

Procedural Destruction of Objects for
Computer Games

 PUBLIC VERSION

THESIS

submitted in partial fulfilment of the

requirements for the degree of

MASTER OF SCIENCE

in

MEDIA AND KNOWLEDGE ENGINEERING

by

Joris van Gestel

born in Zevenhuizen, the Netherlands

Computer Graphics and CAD/CAM Group
Department of Mediamatics
Faculty of EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

Cannibal Game Studios
Molengraaffsingel 12-14

2629 JD Delft
The Netherlands

www.cannibalgamestudios.com

Author: Joris van Gestel
Student id: 1099825
Email: j.vangestel@cannibalgamestudios.com
Date: May 10, 2011

© 2011 Cannibal Game Studios. All Rights Reserved

 i

Summary

Traditional content creation for computer games is a costly process. In particular, current

techniques for authoring destructible behaviour are labour intensive and often limited to a

single object basis. We aim to create an intuitive approach which allows designers to visually

define destructible behaviour for objects in a reusable manner, which can then be applied in

real-time.

First we present a short introduction into the way that destruction has been done in games

for many years. To better understand the physical processes that are being replicated, we

present some information on how destruction works in the real world, and the high level

approaches that have developed to simulate these processes.

Using criteria gathered from industry professionals, we survey previous research work and

determine their usability in a game development context. The approach which suits these

criteria best is then selected as the basis for the approach presented in this work. By

examining commercial solutions the shortcomings of existing technologies are determined

to establish a solution direction.

To separate destructible behaviour from particular objects, we introduce the concept of

destructible materials: where the material of an object usually defines the way an object

looks, a destructible material will determine how it breaks. Destructible materials provide a

reusable definition and intuitive way of designing and tweaking destructible behaviour of

objects, which can then be applied in real-time.

Using a prototype implementation we show the viability of the presented approach and how

it extends previous research with reusability, making it more designer friendly and allowing

the same destructible behaviour to be easily applied to different objects. While the

prototype can only apply this destructible behaviour in real-time for simple cases, it still

takes us a step in the right direction.

 ii

 iii

Acknowledgements

I would like to thank my colleagues for all their continued efforts to keep me motivated, for

their feedback and insights, and for creating the supporting and inspiring environment in

which I could work on this project, and finally see it completed.

I would also like to thank my supervisor, Rafael Bidarra, for his time, his patience and his

guidance, and his efforts to have me do this project to the best of my abilities.

Finally, I would also like to thank my friends and family for their love and support, and

pretending to understand what I was talking about during my many rants.

While I hardly ever express it directly, or in this case with many words, I can ensure you all, it

is not less heartfelt.

Thank you.

Joris van Gestel

Zevenhuizen, the Netherlands

Monday, 11 April 2011

 iv

Contents

Summary... i

Acknowledgements .. iii

1 Introduction ... 1

2 Background .. 3

2.1 Destruction in games ... 3

2.2 The physics of destruction ... 5

2.3 Simulating destruction .. 6

3 Previous work on procedural destruction ... 9

3.1 Finite Element.. 9

3.2 Shape matching ... 14

3.3 Alternative approaches ... 17

3.4 Suitability for games .. 20

4 Procedural destruction in gaming ... 23

4.1 Havok ... 23

4.2 Digital Molecular Matter ... 25

4.3 PhysX ... 25

4.4 Unreal .. 27

4.5 Red faction ... 27

4.6 Frostbite .. 28

5 Approach description .. 31

5.1 Destructible material ... 31

5.2 Designing crack and fractures ... 32

6 Prototype ... 35

6.1 Prototype focus ... 35

6.2 Development environment ... 36

6.3 Editor ... 36

7 High level design .. 41

7.1 Algorithm overview ... 41

7.2 Cracking ... 42

7.3 Fracturing .. 43

7.4 Boolean operation ... 45

8 Implementation ... 47

8.1 Library overview .. Error! Bookmark not defined.

8.2 Cracking ... Error! Bookmark not defined.

8.3 Fracturing .. Error! Bookmark not defined.

8.4 Boolean operation ... Error! Bookmark not defined.

9 Results ... 49

9.1 Designing a destructible material .. 49

9.2 Previewing a destructible material .. 52

9.3 Performance .. 57

10 Conclusions .. 61

10.1 Recommendations ... 62

Bibliography ... 65

 1 Introduction

1 Introduction

With the increase in gaming console and personal computer processing power, the demand

for higher quality graphics as well as higher quality gameplay increase alongside it. Higher

quality in these cases means more work as more content is required to fill ever bigger game

worlds, but at the same time this content also needs to be more detailed.

Creating content for games has always been, and remains so largely today, created by hand,

particularly adding destructibility to a gaming environment. This makes content creation a

very costly process, costs which get exponentially higher as the demand for more, and more

detailed, content increases. A lot of research has been performed, and effort expended, in

the last few years trying to automate this process by developing procedures that are capable

of automatically creating content, like for instance virtual worlds. As making content

destructible takes up a very large portion of the total time needed to create content, this

would be an excellent area to apply this automation to as well.

Goal

The goal of this master thesis project is to come up with a procedural approach to

automatically destroy objects. The behaviour and visual effects created by this procedure

will need to be designable by artists, and the algorithms used need to perform fast enough

to run in real time.

Background

To better understand why content creation is such a timely process, how the physical

processes of destruction and the different approaches to simulating these processes work,

some background information on these subjects is first discussed in chapter 2.

A lot of research has already been performed into techniques for simulating destruction. A

selection of these techniques has been examined to determine their strengths and

weaknesses. To see if any of them could be used as a basis for our new approach, all

approaches are compared through a set of criteria. The results of this survey can be found in

chapter 3.

 2 Introduction

To achieve more interactivity and destructibility in games, several gaming companies and

middleware developers have already created technologies for procedural destruction, but

these technologies are not yet used in a lot of games. By examining these techniques closely

and using them where possible, some insight can be gained into why these technologies are

not widely used in current games. The findings of this study can be found in chapter 4.

Approach & Prototype

In chapter 5, a new approach will be presented which will present a novel concept with

regards to automated destruction of objects for games. Several new ideas will be presented

as to how a designer could go about generically designing destructible behaviour in an

intuitive way while maintaining sufficient control to ensure constraints placed on the gaming

environment are not violated.

Chapter 6 will contain the description of a prototype implementation of the presented

concepts and ideas. While this prototype will only contain a subsection of the presented

possibilities it will demonstrate the feasibility of the approach and create a basis for future

work.

A high level description of the architecture of the prototype and the developed algorithms is

given in chapter 7. This will provide an overview of the structure of the prototype and

explain how certain encountered problems were solved.

In chapter 8 the important implementation details of the procedures are discussed, as well

as the specifics of different solution directions which were explored but which were found to

not properly or adequately solve encountered problems.

Results

In chapter 9 the results achieved by this project are discussed using a showcase. This

showcase demonstrates how the approach described in this thesis can be used and what the

results of applying the approach looks like.

Finally chapter 10 contains conclusions on the feasibility of the presented approach, future

work, and recommendations to Cannibal Game Studios.

 3 Background

2 Background

In this chapter, some background information into the subject of destruction in different

contexts is discussed. In section 2.1, an overview of the traditional way of creating

destruction in computer games is given. In section 2.2, some basic information on the

physics behind destruction is presented to allow us to understand the real world behaviour

we are trying to simulate. Finally in section 2.3, an overview is presented of the different

approaches that have been developed for this simulation of the real world behaviour of

destruction.

