% for ni , respectively [Dubovik et al.,
2002b]. It is also reported that AERONET tends to underestimate the absorption of biomass burning
aerosols compared with in situ measurements [Dubovik et al., 2002b, Reid et al., 2005]. The uncertainty
of SSA is 0.03 under high aerosol loading (AOD at 440 nm > 0.5) and 0.05-0.07 under low aerosol loading
[Dubovik et al., 2002b, Holben et al., 2006].

Last but not least, the spatial representation of the AERONET site is also concerning. Santese et al.
[2007] showed that the selected AERONET aerosol parameters can be representative of a 300×300 km2

area. For the Chile wildfires with the most remote pixels over 3000 km away from the continent, the
measurements at the selected site cannot fully represent the plume detected by the satellite.

Apart from AERONET, other parameters in the radiative transfer simulations could also bias the
estimate of aerosol absorption, among which the parameterization of the one-layer-box-shape profile
could be the largest error source. Although the influence of ∆z on AAI is negligible (Figure 2.4 (c)), AAI
calculation highly depends on ALH (zaer , Figure 2.4 (b)). As shown in Table 2.2, the estimated plume
altitude varies from 4.5 to 4.9 km. As the black solid lines indicated in Figure 2.8, the retrieved ALH
can approximately capture the plumes. The ALH on 26 January is overestimated because of the large
temporal and spatial difference. CALIOP sampled the plume near the fire source that is close to the
surface, whereas the plume observed by OMI had been already elevated and transported to the open
ocean. The lack of information on the real plume height makes it challenging to determine whether the
plume height is responsible for the systematic bias in Figure 2.9 (i). Except for 26 January, ALH in other
cases is generally consistent with CALIOP. Although the retrieved ALH are convincing to some extent,
one should keep in mind that CALIOP and OMI observations are not exactly co-located. Besides, the
parameterized aerosol profiles may fail to represent the spatial variation of the plume. Therefore, the
uncertainty cannot be directly determined due to the lack of validation.

Compared with other cases, the retrieved SSA of 27 January is significantly lower than others. For
this day, the agreement in terms of ALH with CALIOP is reasonable. We therefore explore the effect of
observational biases of AAI and AOD on the retrieved SSA. We investigate the potential bias by plotting
the histogram of the AAI measurement difference between GOME-2 and OMI (Figure 2.10 (a)) against
the AOD measurement difference between MODIS and OMI (Figure 2.10 (b)), both are at 550 nm). It is
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Figuur 2.10: Histogram of (a) the AAI difference between GOME-2 and OMI, against (b) the AOD difference at 550
nm between MODIS and OMI for 27 January. Contour of (c) shows the AAI RMSE as a function of variation in AOD
and SSA for this date. The dashed line is the best estimation for each pair of ∆τ and ω0.

clear that on 27 January, the AAI from OMI seems to be overestimated compared to that of GOME-2.
Despite the difference in instrumental design and wavelength pair for AAI retrieval, measurement
conditions, etc., could contribute to the discrepancy between GOME-2 and OMI, exploring the dif-
ference between the two is beyond the scope of this study. In terms of input aerosol concentration,
the AOD from MODIS is generally lower than that of OMI. Fitting higher AAI with lower AOD leads to
an overestimation in aerosol absorption. Thus, we analytically quantify the impact of AOD for this
specific case by systematically enhancing the MODIS AOD with a constant variation (∆τ) added to all
pixels, with AAI and ALH unchanged. Figure 2.10 (c) presents how the AAI RMSE and the estimated
SSA respond to the enhanced AOD. It can be clearly seen that an increase in AOD by 0.07 raises SSA
to 0.84 and optimizes the AAI simulation to a RMSE less than 0.45. If we apply this AOD adaption,
the retrieved SSA of 27 January becomes more consistent with the other days as well as the AERONET
measurements.

Apart from the observational errors in AERONET, OMI and MODIS, the assumption that the plume
features are homogeneous could also result in the SSA discrepancy. In reality, the plume altitude, the
optical properties and even the chemical compositions could vary from pixel to pixel, whereas our
simulations cannot consider those effects.

2.5. CONCLUSION
Biomass burning aerosol is a major type of absorbing aerosols, posing a significant contribution on
the climate warming. Quantitatively characterizing the absorption of biomass burning aerosols is
therefore important to reduce the uncertainty of global radiative forcing assessments. Facing the lack
of continuous and global SSA data, this study proposes as an alternative method to retrieve SSA based
on satellite AAI. Although AAI is not a geophysical parameter, its calculation is independent of a priori
aerosol properties and its high sensitivity to aerosol absorption, offer potentials for aerosol absorption
research.

In this study, we retrieve SSA together with ALH by fitting the radiative transfer simulated AAI to the
OMI retrieved AAI for the wildfires that occurred in Chile in January 2017. After filtering outliers, the
high correlation coefficients (R>0.85) between the simulated and the observed AAI shows the potential
of this method. The retrieved aerosol profiles indicate the smoke plume was elevated to 4.5-4.9 km.
These results are in agreement with the independent CALIOP measurements. The retrieved SSA at
550 nm of the plume is approximately 0.84, which is 0.06 lower than that of AERONET. The retrieved
SSA is acceptable, if one takes into account: (1) the typical uncertainty in the SSA retrieved from
AERONET (±0.03); (2) the locations of the plume are outside the AERONET representative range; (3)
the assumption of homogeneous and static plume properties, which ignores the plume evolution over



2

40 2.5. CONCLUSION

space and time; (4) the simplified parameterization of the aerosol profiles; and (5) the observational
errors in AAI and AOD, as well as the retrieval errors in the aerosol micro-physics provided by AERONET.

This study proves the possibility of utilizing the satellite AAI to quantitatively characterize aerosol
optical properties (i.e. SSA). However, apart from the observational uncertainties, the current method
is probably limited by: (1) the lack information on the aerosol vertical distribution; and (2) the poorly-
understood aerosol absorption spectral dependence in the near-UV band, which should be further
studied in future.
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QUANTIFYING THE SINGLE SCATTERING ALBEDO

FROM THE ABSORBING AEROSOL INDEX:
RADIATIVE TRANSFER VERSUS MACHINE LEARNING

The content of this chapter has been published as: Sun, J., Veefkind, P., Nanda, S., van Velthoven, P., and Levelt, P.:
The role of aerosol layer height in quantifying aerosol absorption from ultraviolet satellite observations, Atmos.
Meas. Tech., 12, 6319–6340, https://doi.org/10.5194/amt-12-6319-2019, 2019.
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3.1. INTRODUCTION
The concept of the near Ultra-Violet (near-UV) absorbing aerosol index (UVAI) initially appeared
in the TOMS/Nimbus-7 ozone product. It is used to detect elevated UV-absorbing aerosol layers by
measuring the spectral contrast difference between an observed radiance in reality and a simulated
radiance in a Rayleigh atmosphere [Herman et al., 1997a]:

UV AI =−100

log10

(
Iλ1

Iλ2

)obs

− log10

(
Iλ1

Iλ2

)Ray
 (3.1)

where the superscripts obs and Ray denote the radiance from observations and simulations; Iλ1
and Iλ2

are the radiance at wavelength λ1 and λ2 (λ1 < λ2); λ2 is the longer wavelength at which a

spectrally constant scene reflectivity is assumed for the calculation of I
Ray
λ

. A positive UVAI value
indicates the presence of absorbing aerosols, whereas a negative or near-zero value implies non-
absorbing aerosols or clouds [Herman et al., 1997a]. The over 4 decades of UVAI observations (1978 to
present) would be beneficial to derive aerosol absorption properties, e.g. the single scattering albedo
(SSA). Aerosols are considered to be the largest error source of radiative forcing assessments [Pachauri
et al., 2014], and SSA is one of the key parameters to reduce this uncertainty [Haywood and Shine,
1995].

The magnitude of UVAI depends on many factors [de Graaf et al., 2005, Herman et al., 1997a,
Hsu et al., 1999, Sun et al., 2018, Torres et al., 1998], among which the most dominant are aerosol
concentration, aerosol vertical distribution and aerosol optical properties [Buchard et al., 2017, Wang
et al., 2012]. To derive SSA from UVAI, information on two other parameters are necessary. The
aerosol concentration is usually represented by the aerosol optical depth (AOD). There are many AOD
products available. By contrast, there is much less observations on the aerosol vertical distribution. The
most well-known product is provided by the space-borne lidar CALIOP/CALIPSO, but the number of
measurements is limited due to its narrow tracks [Winker et al., 2009]. Passive sensors also make efforts
to retrieve the aerosol layer height (ALH) from radiance. For example, Chimot et al. [2017] presented
the feasibility to retrieve ALH using the OMI oxygen band at 447 nm; Xu et al. [2019, 2017] attempted to
retrieve ALH from the EPIC oxygen absorption band for dust and carbonaceous aerosols over land and
ocean; Tilstra and Stammes [2019] developed an algorithm to derive the absorbing aerosol layer height
from the GOME-2 FRESCO cloud layer height product. Recently a new ALH product has been run
operationally, based on the measurements in the near-infrared (NIR) oxygen A-band of TROPOMI/S5-P
[Sanders and De Haan, 2016]. TROPOMI has a wide swath of 2600 km, providing daily global coverage
with a spatial resolution of 7×3.5km2 in nadir. The instrument is equipped with both UV–visible
(270–500 nm) and NIR ( 675–775 nm) channel, which can simultaneously provide UVAI and ALH
product [Veefkind et al., 2012].

Using the TROPOMI ALH, this work attempts to quantify aerosol absorption from UVAI for biomass
burning aerosols. Two experiments are conducted. First, following previous studies [Colarco et al., 2002,
Hu et al., 2007, Jeong and Hsu, 2008, Sun et al., 2018], we create a Look-Up Table (LUT) of simulated
UVAI for various aerosol optical properties by a radiative transfer model (RTM). The SSA is derived by
minimizing the difference between the pre-calculated UVAI and the satellite observed one. The major
uncertainties in the retrieved SSA are caused by assumptions regarding the wavelength dependent
complex refractive index and the lack of the aerosol vertical distribution information [Sun et al., 2018].
Now, with the TROPOMI ALH constraining forward simulations, it is expected to partly reduce the
SSA retrieval uncertainty and to quantify the influence of the assumed aerosol refractive index on the
retrieved SSA.

Although the availability of ALH can better constrain the radiative transfer calculations and improve
the SSA retrieval, assumptions regarding aerosol micro-physics is still inevitable. Therefore, in the
second experiment, we propose an numerical method to predict aerosol absorption based on the
long-term record of co-located UVAI, ALH, AOD and absorbing aerosol optical depth (AAOD) using a
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Figuur 3.1: Flowchart of the radiative transfer simulations of UVAI. The aerosol models are from the ESA Aerosol_cci
project [Holzer-Popp et al., 2013] and the OMAERUV algorithm [Torres and Chen, 2013, Torres et al., 2007]. The
satellite inputs are the TROPOMI geometries and ALH, the MODIS AOD and the OMI surface climatology. The
aerosol profile is parameterized as a one-layer-box-shape, with the geometric central height set to the TROPOMI
ALH and an assumed constant pressure thickness of 50 hPa.

Machine Learning algorithm. Machine Learning allows algorithms to learn the underlying behavior of
a system from a given training data set. They are particularly useful to address ill-defined inversion
problems of geoscience and remote sensing, where the theoretical understanding is incomplete but
there is a large number of observations [Lary et al., 2016a]. We employ Machine Learning to quantify
aerosol absorption from UVAI in order to avoid explicit assumptions on aerosol micro-physics as made
in the first experiment. Currently, operational ALH products covering the globe on a daily basis are not
abundantly available (See Chapter 4 for more information); therefore, we will use the ALH reported in
the OMAERUV product to train the Machine Learning algorithm. Various Machine Learning algorithms
have been developed to address regression problems. In this paper, we choose the Support Vector
Regression (SVR), a regression variant form of the Support Vector Machines (SVM, [Drucker et al.,
1997]). Compared with other algorithms (e.g., the Artificial Neural Network), SVR is less sensitive to the
training data set size and can successfully work with a limited quantity of data [Mountrakis et al., 2011,
Shin et al., 2005].

This work is organized as below: the first experiment is outlined in Section 3.2, including a de-
scription of the radiative transfer simulation settings and the analysis of the uncertainty trigger by the
assumed aerosol aerosol absorption properties; Section 3.3 starts with introduction of SVR, followed
by descriptions of the training data set, SVR model hyper-parameter tuning, error analysis and case
applications. The major conclusions and implications for future research are summarized in Section
3.4.

3.2. EXPERIMENT 1: SSA RETRIEVAL USING RADIATIVE TRANSFER SIMULATIONS

In this section, we retrieve SSA using a radiative transfer model as done in our previous study [Sun
et al., 2018]. Forward radiative transfer simulations are applied by DISAMAR [de Haan, 2011]. Figure
3.1 illustrates the model inputs and the procedure. For each pixel, the aerosol optical properties are
computed by the Mie Theory for various predefined aerosol models. Then, DISAMAR calculates UVAI
for each aerosol model with the corresponding information of AOD, ALH, measuring geometries (θ0,
θv , φ0 and φv ), surface albedo (As ) and the surface pressure (Ps ) of the target pixel. The output of the
forward simulations is a LUT of UVAI as a function of the input SSA (determined by the predefined
aerosol models) that is fit by a second-order polynomial function. Finally, by giving the corresponding
satellite retrieved UVAI, the SSA of the target pixel is estimated from the pre-calculated UVAI–SSA
relationship. The retrieved SSA is reported at 500 nm in order to compare it with the results of the
SVR method in Section 3.3. Section 3.2.1 introduces the input parameters for the radiative transfer
simulations, followed by retrieval results in Section 3.2.2.
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Tabel 3.1: Aerosol models used in the radiative transfer simulations. ∆κ is the relative difference between κ354 and
κ388, defined as ∆κ= (κ354 −κ388)/κ388.

Geometric
radius
(rg )

Effective
radius
(re f f )

Geometry
standard
devi-
ation
(σg )

Variance
(lnσe f f )

Refractive
index
real part
(n)

Spectral depen-
dence (∆κ)

Refractive
index ima-
ginary part
at 354 nm
(κ354)

Refractive in-
dex imaginary
part of other
wavelengths
(388nm)

0.07 µm 0.14 µm 1.7 0.53 1.5

0%, 5%, 10%,
15%, 20%,
25%, 30%,
35%, 40%

(1+∆κ)×κ388

0.005
0.01
0.02
0.03
0.04
0.048
0.06

3.2.1. RADIATIVE TRANSFER SIMULATION CONFIGURATIONS

AEROSOL MODELS

The aerosol models are constructed from the ESA Aerosol_cci project [Holzer-Popp et al., 2013] and
the OMAERUV algorithm [Torres and Chen, 2013, Torres et al., 2007]. We assume a fine-mode smoke
aerosol type and further divide it into 7 sub-types as listed Table 3.1. We use the particle size distribution
of the fine-mode strongly absorbing aerosol from the ESA Aerosol_cci project: with the geometric
radius (rg ) of 0.07 µm (effective radius re f f of 0.14 µm), and the geometric standard deviation (σg ) of
1.7 (logarithmic variance lnσg of 0.53). The real part of the refractive index (n) uses the same value as
that in the OMAERUV algorithm, which is set to be 1.5 for all sub-types and spectrally flat. We adopt
the imaginary part of the refractive index at 388 nm (κ388) of the OMAERUV smoke sub-types (except
for BIO-1 whose κ388 is 0) and add an extra sub-type with a κ388 of 0.06.

Many studies have shown evidence that the absorption by biomass burning aerosols in the near-UV
band has a spectral dependence [Bergstrom et al., 2007, Kirchstetter et al., 2004, Russell et al., 2010].
Accordingly, a constant 20% ∆κ has been applied to all smoke sub-types in the recent OMAERUV
algorithm [Jethva and Torres, 2011a], where ∆κ is defined as the relative difference between κ354
and κ388 (i.e. ∆κ= (κ354 −κ388)/κ388). In this experiment, we will investigate how the retrieved SSA
responds to the assumed spectral dependence by considering nine different ∆κ values from 0% (i.e.
“gray” aerosols) to 40% (very strong spectral dependence). This corresponds to an Absorbing Ångström
Exponent (AÅE, αabs ) ranges from 1 to 3.4 and from 1.3 to 4.7, depending on aerosol sub-types. Note
that the ∆κ is only applied between 354 and 388 nm. As we only investigate the influence due to
aerosol absorption spectral dependence in the near-UV range. Aerosol absorption at wavelengths
larger than 388 nm is set equal to that at 388 nm.

To summarize, the first experiment consists of 9 cases represented by different ∆κ. Within each
case, there are 7 predefined aerosol sub-types with varying κ388. Thus, totally 63 forward simulations
are performed for each individual pixel.

INPUTS FROM SATELLITES

Figure 3.1 presents the input parameters for the radiative transfer simulations of UVAI. Satellite
measurement geometries (θ0, θv , φ0 and φv ) and the surface pressure (Ps ) of the TROPOMI UVAI
reprocessed product (https://scihub.copernicus.eu) are used as input for forward simulations.
The TROPOMI UVAI is calculated for two different wavelength pairs. One uses the conventional
340/380 nm wavelengths to continue the heritage of UVAI records from multiple sensors, and the other
uses 354/388 nm in order to allow for comparisons with OMI measurements [Stein Zweers, 2016]. In
this study we use the 354/388 nm pair.

The TROPOMI ALH is retrieved at the oxygen A-band (759–770 nm), where the strong absorption
of oxygen causes the highly structured spectrum (https://scihub.copernicus.eu). This feature is

https://scihub.copernicus.eu
https://scihub.copernicus.eu
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Figuur 3.2: Smoke plumes captured by MODIS/Aqua (source: https://gibs.earthdata.nasa.gov). The red
regions indicate fires and thermal anomalies.

particularly suitable for elevated and optically dense aerosol layers, thus currently the TROPOMI ALH is
only available for pixels with UVAI354,388 larger than 1 [Sanders et al., 2015, Sanders and De Haan, 2016].
The ALH is reported in both altitude and pressure. For the radiative transfer calculations, the input
aerosol profile is parameterized in the same way as that in the retrieval algorithm: a one-layer-box-
shaped profile with a central layer height to be derived and an assumed constant pressure thickness
of 50 hPa [Sanders and De Haan, 2016]. At the same band, the TROPOMI FRESCO cloud support
product provides cloud fraction (CF) for detecting cloud effects, as will be explained in the following
(https://scihub.copernicus.eu, [Wang et al., 2008a]).

The TROPOMI AOD product is not operational yet; thus, we use AOD from the level 2 MYD04
product (Collection 6) of MODIS/Aqua (https://doi.org/10.5067/MODIS/MYD04_L2.006). Aqua
has an overpass time similar to S-5P (both are at 13:30 LT). The MODIS AOD at 550 nm used in the
RTM-based method is a combination of Deep Blue Aerosol Optical Depth 550 Land and Effective Optical
Depth Op55um Ocean [Levy et al., 2013]. As used to retrieve TROPOMI UVAI is not reported in the
product. Instead, we use the OMI/Aura level 3 Lambertian Equivalent Reflectance (LER) monthly
climatology calculated from the measurements between 2005 and 2009 (https://doi.org/10.5067/
Aura/OMI/DATA3006, [Kleipool et al., 2008]). TROPOMI and OMI have similar overpass times (both
are at 13:30 LT) and measurement geometries [Levelt and Noordhoek, 2002, Veefkind et al., 2012].
Due to the different spatial resolutions, the TROPOMI ALH, the OMI LER climatology and the MODIS
AOD are re-sampled onto the TROPOMI UVAI grid and pre-processed to exclude pixels with large
solar zenith angles (θ0 > 70◦), weak aerosol absorption (UVAI354,388 < 1), insignificant aerosol amount
(AOD550 < 0.5) or cloud contamination (CF > 0.3).

3.2.2. SSA RETRIEVED BY RADIATIVE TRANSFER SIMULATIONS
In the first experiment, we focus on one of the largest fire events that occurred in southern California in
2017, i.e., the Thomas Fire (http://www.fire.ca.gov/current_incidents/incidentdetails/
Index/1922). Figure 3.2 (a) shows the RGB plume captured by MODIS. The major part of the plume
was over the ocean and under cloud-free conditions, which is favorable for space-borne aerosol
observations. There is a total of 5,217 pixels in this case. Figure 3.3 presents the corresponding UVAI,
ALH and AOD data after pre-processing. The highest UVAI appeared at the southern part of the plume,
where both the aerosol loading and aerosol layering were also high (AOD550 > 2 and ALH > 2.5 km).

Figure 3.4 (a) displays the mean SSA of all plume pixels retrieved by the RTM-based method

https://gibs.earthdata.nasa.gov
https://scihub.copernicus.eu
https://doi.org/10.5067/MODIS/MYD04_L2.006
https://doi.org/10.5067/Aura/OMI/DATA3006
https://doi.org/10.5067/Aura/OMI/DATA3006
http://www.fire.ca.gov/current_incidents/ incidentdetails/Index/1922
http://www.fire.ca.gov/current_incidents/ incidentdetails/Index/1922
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Figuur 3.3: Satellite data from the California fire event on 12 December 2017: (a) TROPOMI UVAI calculated from
the radiance at 354 and 388 nm; (b) TROPOMI ALH (unit: km); (c) MODIS AOD at 550 nm.

Figuur 3.4: The SSA retrieved by radiative transfer simulations as a function of ∆κ (∆κ= (κ354 −κ388)/κ388): (a) SSA
mean and standard deviation (filled region) of plume pixels; (b) SSA mean and standard deviation (filled region) of
the 15 AERONET co-located pixels; (c) absolute difference between the mean SSA of the 15 co-located pixels and
the AERONET retrieval.

as a function of ∆κ. The retrieved aerosol absorption decreases with ∆κ. This finding is in good
agreement with [Jethva and Torres, 2011a]. Gray aerosols (spectrally flat) require stronger absorption to
reach the same level of UVAI calculated by colored aerosols. This also explains the high SSA standard
deviation (filled area) in the cases with little or no spectral dependence on aerosol absorption. The
large difference in SSA (from 0.69±0.13 to 0.94±0.03) demonstrates that inappropriate assumptions of
the spectral dependence of particle refractive index can significantly bias the result, which should be
carefully handled in forward radiative transfer calculations.