2.1 Destruction in games

Creating a piece of content is a multi-step process, see Figure 2.1. Once a particular piece of

content is needed, concept art is usually created first to determine how the content should

look, based on the art direction of the project and the purpose of the content. This concept

art can for example consist of artistic drawings of the piece of content in its natural

environment, or contain more technical sketches of different variations or configurations,

for instance a car with its door opened and closed.

Figure 2.1 The process of creating content.

Based on the concept art, a three dimensional model is then created. For most current

generation games, two models are actually needed; a low-detail in-game model and a high-

detail model. Most games use techniques like normal mapping to simulate high surface

detail without requiring the actual in-game model to be highly detailed. The high detail

model is used to generate a projection onto the in-game model, the in-game model and this

projection can then be used at runtime to quickly render what appears to be a high-detail

model.

Once the in-game model has been completed it needs to be UV-mapped, which is the

process of laying out all polygons contained in the mesh onto a flat two dimensional surface

(in which the axis are named U and V, instead of X and Y). This creates the effect of painting

Idea
Concept

art
3D model

UV
unwrap

Texture
Finished
content

 4 Background

an image onto the surface of the three dimensional model, called a texture. Once a texture

has been created the content is ready to be used in a game.

Traditionally content has always been static once it is placed in a game world. It might be

moved around, scaled or rotated, but no changes could be made to the model or texture at

runtime, as this was too demanding on system resources. However, at times, changes to a

piece of content are desired, for instance when an object receives damage. Consider a car

and suppose a collision occurs with another object, as a result, parts of the car might

become dented and paint gets damaged. Changes like this could not be made, as it would

require the dented surface to become more detailed adding, changing or removing polygons

in the model. As the layout of the model changes, the UV mapping needs to be updated as

well, to ensure the entire surface of the model still maps to the texture correctly. The

texture itself would also have to be adapted to simulate the loss of paint from the collision

or other inflicted damage.

To work around this limitation, once a change is needed to a piece of content, its model is

simply removed from the scene and a new model, which looks largely the same, is placed at

the exact same position. As this switch happens in between frames the effect is not

noticeable by the user; from his perspective the performed action simply gave the expected

result (his car is now dented). This approach is therefore known as art swapping, see Figure

2.2.

Figure 2.2 Traditional art swap method. Two independent and completely different collisions result in the exact

same animation being displayed. Images from (1).

One of the downsides of this approach is that the result will always be exactly the same; the

dent in the car will always be in the exact same location, regardless of where the actual

impact took place. To make this approach more convincing, modern games often use several

different, progressively more damaged versions of their content which are swapped based

on the situation at hand, to make the animation more accurate. However, this is also the

second downside of this approach, steps three, four and five in Figure 2.1 now have to be

 5 Background

repeated for every variation of the piece of content, adding considerably to the amount of

time needed to create one piece of content.

2.2 The physics of destruction

In traditional material sciences, deformation is defined as a change in the shape or size of an

object as a force is applied to it. These forces are one of four types, tensile (pulling),

compressive (pushing), shear (sliding) and bending or torsion (twisting). Deformations are

often described in terms of strain and are the result of stresses internal to an object, which

form as forces are applied to the object, or as its temperature changes. This strain is a

geometrical measure of the deformation, representing the relative displacement between

particles in the material body.

There are different kinds of deformations, namely elastic, plastic and fracture. Elastic

deformations are reversible: as soon as the applied force is removed the deformed object

returns to its original shape. For instance consider a piece of sheet metal; if a force is applied

to one end while the other is held in place, it will bend slightly but it will return to its original

shape as soon as this force is removed.

Plastic deformations, on the other hand, are

not reversible. When an object undergoes

plastic deformation, it no longer returns to its

original shape once the applied force is

removed. However, before an object can

undergo plastic deformation, it will have

undergone elastic deformation first, even if

only by a very small amount. Consider again

the piece of sheet metal: if a larger force than

last time is applied, bending it further, it will

not return to its original shape once the force is removed.

Fractures are also a type of deformation, and like plastic deformations they are not

reversible. Fractures occur after an object has reached the end of its elastic, and then plastic,

deformation ranges (see Figure 2.3). Therefore, if enough force is applied, any object will

fracture. Consider yet again the piece of sheet metal: if twisted a small amount, it will return

to its original form, twisted further it will keep its new form, but if twisted even further

beyond this point, cracks will appear until finally you are left with two separate pieces.

Figure 2.3 Relationship between stress (force) and
strain (deformation) of a ductile material. Image by
(28).

http://upload.wikimedia.org/wikipedia/commons/5/5a/Stress-strain1.svg

 6 Background

As there are different kinds of deformation, so are there different kinds of materials. Ductile

materials are able to deform plastically without fracture, for instance clay. Brittle materials

on the other hand, appear to fracture before deforming elastically, like glass. These

materials do actually deform elastically and plastically, but only by a very small amount, so

as soon as more force is applied than can be absorbed, they appear to directly go from a

non-deformed state to a fractured state.

2.3 Simulating destruction

Various different methods and techniques exist for simulating objects deforming and

fracturing, some of them based on replicating the actual physics of how these processes take

place, as described in the previous section, and some of them based on approximations or

simplifications instead. A few distinctions can be made between the various methods, see

(2) for an in depth report. On the highest level, we can consider the distinction between

Lagrangian and Eulerian methods:

Lagrangian. The model consists of a set of points, with varying locations. Each point stores

the material properties of the model at that point.

Eulerian. Model properties are computed for a set of stationary grid points which store the

material properties at those points and how they change over time.

Figure 2.5 An Eulerian mesh, the material body flows through the mesh as it
deforms.

Material Point
Grid Node

D

Figure 2.4 A Lagrangian mesh, the mesh deforms with the material body.

Material Point
Grid Node

D

 7 Background

Lagrangian methods are therefore usually the chosen way of representing models in rigid

and soft body simulations, due to the convenience of being able to express the model as a

connected mesh or a cloud of points, in the same way as the visual model is expressed.

Eulerian methods on the other hand are the preferred way of simulating fluids because of

the simpler formulas involved. Also in Eulerian methods boundaries of objects are not

explicitly defined, and it is very difficult to use them for anything other than simulating fluid

dynamics, as most other objects are described by a surface boundary representation, e.g.

the visible polygonal shell of the object. As a result, Eulerian methods are not of interest for

the subject of this project and we only focus on Lagrangian methods.

Even for Lagrangian methods, the models used vary a lot regarding specific methods and

implementations. The type of model used can usually be divided into two categories:

Meshed. Relies on a grid or a mesh of interconnected simulation points.

Mesh free. All simulation points are independent of each other.

Traditional physically-based simulation methods usually use a meshed model, as this is very

close to the actual physicality of materials, where atoms and molecules are also all

interconnected with neighbouring particles. Meshfree methods, due to their lack of

interconnectivity between particles, are therefore usually geometric-based methods, as they

lack the means to locally specify material properties.

Besides the various way of describing the models used, another important characteristic is

the way time integration is handled. While the time integration is independent of the

simulation method, it still plays an important part in the overall stability of the solution. The

two main variations of time integration are:

Explicit Euler, also known as forward Euler.

Implicit Euler, also known as backwards Euler.

Figure 2.6 On the left a meshed model, all nodes in the model are interconnected. On the right a
meshless model, no connections are present between the nodes.

 8 Background

In the explicit method, Newton’s second law of motion can be described by the two

following formulas:

This method is called explicit because it provides explicit formulas for the values at the next

time step. While explicit methods are easy to implement, they can destabilize easily due to

them extrapolating a constant right hand side blindly into the future. For large values of

this can lead to overshooting of goal or equilibrium positions (see Figure 2.7), requiring even

larger forces to return the system within its boundary conditions.

This can lead to an exponential increase in energy contained in the system, which will then

lead to explosion of the entire system. In the implicit scheme the formulas are:

Here the next time step is implicitly given as the solution of a system of equations

(hence the name). While this scheme is stable for arbitrarily large time steps, now an

algebraic system of equations has to be solved each time step.

By combining parts of the backwards scheme into the forward scheme a simple

improvement can be made. While this forward-backward scheme is still explicit it is more

stable than the standard forward scheme, without the added computational overhead

generated by the backwards scheme.

Figure 2.7 A spring is fixed at the origin, with a free point with mass m at x(t). Force f pulls the free point to the

equilibrium location L0, however, for large values of t the point overshoots L0 and energy is erroneously
added to the system.

x(t+t) 0 0 x(t) L0 L0 x(t)

f
m m

 9 Previous work on procedural destruction

3 Previous work on procedural destruction

Besides performing a survey of literature, a questionnaire was sent to game developers

regarded destruction in games. From this questionnaire a set of criteria where determined,

which according to these game developers are the most important aspects of a procedural

destruction approach. The five most important aspects were control, speed, ease of use,

ease of integration, and the quality of the result. One aspect that was not deemed important

was realism, as long as the result looks good and convincing it does not matter if the way in

which that result was achieved has any basis in reality.

From the survey of existing literature, most methods found are one of two types, namely

finite element or shape matching, but a few papers found presented completely new

approaches. In this chapter a selection of papers is discussed. Section 3.1 discusses some

papers based on the finite element approach. Section 3.2 discusses some papers based on

shape matching, and in section 3.3 some alternative approaches are presented, which do

not fall into the previous two categories. For each method it is explained how they work,

what the advantages and disadvantages of the method are, and how well they fulfil the

criteria. Finally in section 3.4 the suitability for games of all presented approaches is

compared.

3.1 Finite Element

Finite element methods (FEM) have been used in computer graphics and mechanical

engineering to analyze material properties of objects for many years. FEM use meshed

models to approximate how forces propagate through a continuous volume, usually the

inside of an object. In (3), extensions to existing techniques are proposed for simulating

crack initiation and propagation in the three-dimensional volume of objects. They relate

external forces working on an object, to internal forces within the object, using the

properties of the objects material. By analyzing these internal forces, the simulation can

determine where and in what direction cracks are initiated, and then propagate them.

Once the internal forces have been calculated for a certain node in the FEM mesh, they

decompose the forces on this node into a tensile and a compressive component. These

 10 Previous work on procedural destruction

tensile and compressive components are then combined into a mathematical

representation, representing a separating force, discarding any unbalanced portions. This

separating force will then indicate whether or not material failure has occurred at this node,

and from this force the fracture plane can then be determined. Finally the node is split along

this plane, and the algorithm continues by calculating the forces on the remaining parts of

the mesh.

This method generates very realistically looking results, see Figure 3.1, because of the use of

this fracture plane when splitting nodes, based on the applied forces. Even though it is much

less physically accurate than used in mechanical engineering, it is still very slow, typically

taking hours of simulation time to calculate a single second of the simulation. Average

simulation time, per second of simulation, for the animation seen in Figure 3.1 was 347

minutes. Also, the splitting of nodes results in a substantial increase in the number of nodes

in the simulation as fractures occur, resulting in a further increase in needed simulation

time. The material properties are defined by very abstract parameters, while most have a

relation with actual physical properties of a real material, they are not intuitive to use, nor

give a clear indication of what the result would be of changing the parameter.

Another downside to this algorithm is that its exact workings are fairly complex. The forces

being applied to an object are represented by two second order tensors. One represents the

strain, the force being applied, and the other represents the strain rate, the rate at which

the strain is changing. In the same way, the internal forces are represented by another set of

tensors which represent the resultant forces, called stress. The elastic stress is the result of

the strain, the viscous stress is the result of the strain rate. These two sets of tensors are

related to each other through the properties of the material, represented by two fourth

order tensors, one for the strain/elastic stress and one for the strain rate/viscous stress.

Figure 3.1 Comparison of a real-world event, top, and simulation, bottom. Image from (3).

 11 Previous work on procedural destruction

As a force in a 3-dimensional world is

represented as a vector, all tensors used to

describe a force become 3x3 matrices. This

results in the tensors describing material

properties containing 3x3x3x3 = 81 coefficients

each. However, because all tensors are

symmetrical, this number can be reduced to

36, and by further constraining the material to

be isotropic it can be even further reduced to

two independent coefficients. As described

earlier, once internal forces have been

calculated, in this case the internal stresses,

they are decomposed and combined into a

single tensor, the separation tensor. If this last

tensor contains a positive eigenvalue that is larger than the material toughness, material

failure occurs at the current node. The fracture plane is then generated perpendicular to the

eigenvector corresponding to this positive eigenvalue, and the node splits along this plane.

Criteria

Control

Material properties are stored per node, therefore local changes can
be made to the material, influencing the fracture pattern by for
instance weakening certain areas.

Speed

Calculations take several hours to complete, even for simple objects.

Ease of use

Meshes are processed automatically, but the simulation is controlled
through abstract material settings, which do not have a clear effect on
the resulting animation.

Ease of
integration

Simulation only requires a surface mesh as input, and will generate
surface meshes as output.

Quality of
animation

Resulting animation looks very realistic.

FEM-cube

Traditional FEM uses tetrahedral mesh elements, as those enable the arbitrary

approximation of all triangular polygonal surface meshes. In (4) a FEM is proposed which

uses a cube shaped mesh element, and is based on the previously discussed method with

the purpose of modifying it for use in games. Cube meshes can be generated quickly as they

are very simple shapes, and they have a lower memory requirement than meshes composed

of more intricate shapes like tetrahedrons. Each cube has the same size and three integer

position indices with respect to the bounding box of the surface, e.g., the cube in the lower

A tensor is a generalization of the
concept of vectors and matrices. A
tensors order is the number of indices;
therefore a scalar is a tensor of order 0,
a vector is a tensor of order 1 and a
matrix is a tensor of order 2. The rank of
a tensor is the same as rank of a matrix,
i.e., the maximum number of
independent columns/rows.

Tensors are also used to specify how to
relate the values in one tensor to
another, for instance, to relate two
second order tensors, a and c, to each
other one fourth order tensor, b, is
required:

 12 Previous work on procedural destruction

left front corner has index (0,0,0), the one left of that (1,0,0), the one above it (0,1,0) and the

one behind it (0,0,1), etc, assuming (x,y,z) as indexing. It also contains a list of 8 pointers to

its vertices, which are shared between adjacent cubes, and a list of pointers to triangles of

the surface which intersect the cube. Each vertex has three attributes, the position, velocity

and mass. The cubes are all stored in a hash table so cubes can be retrieved based on the

position indices in O(1) time, and as cubes store references to the triangles they intersect,

spatial queries can be answered in O(1) time too.