The retrieved SSA is compared with the version 3 level 1.5 AERONET inversion product (https:
//aeronet.gsfc.nasa.gov, [Holben et al., 1998]). Only one site is within 50 km from the TROPOMI
plume pixels (UCSB, located at 119.845◦W, 34.415◦N) with only one record at 18:54:47 UTC, which is
nearly 3 hr ahead of the TROPOMI overpass. The SSA at 500 nm for this case is 0.98 (sky radiance error
15.8 %). There are 15 TROPOMI pixels co-located with UCSB. As illustrated in Figure 3.4 (b), the mean
SSA of the AERONET co-located pixels also increases with ∆κ and eventually levels off at 0.96.

The differences between the mean SSA of the co-located pixels and the AERONET are shown
in Figure 3.4 (c). The retrieved SSA starts falling inside the uncertainty range of AERONET (±0.03,
[Holben et al., 2006]) when ∆κ is 25%, where the plume SSA is 0.90±0.05 and the AERONET co-
located SSA is 0.96±0.02. Table 3.2 also presents the SSA provided by OMAERUV version 3 product
(https://doi.org/10.5067/Aura/OMI/DATA2004). OMI pixels are co-located with the AERONET
site in the same way as TROPOMI. The SSA of OMAERUV is 0.06 lower than that of AERONET, which
indicates that a 20% spectral dependence of the aerosol absorption in OMAERUV algorithm may be
not sufficient for this case. Although our retrieved SSA seems closer to the AERONET than OMAERUV,
one should keep in mind that there is only one record for this event, and the meteorological conditions,
combustion phases and even the aerosol compositions may change during the 3 hr time difference.

Figure 3.5 presents the spatial distribution of retrieved AAOD (derived by AAOD = (1-SSA)×AOD)
and SSA when ∆κ is 25 %, which shows a strong heterogeneity in the space. The plume center is

https://aeronet.gsfc.nasa.gov
https://aeronet.gsfc.nasa.gov
https://doi.org/10.5067/Aura/OMI/DATA2004
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Tabel 3.2: The retrieved SSA by radiative transfer simulations for the California fire on 2017-12-12.

Retrieval me-
thods

Number of
plume pixels

Retrieved SSA
(plume pixels)

SSAmax –
SSAmi n

Retrieved SSA
(co-located
pixels)

AERONET
SSA

OMAERUV
SSA

RTM with∆κ
= 25%

5217 0.90±0.05 0.38 0.95±0.02 0.98 0.92±0.01

Figuur 3.5: The AAOD and SSA retrieved by radiative transfer simulations for the California fire event on 12 December
2017 when ∆κ = 25%: (a) retrieved AAOD at 500 nm (derived by A AOD = (1−SS A)× AOD); (b) retrieved SSA at 500
nm.

most absorbing where the SSA is even less than 0.70. The SSA gradually increases when the plume is
transported northwards. SSA is expected to be low near source flaming regions [Eck et al., 2003, 2013,
1998], whereas it may become higher when aerosols are aging during transport [Lewis et al., 2009, Reid
et al., 2005]. The strong spatial variability in SSA is mainly dominated by the heterogeneity of the UVAI
(Figure 3.4 (a)) via the pixel-to-pixel numerical relationship. Depending on the combustion phase and
meteorological conditions, heterogeneity of the aerosol properties is expected for a plume of this scale.
Nevertheless, whether such a large SSA difference of 0.38 is reasonable requires further investigations (
will be discussed in Section 3.3.6).

3.3. EXPERIMENT 2: SSA RETRIEVAL USING SUPPORT VECTOR REGRESSION

In this section, we propose an empirical method to derive SSA as an alternative to the RTM-based
method in the first experiment. The motivation is that assumptions regarding aerosol micro-physics
in forward simulations are inevitable, and our knowledge of them is inadequate (particularly the
aerosol absorption spectral dependence). An inappropriate assumption may lead to significant bias
in retrieved SSA (Figure 3.4). Conversely, Machine Learning is applicable to solve ill-posed inversion
problems by learning the underlying behavior of a system from a given data set without explicitly
assuming aerosol micro-physics. In this paper, we construct an SVR model with UVAI, AOD and
ALH as input features and AAOD as the output variable, and then derive the SSA using the following
relationship:

SS A = 1− A AOD

AOD
(3.2)

The procedure of SVR retrieval is presented in Figure 3.6. This section starts with a brief introduc-
tion of SVR algorithm, followed by input feature selection (Section 3.3.2), training and testing data set
preparation (Section 3.3.3), SVR model hyper-parameter tuning (Section 3.3.4), error analysis (Section
3.3.5), and applications to specific cases (Section 3.3.6).
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Figuur 3.6: Flowchart of Support Vector Regression (SVR).

3.3.1. SUPPORT VECTOR REGRESSION
SVR is the regression variant of SVM [Drucker et al., 1997], a supervised non-parametric statistical
algorithm initially devised by Cortes and Vapnik [1995]. SVM is suitable for solving problems of small
training data sets with high-dimensional feature spaces and it can provide excellent generalization
performance [Durbha et al., 2007, Yao et al., 2008]. It has been extensively applied to solve remote
sensing problems [Di Noia and Hasekamp, 2018, Lary et al., 2009, Mountrakis et al., 2011]. The basic
idea of SVM for solving classification problems is finding an optimal hyperplane in a high-dimensional
feature space that maximizes the margin between the two classes to minimize mis-classification
[Durbha et al., 2007]. The same principle is applied to regression problems, where SVR attempts
to find an optimal hyper-plane that maximizes the margin of tolerance in order to minimize the
prediction error. The error within the margin does not contribute to the total loss function. The
samples on the margin are called support vectors. For the detailed mathematical formulation of SVR
one can refer to [Smola and Schölkopf, 2004]. Briefly, given the training data with n observations
(x1, y1), (x2, y2), ..., (xn , yn ), the statistical model is assumed to be as follows:

y = r (x)+δ (3.3)

where x is a multivariate input and y is a scalar output and both are with length n; δ is the
independent zero mean random noise. The input x is first mapped onto a feature space with dimension
of m by a nonlinear transformation, and then a linear model f (x) is constructed:

f (x) =
n∑

j+1
ω j g j (x)+b (3.4)

where the g j (x) is the nonlinear transformation, ω j is the model parameter vector and b is the
bias. SVR tries to find an optimal model from a set of approximate functions f (x). An approximate
function is assessed by a loss function (also called ε-insensitive loss in SVR), defined as:

L
(
y, f (x)

)={
0, |y − f (x)| ≤ ε

|y − f (x)|−ε, other wi se
(3.5)

then the total empirical risk is:

R(ω) = 1

n

n∑
i+1

L
(
yi , f (xi )

)
(3.6)

SVR performs linear regression in a high-dimension feature space using ε-insensitive loss, and
reduces the model complexity by minimizing the norm ‖ω‖2. By introducing non-negative slack
variables (ξi and ξ∗i ) to measure the deviations of errors outside ε, SVR problems can be formulated as
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below:

mi ni mi ze
1

2
‖ω‖2 +C

n∑
i+1

(ξi +ξ∗i )

s.t .


yi − f (xi ) ≤ ε+ξ∗i
f (xi )− yi ≤ ε+ξi

ξ∗i ,ξi ≥ 0

(3.7)

where C is a positive regularization constant determining the trade-off between model complexity
and the degree to which deviations larger than ε are penalized. The optimization problem can be
transferred into a dual problem by introducing the Lagrange multipliers (αi and α∗

i ) and thus the
solution becomes:

f (x) =
n∑

i=1
(αi −α∗

i )K (xi , x)+b

s.t .0 ≤αi ,α∗
i ≤C

(3.8)

where K (xi , x) is the kernel function that is positively semi-definite in order to satisfy the Mercer’s
theorem. The kernel function enables the SVR to solve nonlinear problems.

According to the description above, we know that SVR generalization performance and estimation
accuracy depend on the regularization constant C , the width of the tolerance margin ε and the kernel
function K (xi , x). We will discuss how to determine the three hyper-parameters in Section 3.3.4.

3.3.2. FEATURE SELECTION BASED ON OMI AND AERONET OBSERVATIONS
Although SVR is able to deal with high-dimensional input features, feature selection is still important
for generalization performance, computational efficiency and interpretability issues [Weston et al.,
2001]. Many sophisticated approaches have been devised for feature selection [Guyon and Elisseeff,
2003]. In this study, we choose features based on our empirical knowledge of UVAI and the Spearman’s
rank correlation coefficients (ρ).

CO-LOCATING OMI AND AERONET

The feature selection is based on the co-located OMAERUV version 3 product (https://doi.org/10.
5067/Aura/OMI/DATA2004) and AERONET version 3 level 1.5 inversion product (https://aeronet.
gsfc.nasa.gov). OMAERUV is currently the only satellite product containing a long-term record
of UVAI, AOD and SSA [Torres and Chen, 2013, Torres et al., 2007]. Its AOD was validated by the
multiyear AERONET record [Ahn et al., 2014], and its SSA was evaluated by AERONET retrievals [Jethva
et al., 2014]. The OMAERUV also provided ALH information, which is a best-guess from either of
pre-assumed values [Torres and Chen, 2013], for example, for retrieved carbonaceous particles (CB), if
its UVAI smaller than 0.5, then its height is set to be 1.5 km, otherwise, CALIOP ALH climatology will be
used (if available).

We collect the measurements of OMAERUV and AERONET from 1 January 2005 to 31 December
2017. OMI pixels with θ0 > 70◦ or CF > 0.1 are excluded. An OMI pixel is co-located to an AERONET
site if their spatial distance is within 50 km and their temporal difference is within 3 hr . To ensure
consistency between the different measurement techniques (ground-based versus space-borne), we
also exclude samples if the SSA difference between OMAERUV and AERONET is larger than 0.03, or the
AOD difference between OMAERUV and AERONET is larger than 5%. The AERONET SSA and AAOD are
linearly interpolated to 500 nm in order to compare with OMAERUV retrievals. In total, there are 5,679
samples obtained. Figure 3.7 shows the global distribution of the co-located OMAERUV–AERONET
samples. Note that these samples are not limited to biomass burning areas, but also contain other
aerosol types.

https://doi.org/10.5067/Aura/OMI/DATA2004
https://doi.org/10.5067/Aura/OMI/DATA2004
https://aeronet.gsfc.nasa.gov
https://aeronet.gsfc.nasa.gov
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Figuur 3.7: Global distribution of the OMAERUV-AERONET joint data set. The color indicates the number of
observations.

FEATURE SELECTION

The OMAERUV–AERONET joint data set consists of the following selected parameters: UVAI, geo-
metries (θ0, θ and ∆φ = φ−φ0 +180◦), As , Ps and ALH from OMAERUV, and SSA, AOD and AAOD
from AERONET. Note that the UVAI used here is the ‘residue’ term in OMAERUV product, where the

simulated radiance (I
Ray
λ

in Equation 3.1) is calculated by a simple Lambertian approximation that is
also used for the TROPOMI UVAI [Torres et al., 2018].

Figure 3.8 presents the Spearman’s rank correlation coefficients matrix (ρ) of those parameters. It
is clear that except for AAOD, SSA is barely associated with other parameters. The correlation between
UVAI and SSA is rather low (ρ = -0.25). Conversely, AAOD is highly correlated with UVAI (ρ = 0.66)
as well as AOD (ρ = 0.75), as AAOD carries the information of both aerosol absorption and aerosol
loading. Therefore, it is preferred to predict AAOD from given UVAI and to derive SSA via Equation
3.2 rather than directly predict SSA from UVAI. Furthermore, as mentioned previously, AOD and ALH
are the major factors influencing UVAI, which is also reflected by the relatively stronger correlation (ρ
= 0.66 and 0.4, respectively). Consequently, we construct an SVR model with UVAI, ALH and AOD as
the input features, and AAOD as the target variable to be predicted. UVAI also shows a relatively high
dependence on θ0 (ρ = -0.5), but in this study, we only focus on the aerosol-related features. Figure 3.9
presents the basic statistics of the relevant parameters.

3.3.3. PREPARING TRAINING AND TESTING DATA SETS

The SVR model is trained and tested based on the OMAERUV–AERONET joint data set that contains
5,679 samples. We further partition it into a training data set and a testing data set. The testing data set
is used to evaluate the generalization performance of the trained Machine Learning model in order
to avoid high bias (under-fitting) or high variance (over-fitting) problems. For a small data set, the
empirical ratio between the training data set and the testing data set is 70% versus 30%; thus, there are
3,975 samples in the training data set and 1,704 samples in the testing data set.

3.3.4. SVR HYPER-PARAMETERS TUNING

As described in Section 3.3.1, the generalization performance and model accuracy of SVR depends on
the following hyper-parameters: (1) the width of the insensitive zone ε. The cost function does not
consider errors in the training data as long as their deviation from the truth is smaller than ε; (2) the
regularization constant C that determines the trade-off between model complexity and the degree to
which deviations larger than ε are penalized; and (3) the choice of the kernel and the corresponding
parameters. Here we adopt the methodology from [Cherkassky and Ma, 2004], where the SVR parameter
C and ε can be directly determined from the statistics of the training data set:

C = max
(|ȳ +3σy |, |ȳ −3σy |

)
(3.9)
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Figuur 3.8: Spearman’s rank correlation coefficient matrix (ρ) of parameters from the OMAERUV-AERONET joint
data set.

Figuur 3.9: Statistics of the selected features and target variables: (a) OMAERUV UVAI calculated by radiance at
354/388 nm; (b) OMAERUV ALH (unit: km); (c) AERONET AOD at 500 nm; (d) AERONET AAOD at 500 nm; (e)
AERONET SSA at 500 nm.

ε= 3σ

√
ln(n)

n
(3.10)

where ȳ and σy are the mean and standard deviation of the output parameter in the training data
set; σ is the input noise level (we set it to 0.001); and n is the number of training samples. The values
determined for C and ε are shown in Table 3.3.

We employ the widely used radial basis function (RBF) kernel function to solve the non-linearity
in the SVR model. Compared with other kernel functions, RBF is relatively less complex and more
efficient. The RBF kernel is defined as:

K (xi , x) = exp

(
−‖xi −x‖2

2p2

)
(3.11)
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Tabel 3.3: Values for hyper-parameter: the regularization constant C , the width of the insensitive zone ε and the
BRF kernel parameter p2.

Parameters C ε p2

Values 0.09 0.0001 1.67

where p is the kernel width parameter that reflects the influencing area of the support vectors,
which is determined by hyper-parameter tuning on the testing data set [Durbha et al., 2007].

The RMSE of the training process may overestimate the accuracy of a SVR model if the validation is
based on the same data set. Instead, an independent testing data set is used to represent the accuracy
of the SVR model. The difference of the model accuracy between training and testing process reflects
the generalization performance of the SVR model. An ideal SVR model should output a low-level RMSE
and a small discrepancy between the RMSE of the training and testing processes. If the RMSE of the
testing process is much larger than that of the training process, the SVR may suffer from over-fitting
problems. Figure 3.10 shows the hyper-parameter tuning process of the RBF kernel parameter p2. It
is clear that when p2 = 1.67, the RMSE of the training process is relatively small, and so is the model
accuracy difference between the training process and the testing process. The final values of C , ε and p
that will be applied in the case studies are listed in Table 3.3. The corresponding RMSE of AAOD values
predicted by the training process and the testing process are at a level of 0.01 (Figure 3.11 (a)).

3.3.5. ERROR ANALYSIS
The quality of the SVR-predicted SSA depends on the model accuracy as well as the quality of input
data. The model accuracy can be represented by the RMSE of the testing process (0.01). As shown
in Figure 3.11 (a), the SVR model has difficult predicting samples with AAOD values larger than 0.05,
reflected by significant biases at this range. The uncertainty in AAOD is passed to the SSA via Equation
3.2. Figure 3.11 (b) shows the retrieved SSA in the training and testing processes. It is noted that the
predicted SSA is generally positively biased, particularly in strong absorption cases (SSA < 0.90). This is
possibly due to the bias in the feature domain, where the UVAI is relatively strongly correlated with
other factors (i.e., AOD and ALH) that may contain redundant information which adversely impacts
model performance [Durbha et al., 2007, Weston et al., 2001]. In future, a more sophisticated feature
selection scheme is suggested to reduce the redundancy, e.g. the Minimum Redundancy Maximum
Relevance (mRMR, [Hanchuan Peng et al., 2005]). Moreover, the RBF kernel function may not capable
enough to solve the non-linearity between the features. The accuracy of SSA predicted by the testing
data set is ±0.02, with 82% of samples falling into the uncertainty range (±0.03) of the AERONET SSA.

The error of the retrieved SSA due to the quality of the input data may also come from the obser-
vational or retrieval uncertainties in input features. The SSA sensitivity to the errors in input data is
presented in Figure 3.12. We use the mean value of each parameter in the OMAERUV–AERONET data
set as reference values (Figure 3.9, UVAI = 1.59, ALH = 2.96 km, AOD = 0.39), and the corresponding SSA
value is 0.94. The positive bias of UVAI always leads to an underestimation of SSA, unless the aerosol
layer is located at a relatively high altitude or there is little aerosols. Conversely, the small UVAI causes
the overestimation of SSA, except for cases where the ALH is low or the AOD is high. The sensitivity of
SSA to UVAI is weaker when the aerosol layer is close to the surface or at a very high altitude, and the
sensitivity of SSA to UVAI always increases with AOD.

3.3.6. CASE APPLICATIONS
Once the hyper-parameters are determined (Section 3.3.4), the trained SVR model is ready to predict
aerosol absorption. We apply it to the California fire event in December 2017, the same as that in the
first experiment. To demonstrate the generalization capability of the SVR model, we also apply it to
other fire events as long as there are co-located TROPOMI, MODIS and AERONET-retrieved AAOD/SSA
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Figuur 3.10: The performance of the SVR model as a function of hyper-parameters (C , ε and p2). The cross markers
represent the values of C and ε according to [Cherkassky and Ma, 2004]. A p2 value equal to 1.67 is sufficient to
obtain a relatively high accuracy meanwhile preventing over-fitting problem.

Figuur 3.11: The accuracy of the trained SVR model: (a) the predicted AAOD at 500 nm against the truth. The
dashed line is the 1:1 line, and the solid line is the linear fitting for the testing data set; (b) the predicted SSA at 500
nm against the truth. Gray and red indicate samples in training and testing data sets, respectively. The values in
parentheses are the statistics for samples that fall within the AERONET SSA uncertainty of ±0.03.

available for comparisons.
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Figuur 3.12: The sensitivity of the SVR retrieved SSA: (a) SSA at 500 nm as a function of changes in UVAI and ALH;
(b) SSA at 500 nm as a function of changes in UVAI and AOD.

For all applications, the input parameters in the trained SVR model are the TROPOMI UVAI
(calculated using the 354/388 nm), the TROPOMI ALH and the MODIS AOD, respectively. The MODIS
AOD at 550 nm is converted to 500 nm usingα provided by the co-located AERONET site. Note that the
data include pixels with a CF>0.1 in order to ensure that there are satellite measurements co-located
with the AERONET sites.

CALIFORNIA FIRE EVENT ON 12 DECEMBER 2017
Figure 3.13 presents the retrieved AAOD and corresponding SSA. Recall that that UVAI and AOD are
higher in the center of the plume, whereas ALH is relatively lower (Figure 3.3), the retrieved SSA
should be smaller to compensate for the low altitude of the aerosol layer according to Figure 3.12.
However, the SVR retrieved SSA is even higher than its surroundings. This is because the UVAI and
AOD values at this region are outside the distribution of training data set, as shown in Figure 3.9.
The OMAERUV–AERONET joint data cannot cover these extreme situations. Consequently, the SVR
model fails to handle the input values outside of the range of the training data set. The reason for
this may be that the joint data set is relatively small as a result of the limited data availability and the
strict co-location criteria, or that the quality of the joint data suffers from observational or retrieval
uncertainties.

The mean SSA of the plume is 0.94±0.01 (including the failed pixel predictions) and that for the
AERONET co-located pixels is 0.97±0.01 (Table 3.4). The SVR-predicted SSA may be overestimated,
whereas the standard deviation may be underestimated due to the SVR prediction failures of some
samples. The difference between the mean SSA of validation pixels (co-located to the AERONET site)
and the AERONET retrieval is only 0.01, which is within the typical uncertainty range of AERONET
(±0.03).

OTHER CASE APPLICATIONS

To present the generalization performance of the SVR model, we apply it to other fire events as long as
there is co-located data of TROPOMI, MODIS and AERONET. The same pre-processing is applied as in
the previous case in order to exclude pixels with UVAI<1, AOD<0.5 or CF>0.3.

Figures 3.2 (b-d) present the California fire events during the period from 9 to 11 November 2018.
The plumes were over ocean but were partly contaminated by the underlying clouds. Figures 3.2 (e)
shows the Canadian fire event on 29 May 2019. This case was over land, which means that the brighter
surface may cause a higher bias in the input AOD and ALH than cases over dark surfaces [Remer et al.,
2005, Sanders et al., 2015].
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Figuur 3.13: SVR prediction for California fire event on 2017-12-12: (a) the predicted AAOD at 500 nm; (b) the
predicted SSA at 500 nm.

Tabel 3.4: SVR predicted SSA for different cases. If there is no standard deviation, then it indicates there is only one
record.