An added advantage of using cubic elements is that all elements have the same geometry,

and therefore their stiffness matrices only depend on the properties of the material. This

results in only needing a single matrix per

material, instead of per element. As in (3),

the authors use the internal stress tensors

of each cube to fracture the mesh,

however instead of splitting nodes

arbitrarily, they separate the mesh along

the cube boundaries, depending on which

side of the fracture plane the element is

located. Normally, FEM-based techniques

are not very well suited for simulating rigid

materials, as the required equations can

only be solved using very small, and therefore very many, time steps. To solve this problem

they simply animate meshes using rigid body dynamics, until an external force is applied

exceeding a certain threshold, at which point the deformations are computed and the mesh

fractured, if necessary. During fracturing, no surface triangles get split, so the process of

closing the surfaces is not as straightforward as usual, but provided all intersected triangles

are know through the mesh elements and these mesh elements are all cubes, it is still a

relatively simple procedure. To prevent artefacts from surface triangles that are much larger

than the mesh elements, surface meshes are pre-processed and large triangles subdivided

along their longest edge until no triangles exist with edges longer than the cube size. The

advantage of this method is that during runtime there is no need to interpolate positions

and texture coordinates of existing surface elements, and the amount of new triangles

generated is limited. However the resulting fractures are very dependent on the

triangulation of the source mesh, and due to the underlying cube structure, fracture

patterns have the tendency to look very angular, see Figure 3.2.

Figure 3.2 Pig model, fractured as it hits the ground.
Image from (4).

 13 Previous work on procedural destruction

Criteria

Control

Due to the usage of a single material matrix, any local control over the
mesh settings is lost. Cube sizes are uniform and therefore cannot be
changed locally either, to accommodate differences in level of detail
across a mesh.

Speed

Real-time results for fractures, elastic deformations are also possible but
these are fairly expensive and impact performance dramatically.

Ease of use

Meshes are processed automatically, but the simulation is controlled
through abstract material settings, which do not have a clear effect on
the resulting animation.

Ease of
integration

Simulation only requires a surface mesh as input, and will generate
surface meshes as output.

Quality of
animation

Resulting animation shows several artefacts due to the underlying
regular simulation mesh.

FEM-GPU

In (5) a FEM is presented, which runs on the GPU. They start by defining their objects as

having a rigid inner core, and an outer elastic surface layer. The outer layer is mapped onto a

texture atlas (a single large texture formed by combining smaller textures into a single

texture space), encoding the shape of the objects into a texture. Each texel in this map

represents a surface vertex, but actually implicitly maps to two points, the one on the

surface of the object, and the other on the surface of the inner core. Due to the regular

sampling, this map implicitly describes a tessellation of tetrahedral elements (see Figure

3.3), which can be used in a FEM solver.

By using highly-parallelizable implementations of solvers for FEMs, the can exploit the

enormous processing power of modern GPU’s to relatively quickly evaluate the huge

number of equations. Because everything is encoded in texture atlases, GPU – CPU

communications are kept to a minimum, avoiding a possible bottleneck in the system.

Figure 3.3 Dynamic deformation texture representation and implicit tessellation. Image from (30).

 14 Previous work on procedural destruction

Besides solving the FEM parts on the GPU, the GPU is also used to find collisions and

determine the proper collision responses. First a contact plane between two colliding

objects is found, followed by the rendering of the collision information into this plane. The

resulting image can then be transformed to the deformation texture and used for further

processing.

The achieved results look very good, and allow for rich deformations of high detailed

objects. However the method is limited to deformations and results are only shown for

highly detailed objects. But the biggest contribution of this paper is the GPU based solution

to the FEM approach.

By exploiting the ability of GPU’s to execute large amounts of parallel computations the

presented method is three to ten times faster than comparable methods.

Criteria

Control

Material properties can be locally specified.

Speed

While faster than comparable methods, results are not real time.

Ease of use

Meshes are processed automatically, but the simulation is
controlled through abstract material settings, which do not have
a clear effect on the resulting animation.

Ease of
integration

This method requires extensive knowledge of shaders and the
related programming languages. The method also requires
models to be triangle stripped in a certain way which might
make it less suited for use with arbitrary meshes.

Quality of
animation

Resulting animations are very detailed, but results are unknown
for models with smaller polygon counts.

3.2 Shape matching

Where FEM’s use meshed models and are based on the idea of simulating the physical

properties of a material, shape matching methods are geometrically based and use

meshfree models. As a result, shape matching methods do not have to store extensive

additional data structures, or perform a lot of expensive decompositions and computations

as they work directly with the shape of objects.

In (6) a shape matching method is proposed for meshless deformations. Their approach

differs from FEM in that they replace internal energies by geometric constraints, and forces

by distances of current positions to goal positions. The basic idea of their algorithm is very

simple. The particles of the simulation mesh are moved under external forces, and then the

original configuration of all mesh points is matched to the new positions to determine the

optimal translation and rotation, which determine the goal positions of all particles (see

Figure 3.4).

 15 Previous work on procedural destruction

With these goal positions known, all particles are moved towards their goal position. For this

they use a modified explicit forward-backward Euler integration which results in a

unconditionally stable system, as the simulation points are always moved either in the

direction of, or directly to, their goal position, depending on a stiffness factor (see Eq. (1)).

 (1)

With = 1 the simulator imitates rigid bodies and only a few vertices would need to be

animated as particles, as the remaining vertices can be transformed using the computed

transformations. Contrary to the previously described finite element methods, this method

is well suited for stiff or nearly rigid objects. However in its basic form, it is less suited for

objects undergoing large deformations. To extend the range of motion, linear and quadratic

deformations, like shearing and twisting, where implemented. This was achieved by instead

of only calculating the optimal rotation and translation, calculating the optimal

transformation. The range of motion was extended even further by creating disjoint clusters

of points, which are all individually matched to their original shape, and add a term to

each of the particles they contain.

While the presented implementation is fairly fast and able to simulate dynamics for a couple

of hundred objects in real-time using the linear and quadratic deformations, cluster-based

shape matching results in very visible artefacts in the animation of objects (see Figure 3.5,

left and middle), especially under extreme deformations. Also, the more clusters are used

the higher the computational complexity of the simulation becomes, as well as the

computation time, quickly reducing the advantage in computational complexity.

Figure 3.4 The original shape X is matched to the deformed state with an optimal translation t and rotation R.
Deformed points are then pulled towards the matched shape g.

g4

g3
g2

g1 g1

g2

g3

g4 X3

X1

X2

X4

R

t

X3 X4

X2
X1

X3

X1

X2

X4

 16 Previous work on procedural destruction

Criteria

Control

Entire simulation is globally controlled through a few
parameters. No local changes can be made to material
properties.

Speed

Allows for the simulation of simple deformations of several
hundred simple objects in real-time, but speeds become
considerable slower when using the more complex
deformations.

Ease of use

Meshes are processed automatically. The parameters have an
intuitive effect on the simulation.

Ease of
integration

Simulation only requires a surface mesh as input, and will
generate surface meshes as output.