Case Number of
Plume pixels

Retrieved
SSA (plume
pixels)

SSAmax
–
SSAmi n

Co-located
AERONET

SSA (co-
located-
pixels)

AERONET
SSA

OMAERUV
SSA

2017/12/12 5217 0.94±0.01 0.09 UCSB 0.97±0.01 0.98 0.92±0.01

2018/11/9 1944 0.94±0.01 0.1
Santa_Mon-
ica_Colg

0.93±0.01 0.89±0.06 0.89±0.06

2018/11/10 2184 0.94±0.02 0.1

CalTech 0.96±0.01 0.89±0.07 -
Fresno_2 0.93±0.02 0.91±0.01 -
Modesto 0.94±0.01 0.92±0.01 0.96±0.01
USC_SEAP-
RISM_2

0.93±0.00 0.9 0

2018/11/11 2815 0.95±0.02 0.09 Modesto 0.98±0.00 0.96±0.01 0.95±0.00

2019/5/29 8013
0.97±0.02 0.10 Fort_McKay 0.97±0.02 0.95±0.00 0.93

0.1
Fort_McMur-
ray

0.98±0.01 0.93 1.00

The predicted SSA for the above mentioned events is listed in Table 3.4. Similar to the California
case on 12 December 2017, the SVR fails to predict reasonable SSA for pixels if input features fall outside
the histogram in of the training data set (Figure 3.9), causing positive biases in the plume mean SSA.
The plume SSA of two California fire events are similar, with values of around 0.94–0.95. The predicted
SSA for the Canadian fire is relatively higher (0.97).

We further plot the predicted SSA against the co-located AERONET records (black crosses in
Figure 3.14). There are 9 co-located records obtained. The difference between SVR and AERONET
retrieved SSA are almost within ±0.05, among which over half (5 out of 9) fall within the AERONET SSA
uncertainty range (±0.03). We also provide SSA from OMAERUV for these cases (Table 3.4 (blue circles
in Figure 3.14). Compared with OMAERUV, the SSA predicted by SVR shows a better consistency with
AERONET, although one should keep in mind that the accuracy of SVR model is ±0.02 and the model
tends to overestimate the SSA for relatively stronger absorbing cases.

SPATIAL VARIABILITY OF RETRIEVED SSA
Compared with Figure 3.5 (b), the spatial variability of the SVR-predicted SSA is smaller: the difference
between maximum and minimum SSA is at level of around 0.10 (Table 3.4). In the first experiment,
SSA is determined by UVAI of each pixel individually. In the SVR model, the spatial variability of the
intermediate output AAOD depends on 3 input features. Furthermore, SVR predicts AAOD for each
pixel based on the common relationship between UVAI, AOD and ALH in the training data set.

Heterogeneity in aerosol properties is expected for a plume of this size. However, the degree
of this heterogeneity requires further investigations. Here we assess the SSA spatial variability of
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Figuur 3.14: SVR-retrieved SSA (black cross) and OMAERUV-retrieved SSA (blue circle) against AERONET SSA at 500
nm for all 5 cases in this study.

Figuur 3.15: MERRA-2 M2T1NXAER averaged between 12:00 and 15:00 local time for the California fire event on
2017-12-12: (a) AOD at 500 nm; (b) SSA at 500 nm

an independent data set. We employ the SSA from the MERRA-2 aerosol reanalysis hourly single-
level product (https://disc.gsfc.nasa.gov/datacollection/M2T1NXAER_5.12.4.htm). The
aerosol properties of MERRA-2 have proved to be in good agreement with independent measurements
[Buchard et al., 2017, Randles et al., 2017]. MERRA-2 AOD and SSA of the California fire on 12 December
2017 are shown in Figure 3.15. The plume can be recognized by high AOD against the background value.
Although the plume shape presented by satellite observations differs from that of model simulations,
the SSA spatial difference within the plume is at an approximate magnitude of 0.1. We thus find that
the spatial variability of SSA retrieved by the SVR model is in better agreement with that of MERRA-2.
The same conclusion can be drawn for other cases (not shown).

3.4. CONCLUSION
The long-term record of global UVAI data is a treasure for deriving aerosol optical properties such as
SSA. To quantify aerosol absorption from UVAI, information on AOD and ALH is necessary. Currently
various AOD products are available, whereas operational ALH products are much less accessible.

In the first experiment, we derive the SSA by forward radiative transfer simulating UVAI for a

https://disc.gsfc.nasa.gov/datacollection/M2T1NXAER_5.12.4.htm
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fire event in California on 12 December 2017. Using the TROPOMI ALH, we are able to quantify the
influence of assumed spectral dependence of near-UV aerosol absorption (represented by the relative
difference between κ354 and κ388) on the retrieved SSA. A significant gap in plume mean SSA (0.25)
between the spectrally flat aerosols (∆κ = 0%) and aerosols with strong spectral dependence(∆κ =
40%) implies that inappropriate assumptions regarding spectral dependence may significantly bias the
retrieved aerosol absorption. The SSA difference becomes smaller than the uncertainty of AERONET
(±0.03) when ∆κ = 25%. The corresponding plume SSA is 0.90±0.05.

In the second part of this study, we propose a statistical method based on the long-term joint data
of UVAI, AOD, ALH and AAOD using a SVR algorithm, in order to avoid making the assumptions of the
aerosol absorption spectral dependence in the near-UV band. Considering all applications, the results
are encouraging: the SSA discrepancy between retrievals and AERONET for almost all co-located
samples is within ±0.05, and over half of them fall within the AERONET uncertainty range (±0.03).
However, one should keep in mind that the SVR model tends to overestimate the SSA for strongly
absorbing cases (e.g. SSA < 0.90), and fails to predict reasonable SSA when input values fall outside the
distribution of the training data set.

In terms of spatial variability, the SSA derived by radiative transfer simulations significantly differs
from that predicted by SVR. We employ the MERRA-2 SSA as an independent reference, and the spatial
difference of this data within smoke plume is at a magnitude of approximately 0.1. The spatial pattern
of the SVR-predicted SSA shows better agreement with this finding.

In this study, we present the potential to retrieve SSA using a Machine Learning method. The
motivation is to avoid a priori assumptions on aerosol micro-physics such as those made in the radiative
transfer simulations. In the current phase, we choose SVR because the size of the training data set is
relatively small (less than 5,000). The input features are selected by the Spearman’s rank correlation
coefficients and a priori knowledge on the relationship between UVAI and aerosol-related features.
The model hyper-parameters are analytically determined. The accuracy of SVR model predictions is
±0.02, with a tendency to overestimate the SSA for highly absorbing cases. The OMAERUV–AERONET
data set cannot cover some extreme situations. As a result, prediction failures appear when the input
values fall outside the distribution of the corresponding parameters in the training data set. In the
future, more sophisticated feature selection techniques should be used to improve the prediction.
Other non-aerosol features affecting UVAI could also be taken into consideration. Moreover, we use the
OMAERUV ALH to train the SVR model, whereas it is not retrieved from measurements but a best-guess
from model and a priori assumptions. The high-resolution TROPOMI level 2 ALH product brings the
potential to increase the data availability and improve the quality of the training data set, which allows
to use to more powerful algorithms (e.g. ANN) in this kind of applications.
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Nanda, S., and Levelt, P. F.: Defining aerosol layer height for UVAI interpretation using aerosol vertical distributions
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4.1. INTRODUCTION
The satellite Ultra-Violet Aerosol Index (UVAI) is a qualitative measure of aerosol absorption which has
a long-term global record since 1978 [Herman et al., 1997a]. It describes the change of the radiance
contrast between two UV channels (λ1 < λ2) due to the presence of absorbing aerosols:

UV AI =−100

log10

(
Iλ1

Iλ2

)obs

− l og10

(
Iλ1

Iλ2

)Ray
 (4.1)

where obs indicates the satellite measured radiance in a real atmosphere, and Ray indicates the
simulated radiance in a Rayleigh atmosphere. A positive UVAI value implies the presence of absorbing
aerosols, whereas a neutral or negative value implies the non-absorbing atmospheric components.
UVAI has been widely used for absorbing aerosol detection (e.g. [Alpert and Ganor, 2001, Chiapello
et al., 1999, Duncan et al., 2003a,b, El-Askary et al., 2006, Ginoux and Torres, 2003, Hsu et al., 1999,
Israelevich et al., 2002, Krotkov et al., 1999, Krueger et al., 2008, Moulin and Chiapello, 2004, Seftor et al.,
1997, Spichtinger et al., 2001, Wang et al., 2008b, Yuan et al., 2011]), aerosol classification (e.g. [Koukouli
et al., 2006, Lee et al., 2007, Torres and Chen, 2013]), and chemistry transport model validation (e.g.
[Buchard et al., 2015, 2017, Chiapello et al., 1999, Hammer et al., 2016]). It is also possible to derive
quantitative aerosol absorptive properties (e.g. SSA and AAOD) from UVAI, if both the aerosol optical
depth (AOD) and the aerosol vertical distribution are known (e.g. [Hu et al., 2007, Jeong and Hsu, 2008,
Sun et al., 2018, 2019]). This kind of applications is meaningful to reduce uncertainties of aerosol
radiative forcing assessments [Loeb and Su, 2010, McComiskey et al., 2008, Penner et al., 2001], as the
aerosol absorption is a key parameter but poorly understood due to limited observations.

UVAI has a long-term global record since 1978, as listed in Table 1.1 (page 24). Correspondingly,
AOD products are also contributed by various satellites covering a long time-span (e.g. ATSR families,
MODIS/Terra and Aqua since 1999/2002, MISR/Terra since 2002, OMI/Aura since 2004, SLSTR/Sentinel
3 since 2016, etc.) [Sogacheva et al., 2020], and there are also ground-based systems for AOD validation
and synergism (e.g. AERONET). However, observations of the aerosol vertical distribution do not have
such a spatial and temporal coverage comparable to that of AOD and UVAI. Currently, the observational
aerosol vertical distribution is mainly offered by two types of measurements [Xu et al., 2018b]. The first
is aerosol profiles retrieved from the backscattered signal of either space-borne lidar (e.g. [Flamant
et al., 2008, Schutz et al., 2005, Winker et al., 2009]) or ground-based lidar networks (e.g. [Pappalardo
et al., 2014, Welton et al., 2001]). Another is aerosol layer heights (ALH) retrieved from columnar
radiation measurements of passive sensors. There are various techniques developed, including stereo
photogrammetry (e.g. [Nelson et al., 2013, Virtanen et al., 2014]), UV polarization (e.g. [Dubovik
et al., 2011, Kokhanovsky et al., 2015, Wu et al., 2016a]), dust properties in the infrared-thermal band
(e.g. [Pierangelo et al., 2004, Vandenbussche et al., 2013]), and oxygen absorption spectroscopy (e.g.
[Boesche et al., 2009, Chimot et al., 2017, Ding et al., 2016, Dubuisson et al., 2009, Duforêt et al., 2007,
Nanda et al., 2019, Sanders et al., 2015, Sanders and De Haan, 2016, Sanghavi et al., 2012, Tilstra and
Stammes, 2019, Wang et al., 2014, Xu et al., 2017]).

Whereas lidar measurements provide a great amount of details on aerosol profiles, they are sub-
jected to limited spatial and/or temporal coverage. Compared with aerosol profiles, aerosol heights
are easier for quantitative analysis, but most aerosol height retrieval algorithms are only applicable
under certain conditions, e.g. elevated aerosol layers, over dark surfaces, exclusively for dust aerosols,
cloud-free, etc. As a result, in order to derive global aerosol absorptive properties from UVAI on a daily
basis, a corresponding observational aerosol vertical distribution data is currently still absent.

The purpose of this study is to break the limitation posed by observations. We will construct a global
daily aerosol height database with help of the aerosol profiles provided by a chemistry transport model.
We choose the MERRA-2 aerosol reanalysis, whose aerosol fields are generally in good agreement
with independent observations [Buchard et al., 2017, Randles et al., 2017]. In the next section, we first
present the UVAI dependence on the aerosol height using radiative transfer simulations, and provide
the evidence found in satellite observations (Section 4.2). The results of this section are used to the
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evaluate the aerosol heights derived from the chemistry transport model. In Section 4.3, after a brief
introduction of the MERRA-2 aerosol reanalysis, we propose several methods that derive the aerosol
height from the MERRA-2 aerosol profiles, and inspect the relation between the derived aerosol heights
and UVAI based on the findings in Section 4.2. Section 5.4 summaries the conclusions and outlooks for
future applications.

4.2. UVAI DEPENDENCE ON AEROSOL HEIGHT

4.2.1. RADIATIVE TRANSFER SIMULATIONS

The UVAI dependence on the aerosol height is well-studied [de Graaf et al., 2005, Herman et al., 1997a,
Hsu et al., 1999, Sun et al., 2018, Torres et al., 1998]. In general, UVAI is positively related to the
aerosol height, but their relation also depends on AOD, aerosol absorption and surface brightness.
Here, we set up a sensitivity study to recall how UVAI changes with the aerosol height under different
situations by the radiative transfer model DISAMAR [de Haan, 2011]. In the forward simulations,
the aerosol types are characterized by the Mie Theory with aerosol size distribution and refractive
index taken from the OMAERUV algorithm [Jethva and Torres, 2011a]. The aerosol profile is para-
meterized as a homogeneous layer with a constant depth of 50 hPa. The input AOD at 550 nm is
set to vary between 0.01 and 3, and the aerosol height is set to vary between 0.5 and 12 km. The
wavelength dependency of surface albedo (As ) is specified by the OMI level 3 Lambertian equiva-
lent reflectance (LER) monthly climatology calculated from measurements between 2005 and 2009
(https://doi.org/10.5067/Aura/OMI/DATA3006, [Kleipool et al., 2008]). Other inputs for radiative
transfer simulations are listed in Table 4.1. We design several scenarios by choosing either absorbing
(lower SSA) or less-absorbing/scattering (higher SSA) aerosols over either a dark/bright surface.

Figure 4.1 shows the UVAI as a function of the aerosol height under different AOD and As for dust
(first row), smoke (second row), and sulfate (third row) aerosols from the OMAERUV algorithm. When
aerosols are located at higher altitude, more photons scattered by the air molecules below the layer are
either absorbed or shielded by aerosols. With reduced radiation measured by a satellite, the change in
the radiance contrast becomes larger, resulting in a larger UVAI. The higher the aerosol loading, the
stronger UVAI dependence on ALH. However, this dependence becomes weaker over brighter surfaces,
particularly when the aerosol loading is small (Figure 4.1 (b, e and h)). On the other hand, a weaker
altitude dependence is found for less-absorbing (dust and smoke with higher SSA, Figure 4.1 (c, f)) and
scattering aerosols (Figure 4.1 (g, h and i)). The above findings are in agreement with previous studies,
although some of them using different aerosol profile parameterizations de Graaf et al. [2005], Herman
et al. [1997a], Hsu et al. [1999], Sun et al. [2018], Torres et al. [1998]. As the influence of As is negligible,
we will not include it in the further analysis.

Tabel 4.1: Configurations of UVAI radiative transfer simulations by DISAMAR.

Parameter Value
Aerosol optical thickness at 550 nm (AOD550) From 0.01 to 3
Aerosol layer pressure [hPa] From 200 to 950 hPa (approxima-

tely 0.5 to 12 km)
Aerosol layer thickness [hPa] 50
Solar zenith angle (SZA) [◦] 30
Viewing zenith angle (VZA) [◦] 0
Relative azimuth angle (RAA) [◦] 120
Surface pressure (Ps ) [hPa] 1013
Surface albedo at 388 nm (As,388) 0.03, 0.3

https://doi.org/10.5067/Aura/OMI/DATA3006
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Figuur 4.1: Sensitivity study of UVAI dependence on ALH for dust (a-c), smoke (d-f) and sulfate (g-i) aerosols with
different As and SSA.

4.2.2. EVIDENCE FROM SATELLITE OBSERVATIONS
The above UVAI altitude dependence is also found in satellite observations. For example, Xu et al.
[2019] showed the relation of UVAI, ALH and AOD retrieved from Earth Polychromatic Imaging Camera
onboard DISCOVR for smoke aerosols, where an increasing correlation between UVAI and ALH with
growing AOD was found. Here, we present the evidence retrieved from TROPOMI and GOME-2, as
they can provide both UVAI and ALH products.

TROPOMI O2 A-BAND AEROSOL LAYER HEIGHT

The TROPOMI O2 A-band ALH is developed to detect vertically localized aerosol layers in the free
troposphere, e.g. dust storms, biomass burning, and volcanic plumes [Sanders and De Haan, 2016]. The
ALH is based on the O2 absorption in the near-infrared (758-770 nm). A higher O2 absorption implies
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a longer absorption light path above an aerosol layer, i.e. a lower aerosol height [Sanders et al., 2015].
The operational TROPOMI ALH is produced by a Neural Network model for higher computational
efficiency [Nanda et al., 2019]. The training data is prepared by radiative transfer simulations for a fixed
Henyey-Greenstein aerosol model (SSA, the Ångström Exponent and the asymmetry factor at 550 nm
are 0.95, 0, and 0.7, respectively) under different environmental and measurement conditions. The
validation study shows that the CALIOP ALH is generally higher than TROPOMI by approximately 1
km over ocean, whereas a larger difference (2.4 km) is found over land [Nanda et al., 2020].

In this study, we collect the TROPOMI level 2 offline ALH product from 2018-11-03 to 2019-08-31
(https://s5phub.copernicus.eu/dhus/#/home). We only retain pixels with successful retrievals
(Processing Quality Flags = 0) and full quality data (qa_value = 1). This automatically excludes pixels
affected by sun-glint, clouds, bright surfaces (snow and ice) and UVAI (calculated by 354-388 nm
wavelength pair) smaller than 1. Furthermore, to avoid the Neural Network extrapolation, samples
are kept only if they fall within the distribution of the training data as described in Nanda et al. [2019]:
AOD at 550 nm is between 0.05 and 5, SZA is between 8.2◦ and 70◦, Ps is between 520 and 1048.5 hPa,
As is (at 550 nm) smaller than 0.7, and the retrieved ALP is between 75 and 1000 hPa.

GOME-2 ABSORBING AEROSOL HEIGHT

The GOME-2 absorbing aerosol height (AAH) is developed based on the FRESCO cloud product [Wang
et al., 2008a]. FRESCO retrieves the effective cloud pressure and the cloud fraction using the reflectance
of O2 A-band at 760 nm. This wavelength is also suitable to retrieve ALH for cloud-free cases [Boesche
et al., 2009, Dubuisson et al., 2009, Sanders et al., 2015], and since aerosols are treated in the same
way as clouds in FRESCO, Wang et al. [2012] attempted to derive the aerosol layer pressure from the
FRESCO cloud product. Their study led to the operational GOME-2 AAH product [Tilstra and Stammes,
2019], where heights of absorbing aerosols (UVAI calculated by 340-380 nm wavelength pair > 2) is
determined by either cloud pressure or scene pressure according to the cloud fraction and the cloud
albedo.

We collect AAH products provided by the GOME-2/Metop-A, B and C from 2018-08-01 to 2019-10-
31. Pixels with SZA larger than 70◦, or those affected by sun-glint or solar eclipse events are removed
(AAH_Error_Flag = 0). Unconverged pixels due to computational failures with AAH set to be 15 km are
also excluded. To assure the higher reliability, it is suggested to use samples with UVAI larger than 4
and the could fraction lower than 0.25 Tilstra and Stammes [2019].

UVAI DEPENDENCE ON AEROSOL HEIGHTS RETRIEVED FROM SATELLITE OBSERVATIONS

Previous studies found that the relationship between UVAI and ALH is almost linear [de Graaf et al.,
2005, Herman et al., 1997b, Torres et al., 1998], thus, similar to the analysis in Xu et al. [2019], we
investigate the UVAI dependence on the TROPOMI and GOME-2 ALH products as a function of AOD,
and use the correlation coefficient (R2) and the linear regression fit to quantify the dependence. In order
to avoid extreme outliers of the retrievals, an additional 1.5 times inter-quartile range (IQR =Q3−Q1,
where Q1 and Q3 are the first and the third quartile, respectively) is applied [Tukey, 1977]. There are
total 75,249 TROPOMI samples and 5,159 GOME-2 samples left after the IQR filtering.

As both TROPOMI and GOME-2 do not have official AOD products yet (the TROPOMI ALH algo-
rithm retrieves AOD, but it is only a diagnostic tool to indicate influence of bright surfaces and unde-
tected clouds [Nanda et al., 2019]), we co-locate the Dark Target and Deep Blue combined AOD at 550
nm of the MODIS level 3 Daily Atmosphere Gridded Product [King et al., 2013] to the TROPOMI ALH
(MYD08_D3, http://dx.doi.org/10.5067/MODIS/MYD08_D3.006) and the GOME-2 ALH (over-
pass time: 10:30 local time, MOD08_D3, http://dx.doi.org/10.5067/MODIS/MOD08_D3.006).
Next, we manually divide each data into 4 groups according to AOD, and provide the R2 between
UVAI and ALH. In each AOD group, we further divided the data into log2(n) clusters based on the
distribution of the ALH products using K-means, where n is the number of the samples in each AOD
group. A linear fitting is applied to the mean UVAI and the mean ALH of the binned data.

https://s5phub.copernicus.eu/dhus/#/home
http://dx.doi.org/10.5067/MODIS/MYD08_D3.006
http://dx.doi.org/10.5067/MODIS/MOD08_D3.006
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Figuur 4.2: The TROPOMI UVAI (354-388 nm) against the TROPOMI O2 A-band ALH as a function of the MODIS
AOD at 550 nm. In each AOD group, the number of samples (gray dots) N and the correlation coefficient R2

between ALH and UVAI are provided. Red triangles indicate the boundaries of ALH bins. The blue dot is the mean
ALH and UVAI of each ALH bin, and the error bar is the standard deviation of UVAI of that bin. A linear regression is
fit for the binned ALH and AOD values (blue dots).

Figuur 4.3: The GOME-2 UVAI (340-380 nm) against the GOME-2 AAH as a function of the MODIS AOD at 550 nm.
In each AOD group, the number of samples (gray dots) N and the correlation coefficient R2 between ALH and UVAI
are provided. Red triangles indicate the boundaries of ALH bins. The blue dot is the mean ALH and UVAI of each
ALH bin, and the error bar is the standard deviation of UVAI of that bin. A linear regression is fit for the binned ALH
and AOD values (blue dots).

Figure 4.2 presents the relationship between the TROPOMI ALH and its corresponding UVAI
product as a function of the MODIS AOD. The R2 is only at level of 0.1 when the MODIS AOD is smaller
than 1.25, but it increases gradually with AOD, and reaches 0.52 in the highest AOD group. The growing
slope (k) of linear fitting on the binned data (blue dots) also presents an increasing sensitivity of UVAI
to the changes in ALH. A similar relationship is found between the GOME-2 UVAI and AAH (Figure 4.3)
but with higher R2 than that of TROPOMI (ranges from 0.32 to 0.56). It is because that the TROPOMI
ALH retains data with UVAI larger than 1, where weakly-absorbing or non-absorbing aerosols may
weaken the dependence, whereas the GOME-2 AAH is only retrieved for strongly absorbing aerosols
(UVAI larger than 4). The above is in good agreement with that presented by the radiative transfer
simulations, and that found in the EPIC UVAI, ALH and AOD [Xu et al., 2019].

4.3. MERRA-2 AEROSOL HEIGHTS
As mentioned in Section 4.1, we will construct an aerosol height data set from the MERRA-2 aerosol
profiles. This section starts with a brief introduction and validation of MERRA-2 aerosol reanalysis
data. Then, we introduce various methods to derive an aerosol height from a given aerosol extinction
profile, and investigate whether the UVAI dependence on the derived aerosol heights is in agreement
with that found in the radiative simulations and satellite observations described above.
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4.3.1. MERRA-2 AEROSOL REANALYSIS
MERRA-2 is the latest modern satellite era (1980 onward) atmospheric reanalysis from NASA GMAO
[Buchard et al., 2017]. The spatial resolution is 0.5◦ × 0.625◦ latitude by longitude with 72 hybrid-
eta layers from the surface up to 0.01 hPa. MERRA-2 assimilates multiple observational AOD data,
including MODIS, AVHRR, AERONET and MISR [Randles et al., 2017]. Compared with the control run
without AOD assimilation, an improved agreement between MERRA-2 and independent observations
is found for aerosol optical properties and aerosol vertical distributions [Buchard et al., 2017].

In this work, we use the MERRA-2 3-hourly instantaneous aerosol mass mixing ratio profiles
(MERRA-2 inst3_3d_aer_Nv, 10.5067/LTVB4GPCOTK2) to derive aerosol heights. The selected period
is from 2006-01-01 to 2016-12-31. We use the mean value between 12:00 and 15:00 local time in order
to be consistent with the satellite observations that are of most interests to us (i.e. OMI and TROPOMI,
both have an overpass at 13:30 local time, [Levelt et al., 2006, Veefkind et al., 2012]).

CONVERSION FROM THE MASS MIXING RATIO TO THE EXTINCTION COEFFICIENTS

MERRA-2 provides mass mixing ratio profiles for 15 aerosol sub-species, including dust (5 size bins),
sea salt (5 size bins), hydrophobic/hydrophilic black and organic carbon (BC and OC), and sulfate
(SO−2

4 ). A conversion from mass concentrations (c, unit: kg kg−1) to extinction coefficients (β, unit:

km−1) is as follows:
ρx (z) = cx (z)×ρai r (z) (4.2)

βx (z) = ρx (z)×βm,x (z) (4.3)

where cx (z) is the mass mixing ratio (unit: kg kg−1) of an aerosol type x at an altitude z (unit: m).
ρai r (z) and ρx (z) are the mass density (unit: kg m−3) of the air and the aerosol species x. βm,x (z)
and βx (z) are the mass extinction coefficients (unit: m2kg−1) and the extinction coefficients (unit:
m−1) for the aerosol species x. The aerosol mass extinction coefficient βm,x (z) is a function of relative
humidity, whose values are provided in the supplementary document of [Randles et al., 2017]. The
total extinction profile β(z) is the summation of the contribution by X aerosol species:

β(z) =
X∑

x=1
βx (z) (4.4)

Hereinafter, the term ’MERRA-2 aerosol profiles’ indicates the ’aerosol extinction coefficient
profiles’ by default.

MERRA-2 VALIDATION WITH CALIOP
Aerosol extinction profiles simulated by chemistry transport models may have an order of magnitude
difference [Kipling et al., 2016, Koffi et al., 2012]. Here we use the CALIOP level 3 all-sky aerosol
extinction profiles from 2006 to 2016 and http://10.0.19.203/CALIOP/CALIPSO) to validate the
MERRA-2 extinction profiles in the troposphere (below 12 km). The level 3 climatology is monthly
available since June 2006. Its vertical and horizontal resolution is 60 m and 2◦×5◦ (latitude by longitude).
As the CALIOP climatology reports aerosol optical properties at 532 nm only, one should keep in mind
that the extinction coefficient in the visible band has a lower measurement sensitivity in the lower part
of the atmosphere due to strong attenuation by smoke [Kacenelenbogen et al., 2014, Kim et al., 2013,
Liu et al., 2015, Torres and Chen, 2013].

Figure 4.4 shows the seasonal zonal aerosol extinction coefficient profiles (β(z)) as a function of
latitude. The magnitude of the MERRA-2 extinction coefficients in the upper troposphere are generally
higher than that of CALIOP. It may because that the MERRA-2 aerosol fields has higher background level
of extinction coefficients. Besides, the CALIOP measurements suffer from problems of missing data
or attenuated signal due to presence of clouds, heavy aerosol layers, underlying bright surfaces, etc.,
which may reduce the measurement sensitivity. Figure 4.5 shows the seasonal AOD maps calculated
by the extinction coefficients below 12 km. The largest differences between CALIOP and MERRA-2

10.5067/LTVB4GPCOTK2
http://10.0.19.203/CALIOP/CALIPSO
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Figuur 4.4: Seasonal extinction coefficient (β(z)) profile as a function of latitude of CALIOP (left column) and
MERRA-2 (right column) during period from 2006 to 2016.

occur at the Sahara region over all seasons, the biomass burning regions in the southern Africa during
SON, and smoke plumes over the southern Atlantic Ocean during JJA and SON. Nevertheless, the
spatial distribution and temporal variation of the MERRA-2 aerosol fields on a global scale generally
correspond well with that of CALIOP.

4.3.2. DERIVING AEROSOL HEIGHTS FROM THE MERRA-2 AEROSOL PROFILES
There are various methods to derive an aerosol height from a given aerosol extinction profile [Xu et al.,
2018b]. It could be an averaged height weighed by the aerosol optical properties in vertical layers. An
alternative is the scale height at which the aerosol extinction profile or the cumulative extinction profile
passes a pre-determined threshold. An other common method is to find the geometrical boundary or
center of a given profile. Below, we introduce the above methods (also summarized Table 4.2) in detail,
and apply them to the MERRA-2 aerosol extinction profiles. Note that all aerosol heights are calculated
for full profiles from the surface to the top of atmosphere (TOA), and they are relative to the terrain
height by default unless it is mentioned otherwise.

AEROSOL OPTICAL PROPERTIES-WEIGHTED MEAN HEIGHT

Given an aerosol extinction coefficient profile (β(z)) with n layers, a common way to derive the aerosol
height is calculating the mean height weighted by the extinction coefficient in each atmospheric height
interval (Equation 4.5, [Chimot et al., 2018, Koffi et al., 2012, Kylling et al., 2018, Liu et al., 2019] or by
the AOD in each atmospheric height interval (Equation 4.6, [Wu et al., 2016b]).

H
β
aer =

∑n
i=1β(zi )zi∑n

i=1β(zi )
(4.5)
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Figuur 4.5: Seasonal AOD climatology of CALIOP (left column) and MERRA-2 (right column) during period from
2006 to 2016.

Tabel 4.2: Definitions of the aerosol layer height.

Aerosol layer height Symbols Derivation method

Extinction-weighted mean
aerosol layer height

H
β
aer Equation 4.5

AOD-weighted mean aerosol
layer height

Hτ
aer Equation 4.6

Aerosol scale height with
63% AOD present

H63
aer Equation 4.7

Aerosol layer top height H t
aer The first height searched from the surface

where |γext (z)| < 0.01 for z ≥ H t
aer

Hτ
aer =

∑n
i=1β(zi )d zi zi∑n

i=1β(zi )d zi
(4.6)

whereβ(zi ) and d zi are the extinction coefficient and the geometric thickness of each atmospheric
height interval i . The superscript β or τ indicates either the extinction coefficient or AOD of the layer is
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used as averaging weight. If the thickness of atmospheric intervals is constant in vertical direction,

then the H
β
aer and Hτ

aer will give the same result.

AEROSOL SCALE HEIGHT

Originally, the aerosol scale height is based on the assumption that the extinction profiles exponen-
tially decay with altitude [Hayasaka et al., 2007, He et al., 2008, Tsai et al., 2011]. This restricts the
application to the condition when the extinction coefficient peaks near the surface. Alternatively, a
more generalized scale height definition is proposed [Hayasaka et al., 2007, Léon et al., 2009, Turner
et al., 2001, Yu et al., 2010]:∫ H 63

aer

0
β(z)d z =

m∑
i=1

β(zi )d zi = τ(1−e−1) ≈ 0.63τ (4.7)

whereβ(zi ) and d zi are the extinction coefficient and the geometric thickness of each atmospheric
interval i , m is the number of layers up to the scale height, and τ is the total columnar AOD. The scale
height H63

aer indicates the altitude where 63% of total AOD is presented.

AEROSOL TOP HEIGHT

The above definitions are effective heights, where the aerosol loading should be placed to be repre-
sentative of the columnar radiative properties. In contrast, the aerosol geometric height describes the
‘actual’ location of the aerosols [Kylling et al., 2018]. The geometric height is commonly presented
by the upper and lower boundary or the center (the average of the upper and lower boundary) of an
aerosol profile. For satellite measurements, the bottom boundary is more difficult to determine than
the top boundary. Consequently, we only focus on how to define the top boundary of the highest
aerosol layer (H t

aer ).
For a box-shape profile, H t

aer is explicitly indicated by a clear sharp decrease of the extinction
coefficient in a transition layer. For other profile types, there is no uniform method to determine H t

aer .
Welton et al. [2001] found the top boundary if the lidar signal strength is greater than the Rayleigh
signal by a predetermined threshold setting. The mean signal over the next 500 m is also checked in
order to avoid effects of noise. Léon et al. [2009] detected the top layer boundary by retaining the first
altitude below TOA at which the signal is 3 times of the standard deviation larger than the average in
the reference altitude (6.5 to 7 km). The CALIOP product employs a much more comprehensive layer
detection algorithm (SIBYL, [Vaughan et al., 2009]), where the magnitude of the threshold is adapted
according to the characteristics of the lidar signal [Winker et al., 2009].

For an extinction profile provided by MERRA-2, the extinction coefficient lapse rate (γext , unit:
km−2) is introduced to help to determine the top boundary of an aerosol profile:

γext (z) =−dβ(z)

d z
(4.8)

where dβ(z) is the extinction coefficient difference between two continuous layers and d z is
the atmospheric interval geometric thickness. The concept of γext is proposed by Tian et al. [2017]
to explore the relationship between atmospheric stability and aerosol vertical distributions. Stable
meteorological conditions lead to a large positive γext , whereas an elevated aerosol layers result in a
negative value. Given an aerosol profile, we search upwards from the surface and retain the first height
at which the magnitude of γext above this height is always smaller than a certain value.

The choice of the threshold is empirical, which is based on a sensitivity study. As shown in Figure
4.6, we select 4 regions of interest and use their mean extinction profiles (averaged during the period
from 2006-01-01 to 2016-12-31) as representative profile shapes: (a) a gradually decaying profile (North
Africa), (b) a fast decaying profile (East China), (c) a profile with little variation (Antarctica) and (d) a
profile with an inversion layer (South Africa). For each region, the mean profile shape (black lines)
and their standard deviation (gray bars), together with γext (blue lines) are shown. Next, we calculate
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Figuur 4.6: Sensitivity study to determine the threshold of the extinction lapse rate (γext ) for the aerosol top
boundary height (H t

aer ). The sensitivity study is conducted for 4 representative aerosol extinction coefficient
profiles (β(z)) for (a) East China, (b) North Africa, (c) Antarctica and (d) South Africa. The black lines are the mean
profiles and gray bars are the standard deviation during the period from 2006-01-01 to 2016-12-31. The blue lines
are γext of the mean profiles.

H t
aer using different γext ranging from 0.001 to 0.1 km−2. It is clear that a threshold between 0.005

and 0.01 km−2 may be suitable for all profile shapes. Thus, in this paper, we use the γext threshold of
0.01 km−2 to determine H t

aer .

SPATIAL AND TEMPORAL DISTRIBUTION OF THE MERRA-2 AEROSOL LAYER HEIGHTS

The above aerosol height deriving methods are applied to the MERRA-2 aerosol extinction profiles
collected from 2006-01-01 to 2016-01-01. Figure 4.7 shows the global seasonal climatology of these

aerosol heights. The spatial distributions of the 3 effective heights (H
β
aer , Hτ

aer and H63
aer ) are similar.

Compared with high aerosol loading regions (Figure 4.5), e.g. the dust belt and the biomass burning
regions in Africa, the effective heights in the rest of the world are significantly higher, particularly in
the high-latitude clean regions. The seasonal variations also show that the effective heights are more

variable over these regions. It is noted that the magnitude of H
β
aer is lower compared with Hτ

aer and

H63
aer , because H

β
aer does not account for the varying thickness of each vertical interval. By contrast,

the spatial-temporal variation of H t
aer is associated with changes in AOD. One can recognize the

seasonal aerosol sources from H t
aer maps, e.g. the biomass burning events in the central Africa during

DJF, the Sahara dust and its outflows over the northern Atlantic during JJA, etc.
Figure 4.8 shows the zonal average and standard deviation of the 4 aerosol heights against the

corresponding zonal average of the MERRA-2 extinction coefficient profiles. The 3 effective heights
behave in a similar way. They present significantly higher values over high-latitude regions where the
extinction coefficients are low. Over the aerosol source regions in mid- and low-latitude, the effective
heights are lower as more weights are given to the lower part of the atmosphere. H t

aer generally follows
the contours of the extinction coefficients. The magnitude and variability of H t

aer is lower in the
Southern Hemisphere and higher latitude regions (of both Hemispheres), because the major aerosol
sources are located in the low- and mid-latitude of the Northern Hemisphere (Figure 4.5). The reason
behind the behaviour of different aerosol heights will be explained in Section 4.3.3.

4.3.3. UVAI DEPENDENCE ON THE MERRA-2 AEROSOL HEIGHTS
We further investigate the UVAI dependence on the derived MERRA-2 aerosol heights. The UVAI data
is provided by the OMI/Aura level 2 OMAERUV product (http://dx.doi.org/10.5067/Aura/OMI/
DATA2004) from 2006-01-01 to 2016-12-31. Pixels with SZA larger than 70◦, or contaminated by clouds
(cloud fraction > 0.3), sun-glint (glint angle > 20◦ over water) or the row anomaly (XTrackQualityFlags
6= 0) are removed before analysis. Since the two data sets are independent, we use the AERONET

http://dx.doi.org/10.5067/Aura/OMI/DATA2004
http://dx.doi.org/10.5067/Aura/OMI/DATA2004
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Figuur 4.7: Spatial distribution of MERRA-2 ALH seasonal climatology during period from 2006-01-01 to 2016-12-31.
Rows represent different aerosol heights and columns represent different seasons.

version 3 level 1.5 products (https://aeronet.gsfc.nasa.gov) to ensure the consistency between
them.

Both MERRA-2 and OMAERUV are co-located to an AERONET record if their time difference is
smaller than ±3 hr and their spatial distance is within ≤50 km [Bréon et al., 2011, Jethva et al., 2014,

https://aeronet.gsfc.nasa.gov
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Figuur 4.8: The zonal average (black solid line) and the standard deviation (grey filling area) of the MERRA-2
ALH and the zonal average of the MERRA-2 extinction coefficients (contours) for the period from 2006-01-01 to
2016-12-31. Rows represent different ALH definitions and columns represent different seasons.

Lacagnina et al., 2015, Remer et al., 2002, Torres et al., 2002a]. Then, a AOD filter is applied as below:

• |AOD A − AODO |/AODO ≤ 30%

• |AOD A − AODM |/AODM ≤ 30%
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Figuur 4.9: The OMAERUV UVAI (354-388 nm) against the MERRA-2 H
β
aer as a function of the MERRA-2 AOD at

550 nm. In each AOD regime, N is the number of samples (gray dots). Red triangles indicate the boundaries of ALH
bins. The blue dot is the mean ALH and UVAI of each ALH bin, and the error bar is the standard deviation of UVAI
of that bin. A linear fitting and correlation coefficient (R2) are calculated for the binned ALH and AOD values (blue
dots).

Figuur 4.10: Same as Figure 4.9 but for the MERRA-2 Hτ
aer .

where A, O and M indicate AERONET, OMAERUV and MERRA-2. The threshold of 30% refers
to the uncertainty of OMAERUV AOD [Ahn et al., 2014, Jethva and Torres, 2011b]. Since OMAERUV
only reports aerosol properties up to 500 nm and MERRA-2 only reports at 550 nm, a wavelength
conversion is necessary. Specifically, the OMAERUV AOD is extrapolated at 550 nm by the Ångström
Exponent calculated from AOD at 388 and 500 nm. Besides, same as the TROPOMI and GOME-2 data,
an 1.5 times IQR is applied to remove potential outliers.

Figure 4.9 to 4.12 present the OMAERUV UVAI against the derived MERRA-2 aerosol heights as

a function of the AERONET AOD at 550 nm. The UVAI dependence on H
β
aer , Hτ

aer and H63
aer (Figure

4.9, 4.10 and 4.11) is similar. For the first 3 AOD groups, both the R2 between UVAI and the 3 effective
heights, and the linear fitting slope k of the binned data increases with AOD, i.e. UVAI sensitivity to the
changes in these aerosol heights increases with AOD. In the regime where AOD is highest, however, the
UVAI dependence on the 3 effective heights becomes weaker. On the other hand, the UVAI becomes
increasingly sensitive to H t

aer when AOD is getting larger (Figure 4.12, k rises from 0 to 0.4). The
corresponding R2 is also relatively smaller when the aerosol loading is low, and it reaches 0.47 in the
highest AOD cluster. In addition, compared with effective heights whose R2 is no larger than 0.4, the
correlation between H t

aer and UVAI is generally higher. Based on above, we can conclude that among
all aerosol heights derived from the MERRA-2 aerosol profiles, the UVAI dependence on H t

aer matches
best the evidence from sensitivity study and satellite observations.

The 3 effective heights behaves similarly since they are all sensitive to the shape of a profile. More
specifically, their calculations are sensitive to (1) the location of layers with the strongest aerosol



4

72 4.3. MERRA-2 AEROSOL HEIGHTS

Figuur 4.11: Same as Figure 4.9 but for the MERRA-2 H63
aer .

Figuur 4.12: Same as Figure 4.9 but for the MERRA-2 H t
aer .

Figuur 4.13: Representative aerosol extinction coefficient profiles for (a) North Africa, (b) East China, (c) South
Africa and (d) Sahel. The black lines are the mean profiles and gray bars are the standard deviation during the
period from 2006-01-01 to 2016-12-31. The blue lines are the extinction lapse rate (γext ) of the mean profile.

extinctions (peak extinctions), and (2) the contrast of these strongest extinctions relative to extinctions
of other layers. Here mean profiles derived from 4 regions of interest are shown to explain this (Figure
4.13). The profiles of (a) North Africa and (b) East China monotonically decrease with altitude, the
profile of (c) South Africa and (d) Sahel represent elevated aerosol layers. Compared with profile (a)
and (b) with their peak extinction (βmax ) at the surface, the βmax of profile (c) and (d) are located
at around 1.5 km. As a result, the derived effective heights are higher for profile (c) and (d). The
magnitude of the peak extinction also matters. Compared with profile (a), profile (b) has a faster decay
rate (larger Γext ), the contrast between its highest extinction layers and extinctions at upper layers is
stronger than that of (a). Consequently, more weights are put on lower altitudes, leading to effective
heights of profiles (b) smaller than (a). The same explanation is also applied to profile (c) and (d).
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Figuur 4.14: Relationship between the aerosol heights derived from MERRA-2, AOD and the peak extinction (βmas ).

The weakest UVAI dependence on the effective heights for the highest AOD regime can be explained
by the relation between AOD, βmax and the influence of profile shapes on the effective heights. Figure
4.14 presents the relationship between the AOD, βmax , and the derived MERRA-2 aerosol heights for
regions of interest (Figure ??). The effective heights become smaller and less variable with increasing
AOD. Since AOD is positively associated with βmax , meanwhile from Figure 4.4 and 4.8, we also know
that the location of the layers with strongest extinctions usually appears at the lower altitudes. In other
word, as the aerosol loading becomes higher, the βmax tends to be larger but located at a lower altitude.
Moreover, considering the influences of the profile shape discussed above, the effective heights become
smaller and less variable with increasing AOD. As a result, the derived effective heights tend to be at a
lower altitude with little variations, resulting in a lower correlation with the corresponding UVAI.

On the other hand, H t
aer is better associated with AOD and become more variable when AOD is

larger than 0.1. The top height captures the altitude above which aerosol makes little contribution to
the total extinction, hence, it is more sensitive to the total extinction rather than the location or the
magnitude of βmax . The stronger correlation between H t

aer and AOD (Figure 4.5 and Figure 4.7) also
enhance the correlation between H t

aer and UVAI. One may note that the UVAI dependence on H t
aer

is not as strong as that found in satellite observations, because the satellite UVAI and ALH are both
retrieved from the measured radiance of the same instrument (although at different wavelengths),
whereas the OMAERUV UVAI is an independent data set to the MERRA-2 ALH and AOD.