Quality of
animation

Unconditionally stable even under extreme deformation,
however extreme deformations show very visible artefacts
when using clusters.

Lattice Shape Matching

In (7) a Lattice Shape Matching method is proposed. The basics are the same as in (6) as it is

based on the research described in that paper. The presented approach extends the system

of using clusters to shape match subsets of points of the model by instead of using a

relatively low number of disjoint regions, forming a lattice of multiple overlapping regions.

Each particle in the system stores a one-ring neighbourhood of particles which share at least

one lattice cell. Each region determines its own optimal rigid translation and rotation, and

particle movements are weighted depending on the number of regions they belong too,

resulting in smooth transitions between the different regions, see Figure 3.5. Rigidity of the

object can be influenced by the size of the regions, in theory creating a fully rigid object if

the region size is set to the size of the object.

Figure 3.5 Comparison of shape matching methods under extreme deformation:(Left) Linear and (Middle)
quadratic shape matching with a low number of regions; (Right) lattice shape matching. Image from (7).

Each region sums over its contained particles, as it is looking for its optimal translation and

rotation. However, as a lot of regions overlap, breaking down each regions particle list into

sub-regions, every region can reuse the calculations done on these sub-regions, resulting in

O(w) cost for the shape matching, instead of O(w3), where w is the half width of a region. By

 17 Previous work on procedural destruction

expanding the summations and observing recurrences of certain calculations in these

summations, even more calculations can be reused, reducing the total amount of

summations down to 6, independently of the region size, resulting in O(1) calculations.

The optimal translation for each region is found by looking at the centre of masses, which

can be computed when the regions are created. To find the optimal rotation efficiently, a

fast method to compute polar decompositions was used. Like (6), cyclic Jacobi iterations

where used to find the eigenvalues and eigenvectors of the rotation matrix. By initializing

the search matrix with the resulting eigenvector from the previous decomposition, instead

of the identity matrix, this process was sufficiently sped up to avoid a potential bottleneck.

Criteria

Control

Entire simulation is controlled through a single parameter. In
case of fracture, a 2nd parameter is needed, however both
parameters only allow for global influence of the behaviour of
the simulation.

Speed

A few hundred objects can be simulated in real time.

Ease of use

Meshes are processed automatically. The parameters have an
intuitive effect on the simulation.

Ease of
integration

Simulation only requires a surface mesh as input, and will
generate surface meshes as output.

Quality of
animation

Very good, extreme deformations do not result in artefacts,
however due to regular distribution of simulation particles,
areas of higher level of detail cannot be simulated properly,
without increasing particle count in other areas where it is not
needed.

3.3 Alternative approaches

Graph-based

The methods previously described in sections 3.1 and 3.2 are quite complex and tend to be

controlled through abstract parameters, without intuitive ways of influencing the way an

object fractures. In (8) an original method is presented for procedural creation of cracks and

breaking objects into fragments. In this method a designer specifies a two dimensional crack

pattern, which gets mapped onto the surface of an object to create a geometric skeleton. By

sweeping a profile curve along this skeleton, a carving volume is created which allows cracks

to be created using Boolean difference operations on the original model and the carving

volume. Different profiles for the sweep curve result in different visualizations of the cracks.

To fracture an object the user specifies a fracture pattern, which specifies the fracture

between two fragments. The shape of the fragments can be controlled through a set of

simple parameters. The first parameter, specifies the angle between the principal axis of

the object and that of the fracture pattern, therefore a small will result in thinner longer

 18 Previous work on procedural destruction

fragments than a large (see Figure 3.6). The

second parameter V, specifies the volume

ratio between two fragments; this influences

the distribution of the size of the fragments. In

Figure 3.6 this would be shown by moving the

fracture patterns up or down the principal axis.

While the presented figures show results which

look convincing (see Figure 3.7), sadly no

interactive demo or moving images are

available, so it is hard to judge how the final

results would look when they are animated.

Also while their method is fast compared to traditional methods, even for a relatively low

number of fractures the method takes a few seconds to generate a result.

Figure 3.7 A scotch glass, a statue and a flute glass broken into 18, 128 and 48 fragments respectively. Image
from (8).

Criteria

Control

Fracture patterns defined by a graph created in a pre-
processing stage. Application of this pattern can be
influenced through two parameters.

Speed

Simulation requires several seconds to process an object.

Ease of use

Creating a fracture pattern is a very intuitive way of defining
how an object breaks. Additional parameters have a clear
purpose and effect on the simulation.

Ease of
integration

Simulation only requires a surface mesh as input, and will
generate surface meshes as output.

Quality of
animation

Provided still images look good.

In (9) a different graph based approach is presented. They use a spider web like crack

pattern, a central point with interconnected lines radiating outwards, to break objects. The

nodes in the pattern are randomly translated based on material settings, as are the number

of lines in the pattern. The pattern is then extruded perpendicular to the plane in which is it

defined in order to create which is then used to cut the target object. This approach creates

Figure 3.6 The shape of fragments can be
controlled by selecting the orientation of the
fracture pattern relatively to the principal axis of
the object.

 19 Previous work on procedural destruction

good results when cracking flat objects like a plate of glass, but due to the straight extrusion

of the crack pattern fragments created of three dimension objects do not appear realistic.

In (10) an approach is presented based on (9). As Fox a spider web crack pattern was used,

but instead of only using a single pattern, several patterns are placed on top of each other,

connecting them together to form a honeycomb like structure which is then used to cut a

target object into blocks. A Binary Space Partitioning was implemented to quickly solve

spatial queries on triangles in order to decrease the computational complexity of the

prototype. While the visual results did improve over those of Fox, due to this approach no

longer generating elongated fragments, the performance did not significantly improve nor

did the approach offer any more (or less) control over the simulation or influence over the

design of the crack pattern.

In (11) an approach is presented which is based on both (9) and (10). As Miller, Workman

created a three dimensional crack pattern, but instead of using vectors to represent the

connections between nodes, a grid like approach was used to generate a crack pattern. The

crack patterns were generated from a given alpha texture, giving a designer a larger amount

of control over the design of the crack. However, the crack patterns that were generated

were not very well suited for most cracks, due to the grid based approach that was taken.

Sadly they did not actually succeed in generating a usable crack model with this approach;

instead a handmade crack pattern was used to test the fracturing algorithms. The visual

results were similar to those achieved by Miller, due to the similarities of their approaches;

however the performance of Workman’s approach was worse than that of Miller but this is

likely due to the specific implementation and not the approach itself. While the approach

did offer more control to a designer as compared to the other approaches, the grid based

generation of a crack pattern did not result in crack patterns of sufficient quality.

Spring constraints

In (12) a technique is proposed which is a combination of FEM and a mass spring system. As

in a FEM a tetrahedral mesh is still generated, but instead of performing the expensive

computations of a FEM, a rigid mass spring system is approximated using distance

constraints. By doing this, the problem of simulating very stiff springs is circumvented, which

can normally only be done in very small time steps, and what would therefore be

computationally very expensive.

These distance constraints are specified between the centres of mass of neighbouring

tetrahedral mesh elements, which is precisely what a completely rigid spring would be. Once

 20 Previous work on procedural destruction

a distance constraint becomes violated the link is simply removed from the system, enabling

objects to fall apart. To avoid unnecessary calculations the simulation is only ran during an

impact, either instantly breaking an object or not. As this could result in numerous

simultaneous removing of constraints, an object could be pulverized in a single frame. To

enable the system to also create large fracture elements the forces exerted on the object

are slowly ramped up over several smaller simulation steps, allowing weak constraints, i.e.

constraints which allow for only a small distance change, to break first and allowing for the

propagation of a crack over the surface. Their method almost ran in real time, but for larger

amounts of constraints the simulation already took several seconds to complete. However,

an advantage of this system is that crack patterns can be easily influenced by either

weakening or strengthening the distance constraints between individual nodes.

Criteria

Control

Individual constraints can be easily changed to influence fracture
patterns

Speed

Faster than comparable FEM, but not fast enough for real-time
applications when using a reasonable amount of constraints.

Ease of use

Individual distance constraints between simulation nodes may
not have an intuitive effect on the simulation, but their use is
clear.

Ease of
integration

Simulation only requires a surface mesh as input, and will
generate surface meshes as output.

Quality of
animation

Quality of the animation is largely dependent on the triangulation
of the simulation mesh as mesh elements are simply broken off to
be animated separately and no mesh elements are split.

3.4 Suitability for games

With all methods reviewed based on the same set of criteria, they can be compared on how

well they perform regarding each criteria, see Table 1. While the finite element methods

generally offer a large amount of control over the simulation and generate a very high

quality animation, they are also generally the slowest methods and use abstract non-

intuitive material parameters to control the behaviour of their models. The shape matching

methods, on the other hand, require a lot less computational power, while still maintaining a

high quality of animation. While they offer less control over the simulation, they are

controlled through a few simple parameters that have a clear influence on the behaviour of

the model. The alternative approaches are usually somewhere in the middle, they are slower

than the shape matching methods, but they are generally faster than finite element

methods. The graph-based method in particular offers a large amount of artistic control and

is easy to use with a few, but intuitive, parameters.

 21 Previous work on procedural destruction

 FEM FEM-
cube

FEM-
GPU

Shape
matching

Lattice
shape
matching

Graph-
based

Constraints

Control

Speed

Ease of Use

Integration

Quality of
animation
Table 1 Summary of scores of methods, per criteria, relative to each other.

All methods score the same on integration, as all methods take a surface mesh as input and

generate more surface meshes as output. The integration into an existing pipeline of any of

these methods will therefore be equally difficult, but should not pose any major issues as

objects in games are usually represented with a surface mesh.

 22 Previous work on procedural destruction

 23 Procedural destruction in gaming

4 Procedural destruction in gaming

In the gaming industry there have also been developments with regards to procedural

destruction. In the past few years several middleware companies have released products for

procedural destruction. Currently there are three major middleware companies that develop

physical simulation software, which includes basic physics like rigid body dynamics and

ragdoll animation, but also encompasses more complex techniques like cloth dynamics and

procedural destruction.

4.1 Havok

Havok (13), launched in 2000, is one of the older middleware companies specializing in

physics simulation for games. It originally started as a basic physics simulator featuring rigid

body dynamics. In 2003 ragdoll animation was added to their simulator, which at that time

was a very new and cutting edge technology. Havok’s product line has since then expanded

to include animation tools, clothing dynamics (2008) and also destruction tools.

In the Havok Destruction product brief (14), several tools are described for destroying

objects, buildings, structures like bridges or scaffolding and object deformation. Sadly the

product brief does not provide any useful insights into how Havok’s technology works, but

on the product showcase website (15) several videos are available that showcase the results

of these tools.

As of May 2008, Havok’s basics software package is freely downloadable. While this does not

include the Havok Destruction package, it does contain several demos showcasing how one

can implement destructible object using Havok. One of these demos is of a destructible brick

wall. The wall starts out as 3 simple stretched boxes, but as it gets hit with a block shot by

the user, bricks start coming loose and fall off. As soon as enough force is applied to

separate a single brick, the wall is cut twice horizontally into 3 sections, where the middle

section is the row containing the brick to be separated, as seen in Figure 4.1. After this, the

row of bricks is cut twice vertically to create the single brick that needs to be removed. The

single brick is then inserted into the rigid body simulation and animated as a separate object.

The remaining objects, which together form the remainder of the original wall, are ‘glued’

 24 Procedural destruction in gaming

together using constraints. As more blocks are shot against the wall, this process is either

repeated to separate more bricks, or some of the constraints keeping the separate wall

pieces together are broken, making it possible to break off entire sections of the wall.

Figure 4.1 left: Visible surface mesh, right: underlying simulation mesh, showing subdivided surfaces as bricks are
broken off.

This technique of using simple planes to cut the original object can be used to create a large

variety of fracture patterns (see Figure 4.2), however all this has to be coded by a

programmer. Another downside to this technique is that the patterns are easily

recognizable, although by adding some sort of randomization this problem should not be

that hard to work around. Presumably, the aforementioned fracture generator included in

the Havok Destruction encapsulates this functionality into a more user friendly tool.

Figure 4.2 Different fracture patterns can be created.

 25 Procedural destruction in gaming

4.2 Digital Molecular Matter

The latest competitor in the field of physics simulation middleware is Pixelux (16); in 2008

they unveiled their proprietary destruction technology called Digital Molecular Matter

(DMM). DMM uses a tetrahedral mesh to represent objects and applies the Finite Element

Method to this mesh to simulate material physics in a more realistic fashion than was

possible before. Their implementation is based on the thesis work, and build with the help

of, James F. O’Brien. What specific changes and optimizations they have made to the

algorithms described by O’Brien is not known, but they are able to simulate several

thousand of nodes in real-time, judging from their Maya plug-in. However the

computational complexity is still fairly high, so using it on too many objects at the same time

results in unsuitable frame rates for real-time applications.

DMM was first featured in a commercial product in mid September 2008, namely in

LucasArts’ Star Wars: The Force Unleashed. When playing the demo, the limited use of DMM

becomes quickly apparent. It was limited to a few glass windows in a corridor that could be

shattered, and the odd metal door blocking a corridor that had to be bent, in order to be

able to pass through. However, slicing a droid in half, or ripping piping off the wall is still

animated using traditional scripting and art swap methods, which can be clearly seen as

each time you slice a droid, the result looks exactly the same.

Figure 4.3 A DMM enabled castle is bombarded with rocks and crumbles as it is hit.

4.3 PhysX

In 2005 Ageia, now part of Nvidia, released their PhysX (17) SDK, a software platform for

physics simulation. It included advanced technology like cloth and soft body dynamics, which

were new to gaming technology at that time. For their soft body dynamics they use

 26 Procedural destruction in gaming

tetrahedral meshes as a volume representation for the simulation, generated from the

surface mesh of an object (see Figure 4.4). By performing a simulation on the underlying

tetrahedral mesh, the visible object can be animated. Object rigidity is controlled primary

through two constraints, a volume constraint and a stretching constraint. Object tearing is

present in the current version as an experimental feature. The tearing is controlled through

a tear factor, once edges become longer then the tear factor times their base length they

are separated and new elements are created. By setting the volume and stretching

constraints to their maximum value, allowing no changes to the volume and dimensions, the

soft body simulation can be turned into a rigid body simulation, and the tearing could be

used for destroying rigid objects as well. However, this tearing functionality was listed as

being an experimental feature, and at the time appeared to be non-functional. Another note

is that while the simulation runs at real-time speeds for single objects, composed of tens or

up to a few thousand mesh elements, the simulation slows down considerably when

multiple objects are added.