Figure 4.15 to 4.18 present the UVAI dependence on the derived MERRA-2 aerosol heights as
a function of the SSA at 550 nm provided by AERONET. All the aerosol heights show the strongest
correlation in the most absorbing regime (i.e. the lowest SSA). The sensitivity of UVAI on the 3 effective
heights does not decreases along with increasing SSA. On the other hand, UVAI becomes less sensitive
to H t

aer , reflected by a reduced linear fitting slope k. Compared with the low correlation between
UVAI and the effective heights (R2 no more than 0.25), that between UVAI and H t

aer is stronger (R2

is between 0.28 and 0.40). The UVAI dependence on H t
aer as a function of SSA is consistent with the

findings of the sensitivity study by radiative transfer simulations (Figure 4.1).

4.4. SUMMARY
UVAI is a long-term global record with potentials to derive quantitative aerosol absorptive properties
(e.g. AAOD and SSA), if both AOD and the aerosol height are known. Whereas AOD is widely accessible
from various products, the availability of the aerosol height data is either restricted by the limited
measurements of lidar instruments or the retrieval challenges (e.g. bright surfaces, clouds, low aerosol
loading, etc.) of passive sensors. Currently, there is no independent observational data set that can
provide the aerosol vertical distribution with a global coverage on a daily basis. To break the restrictions
posed by the limited measurements, in this paper we create an aerosol height database from the aerosol
profiles provided by the MERRA-2 for applications of quantifying aerosol absorption from satellite
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Figuur 4.15: The OMAERUV UVAI (354-388 nm) against the MERRA-2 H
β
aer as a function of the MERRA-2 SSA at

550 nm. In each SSA regime, N is the number of samples (gray dots). Red triangles indicate the boundaries of ALH
bins. The blue dot is the mean ALH and UVAI of each ALH bin, and the error bar is the standard deviation of UVAI
of that bin. A linear fitting and correlation coefficient (R2) are calculated for the binned ALH and AOD values (blue
dots).

Figuur 4.16: Same as Figure 4.9 but for the MERRA-2 Hτ
aer .

Figuur 4.17: Same as Figure 4.9 but for the MERRA-2 H63
aer .

UVAI.

We propose 4 candidate aerosol heights derived from the given MERRA-2 aerosol extinction

profiles, including (1) the extinction-weighted mean height (H
β
aer ), (2) the AOD-weighted mean height

(Hτ
aer ), (3) the scale height (H63

aer ) and (4) the top boundary height (H t
aer ). Through investigating

the UVAI dependence on these aerosol heights, we find that the 3 effective heights (H
β
aer , Hτ

aer and
H63

aer ) can perform as expected under majority circumstance except when AOD is large. Since effective
heights are sensitive to the the altitude and the magnitude of layers with the strongest extinctions,
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Figuur 4.18: Same as Figure 4.9 but for the MERRA-2 H t
aer .

together with the fact that AOD is positively related to the peak extinction that is likely to be at a lower
altitude, the UVAI dependence on the effective heights is lower for the highest AOD regimes. On the
other hand, the UVAI dependence on H t

aer matches best with the findings from sensitivity studies
and satellite observations: when AOD increases, the sensitivity of UVAI to the changes of the H t

aer
becomes stronger, with a rising correlation R2 from 0.22 to 0.47. Moreover, the UVAI dependence on
H t

aer also decreases with SSA, whereas UVAI shows little relation with the effective heights with the
variation of SSA.

We thus conclude that the top boundary height (H t
aer ) derived from the MERRA-2 aerosol reanaly-

sis can be an alternative aerosol height database, to avoid the restriction of the limited ALH products.
We have succeeded using this aerosol height data set to derive global aerosol absorptive properties from
the OMAERUV UVAI for the period from 2006 to 2019 and achieved encouraging outputs compared
with the AERONET measurements.
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5.1. INTRODUCTION
Atmospheric aerosols are solid or liquid particles suspended in the air. Most aerosols have a dominating
cooling effect on the Earth’s climate (-0.9 W /m2 [-1.9 to 0.2 W /m2]), however, the presence of light
absorbing aerosols poses a partially offsetting warming effect [Pachauri et al., 2014]. Absorbing aerosols
are mainly produced by combustion processes and dust uplifts [Moosmüller et al., 2009]. They affect
the Earth’s climate directly by absorbing the solar radiation or indirectly by altering the cloud and
surface properties [Hansen et al., 1997, Hansen and Nazarenko, 2004, Nair et al., 2013, Ramanathan
et al., 2001]. Quantifying the aerosol absorption is an important task to determine the aerosol radiative
forcing and its uncertainties [Loeb and Su, 2010, McComiskey et al., 2008, Penner et al., 2001].

Quantitative aerosol absorptive properties, e.g. the aerosol single scattering albedo (SSA), which
presents the ratio of scattering efficiency to total extinction efficiency, and the absorbing aerosol optical
depth (AAOD), which describes the fraction of total columnar extinction due to particle absorption,
are usually provided by the ground-based AERONET [Dubovik et al., 2002b, Holben et al., 1998], but
the global distribution of AERONET stations is sparse and unbalanced. Observations from space have
the advantage to have a better global coverage, but only few satellite sensors are capable to retrieve
aerosol absorptive properties. Currently, satellite retrievals of AAOD and/or SSA use either multi-
angle measurements, optionally combined with polarimetry [Kaufman et al., 1997a, Moosmüller et al.,
2009], e.g. MISR/Terra (1999-present) [Diner et al., 1998, Garay et al., 2020], and POLDER-3/PARASOL
(2005-2013) [Deschamps et al., 1994, Formenti et al., 2018, Wei et al., 2020].

Another parameter holding the information of the qualitative aerosol absorption is the Ultra-Violet
Aerosol Index (UVAI) [Herman et al., 1997a]. Compared with the AAOD and SSA retrieved by MISR and
POLDER-3, UVAI is simple to derive without multi-angular and polarimetric techniques. Moreover,
its calculation does not rely on a priori assumptions of aerosol properties (e.g. the size distribution
function and the complex refractive index). By contrast, the aerosol properties retrieved by MISR are
based on Look-Up Tables (LUTs) produced for 74 pre-defined aerosol mixtures [Kahn and Gaitley, 2015].
The POLDER retrievals, either based on LUTs [Deuzé et al., 2000, Formenti et al., 2018, Tanré et al., 2011]
or the recently developed GRASP algorithm that online calculates radiative transfer for multiple pixels
simultaneously [Chen et al., 2018, Dubovik et al., 2014], also require pre-defined information on aerosol
properties. On the other hand, the calculation of UVAI does not need to make such assumptions,
because UVAI is defined as the change of the spectral contrast at two UV channels (λ1 <λ2) between a
measured and a calculated radiance due to the presence of absorbing aerosols [Herman et al., 1997a,
Torres et al., 1998]:

UV AI =−100

log10

(
Iλ1

Iλ2

)obs

− l og10

(
Iλ1

Iλ2

)Ray
 (5.1)

where Ray indicates the radiance calculated by radiative transfer simulations assuming no aerosol

present. By assuming I obs
λ2

= I
Ray
λ2

(as,λ2
) (as,λ2

is the surface albedo at the longer wavelength λ2), the

above can be rewritten as:

UV AI =−100l og10

I obs
λ1

I
Ray
λ1

(5.2)

UVAI is a qualitative measure of aerosol absorption. A positive value indicates the presence
of absorbing aerosols, whereas non-absorbing aerosols and clouds yield neutral or negative values
[Herman et al., 1997a].

The UVAI has been continuously produced on a global scale by multiple satellites since 1978. It
is of interest to quantify the aerosol absorption from such a long-term record. We have attempted
to derive AAOD and SSA from UVAI based on radiative transfer simulations [Sun et al., 2018] and
the Support Vector Regression (SVR) [Sun et al., 2019] for specific cases. Following previous studies,
this work generates a database of quantitative aerosol absorptive properties over land from the UVAI
between 2006 and 2019 provided by OMI/Aura using a Deep Neural Network (DNN) model. We create a
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training data set using both observations and simulations, employ a filter as well as a wrapper method
for feature selection, and apply the cross validation for hyper-parameter tuning. We provide an error
analysis of the DNN predictions and validate the outputs with the AERONET observations. The result
of this study leads to an aerosol climatology (2006-2019) of quantitative absorptive properties over land.
Section 5.2 introduces the training data and the DNN algorithm. Section 5.3 presents the assessments
of the derived aerosol absorption and the climatology for the period from 2006 to 2019. Section 5.4
summarizes the major findings and potential improvements in the future.

5.2. MATERIALS AND METHODS

5.2.1. DATA SETS AND METHODOLOGY
The data sets used in this study include the OMI/Aura level 2 version 3 aerosol product OMAE-
RUV (http://dx.doi.org/10.5067/Aura/OMI/DATA2004), the MODIS/Aqua Collection 6 level 3
daily gridded aerosol product MYD08 (http://dx.doi.org/10.5067/MODIS/MYD08_M3.006, and
the AERONET level 1.5 inversion almucantar product (https://aeronet.gsfc.nasa.gov). Besi-
des, the MERRA-2 aerosol reanalysis is used to calculate the aerosol vertical distributions (MERRA-2
inst3_3d_aer_Nv, 10.5067/LTVB4GPCOTK2) and to provide AAOD and SSA (MERRA-2 tavg1_2d_aer_Nx,
10.5067/KLICLTZ8EM9D) for comparisons with the predicted results. All the data are collected glo-
bally from 2006-01-01 to 2019-12-31. All the observational data (i.e. satellite and ground-based data)
are regarded to be cloud-free and all the satellite data are regarded to be not affected by large viewing
angles and sun-glint after pre-processing.

OMI OBSERVATIONS

OMI is a UV/Visible spectrometer onboard Aura (2004-present) [Levelt et al., 2006]. The instrument has
a large swath of 2600 km, providing around 14 orbits per day to complete a global coverage (overpass
on 13:45 local time). The spatial resolution at nadir is 13 km× 24 km (13 km× 48 km in the UV-1
band).

We take UVAI, the solar zenith angle (SZA), the satellite viewing zenith angle (VZA), the solar-
satellite relative azimuth angle (RAA), the surface reflectance (as ) and the surface pressure (Ps ) from the
level 2 OMAERUV version 3 product (http://dx.doi.org/10.5067/Aura/OMI/DATA2004). Pixels
are excluded if they have SZA larger than 70◦, or they are over bright surface (as at 388 nm higher than
0.3), contaminated by clouds (cloud fraction larger than 0.3) or sun-glint (glint angle larger than 20◦
over water).

OMI data suffers from the so-called row anomaly issue since 2008, which affects the quality of the
level 1B radiance data at all wavelengths and consequently the level 2 products [Schenkeveld et al.,
2017]. The row anomaly is caused by a partial blockage of the Earth telescope, affecting part of the
across track swath. More information on row anomaly can refer to http://projects.knmi.nl/omi/
research/product/rowanomaly-background.php, [Schenkeveld et al., 2017]. Even after filtering
the data using the quality flag provided in OMAERUV product, the row anomaly can still be observed
in some pixels. Therefore, we apply a moving standard deviation method to further eliminate the
effects due to the row anomaly: for a given pixel, the standard deviation of UVAI (σUV AI ) is calculated
over a sliding window of its 8 neighboring elements. Pixels with σUV AI larger than a threshold are
discarded. The threshold is determined by sensitivity studies based on co-located data of OMAERUV
and AERONET.

According to Figure 5.1, the final determined σUV AI threshold is 0.5. This value on the one hand
retains a large data size, meanwhile ensuring the consistency between the satellite and the ground-
based AERONET measurements in terms of AAOD. We use AAOD as the criteria is because our study
is based on the relationship between UVAI and AAOD. Both parameters contain information on the
aerosol loading and the aerosol absorption. Moreover, AAOD is the common aerosol absorption
parameter provided by both OMAERUV and AERONET.

http://dx.doi.org/10.5067/Aura/OMI/DATA2004
http://dx.doi.org/10.5067/MODIS/MYD08_M3.006
https://aeronet.gsfc.nasa.gov
10.5067/LTVB4GPCOTK2
10.5067/KLICLTZ8EM9D
http://dx.doi.org/10.5067/Aura/OMI/DATA2004
http://projects.knmi.nl/omi/research/product/rowanomaly-background.php
http://projects.knmi.nl/omi/research/product/rowanomaly-background.php
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Figuur 5.1: Sensitivity studies to determine the σUV AI threshold. (a) the number of OMAERUV-AERONET coinci-
dences as a function of the σUV AI threshold; (b) the correlation coefficient (R2) between the OMAERUV AAOD
(A AODO ) and the AERONET AAOD (A AOD A ) as a function of the σUV AI threshold; (c) the root mean square error
(RMSE) between A AODO and A AOD A as a function of the σUV AI threshold.

Figuur 5.2: Global depiction of SLER UVAI (’residue’), Mie UVAI (’UV Index’) and scene reflectivity on 20 August
2007 (Source: Figure 12 in [Torres et al., 2018]).

The OMAERUV contains two UVAI products. One is called ’residue’, where I cal
λ

is calculated by a
Lambert Equivalent Reflectivity (LER) model as that done in UVAI products provided by other sensors
[Herman et al., 1997a, Torres et al., 1998]. The other one is ’UV index’, where I cal

λ
is reprocessed by

considering the effects of clouds on scattering angular variability [Torres et al., 2018]. Although the ’UV
index’ shows a reduced across-scan bias and is better associated with the AERONET AAOD (Figure 5.1),
it is overall higher than the ’residue’, especially over ocean where neutral or negative should have been
found (Figure 5.2). The reason behind is not explicitly explained. On the other hand, the method used
to calculate ’residue’ is widely used in other satellite products, whereas ’UV Index’ is exclusively used
for the OMAERUV product. Therefore, the term UVAI in this work refers to the ’residue’.

MODIS OBSERVATIONS

MODIS is a multi-spectral radiometer covering 36 wavelengths from 0.4 to 14.4 µm. A large swath
of 2330 km allows it to complete a global coverage within 1 or 2 days. The spatial resolution ranges
from 0.25 to 1 km. Currently, two MODIS instruments are operational: one is on EOS-Terra satellite
launched in 1999 (descending node, overpass on 10:30 local time) and the other one is on EOS-Aqua
launched in 2002 (ascending node, overpass on 13:30 local time) [Remer et al., 2005].

MODIS has two aerosol retrieval algorithms for (1) aerosols over ocean and vegetated dark surface
(’Dark Target’, DT) [Kaufman et al., 1997b, Levy et al., 2013, Tanré et al., 1997] and (2) aerosols over
desert and arid regions (’Deep Blue’, DB) [Hsu et al., 2004, 2006, Hsu et al., 2013]. The retrieved AOD
uncertainty of DT is ±(0.05+15%) over land and from −0.04−10% to +0.02+10% over ocean, and
the expected uncertainty of DB is estimated better than ±(0.05+20%). A hybrid AOD is also reported
in a combination of DT and DB retrievals, where the method is based on the normalized difference
vegetation index (NDVI) [Levy et al., 2013].
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In this work, we use the DT and DB combined AOD at 550 nm from Collection 6.1 level 3 daily
gridded data (MYD08_D3) of MODIS/Aqua (http://dx.doi.org/10.5067/MODIS/MYD08_M3.006)
to provide information of aerosol loading. The resolution of the level 3 data is 1◦× 1◦. Pixels with
geometric cloud fraction larger than 0.3 are excluded.

AERONET OBSERVATIONS

AERONET is a ground-based remote sensing network to retrieve aerosol optical, micro-physical and
radiative properties for aerosol research and characterization, validation of satellite retrievals, and
synergism with other databases [Holben et al., 1998].

The AERONET radiometer takes two types of measurements: (1) direct sun irradiance and (2) sky
radiance. AOD is retrieved by the Beer-Bouguer Law from the direct sun measurements at a wide
spectrum from 340 to 1020 nm [Kinne, 1999]. The bias of the near-real time AOD data is estimated
as 0.02 with a standard deviation of 0.02 [Giles et al., 2019]. The sky radiance measurements scan an
aerosol profile at multiple scattering angles to retrieve aerosol absorption (SSA and AAOD) and other
aerosol micro-physical parameters (e.g. volume size distribution, complex refractive index, and the
aerosol scattering phase function, etc.) at 440, 670, 870 and 1020 nm [Dubovik and King, 2000]. The
AERONET level 2 (quality assured) SSA has a typical uncertainty of ±0.03 (for AOD at 440 nm larger
than 0.2 [Dubovik et al., 2000, 2002b] or 0.3 [Sinyuk et al., 2020]).

In this work we use the AOD, AAOD and SSA from the AERONET version 3 level 1.5 inversion
almucantar product (https://aeronet.gsfc.nasa.gov). Although the level 2 data is recommended
(cloud screened and quality assured) [Smirnov et al., 2000], we use the level 1.5 product (only cloud
screened) because the level 2 data availability is insufficient for our applications. Using the expected
error of AOD (assuming σAOD = 0.02) and SSA (σSS A =0.03), and the definition of AAOD (Equation
5.3), we can calculate the expected error level of the AERONET AAOD using the error propagation
equation (Equation 5.4):

A AOD = (1−SS A)× AOD (5.3)

σA AOD =
√
σ2

SS A(
∂A AOD

∂SS A
)2 +σ2

AOD (
∂A AOD

∂AOD
)2 (5.4)

Figure 5.3 presents the distribution of the AERONET AAOD at 550 nm uncertainty for all AERONET
records collected between 2006 and 2019. For more than 80% of the samples, the AAOD uncertainty is
less than 0.01. The mean and median of the estimated AAOD error are 0.006 and 0.004, respectively.

MERRA-2 AEROSOL REANALYSIS

MERRA-2 is the latest modern satellite era (1980 on-wards) atmospheric reanalysis [Buchard et al.,
2017, Randles et al., 2017]. The model resolution is 0.5◦×0.625◦ latitude by longitude with 72 hybrid-eta

Figuur 5.3: The estimated error of AERONET AAOD at 550 nm calculated by (5.3) with AERONET AOD uncertainty
of ±0.02 and AERONET SSA uncertainty of ±0.03.

http://dx.doi.org/10.5067/MODIS/MYD08_M3.006
https://aeronet.gsfc.nasa.gov
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layers from the surface up to 0.01 hPa. MERRA-2 assimilates multiple observational AOD data sets,
including MODIS, MISR, AVHRR and AERONET. MERRA-2 aerosol assimilation and the total column
AOD evaluation are well-documented in [Randles et al., 2017]. They elaborated that the MERRA-2 AOD
constrained by observations better matches independent measurements. Improved agreement is also
found for aerosol optical properties and aerosol vertical distributions [Buchard et al., 2017].

In this work, we use the MERRA-2 columnar AOD and AAOD (reported at 550 nm) provided by the
MERRA-2 1-hourly time-averaged aerosol (MERRA-2 tavg1_2d_aer_Nx, 10.5067/KLICLTZ8EM9D) to
compare with our derived aerosol absorption results. Furthermore, we also derive the aerosol vertical
distribution information from MERRA-2. This is important because UVAI is sensitive to the aerosol
layer vertical location [de Graaf et al., 2005, Herman et al., 1997a, Sun et al., 2018, Torres et al., 1998].
Many efforts have been made on measuring aerosol vertical structures [Islam et al., 2017], including
ground-based lidar systems [Pappalardo et al., 2014, Welton et al., 2001], space-borne lidar missions
[Schutz et al., 2005, Winker et al., 2009], multi-angle measurements [Nelson et al., 2013, Virtanen et al.,
2014], polarimetry [Dubovik et al., 2011], oxygen absorption at A-band [Dubuisson et al., 2009, Duforêt
et al., 2007, Nanda et al., 2019, Sanders et al., 2015, Sanders and De Haan, 2016, Sanghavi et al., 2012,
Wang et al., 2012, Xu et al., 2017], oxygen absorption in the visible band [Chimot et al., 2017] and
thermal infrared [Pierangelo et al., 2004, Vandenbussche et al., 2013]. However, currently an aerosol
vertical distribution product based on observations that has a daily global coverage as that of UVAI
is still missing [Sun et al., 2020]. Consequently, we turn to derive the ALH from the aerosol vertical
profiles provided by MERRA-2.

We derive the geometric aerosol layer top height as the ALH from the MERRA-2 3-hourly instanta-
neous aerosol mass mixing ratio profiles (MERRA-2 inst3_3d_aer_Nv, 10.5067/LTVB4GPCOTK2). The
mass mixing ratio is converted to extinction coefficients first. Then for a MERRA-2 extinction profile,
we attempt to find the top boundary of an aerosol layer with the extinction coefficient lapse rate (γext ,
unit: km−2, [Tian et al., 2017]), which is defined as:

γext (z) =−dβ(z)

d z
(5.5)

where dβ(z) is the extinction coefficient difference between two continuous layers, and d z is the
atmospheric interval geometric thickness. Given an aerosol profile, we search upwards from the surface
and retain the first height at which the magnitude of γext above this height is always smaller than a
certain value. The choice of the threshold is empirical, which we select 0.01 km−2 based on sensitivity
studies (Figure 4.6 in Chapter 4). The relation between the derived ALH and the UVAI matches our
knowledge of UVAI dependence on altitude [de Graaf et al., 2005, Herman et al., 1997a, Sun et al., 2018,
Torres et al., 1998]. More details about the geometric aerosol layer top height derived from MERRA-2
can refer to Section 4.3.3 of Chapter 4.

5.2.2. CONSTRUCTION OF THE TRAINING DATA SET
The relevant parameters used in this work are listed in Table 5.1, including satellite-solar geometries
(SZA, VZA, RAA), surface properties (as and Ps ) and UVAI from OMI; AOD from MODIS; and AAOD and
SSA from AERONET. Extinction Ångström Exponent (EÅE) and Absorption Ångström Exponent (AÅE)
calculated between 440 and 870 nm from AERONET are used for AOD and AAOD spectral conversion
according to the power law. Except for UVAI, all aerosol optical properties in this study is at 550 nm by
default, unless other wavelengths are explicitly mentioned. The AOD, AAOD and SSA provided by OMI
and MERRA-2 are also included for discussions and comparisons.