Figure 4.4 Surface mesh and the underlying volumetric simulation mesh.

Once the total number of simulation elements in the scene approaches five thousand

elements, the frame rate already drops below 60 on a high-end PC, and this is in a bare

environment with simple shading and no complex game mechanics running in the

background.

With the introduction of Nvidias CUDA technology, the general purpose processing units of

their video cards can be used to perform various tasks other then pure rendering, like

physics calculations. Due to the massive increase in processing power of modern video cards

and the ability to quickly perform large amount of parallel computations technologies like

PhysX and DMM are quickly becoming the go-to standard of the games industry. However,

while CUDA reduces the problem of the computational complexity of these approaches, the

lack of control and ease of use still makes these approaches less desirable.

 27 Procedural destruction in gaming

4.4 Unreal

Unreal (18) uses PhysX as its main physics simulator. However, on top of this they have a

custom fracture tool, which can be used to create destructible static objects in a scene.

According to the Unreal Developer Network documentation (19), the Unreal editor contains

a tool to fracture static meshes. The user can select the number of fragments to break the

object into, and scale the planes along which the fragments are created. The tool then pre-

computes the fragments, which are then used at runtime to replace the object once it gets

damaged. However this tool offers little benefits over the traditional method, as it simply

moves the process of creating the fragments from an artist application of choice, into the

Unreal editor.

Sadly I have not been able to actually test the tool. While the tool has been present in the

editor since the December 2007 build of the editor, it is currently only available to licensed

developers, and is not included in the editor shipped with Unreal Tournament 3.

The recently released AAA title Gears of War 2, by Epic Games, was built on the latest

version of the Unreal 3 engine. As Gears of War is a third person shooter game, it features a

lot of explosions and things breaking. In the original Gears of War there were only a few

destructible items in the game, like some crates and sofa’s, which were made using the art-

swap method, something which was easily spotted. In the sequel a lot more things can be

destroyed or damaged, for instance almost anything the player can take cover behind, e.g.

concrete blocks or tiled walls. While this cover cannot be completely destroyed, it can be

damaged. When shot at, or when grenades explode in close proximity, pieces of the surface

of the object are broken off, exposing the underlying internal material of the object, usually

a basic type of concrete. While the results might not appear completely realistic when you

take the time to analyze the animation, during normal gameplay the intensity of the game

does not allow the player to worry about this, and the effect of semi-destructible objects

greatly adds to the sense of being in a ‘real’ world, instead of in some static indestructible

one.

4.5 Red faction

One of the first 3D games ever to feature dynamically non-scripted destructible terrain was

Volitions Red faction (released May 2001). Their original engine used relatively simple

Boolean operations, based on (20), for modifying terrain, walls and certain objects, see

Figure 4.5.

 28 Procedural destruction in gaming

Figure 4.5 From the original Red Faction. Left: Scene before applying a geomod. Right: scene after geomodding
has been completed.

The newest game in the Red Faction franchise, Red Faction Guerrilla (June 2009), features

fully destructible objects and environments through a combination of proprietary

destruction and stress propagation systems and the Havok physics engine. This combination

of different approaches to destruction can easily be seen in the demo. For instance some

objects simply break apart when destroyed, releasing the constraints that held the object

together, but glass shatters into a lot of tiny pieces. Walls on the other hand break into a

multitude of fragments, depending on the type of the material the wall is made off.

The stress propagation system can be seen at work when destroying buildings. This system

takes material properties into account, like weight and strength, to determine if a structure

should collapse or not. When the structural support of an object is removed, like the first

floor of a building or the pillars of a bridge, the remaining structure comes crashing down.

4.6 Frostbite

The Frostbite Engine is the game engine used in the Battlefield series by DICE (21). The

release of Battlefield: Bad Company (June 2008), marked the first commercial use of

Frostbite Engine. In this version of the engine, buildings could be procedurally destroyed,

however some limits where imposed on the destruction, a skeleton structure would always

remain, see Figure 4.6. In the recently released sequel Battlefield: Bad Company 2 (March

2010), the destructibility of buildings has been extended allowing users to fully destroy a

building, reducing it to a large pile of rubble, see Figure 4.7.

 29 Procedural destruction in gaming

Figure 4.6 Walls of buildings could be destroyed in Battlefield: Bad Company, however a skeleton structure
would always remain. Images taken from (22).

Figure 4.7 Complete destruction of a building in Battlefield Bad Company 2. Images taken from (23).

 30 Procedural destruction in gaming

 31 Approach description

5 Approach description

As seen in chapter 3, for our approach to be successful it needs to provide the user with an

intuitive way to create destructible objects, allow them to quickly create the desired effects,

but also offer a large amount of control over the resulting animation. It will also need to run

in real-time to be applicable to games and to provide interactive editing capabilities.

In chapter 4 we could see that developers are focusing largely on FEM based technologies,

but that they are not yet widely used, because they lack the required intuitive approach. In

some cases, very convincing results are achieved, e.g. Red Faction Guerrilla and Bad

Company 2, but it is largely unknown what the underlying technology is.

To achieve this intuitive editing we introduce the concept of destructible materials.

5.1 Destructible material

Normally a material defines how something looks, but a destructible material will determine

how something breaks. We define a destructible material as a collection of several crack

and/or fracture patterns. These patterns are reusable by several materials, and materials are

reusable by several objects. Because all components are reusable, once a library of patterns

and materials has been created, making any object destructible will be as simple as selecting

and assigning the desired destructible material, significantly reducing the amount of time

required for creating content.

How a destructible material will actually be used will really depend on the specifics of the

project it would be used in. Selecting which pattern to apply could be based on various kinds

of events for instance:

Impact type

Hitting an object with rockets will likely result in a different crack than hitting it with bullets

or a hammer. It should be possible to assign different patterns to the various types of

impacts, or even the specific items, causing the impact. This would give a designer the ability

to still create patterns separately, while the application of these patterns is handled in real-

time.

 32 Approach description

Impact force

Similar to impact type, the force of the impact could also influence the pattern selection.

Hitting an object with a large explosive, or driving over it with a truck is likely to have a

different effect than hitting it with your fists. The magnitude of the impact force is also

something that could determine the difference between cracking and fracturing an object. If

enough force is applied in one impact, it is likely an object will simply fracture into pieces,

instead of becoming cracked.

(Remaining) strength of the object/material

Often in gaming environments, objects and characters have a certain amount of health, or

hit points, indicating the amount of damage they can absorb before being destroyed or

killed. A similar system could be tied into the destruction, where each impact with an object

lowers the amount of remaining health of an object, depending on a combination of the

impact type and force. Once the remaining health of the object reaches zero, or some other

threshold, instead of cracking the object it could be fractured, indicating that the object has

no more strength left and simply shatters into pieces.

5.2 Designing crack and fractures

Designing crack and fracture patterns and the way they will be applied will be similar to the

way presented in (8), where graphs are used to represent the branching structure of a crack,

combined with simple parameters that define the width and depth of a crack at the nodes in

the graphs. By allowing a designer to simply draw how a crack should look and converting

brush strokes into graph elements, a crack pattern can be created in a very short amount of

time, see Figure 5.1.