All the variables in Table 5.1 are merged into one hybrid data set. First, the daily OMI and MODIS
satellite data are projected onto the MERRA-2 grid (0.5◦×0.625◦). Next, the satellite-model data is
co-located to the ground-based AERONET observations. According to previous studies [Bréon et al.,
2011, Ichoku et al., 2002, Jethva et al., 2014, Lacagnina et al., 2015, Remer et al., 2002, Torres et al.,
2002a], the satellite-model joint data passing a time window of ±3 hours and a spatial distance ≤50
km is allocated to an AERONET record after averaging. To ensure the consistency between different

10.5067/KLICLTZ8EM9D
10.5067/LTVB4GPCOTK2
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Tabel 5.1: Summary of data sets and relevant variables used in this study. All the data are collected globally for the
period from 2006-01-01 to 2019-12-31. Parameters used as input features in DNN are bold.

OMI

Solar zenith angle (SZA), viewing zenith angle (VZA), relative azi-
muth angle (RAA), surface albedo (as , at 388 nm), surface pressure
(Ps ), UVAI (calculated by radiance at 354 and 388 nm), AOD (at 500
nm), AAOD (at 500 nm), SSA (at 500 nm)

MODIS AOD (at 550 nm)

AERONET

AOD (at 550 nm), AAOD (at 550 nm), SSA (at 440 and 550 nm), Extinc-
tion Ångström Exponent (EÅE, between 440 and 870 nm), Absorption
Ångström Exponent (AÅE, between 440 and 870 nm), latitude (◦), lon-
gitude (◦), time (day of year)

MERRA-2
AOD (at 550 nm), AAOD (at 550 nm), SSA (at 550 nm), aerosol layer
height (ALH, derived from aerosol profiles)

measurement techniques (i.e. space-borne versus ground-based), we apply the following filtering
criteria, based on the expected errors of the MODIS AOD (±(0.05+15%) over land and from −0.04+10%
to +0.02+10%) over ocean [Levy et al., 2013, Remer et al., 2005]), the OMAERUV AOD (0.1 or 30% [Ahn
et al., 2014, Jethva and Torres, 2011b]) and the AERONET SSA (±0.03 [Dubovik et al., 2002b]):

• |AODM
550 − AOD A

550| ≤ 0.05+15%× AOD A (over land)

• −0.04−10%× AOD A ≤ AODM
550 − AOD A

550 ≤ 0.02+10%× AOD A (over ocean)

• |AODO
500 − AOD A

500| ≤ 0.1 or |AODO
500 − AOD A

500|/AOD A
500 ≤ 30%)

• |SS AO
500 −SS A A

500| ≤ 0.03

where the upper-script M , A and O indicate MODIS, AERONET, and OMAERUV. Note that OMAE-
RUV only provides aerosol properties on 354, 388 and 500 nm. Therefore, the corresponding AERONET
AOD and AAOD are converted to 550 nm according to the power law:

τλ1
= τλ2

(
λ1

λ2

)−α
(5.6)

where τλ1
is the AOD at wavelength λ1 to be estimated, and τλ2

is the AOD at wavelength λ2 that
is known; α is the EÅE listed in Table 5.1. The same conversion method is applied to AAOD using
corresponding AÅE.

The final hybrid data set after quality filtering has 48,080 coincidences. Figure 5.4 shows its
distribution. Most samples are located in North America and Western Europe. On the contrary, few
sites measure aerosol absorptive properties over ocean. As a result, this study focus on deriving the
aerosol absorptive properties over land.

5.2.3. FEATURE SELECTION

CANDIDATE FEATURES BASED ON DOMAIN KNOWLEDGE

In Machine Learning, features are treated as explanatory variables used to predict the target variable.
In our algorithm, the target variable is the quantitative aerosol absorptive parameter AAOD and/or
SSA. From our previous study [Sun et al., 2019], we have proven that compared with SSA, AAOD is
better correlated with UVAI, because both AAOD and UVAI are sensitive to aerosol loading and aerosol
absorption. Therefore, deriving AAOD from UVAI is expected to give better results than deriving SSA
from UVAI.

UVAI is calculated from the satellite measured radiance. It does not only depend on the aerosol
properties (e.g. AOD, ALH, aerosol absorption), but also on other parameters, including SZA, VZA,
RAA, surface albedo (as ) and surface pressure (Ps ) [de Graaf et al., 2005, Herman et al., 1997a, Sun
et al., 2018, Torres et al., 1998]. The above variables are thus listed as candidate features. Note that the
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Figuur 5.4: Global distribution of the training data. The color indicates the number of observations. Note that the
temporal coverage of each AERONET site varies.

influence of clouds has been eliminated by discarding pixels with cloud fraction larger than 0.3 (see
Section 5.2.1) and will not be considered in this work.

Machine Learning algorithms solve the numerical relationship between given variables, but they
neglect the fact that the environmental variables are correlated in space and time [Legendre, 1993].
Recently, there is an increasing trend involving the spatial and/or temporal auto-correlation in Machine
Learning applications. This can be done in many ways, for example, Li et al. [2016] and Li et al. [2017]
directly used the measurements in the past and/or the measurements from surrounding sites. In other
studies, geo-statistical methods were used in combination with Machine Learning algorithms (e.g.
Ishitsuka et al. [2018], Li et al. [2014], Michalak and Shlomi [2013], Singh et al. [2017], Tapoglou et al.
[2014], Tarasov et al. [2018]). There is also an increasing trend using the Convolutional Neural Network
(CNN) and/or the Recurrent Neural Network (RNN) to present the temporal and spatial correlation (e.g.
[Biancofiore et al., 2015, Chen et al., 2020b, Wen et al., 2019]), as these techniques can share weight
parameters in space and/or time domain. However, applying above techniques in this study is not
feasible due to the limitation of training data sets (limited spatial coverage and different time spans, see
Figure 5.4). Instead, we just directly add geo-coordinates (longitude and latitude) and time information
(day of the year) into the feature space as that done in other studies (e.g. [Gupta and Christopher, 2009,
Mauceri et al., 2019, Nanda et al., 2019, Olcese et al., 2015, Qin et al., 2018, Xiong et al., 2020, Zhu et al.,
2019]). In total, we selected 11 variables as the candidate features based on our domain knowledge.

FEATURE SELECTION BY FILTER AND WRAPPER METHODS

We have chosen 11 features according to our experience and knowledge, but whether those features
are favorable to derive AAOD from UVAI needs further investigations. Feature selection is the process
of selecting a subset of features that is most relevant to the target variable. This process is important to
enhance the model interpretability, computational efficiency, generalization performance, etc. [Guyon
and Elisseeff, 2003].

In our previous study, we only selected 3 features that have relatively high Spearman’s correlation
coefficients (R2

s ) with the target variable (the AERONET AAOD) [Sun et al., 2019]. However, R2
s only

measures the monotonic relationship between features and the target variable. In this work, we apply
two independent feature selection methods: (1) the Maximum Information Coefficients (MIC) [Reshef
et al., 2011] and (2) the Recursive Feature Elimination (RFE) [Guyon and Elisseeff, 2003].

MIC is a filter method that was first introduced by [Reshef et al., 2011]. It measures the dependence
between two variable X and Y , no matter the relation is linear or non-linear. It uses a constrained
adaptive bin method to apply mutual information (I ) on continuous variables. The mutual information
measures the mutual dependence between two random variables, which is defined as:

I (X ;Y ) =
∫

p(x, y) log2
p(x, y)

p(x)p(y)
d xd y (5.7)
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where p(x, y) is the joint probability density function of X and Y , and p(x) and p(y) are the
marginal probability density function of X and Y . Then MIC uses binning to compute the normalized
mutual information on continuous variables:

M IC (X ,Y ) = max
nx∗ny<N z

I (X ;Y )

log2 min(nx ,ny )
(5.8)

where nx and ny are the bin numbers of X and Y . Their product is supposed to be smaller than a
number N z , where N is the size of the data and z usually takes 0.6 [Reshef et al., 2011]. Lastly, MIC is
the maximum of the normalized mutual information values calculated by different combinations of
nx and ny (MIC ranges between 0 and 1).

MIC is a filter method, which uses statistical measures to independently evaluate the correlation
between the target variable and the input features, and to filter out the least relevant features. However,
filter methods only look at one individual feature at a time, thus ignoring relationship between features.
Wrapper methods like RFE can also detect the interactions between features [Phuong et al., 2005].
RFE recursively removes the least relevant feature by a certain metric and aims to find the feature
combination that leads to the optimal model performance. The feature ranking metrics of RFE is given
by an external estimator that assigns weights to each feature, such as the coefficients of the Linear
Regression or the Support Vector Machines [Guyon and Elisseeff, 2003], or the feature importance of
the Random Forests (RF) [Granitto et al., 2006]. In this work, we use the RF-based RFE, as RF can deal
with non-linear problems and it does not have many hyper-parameters to tune. Since RF predictions
will not always be the same, we set up 100 RFE experiments and use the average value to select the
features of interest.

The MIC and REF evaluation on the 11 candidate features are presented in Figure 5.5. MIC (blue
bars) indicates the UVAI, AOD, ALH are the most relevant features to AAOD, which is in agreement with
our previous study [Sun et al., 2019]. The geo-coordinates (Lat and Lon) are more important compared
to the rest of the parameters. The average of 100 RFE experiments (white bars) shows how the model
performance changes (in terms of the averaged root mean square error, RMSE) with an eliminated
feature. It is clear that the most important feature is UVAI, followed by AOD and ALH. The remaining
features do neither significantly improve nor hurt the model performance. As there is no solid reason
to exclude them, we decide to keep all 11 features.

The basic statistics of the selected features are shown in Figure 5.6. But to show the impact of the
spatial and temporal information (Lat, Lon, DOY) on predictions, we also build a feature space without
this information to allow a comparison. Consequently, we have the following two feature spaces:

• Feature space with 11 features (F11): UVAI, AOD, ALH, Lat, Lon, DOY, SZA, VZA, RAA, as , Ps

• Feature space with 8 features (F8): UVAI, AOD, ALH, SZA, VZA, RAA, as , Ps

5.2.4. DEEP NEURAL NETWORK (DNN)
PRINCIPLE OF DEEP NEURAL NETWORK

Machine Learning algorithms learn the underlying behavior of a system from a set of training data
[Lary et al., 2016b]. They have been widely applied in geosciences and remote sensing [Karpatne et al.,
2019a, Lary et al., 2016b]. Recently, driven by the increasing size of geo-data, algorithms such as Deep
Learning becomes more and more popular [Reichstein et al., 2019, Zhang et al., 2016]. Deep Learning
is characterized by Neural Networks with no less than 2 hidden layers [Zhu et al., 2017].

We use a feed-forward Deep Neural Network (DNN) with multiple hidden layers (Figure 5.7). A
DNN consists of an input layer, n intermediate hidden layers and an output layer. The input layer
contains input features, and the output layer gives the predicted variable(s). A hidden layer consists of

m neurons. The j -th neuron in l-th hidden layer (a
j
l ) is calculated by neurons in the previous layer:

z
j
l =

n∑
i=1

w
j i
l ai

l−1 +b
j
l (5.9)
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Figuur 5.5: Feature selection: the Maximum Information Coefficient (MIC, blue bars) and the Recursive Feature
Elimination (RFE, white bars). The higher MIC values, the stronger correlation between a feature and the target
variable (AAOD). RFE presents how the model performance (in format of averaged RMSE from 100 random forest
experiments) varies with an eliminated feature. The higher the RMSE (the worse the model performance), the more
important the corresponding feature.

Figuur 5.6: Histogram and basic statistics of the selected features.

where w
j i
l is the weight of the i -th neuron in (l −1)-th layer (a

j
l−1) given to the a

j
l ; b

j
l is a bias

term. Then, the computed z
j
l is fed into an activation function σ:

a
j
l =σ(z

j
l ) (5.10)

The activation function is used to add the non-linear properties to a neural network. In this work,
the Rectified Linear Unit (ReLU) is used as the activation function:

σ(x) = max(0, x) (5.11)

The DNN is to find the optimal weight matrix W containing all w
j i
l that can minimized the loss

function (L). Here we use the RMSE as the error metric:

L =
[

1

k

k∑
i=1

(ŷi − yi )

]1/2

(5.12)
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Figuur 5.7: A conceptual scheme of the Deep Neural Network (DNN) in this study.

where k is the number of samples; ŷi and yi are the DNN-predicted and the true values. In this
work, the optimization of loss function is realized by the Adam solver [Kingma and Ba, 2017] with a fixed
learning rate of 10−4. The Adam solver is more computationally efficient than classical optimization
algorithms and performs well for large data sets [Alfadda et al., 2018].

HYPER-PARAMETER TUNING

The structure of DNN (the number of hidden layers n and the number of neurons in each layer m)
highly varies with applications. Therefore, we applied an exhaustive grid search over specified hyper-
parameter values. The process is based on 10-fold cross validations: the data set is randomly split into
10 sets. For each fold, 9 out of 10 sets are used to train the DNN model and the remaining set is used
for validation.

Table 5.2 and 5.3 present the training results and the validation of the model performance for
different layer and neuron configurations. Compared to the model performance of DNN-F8, the
DNN-F11 predictions show a better consistency with the true values (R2 =0.9). The RMSE and the
mean absolute error (MAE) of the DNN-11 predictions are also smaller than that of DNN-8. The
comparison reveals that the additional spatial and temporal information indeed improves the DNN
model performance. However, the improvement is not significant as that in other studies (e.g. [Li et al.,
2017]), because we only provide coordinate and time information in a straightforward way, instead
of giving the explicit spatial and temporal auto-correlation calculated by geo-statistics methods (e.g.
deterministic interpolation, Kriging, or Gaussian process regression), or sharing weights in space and
time domain by CNN or RNN.

The optimal model of DNN-F11 is constructed by 3 hidden layers with 64 neurons in each layer.
The final trained model has a prediction accuracy of 0.0045 (Figure 5.8 (a)). This model performance
is significantly better than the SVR model used in the previous work ([Sun et al., 2019], RMSE = 0.01).
Considering the representative uncertainty of AERONET AAOD is at the level between 0.004 and 0.006
(calculated by the expected errors of AERONET AOD and SSA via the error propagation equation, see
Figure 5.3), the model performance is encouraging. The optimal model of DNN-F8 is constructed
by 2 hidden layers with 128 neurons in each layer. Without the information on coordinate and time,
the final trained model has a prediction accuracy of 0.0056, slightly higher than that of DNN-F11.
Consequently, we only use the DNN-F11 in the following applications.
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Tabel 5.2: Model performance of DNN with 11 features under difference configurations in terms of the linear fitting
slope (k), the intercept (b), the correlation coefficient (R2), the root mean square error (RMSE) and the mean
absolute error (MAE).

Training Validation
Layer Neuron k b R2 RMSE MAE k b R2 RMSE MAE

1
64 0.78 0 0.88 5.34E-03 3.42E-03 0.78 0 0.88 5.47E-03 3.48E-03
128 0.79 0 0.89 5.19E-03 3.34E-03 0.79 0 0.88 5.46E-03 3.44E-03
256 0.79 0 0.9 5.16E-03 3.29E-03 0.77 0 0.88 5.34E-03 3.40E-03

2
64 0.85 0 0.9 4.92E-03 3.19E-03 0.82 0 0.89 5.21E-03 3.36E-03
128 0.84 0 0.91 4.71E-03 3.05E-03 0.82 0 0.89 5.18E-03 3.31E-03
256 0.85 0 0.92 4.51E-03 2.92E-03 0.83 0 0.89 5.06E-03 3.23E-03

3
64 0.83 0 0.91 4.71E-03 3.06E-03 0.82 0 0.89 5.25E-03 3.33E-03
128 0.86 0 0.93 4.19E-03 2.69E-03 0.82 0 0.9 4.96E-03 3.18E-03
256 0.85 0 0.93 4.10E-03 2.61E-03 0.82 0 0.9 4.96E-03 3.13E-03

4
64 0.83 0 0.92 4.53E-03 2.94E-03 0.81 0 0.89 5.10E-03 3.28E-03
128 0.84 0 0.94 3.92E-03 2.51E-03 0.81 0 0.9 4.86E-03 3.10E-03
256 0.84 0 0.93 4.11E-03 2.56E-03 0.8 0 0.9 4.94E-03 3.10E-03

5
64 0.84 0 0.92 4.39E-03 2.84E-03 0.81 0 0.89 5.03E-03 3.23E-03
128 0.86 0 0.94 3.99E-03 2.56E-03 0.84 0 0.9 4.81E-03 3.09E-03
256 0.86 0 0.94 3.79E-03 2.36E-03 0.82 0 0.91 4.76E-03 3.03E-03

6
64 0.82 0 0.92 4.52E-03 2.94E-03 0.79 0 0.9 4.98E-03 3.23E-03
128 0.86 0 0.94 3.78E-03 2.37E-03 0.82 0 0.9 4.82E-03 3.05E-03
256 0.83 0 0.94 3.87E-03 2.35E-03 0.79 0 0.9 4.88E-03 3.03E-03

Tabel 5.3: Model performance of DNN with 8 features under different configurations in terms of the linear fitting
slope (k), the intercept (b), the correlation coefficient (R2), the root mean square error (RMSE) and the mean
absolute error (MAE).

1
64 0.76 0 0.86 5.84E-03 3.65E-03 0.75 0 0.85 5.88E-03 3.68E-03
128 0.76 0 0.86 5.70E-03 3.60E-03 0.75 0 0.86 5.84E-03 3.65E-03
256 0.76 0 0.87 5.54E-03 3.55E-03 0.75 0 0.86 5.73E-03 3.62E-03

2
64 0.75 0 0.88 5.51E-03 3.52E-03 0.74 0 0.86 5.76E-03 3.63E-03
128 0.8 0 0.88 5.35E-03 3.42E-03 0.79 0 0.86 5.77E-03 3.59E-03
256 0.79 0 0.89 5.15E-03 3.28E-03 0.77 0 0.87 5.63E-03 3.52E-03

3
64 0.78 0 0.89 5.17E-03 3.32E-03 0.76 0 0.87 5.63E-03 3.56E-03
128 0.83 0 0.91 4.82E-03 3.01E-03 0.8 0 0.87 5.61E-03 3.44E-03
256 0.84 0 0.91 4.64E-03 2.94E-03 0.81 0 0.87 5.45E-03 3.40E-03

4
64 0.77 0 0.9 4.94E-03 3.16E-03 0.74 0 0.87 5.51E-03 3.48E-03
128 0.82 0 0.92 4.49E-03 2.84E-03 0.77 0 0.87 5.41E-03 3.37E-03
256 0.8 0 0.91 4.71E-03 2.91E-03 0.76 0 0.87 5.48E-03 3.38E-03

5
64 0.82 0 0.9 4.92E-03 3.13E-03 0.79 0 0.87 5.53E-03 3.45E-03
128 0.82 0 0.92 4.49E-03 2.85E-03 0.78 0 0.88 5.33E-03 3.36E-03
256 0.81 0 0.92 4.43E-03 2.72E-03 0.77 0 0.88 5.30E-03 3.28E-03

6
64 0.77 0 0.9 4.92E-03 3.14E-03 0.73 0 0.87 5.58E-03 3.47E-03
128 0.81 0 0.92 4.39E-03 2.76E-03 0.77 0 0.88 5.34E-03 3.33E-03
256 0.81 0 0.92 4.42E-03 2.67E-03 0.78 0 0.88 5.31E-03 3.26E-03

5.3. RESULTS AND DISCUSSION

5.3.1. ASSESSMENTS OF THE DNN-PREDICTED AEROSOL ABSORPTION
The DNN-F11 model is applied to predict the aerosol absorption from 2006 to 2019. The AAOD
estimated by the DNN and further derived SSA (SSA = 1 - AAOD/AOD) are validated by the co-located
AERONET records and compared with the aerosol absorption provided by OMAERUV and MERRA-2.
To ensure the consistency between different products, we apply the same quality filtering described in
Section 5.2.2 before analysis. This filtering is also applied to MERRA-2 AOD and SSA. There are in total
39,504 coincidences for validation.
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Figuur 5.8: Performance of the optimal model selected by grid search. The linear fitting slope (k), intercept (b), the
correlation coefficient (R2), the root mean square error (RMSE) and the mean absolute error (MAE) between the
observed and predicted values, and the percentage of AAOD difference within AERONET AAOD estimated error in
the total samples (P ) are provided: (a) DNN with 11 features (DNN-F11); (b) DNN with 8 features (DNN-F8). The
dashed lines are 1:1 and 50% difference lines.

THE INFLUENCE OF INPUT FEATURES ON THE DNN PREDICTIONS

First, we investigate the relationship between the errors of the DNN predictions and input features.
According to Figure 5.9, the difference between the DNN-predicted and the AERONET-retrieved AAOD
shows little dependence on the input features. However, it is slightly related to the AOD difference
between MODIS and AERONET (Figure 5.9 (l)). The positive bias of MODIS AOD leads to overestimation
of the DNN-predicted AAOD. On the other hand, Figure 5.10 (b) reflects that low AOD may cause large
biases in the DNN-derived SSA, because MODIS observations become less sensitive to low aerosol
loading [Levy et al., 2013]. This indicates that a quality filtering on AOD is necessary to ensure the quality
of the DNN predictions. As a result, based on the sensitivity study of the DNN-derived SSA accuracy
(Figure 5.11), a threshold of 0.1 on the MODIS AOD at 550 nm is applied to the DNN predictions. The
same threshold is also applied to the OMAERUV AOD (converted to 550 nm) and the MERRA-2 AOD
for direct comparisons. There are total 21,600 samples after AOD-screening. The following discussions
are based on the filtered data.

VALIDATING THE DNN PREDICTIONS WITH AERONET
According to Figure 5.12 (a), the filtered DNN-predicted AAOD show a high correlation with the
AERONET retrievals (R2=0.89). The linear fitting shows that the DNN predictions have a slight negative
bias, which is mainly caused by the underestimation for cases with high aerosol absorption. Both
RMSE and MAE are at level around 0.005, and about 83% samples falling within the AERONET AAOD
estimated error. The corresponding SSA is also positively biased (Figure 5.13 (a)). Over 80% of the
samples are within the AERONET SSA typical uncertainty of ±0.03. Compared with the SVR predictions
in our previous study with only 66% data is inside the ±0.03 confidence interval [Sun et al., 2019], the
DNN-predictions show a significant improvement. Despite of the larger bias for high absorption cases,
the averaged error of DNN-derived SSA is at level around 0.02.

Aerosol absorptive properties of OMAERUV (at 500 nm) and MERRA-2 (at 550 nm) are also com-
pared with the AERONET retrievals. Although both the OMAERUV AOD and SSA are quality assured by
AERONET, its AAOD is still considerably lower than the corresponding AERONET retrievals, resulting in
a RMSE larger than the expected magnitude (Figure 5.12 (b)). Similar as the DNN predictions, the gap
is mainly due to the underestimation of the high aerosol absorption cases. The MERRA-2 AAOD tends
to be overestimated for lower values and underestimated for higher values, leading to the highest error
level (both RMSE and MAE) among the three data sets (Figure 5.12 (c)). In most cases, the MERRA-2
SSA is also higher than that of AERONET, with only 66% of samples within the ±0.03 confidence range
(Figure 5.13 (c)).
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Figuur 5.9: The AAOD difference between DNN and AERONET against input features. The gray dashed line indicates
the neutral. The color of density plots indicates the number of samples. The data is further grouped into 20 sets,
and the red circles and error bars are the mean and standard deviation of each group.

Tabel 5.4: Aerosol classification based on the Extinction Ångström Exponent (EÅE), Absorption Ångström Exponent
(AÅE) and SSA at 440 nm adapted from [Cazorla et al., 2013, Giles et al., 2012].

Aerosol
types

EÅE440−870 AÅE440−870 SS A440 Comment

Smoke EÅE ≥ 1.5 AÅE ≥ 0 SS A ≤ 0.95 Small absorbing aerosols
Dust EÅE ≤ 0.5 AÅE ≥ 1 SS A ≤ 0.95 Large absorbing aerosols
Mixed 0.5 ≤ EÅE ≤ 1.5 AÅE ≥ 1 SS A ≤ 0.95 Mixture of small and large absor-

bing aerosols
Other All other conditi-

ons
Non-absorbing aerosols

VALIDATING THE DNN PREDICTIONS BY AEROSOL TYPES

We further validate the DNN predictions according to aerosol types. We categorize the aerosols into
four types (i.e. smoke, dust, smoke-and-dust-mixed and other non-absorbing aerosols) by the EÅE
between 440 and 870 nm, the AÅE between 440 and 870 nm, and the SSA at 440 nm reported in the
AERONET inversion product (Table 5.4). This classification method is adapted from [Cazorla et al.,
2013, Giles et al., 2012].

The comparisons of the DNN, OMAERUV and MERRA-2 against the AERONET AAOD and SSA
for the four aerosol types are presented in Figure 5.14 and Table 5.5. All three data sets show their
best consistency with the AERONET retrievals for smoke aerosols (R2 >0.90). R2 slightly decreases for
larger absorbing aerosols (mixed and dust aerosols), but most of the samples is still within the ±50%
difference range (dashed lines). On the other hand, all three data sets are not well correlated with
AERONET for non-absorbing aerosols (R2 <0.8), and tend to overestimate the aerosol absorption.

Compared to OMAERUV and MERRA-2, the DNN predictions have higher R2 and lower error
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Figuur 5.10: The SSA difference between DNN and AERONET against input features. The gray dashed line indicates
the neutral. The color in density plots indicates the number of samples. The data is further grouped into 20 sets,
and the red circles and error bars are the mean and standard deviation of each group.

in general. The agreement between the DNN predictions and the AERONET retrievals varies with
aerosol types. The DNN is best at predicting aerosol absorption for smaller absorbing aerosols. This is
because the DNN-predicted AAOD is most sensitive to the input MODIS AOD and OMAERUV UVAI.
The uncertainty of the MODIS AOD in the visible band is higher for dust aerosols due to the stronger
surface reflectance [Hsu et al., 2013, Levy et al., 2013, Remer et al., 2005, Wei et al., 2019]. Consequently,
the DNN predictions for dust aerosols are less consistent with the AERONET retrievals than smoke
aerosols. The gap between DNN-predictions and AERONET is largest for non-absorbing aerosols. It is
because that the OMAERUV UVAI is more sensitive to absorbing aerosols than scattering aerosols by
definition [Herman et al., 1997a, Torres et al., 1998].

The OMAERUV AAOD is overall lower than the AERONET retrievals, with k <0.8 for all aerosol
types. This is caused by the higher OMAERUV SSA compared to AERONET for the majority of the
data. This agrees with findings in [Jethva et al., 2014]. According to [Jethva and Torres, 2011a], the
potential reasons behind the SSA difference to AERONET could come from the clouds contamination,
the assumptions on ALH, the high surface albedo (in desert and arid areas), and the assumed aerosol
micro-physical properties. On the contrary, the MERRA-2 AAOD shows slightly positive biases (except
for smoke), particularly for non-absorbing aerosols, reflecting that the MERRA-2 aerosol models may
overestimate the aerosol absorption.

ASSESSMENTS OF THE DNN-PREDICTED AEROSOL ABSORPTION BY CASES

Here we selected 4 cases to further investigate the performance of the DNN predictions, covering dust
storms and biomass burning events in Africa. Figure 5.15 and 5.16 present the MODIS/Aqua true color
images and the OMAERUV UVAI for the selected cases. Case 2019-02-14 and 2019-02-18 show the
biomass burning events in the central Africa. Case 2019-07-10 and 2019-08-07 mainly present the dust
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Figuur 5.11: Sensitivity of DNN-derived SSA accuracy to AOD. The gray dashed lines are the ±0.03 uncertainty of
AERONET SSA.

Figuur 5.12: Comparison between the AERONET AAOD and the AAOD of (a) DNN-F11 predictions, (b) OMAERUV
and (c) MERRA-2 after the AOD-screening. The black lines are the linear fittings. The dotted and dashed lines are
1:1 and 50% difference lines, respectively. P is the percentage of the difference between the DNN-predicted AAOD
and AERONET AAOD smaller than the expected error of the AERONET AAOD calculated by (Equation 5.4) in the
total samples.

storms in the northern Africa with some biomass burning events in the southern Africa.

Figure 5.17-5.20 show the DNN-predicted AAOD, SSA and the input MODIS AOD (left column),
and their difference with the corresponding parameters of OMAERUV (middle column) and MERRA-2
(right column). In general, the DNN-derived AAOD can reflect the distribution of absorbing aerosols
(cloud-free parts) as that shown in Figure 5.15 and 5.16, whereas it is difficult to tell the dust or smoke
plumes from the derived-SSA alone (same for SSA of OMAERUV and MERRA-2). The distribution of
the DNN-derived AAOD is dominant by the input MODIS AOD, whereas the effect of UVAI is weaker.
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Figuur 5.13: AERONET SSA against the SSA of (a) DNN-F11 predictions, (b) OMAERUV and (c) MERRA-2 after the
AOD-screening. The black lines are linear fittings. The gray dashshed lines are the ±0.03 uncertainty of AERONET
SSA. P is the percentage of the difference between the DNN-predicted SSA and AERONET SSA smaller than the
expected error of the AERONET SSA (±0.03) in the total samples.

Figuur 5.14: AERONET AAOD against that of DNN-F11 (red square), OMAERUV (green cross) and MERRA-2 (blue
circle) for four aerosol types based on Table 5.4: (a) smoke, (b) dust, (c) mixed and (d) other aerosols. The dashed
lines are 1:1 and 50% difference lines.

Tabel 5.5: AAOD validation by aerosol types. The columns are statistics between AAOD of each data set and
AERONET: the root mean square error (RMSE), the mean absolute error (MAE), the linear fitting slope (k), intercept
(b) and correlation coefficient (R2), the percentage of difference within the expected AERONET error level in the
total samples (P ), the number of samples (N ), and the mean error of AAOD, AOD and SSA (ME A AOD , ME AOD and
MESS A ) of each aerosol type.

Type Data RMSE MAE k b R2 P[%] N MEA AOD MEAOD MESS A

Smoke
DNN-F11 5.46E-03 3.94E-03 0.9 0 0.93 79 3533 -0.003 -0.02 0.00
MERRA-2 6.09E-03 4.17E-03 0.96 0 0.91 77 3533 -0.001 -0.01 0.00
OMAERUV 7.51E-03 4.74E-03 0.65 0 0.91 72 3533 -0.002 0.00 0.01

Dust
DNN-F11 6.50E-03 4.75E-03 0.73 0.01 0.86 89 2410 0.00 0.00 0.00
MERRA-2 1.01E-02 7.42E-03 1.02 0 0.83 74 2410 0.005 0.01 -0.01
OMAERUV 8.92E-03 6.66E-03 0.73 0 0.85 81 2410 -0.003 -0.01 0.00

Mixed
DNN-F11 5.21E-03 3.86E-03 0.82 0 0.9 82 7322 -0.002 -0.01 0.00
MERRA-2 7.92E-03 5.21E-03 1.02 0 0.82 73 7322 0.001 -0.01 0.00
OMAERUV 7.77E-03 5.47E-03 0.6 0 0.83 69 7322 -0.003 -0.01 0.01

Other
DNN-F11 4.83E-03 3.64E-03 0.73 0.00 0.73 84 8335 0.002 0.00 -0.01
MERRA-2 1.02E-02 7.37E-03 1.04 0.01 0.63 50 8335 0.007 0.00 -0.03
OMAERUV 5.41E-03 4.24E-03 0.67 0.00 0.7 76 8335 0.002 0.01 -0.01

For example, in case 2019-07-10 and 2019-08-07, both MODIS AOD and DNN-derived AAOD show
high values in biomass burning regions, whereas the corresponding UVAI is very low.

The difference plots of AAOD and SSA show that the DNN-predicted aerosol absorption is generally
higher than that of OMAERUV, whereas it is lower than that of MERRA-2. This finding is consistent
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Figuur 5.15: MODIS/Aqua true color maps of the selected cases: (a) 2019-02-14; (b) 2019-02-18; (c) 2019-07-10; (d)
2019-08-07. Source: https://worldview.earthdata.nasa.gov/.

Figuur 5.16: OMAERUV UVAI of the selected cases: (a) 2019-02-14; (b) 2019-02-18; (c) 2019-07-10; (d) 2019-08-07.

with that found in previous sections. The difference in aerosol absorption is mainly associated with the
difference in AOD. For example, in case 2019-02-18, the MODIS AOD of the smoke plume is significantly
higher than that of OMAERUV (Figure 5.18 (h)), and the corresponding AAOD and SSA difference shows
the same pattern (Figure 5.18 (b, e)).

5.3.2. AEROSOL ABSORPTION CLIMATOLOGY
Here we discuss the aerosol absorption climatology over land derived by DNN for the period from 2006
to 2019. Although it is applicable for aerosols over ocean, the DNN model is mainly trained for aerosols
over land, as the most of AERONET sites measure aerosol absorptive properties of continental aerosols
(Figure 5.4). The aerosol properties over ocean may have a different distribution from that of continen-
tal aerosols, which could bias the predictions. Therefore, we only discuss the aerosol absorption over
land in this section, and provide a tentative analysis on the predicted aerosol absorption over ocean.

GLOBAL AEROSOL ABSORPTION CLIMATOLOGY OVER LAND

Figure 5.21 and 5.22 present the seasonal aerosol absorption of DNN, OMAERUV and MERRA-2 over
land averaged between 2006 and 2019. All three data sets show the major absorbing aerosol sources
in each season, for instance, the biomass burning events in Central Africa in DJF and MAM, and dust
storms from Sahara in MAM and JJA, etc. Compared with MERRA-2, both the DNN and OMAERUV
AAOD have lower magnitudes, especially over desert regions. It is because both MODIS and OMI
have difficulty in retrieving AOD over bright surfaces in the visible band. Besides, in OMAERUV, dust
particles are assumed to be spherical which is not a proper assumption to calculated the dust optical
properties [Torres et al., 2002b]. On the contrary, MERRA-2 assimilates the MISR and AERONET AOD
observations over bright surfaces [Buchard et al., 2017, Randles et al., 2017]. Owing to MISR’s multi-
angle measurement technique providing more constraints on the inversion, the MISR AOD is better
associated with AERONET than MODIS over desert regions [Kalashnikova and Kahn, 2008, Mishchenko
et al., 2010]. Both MERRA-2 and DNN show that the northern India is a considerable source in all
seasons, although the latter has a lower magnitude. However, this is not observed in OMAERUV. By

https://worldview.earthdata.nasa.gov/
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Figuur 5.17: Case study of 2019-02-14. The upper-script O and M indicate OMAERUV and MERRA-2 respectively.
First row: DNN-predicted AAOD and its difference with the OMAERUV and MERRA-2 AAOD; second row: DNN-
derived SSA and its difference with the OMAERUV and MERRA-2 SSA; third row: input UVAI, the MODIS AOD
difference with OMAERUV, and MODIS AOD difference with MERRA-2.

contrast, the OMAERUV AAOD is higher in South America during all seasons, whereas the other two
data only show significant AAOD during the fire season (SON). These disagreements are associated
with the difference in AOD climatology (not shown).

In terms of SSA, the correlation between three data sets is not explicit. Because the OMAERUV and
MERRA-2 SSA are calculated from independent a priori aerosol models, whereas the DNN derives SSA
from observational data. The OMAERUV SSA shows the highest magnitude and the MERRA-2 SSA is
lower than others, which agrees with findings in validation section. The spatial patterns of the DNN
and MERRA-2 SSA are more similar to each other than that of OMAERUV over the Southern Africa and
South America biomass burning regions, although the DNN predictions are slightly higher than that of
MERRA-2.

GLOBAL AEROSOL ABSORPTION CLIMATOLOGY OVER OCEAN

In this section we provide a tentative analysis for the DNN-derived aerosol absorption climatology
over ocean. Figure 5.23 and 5.24 present the AAOD and SSA, respectively. All AAOD data sets show
the absorbing aerosol outflows from major continental sources, e.g. the dust storms from the Sahara
Desert and smoke plumes from Central and Southern Africa. The OMAERUV climatology map is more
noisy compared with others due to observational and retrieval errors, missing data, etc. There are high
values of the OMAERUV AAOD over remote oceans which are far away from absorbing aerosol sources,
especially in the Northern Pacific during MAM and in the Southern Pacific during SON 5.23 (e, k)).
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Figuur 5.18: The same as Figure 5.17 but for 2019-02-18.

The outflow of the Sahara dust and the Africa biomass burning plumes can be observed in the
OMAERUV SSA climatology. The MERRA-2 SSA is also associated with the corresponding AAOD,
particularly for smoke plumes. But the dust outflows over the northern Atlantic Ocean and the Arabian
Sea can hardly be observed in the SSA maps. This may be caused by the aerosol models used in MERRA-
2. The SSA of dust aerosols is between 0.77 to 0.96 (depending on particle size), whereas the absorption
of black carbon is much stronger (SSA varies from 0.21 to 0.38, depending on relative humidity)
[Randles et al., 2017]. On the other hand, the outflows of Africa dust and smoke are observable in the
DNN-derived SSA map, but the magnitude is much less than other two data sets. The DNN predictions
over ocean is overall not as good as that over land due to the limited spatial distribution of the training
data.

REGIONAL AEROSOL ABSORPTION CLIMATOLOGY

We further select the major absorbing aerosol sources for regional analysis, as shown in Figure 5.25. We
analyze the monthly averaged aerosol absorption time series of the selected regions of interest with
the mean of the corresponding AERONET measurements as a reference. According to Figure 5.26a, the
DNN-predicted AAOD and MERRA-2 AAOD show better agreeemnt with AERONET, whereas in terms
of SSA (Figure 5.26b), the fluctuation of the AERONET SSA is larger than other data sets, and generally
shows a stronger aerosol absorption in almost all regions. But note that the selected AERONET sites
can hardly represent the whole features of the selected regions, thus we only provide statistical analysis
between DNN predictions, OMAERUV and MERRA-2. All the three data sets show similar seasonal
cycles of aerosol absorption. Overall, the DNN-predicted AAOD are better associated with the other
two data sets than the DNN-predicted SSA.
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Figuur 5.19: The same as Figure 5.17 but for 2019-07-10.

In biomass burning regions, e.g. Southeast Asia, Central Africa and Southern Africa, the DNN-
predicted AAOD is highly correlated with OMAERUV and MERRA-2 (R2 >0.8), but the magnitude of
the DNN predictions is more similar to the latter. An exception is South America, where the OMAERUV
AAOD has the highest magnitude but with little seasonal variations, showing very low correlations
with other two data sets. This is also reflected in the climatology maps (Figure 5.21). However, the
corresponding SSA of DNN and MERRA-2 are in good agreement over this region (R2 =0.93). The
DNN-derived SSA is also well correlated with that of MERRA-2 in Africa biomass burning regions
(R2 =0.9), whereas lower correlations are found in Southeast Asia and the Amazonian regions (R2 <0.8).
The reason could be that the satellite observations are less sensitive to these regions as the aerosol
loading is lower compared to that in Africa.

Compared with biomass burning regions, the AAOD and SSA of all data sets show less correlations
in the desert regions of Arabia and Northern Africa. MERRA-2 presents the strongest absorption,
whereas OMAERUV presents the lowest absorption, which is consistent with the findings in validation
section. The DNN predictions are between the two data sets, as the low measurement sensitivity of
AOD in the visible band due to high surface albedo is partially compensated by the advantage of UVAI
that can detect the presence of absorbing aerosols even over bright surfaces [Herman et al., 1997a,
Torres et al., 1998].

5.4. CONCLUSION
A global aerosol absorption database is important to reduce uncertainties of aerosol radiative forcing
assessments. In this study, we introduced a DNN model to retrieve quantitative aerosol absorptive
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Figuur 5.20: The same as Figure 5.17 but for 2019-08-07.

properties (AAOD and SSA) from the long-term OMI UVAI product. The input features are selected
by both filter and wrapper methods. The hyper-parameters of the DNN model are determined by
grid search with 10-fold cross validation. The final trained model has an accuracy of 0.0045 for AAOD
prediction, which is within the expected AAOD error ( 0.004 to 0.006).

The trained DNN model has been applied to predict aerosol absorption over land for the period
between 2006 and 2019. It is recommended to use DNN-predicted AAOD and SSA with AOD at 550
nm above 0.1, as the low aerosol loading will lead to significant biases in the DNN predictions. The
point-to-point validation shows that the DNN AAOD is negatively biased, but still highly associated
with the AERONET retrievals (R2=0.89 and RMSE=0.0050). There are 82% samples fall in the excepted
uncertainty of the AERONET SSA (±0.03). The analysis based on aerosol types shows that our DNN
model is better at predicting fine absorbing aerosols (e.g. smoke) rather than coarse ones (e.g. mineral
dust). This is mainly caused by the property of the MODIS AOD in the visible band. The consistency is
lowest for non-absorbing aerosols, since UVAI is only sensitive to absorbing aerosols according to its
definition.

The DNN predictions are also compared with the OMAERUV retrievals and the MERRA-2 aerosol
reanalysis. It should be noted that for both OMAERUV and MERRA-2, the SSA is calculated from a priori
assumptions on aerosol micro-physical properties, whereas for no such constraints in our DNN model.
Using AERONET as the reference, the DNN AAOD outperforms that of OMAERUV and MERRA-2 for all
aerosol types. Specifically, OMAERUV underestimates the aerosol absorption particularly for absorbing
aerosols, whereas MERRA-2 has the tendency to overestimate aerosol absorption in general. The AAOD
spatial distribution and temporal variation of the DNN predictions and MERRA-2 are highly similar,
particularly in the biomass burning regions. The spatial pattern of SSA is less comparable.
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Figuur 5.21: Seasonal AAOD of DNN (left column), OMAERUV (middle column) and MERRA-2 (right column) over
land.

Our DNN model shows encouraging results in aerosol absorptive properties retrieval over land.
However, the result is only satisfying for AOD above a certain level, since the low measurement
sensitivity to low aerosol loading is a general problem of aerosol remote sensing. Besides, the satellite
retrieved AOD in the visible band is still challenging for dust particles over bright surfaces. The
application to aerosols over ocean is still restricted by the availability of reliable aerosol absorption
sources used for training Machine Learning models. Future applications should pay attention to the
above aspects.

Currently, due to the limitation of the training data set (a hybrid data sets of satellite observations,
model simulations and ground-based network measurements), our study did not properly account
for spatial and temporal auto-correlation of geo-parameters. With more efforts put on the global
monitoring of aerosol properties and vertical distribution, and better resolution of satellite instruments,
it is expected to solve this problem either using geo-statistics that explicitly provide the spatial and
temporal auto-correlation, or using advanced Deep Learning techniques such as CNN and/or RNN
that can share weight parameters in space and/or time domain.



5.4. CONCLUSION

5

99

Figuur 5.22: Seasonal SSA of DNN (left column), OMAERUV (middle column) and MERRA-2 (right column) over
land.

Figuur 5.23: Seasonal AAOD of DNN (left column), OMAERUV (middle column) and MERRA-2 (right column) over
ocean.
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Figuur 5.24: Seasonal SSA of DNN (left column), OMAERUV (middle column) and MERRA-2 (right column) over
ocean.

Figuur 5.25: Regions of interest. Green and red indicates regions dominated by smoke aerosols and dust aerosols,
respectively.
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(a) AAOD time series.

(b) SSA time series.

Figuur 5.26: Time series of DNN (black), OMAERUV (green), MERRA-2 (blue) and AERONET (gray) for regions of
interest.



6
CONCLUSION AND OUTLOOK

Aerosol absorptive properties, e.g. the absorbing aerosol optical depth (AAOD) and the single scattering
albedo (SSA), are one of the major uncertainties in aerosol radiative forcing assessments. Monitoring
the global aerosol absorptive properties from space is therefore essential but challenging. Currently
most satellite sensors are not equipped with multi-angular and/or polarimetric techniques, which
can add constraints to the inversion process for retrieving aerosol optical properties in addition to the
aerosol optical depth (AOD). Consequently, we turn to the radiance measurements in the Ultra-Violet
(UV) band, from which a qualitative aerosol absorptive parameter, i.e. the Ultra-Violet Aerosol Index
(UVAI), can be calculated.

UVAI is directly calculated from the measured radiance and the radiance simulated for a Rayleigh
atmosphere. As such, the UVAI is free from the uncertainties due to a priori assumed aerosol properties.
Many satellite sensors provide UVAI products, together contributing to a global database holding the
information of aerosol absorption for over four decades (Table 1.1 in Chapter 1).

However, UVAI cannot be directly used in quantitative calculations, e.g. the assessment of aero-
sol radiative forcing. Hence, the objective of this thesis is to derive quantitative aerosol absorptive
properties, i.e. AAOD and/or SSA from UVAI. We conducted a sensitivity study of UVAI, based on
which we investigated the feasibility to derive AAOD and/or SSA using either physically-based or
data-driven methods (Chapter 2 and 3). The lack of observations of the aerosol vertical distribution
restricts the application of UVAI, therefore we created an aerosol layer height (ALH) data set from
a chemical transport model (Chapter 4). Synthesizing the previous results, we derived an aerosol
absorption database from the long-term OMI UVAI record (Chapter 5). The potential of the method is
demonstrated by evaluating the results against independent observations.

6.1. CONCLUSIONS
The research questions addressed in this dissertation are listed in Section 1.8 of Chapter 1. Below, the
main findings related to each of these research questions are presented.

1. WHAT ARE PHYSICAL PARAMETERS THAT UVAI IS MOST SENSITIVE TO?
Section 1.7.2 in Chapter 1, section 2.2 in Chapter 2, and section 4.1 in Chapter 4 present sensitivity
studies of UVAI. UVAI is calculated from the radiance at the top of the atmosphere measured by
satellite. Theoretically, in addition to aerosol related parameters, UVAI also depends on the satellite-
solar geometries, the relative location to clouds, the surface albedo, the surface pressure, the choice
of the wavelength pair, etc. Nevertheless, influences of these non-aerosol parameters are relatively
limited. The feature selection in Chapter 3 section 3.3.2 and Chapter 5 section 5.2.3, where we applied
Machine Learning algorithms to derive aerosol absorbing properties from UVAI, also confirms this
conclusion.

UVAI is only sensitive to elevated absorbing aerosol layers with relatively high aerosol loading. In
other words, the most important parameters to UVAI are:

102
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• Aerosol absorption: UVAI was proposed for detecting the presence of absorbing aerosols. The
stronger the absorption, the larger the detected UVAI. Aerosol absorption is usually described
by SSA, which is usually determined by the complex refractive index and the size distribution
function. However, as found in Chapter 3 and 5, compared with SSA, UVAI is better correlated
with another quantitative aerosol absorptive parameter, i.e. AAOD, since both UVAI and AAOD
contain information on aerosol absorption and aerosol amount.

• Aerosol loading: in the context of remote sensing, the aerosol amount is represented by the
AOD. For elevated absorbing aerosols, the higher the AOD, the higher the UVAI value, and the
AOD effect becomes stronger with altitude. But the AOD effect is not significant if aerosol layers
are close to the ground. The above conclusions are not applicable for non-absorbing aerosols
such as sea salt or sulfates.

• Aerosol vertical distribution: the UVAI signal is caused by absorbing the up-welling Rayleigh
scattering. The higher an absorbing aerosol layer, the more scattered radiance beneath the
aerosol layer is absorbed by the layer, resulting a higher UVAI. This UVAI altitude dependence
also increases with aerosol absorption and aerosol loading. On the other hand, this vertical
distribution effect on scattering aerosols is limited.

2. WHAT ARE THE MAJOR CHALLENGES/UNCERTAINTIES OF DERIVING QUANTITATIVE AEROSOL OPTICAL

PROPERTIES USING TRADITIONAL RADIATIVE TRANSFER SIMULATIONS?
In Chapter 2 and 3, we derived the SSA from UVAI using radiative transfer simulations for several fire
events. Specifically, a Look-Up Table (LUT) of UVAI is calculated as a function of SSA, and the SSA is
calculated by the Mie Theory with given aerosol models. Then the SSA is estimated by minimizing the
difference between the satellite measured and the simulated UVAI.

• One difficulty of this method is that assumptions have to be made on aerosol properties. The
uncertainty is caused by insufficient knowledge of aerosol micro-physics, especially the spectral
dependence of the imaginary refractive index. Moreover, the assumed aerosol models used in
the LUT cannot represent the real aerosol properties that vary considerably in space and time.

• Another challenge is the lack of information on the aerosol vertical distribution. In radiative
transfer simulations, it is possible to describe the complete aerosol profiles, whereas the calcu-
lation would be very time consuming. Alternatively, parameterized aerosol profiles are more
often used. The most commonly used profiles are the exponential-decay profile, the Gaussian
or log-normal profile, and the homogeneous box-shape profile. But no matter whether one uses
real or parameterized profiles, there is little information of aerosol vertical distribution from
measurements. This will be explained further in the next Question.

3. HOW TO OBTAIN AN AEROSOL VERTICAL DISTRIBUTION DATA SET FOR QUANTITATIVELY USING UVAI?
UVAI is sensitive to the aerosol vertical distribution, and its altitude dependence increases with aerosol
absorption and aerosol loading. Without doubt, the aerosol vertical distribution is important for the
quantitative use of UVAI.

Currently, the observational aerosol vertical distribution is mainly offered by two types of measure-
ments: (1) aerosol extinction profiles from active lidar, and (2) aerosol heights from passive sensors.
Whereas lidar measurements provide a great amount of details on aerosol profiles, they are subjected
to limited spatial and/or temporal coverage. Compared with aerosol profiles, aerosol heights are easier
for quantitative analysis, but most aerosol height retrieval algorithms are only applicable under certain
conditions, e.g. elevated aerosol layers, over dark surfaces, cloud-free, etc.

Facing the lack of observations, we attempt to build a global aerosol height database based on the
aerosol profiles of a well-validated chemistry transport model (i.e. the MERRA-2 aerosol reanalysis)
for future applications of quantifying aerosol absorption from satellite UVAI. Since aerosol profiles
are too complicated to analyze, it is more common using ALH to study the UVAI dependence on
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the aerosol vertical distribution. But this comes to another issue that a widely accepted standard
metric to convert aerosol profiles into a single height parameter (either an effective height or an actual
height) is presently missing. Thus in Chapter 4, based on the relationship between UVAI and aerosol
heights found in radiative transfer simulations and current satellite observations, we investigated 4
methods that convert aerosol profiles into aerosol heights, they are: (1) the mean height weighed by
the extinction coefficient of each layer; (2) the mean height weighed by the aerosol optical depth of
each layer; (3) the scale height where 63% of the columnar AOD is retained; and (4) the geometric
height indicating the top boundary of aerosol layers.

We found that the UVAI dependence on 3 effective heights (derived by first 3 methods) is consistent
with findings in the simulations and observations under majority circumstance, except when the
aerosol loading is high. Since effective heights are sensitive to the the altitude and the magnitude of
layers with the strongest extinctions, together with the fact that AOD is positively related to the peak
extinction that is likely to appear at a lower altitude, the UVAI dependence on the effective heights is
lower for the highest AOD regimes. On the other hand, the UVAI dependence on the top height matches
best with the findings from sensitivity studies and satellite observations: when AOD increases, the
sensitivity of UVAI to the changes of the top height becomes stronger. Moreover, the UVAI dependence
on the top height also decreases with SSA, whereas UVAI shows little relation with the effective heights
as SSA varies.

Thus, the answer to this research question is: currently there is no observational aerosol vertical
distribution data set can be used to quantify aerosol absorptive properties from the long-term UVAI
record. However, it is possible to create such a data set from a well-validated chemistry transport
model, e.g. the top boundary height derived from the MERRA-2 aerosol reanalysis, as an alternative of
limited aerosol height measurements. We have succeeded using this aerosol height data set to deriving
global aerosol absorptive properties from the OMAERUV UVAI for the period from 2006 to 2019 with
encouraging outputs compared with the AERONET measurements.

4. HOW TO APPLY MACHINE LEARNING TECHNIQUES TO DERIVE QUANTITATIVE AEROSOL OPTICAL

PROPERTIES FROM UVAI?
Existing retrieval methods of aerosol properties (either using LUT or online radiative transfer simulati-
ons) cannot avoid assumptions on aerosol micro-physical properties in the forward radiative transfer
simulations. This is one of the major error sources in the retrieved aerosol optical properties, since
our knowledge on aerosol micro-physics is too limited to well present aerosols in reality. Fortunately,
Machine Learning techniques provide an alternative solution for inversion problems of aerosol remote
sensing by building a numerical relationship between variables learned from the given data without
explicitly describing aerosol micro-physical properties.

In Chapter 3, we found that the AERONET AAOD and the OMI UVAI are well correlated. We
conducted a tentative experiment using the Support Vector Regression (SVR) to derive AAOD and SSA
from UVAI for several individual fire events. Compared with radiative transfer simulations (as that in
Chapter 2 and 3), the SVR-predicted aerosol absorption shows a better agreement with the AERONET
retrievals. But the SVR model suffers from a high bias problem as only three features (UVAI, AOD and
ALH) are selected to train the model. Furthermore, the size of the training data set (less than 5,000) is
significantly limited by the availability of ALH data.

Based on the previous experience, in Chapter 5, we applied a more comprehensive Machine
Learning algorithm to retrieve the aerosol absorptive properties from the OMI UVAI for the period
from 2006 to 2019. With the ALH derived from the MERRA-2 aerosol profiles (i.e. the geometric top
boundary of an aerosol layer as defined in Chapter 4), the training data set extends to near 50,000. With
training data of this size, it is more efficient to use Deep Learning algorithms, e.g. the Deep Neural
Network (DNN). The selected features do not only include all the parameters that UVAI is sensitive to,
but also take spatial and temporal information into account. The comparison with AERONET shows
that the DNN-derived aerosol absorption is only slightly underestimated with an AAOD error level of
0.004 and over 80% samples fall inside AERONET SSA uncertainty range. The validation results show
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that the DNN-predicted aerosol absorption outperforms that provided by OMI and MERRA-2, and the
DNN is better at predicting aerosol properties for fine absorbing aerosols than for coarser ones.

The DNN-derived aerosol absorption shows encouraging results and the potential to produce a
global daily aerosol absorption database from the long-term OMI UVAI record. However, our DNN
model is currently restricted by the low satellite measurement sensitivity of low aerosol loading cases,
the large uncertainty of AOD over bright surfaces in the visible band, the limited measurements of
aerosol absorptive properties over ocean to train the model. These factors indicate directions for
future improvements. Furthermore, due to the limitation of the training data set (a hybrid data sets of
satellite observations, model simulations and ground-based network measurements), our study did
not properly account for spatial and temporal auto-correlation of geo-parameters. With more efforts
put on the global monitoring of aerosol properties and vertical distribution, and better resolution
of satellite instruments, it is expected to solve this problem either using geo-statistics that explicitly
provide the spatial and temporal auto-correlation, or using advanced Deep Learning techniques such
as CNN and/or RNN that can share weight parameters in space and/or time domain.

6.2. OUTLOOK FOR FUTURE RESEARCH
UVAI is a treasure that holds information on global aerosol absorption over several decades. This dis-
sertation presents encouraging results of deriving quantitative aerosol absorptive properties from the
satellite UVAI record. It shows the potential of UVAI as an alternative source to complete global aerosol
absorption monitoring. However, we are still facing challenges. Here we provide some suggestions and
recommendations for future research on this topic.

HIGH UNCERTAINTIES OF AEROSOL OPTICAL DEPTH IN VISIBLE BAND OVER BRIGHT SURFACES

AOD is one of the most important parameters that determines the value of UVAI. UVAI is calculated by
radiance in the UV band which is insensitive to surface albedo. However, the MODIS AOD used in this
dissertation is retrieved in the visible band, under which it is difficult to separate aerosol contribution
to the total reflected radiance from that of surface, particularly over bright surfaces, e.g. arid regions.
This results in a lower accuracy of retrieved aerosol absorption for continental dust aerosols. AOD
retrieved at shorter (e.g. Ultra-Violet) or longer wavelengths (e.g. Infrared channel) is less sensitive to
the surface albedo. Joint use of AOD in different bands could be a potential solution.

AVAILABILITY OF THE AEROSOL VERTICAL DISTRIBUTION

The aerosol vertical distribution is another important parameter that UVAI depends on. Currently,
despite the fact that many sensors try to retrieve aerosol profiles or heights, there hardly exists an
individual product that can provide a consistent global vision of the aerosol vertical distribution.
Combined use of current aerosol profile or height products is an option. Nevertheless, the consistency
between different products should be investigated first. Another solution is deriving aerosol profiles
from chemistry transport models. This can ensure the consistency of the data set, but these models
should be carefully validated before use.

LIMITATIONS OF AERONET TO MACHINE LEARNING APPLICATIONS

Our Machine Learning method to derive quantitative aerosol absorptive properties from UVAI is also
restricted by the availability of AERONET. AERONET is currently the most widely distributed ground-
based remote sensing network monitoring aerosols. Although it is a global system, most AERONET
sites providing inversion products are located at continents. In other word, the AERONET network is
basically blind for aerosol micro-physics over ocean. Oceanic aerosols are generally assumed to be
scattering, but continental pollutants can be transported over the ocean and lead to different optical
properties. In this case, an alternative aerosol absorption data is needed, or a careful data transfer to
the AERONET observations should be considered.
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Moreover, the majority of AERONET sites are located in developed regions (America and Europe).
There are only a few stations located at absorbing aerosol source regions, e.g. the Sahara desert and the
Amazonian rain-forest. The uneven distribution also biases the training data. In other words, there
are much more cases of urban and/or mixed aerosols to train a Machine Learning model, than cases
of absorbing aerosols which are more important to aerosol radiative forcing. Data from satellites or
models can compensate the insufficient observations, but it is also necessary to increase the number
of ground-based sites in these regions.

CONCERNS ON MACHINE LEARNING APPLICATIONS IN AEROSOL REMOTE SENSING

Machine Learning brings new possibilities in solving remote sensing inversion problems. However,
there are some concerns when using this kind of method. Here the most important ones are listed (but
they are not limited to these):

First, Machine Learning algorithms only build numerical relations between variables, thereby
ignoring the underlying physical processes. In order to pursue better physical interpretability of
Machine Learning outputs, as a data scientist with a background in atmospheric science and remote
sensing, one should bring his/her domain knowledge to constrain the numerical model. The interface
where a data scientist teaches the model how to work is the feature selection and engineering.

Second, as our target variables are geo-parameters, the spatial and temporal auto-correlation
should be taken into consideration. Providing geo-coordinate and date-time information, or infor-
mation of past data and/or nearby pixels are simple and straightforward methods. There is also an
increasing trend applying hybrid approaches in both Machine Learning and geo-statistics. The latter
can explicitly describe the auto-correlation of geo-parameters in space and time. The advanced Deep
Learning techniques such as CNN and/or RNN are also an alternative option, as they can share weight
parameters in space and/or time domain.

The last is a general problem of Machine Learning when the training data set and test data set
have different distributions. In other words, the model may execute ’extrapolation’ if the test data falls
outside the training data domain. The ’extrapolated’ outputs can be easily detected for a model with
less than 4 features by visualization, but it is not the case for models with a higher-dimensional feature
space. Fortunately, some algorithms have been developed to detect the drift of feature distributions
(e.g. Concept Drift Detection), which are worth adapting to future applications.

AEROSOL PROFILES VERSUS AEROSOL HEIGHTS

Previous research (also included in this dissertation) focused on the relationship between UVAI and the
aerosol layer height. The advantage of the aerosol layer height is it is concise for quantitative analysis.
Also, for radiative transfer simulations, using full aerosol profiles may slow down the computational
speed. However, Machine Learning brings the possibility to use aerosol profiles directly: the aerosol
optical property in each layer can be treated as an individual feature. In this way, one does not have to
make choices between different aerosol height definitions or check the consistency between different
aerosol height products.

TOWARDS A LONG-TERM SYNTHETIC AEROSOL ABSORPTION DATABASE

UVAI has a long-term record since 1978, contributed by platforms listed in Table 1.1 in Chapter 1. It
would be of great value to build a synthesized aerosol absorption database from the long-term UVAI.
Since the wavelength pairs, the radiative transfer simulations, and the instrumental characteristics vary
with different UVAI products, and UVAI cannot be directly used for quantitative calculations, direct
assimilation of different UVAI products into one data set can lead to errors. Instead, it may be more
reasonable to derive AAOD and SSA from each UVAI product first using separate Machine Learning
models, then synthesize the quantitative absorptive properties into a complete data set. To ensure the
consistency between different products, the AOD and aerosol vertical distribution used for quantifying
different UVAI should be as consistent as possible.
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Tabel A.1: List of abbreviations.

3MI Multi-View Multi-Channel Multi-Polarization Imaging
AATSR Advanced Along-Track Scanning Radiometer
ACE Asia Aerosol Characterization Experiments-Asia
ADEOS Advanced Earth Observing Satellite
ADM-Aeolus Atmospheric Dynamics Mission Aeolus
AERONET AErosol RObotic NETwork
AIRS Atmospheric InfraRed Sounder
APS Aerosol Polarimetry Sensor
ATSR Along Track Scanning Radiometer
AVHRR Advanced Very High Resolution Radiometer
CALIOP Cloud-Aerosol Lidar with Orthogonal Polarization
CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation
CAMS Copernicus Atmosphere Monitoring Service
DISAMAR Determining Instrument Specifications and Analysing Methods for Atmospheric Retrieval
EARLINET European Aerosol Research Lidar Network
EPIC Earth Polychromatic Imaging Camera
EPS-SG EUMETSAT Polar System – Second Generation
ESA European Space Agency
FRESCO Fast Retrieval Scheme for Clouds from the Oxygen A band
GEOS-5 Goddard Earth Observing System, version 5
GLAS Geoscience Laser Altimeter System
GMAO Global Modeling and Assimilation Office
GOCART Goddard Chemistry Aerosol Radiation and Transport
GOME Global Ozone Monitoring Experiment
GRASP Generalized Retrieval of Aerosol and Surface Properties
GSI Gridpoint Statistical Interpolation
IASI Infrared Atmospheric Sounding Interferometer
ICESat Ice, Cloud and Elevation Satellite
INTEX-A Intercontinental Chemical Transport Experiment–North America
IPCC Intergovernmental Panel on Climate Change
JPL Jet Propulsion Laboratory
KNMI Royal Netherlands Meteorological Institute
LIVAS LIdar climatology of Vertical Aerosol Structure for space-based lidar simulation studies
MAIA Multi-Angle Imager for Aerosols
MERIS MEdium Resolution Imaging Spectrometer
MERRA-2 Modern-Era Retrospective Analysis for Research and Applications, version 2
Metop Meteorological Operational
MISR The multi-angle imaging spectroradiometer
MODIS MODerate-resolution Imaging Spectroradiometer
MPLNET Micro-Pulse Lidar Network
NASA National Aeronautics and Space Administration
OMI Ozone Monitoring Instrument
OMPS Ozone Mapping and Profiler Suite
PACE Plankton, Aerosol, Cloud and ocean Ecosystem
PARASOL Polarization & Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar
POLDER POLarization and Directionality of the Earth’s Reflectances
PRIDE Puerto RIco Dust Experiment
S-5P Sentinel-5 Precursor
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SAFARI Southern African Regional Science Initiative
SCIAMACHY SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY
SeaWiFS Sea-viewing Wide Field-of-view Sensor
SLSTR Sea and Land Surface Temperature Radiometer
TARFOX Tropospheric Aerosol Radiative Forcing Observational eXperiment
TOMS Total Ozone Mapping Spectrometer
TROPOMI TROPOspheric Monitoring Instrument
VIIRS Visible Infrared Imaging Radiometer Suite
WHO World Health Organization
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dissertation

Propositions

accompanying the dissertation

AEROSOL ABSORPTION FROM GLOBAL SATELLITE MEASUREMENTS IN THE
ULTRA-VIOLET

FROM QUALITATIVE AEROSOL INDEX TO QUANTITATIVE AEROSOL ABSORPTIVE PROPERTIES

by

Jiyunting SUN

1. The Ultra-Violet Aerosol Index (UVAI) cannot be quantitatively analyzed without information on
aerosol loading and aerosol vertical distribution. (This proposition pertains to this dissertation.)

2. The Ultra-Violet Aerosol Index (UVAI) should receive more appreciations than it currently has
obtained. (This proposition pertains to this dissertation.)

3. In the context of Machine Learning, the Ultra-Violet Aerosol Index (UVAI) itself is a result of
feature engineering. (This proposition pertains to this dissertation.)

4. Data deluge saves time meanwhile wasting time. Remote sensing enlarges the data size, but the
question is how much data are actually valid.

5. The First Law of Geography: Everything is related to everything else, but nearby things are more
related than distant things, should also be taken into account in remote sensing retrievals.

6. Online radiative transfer calculation is a future trend in atmospheric remote sensing inversion
problem solving; Machine Learning is another.

7. In Machine Learning, features are more important than algorithms, whereas data are more
important than features.

8. Remote sensing retrievals are actually data science with specific domain knowledge.

9. Do not attach too much value on what you value.

10. Sometimes, research is just providing scientific evidence for what one already knows from
common sense.

These propositions are regarded as opposable and defendable, and have been approved as such by the
promotor Prof. dr. P.F. Levelt.
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