To further aid a designer in achieving the result he wants, this approach will be extended to

3D. By projecting brushstrokes onto the surface of a model, they can internally be converted

into a 2D format, whilst allowing a designer to create a crack that will look like he intends it

when applied. As the crack pattern is still stored in 2D it can still be reused in different

Figure 5.1 As a designer draws the strokes are analysed and turned into a graph.

 33 Approach description

materials or on other objects and further modifications can still be made by editing the 2D

definition of the pattern.

When applying destruction to a target object, the patterns will be mapped onto the surface

of the object and a crack volume can be generated based on the parameters of the nodes.

The target object can then be cracked by performing a Boolean difference operation

between the target object and the crack volume.

A fracture pattern, in turn, will define the cross section of the fault between two fragments,

and a series of line segments will be used to present them, see Figure 3.6. Two simple

parameters are used, the rotation and volume ratio parameters. These allow a designer to

change the orientation in which the pattern is applied with regard to the principal axis, the

longest dimension of the target object, as well the volume ratio between two fragments.

The designer can then easily fracture objects into long thin or more square fragments with

either equal size or varying from small to large. As with cracking, a mesh is generated from

the pattern definition. Boolean operations are then performed between the target object

and this fracture shape.

 34 Approach description

 35 Prototype

6 Prototype

In this chapter we will discuss the design of the prototype, and we will explain which

functionality discussed in the previous chapter will be added to the prototype, which will not

and why.

A prototype will be built in order to determine the feasibility of the approach described in

the previous chapter, as well as is suitability in a real-time gaming environment.

6.1 Prototype focus

The main focus of the prototype will be the implementation of the needed algorithms to

support the basic cracking and fracturing operations. These algorithms will need to be fast

and efficient in order to be able to create a system that operates in real-time. Several well-

known algorithms like triangle intersection and Boolean operations will need to be

implemented, but customized and optimized to suit the data structures used in gaming

environments. These algorithms will be combined into a library that will allow a user to

easily create destructible objects in any project.

An editor will also be created which will allow for the design and preview of a destructible

material. This editor will need to offer functionality for creating crack and fracture patterns

in an easy and intuitive way, while using the created libraries and gaming environment to

provide instant feedback to the user. The representation of a destructible material in the

prototype will be simple: it will contain one list of assigned crack patterns, a list of assigned

fracture patterns and a strength parameter. This strength parameter is the magnitude of the

impact defining the threshold between cracking and fracturing. Any impact force with a

magnitude smaller than this strength value will result in a cracking operation being

performed, while impact forces with a magnitude higher than this value will result in a

fracturing operation.

Once a pattern is assigned, several parameters can be set. Crack patterns are defined in a

unit space to facilitate the ease of using them in different destructible materials. Once they

are assigned to a material, a scaling parameter becomes available to determine the actual

size of that crack pattern for that specific material. As fracture patterns are automatically

 36 Prototype

scaled to ensure they will fully intersect the target object, no scaling parameter will be

available for them. However, the orientation and volume ratio parameters will be settable

for each fracture pattern. When applying a cracking or fracturing operation, the actual

pattern to be applied will be chosen randomly, but to provide a little more control over the

pattern selection in the prototype, each assigned pattern will also have an extra parameter

that can influence the likelihood of it being selected.

6.2 Development environment

The prototype will be developed using the proprietary game technology of Cannibal Game

Studios. For visualization purposes, the Cannibal Engine will be used, which will allow for the

rapid and easy visualization of the results of the various stages in the development process

of the prototype.

The editor will be built in the Cannibal Composer framework. Cannibal Composer is a data-

item centred editing environment where different types of data-items can be edited through

various plug-ins. A plug-in builds on a fully customizable basis for editing/viewing/any-other-

way-of-interacting-with every aspect of a data-item through simple widgets.

Three new data-items will be created: destructible materials, crack and fracture patterns,

and a single plug-in will be added which allows for the editing of these three data-items, as

described in the next section.

6.3 Editor

The prototype editor will contain all basic functionality needed to design and compose a

destructible material. Essentially it will consist of three separate editors editing crack

patterns, fracture patterns and destructible materials.

Editing crack patterns

Crack patterns will be created using a simple graph editor where nodes can be added to a

graph by simply clicking on a canvas, see Figure 6.1. This will create a connection between a

new node placed at the clicked location and a previously selected node. Nodes can be

moved by click-dragging and once selected, the properties of a node, as described in section

5.2, can be edited using sliders, see Figure 6.1. To quickly provide feedback about the

general shape of the resulting crack volume, these properties will be used to draw the

approximate size of the volume around the graph; this will quickly alert the user to any

erroneous input values.

 37 Prototype

Editing fracture patterns

Fracture patterns are represented by connected line segments, essentially a graph where

each node has at most two connected edges, see Figure 6.2. In the prototype a fracture

pattern will start as a single horizontal line segment bound by two nodes. Additional nodes

can be added, and removed, and will be equally spaced along the original segment. Every

individual node can be moved up or down, but their horizontal position is strictly

determined by the number of nodes in the pattern. While there is no constraint imposed on

this editing paradigm by the algorithm, this approach simplifies the data model by only

having to store the Y components of the node positions, but it also allows for the reuse of

pre-existing UI elements present in the editing environment.

Editing destructible materials

The editor for the destructible materials will feature two separate modes, one for composing

the destructible material and one for testing it. In compose mode a library of previously

created crack and fracture patterns will be visible, see Figure 6.3, allowing a user to quickly

Figure 6.2 A simple fracture editor consisting of a canvas.

Figure 6.1 A simple graph editor consisting of a canvas on the left and options to edit
node properties on the right.

Width

Depth

 38 Prototype

apply any previously created patterns to the current destructible material. A preview display

will show any pattern currently selected, to aid the user in determining exactly which

pattern he has selected. Any desired pattern can then be dragged onto the appropriate list

from the library to assign it to the material. Once assigned, the various properties, as

described in section 6.1, can be set using sliders that appear in the bottom left widget.

Finally a simple slider will be available to set the material strength.

In the testing mode all UI elements relating to the editing of the material will automatically

disappear and new UI elements consisting of a 3D viewport, various testing options and a

library of loaded models, will appear, see Figure 6.4. The viewport will allow a user to

interact with various objects, applying destruction to them using the created material. The

magnitude of the impact force can be set using a slider. The type of object to test the

material on can be selected using a radio group, selecting a standard cube, a sphere, or any

other object that can be freely assigned from the content loaded into the editor. By then

clicking on the viewport, a destruction event is triggered. Depending on the setting for the

magnitude of the impact force the user has entered, either a cracking or fracturing operation

is performed and the result is visualized. Repeated operations can be performed as desired

and if the user is unhappy with the result, additional changes can be made to the material by

instantly switching back to the editing mode. Lastly a reset button will be present that will

reset the displayed object.

Figure 6.3 The destructible material editor in compose mode.

Crack/Fracture
pattern view

Crack/fracture pattern
library

Material Settings

Crack/Fracture Settings

Crack

 Crack1

 Crack2

 Crack3

 …

Fractures

 Fracture1

 Fracture2

 Fracture3

 …

Strength

 39 Prototype

Figure 6.4 The destructible material editor in preview mode.

Viewport

Model library

Test object

Force

 Cube Sphere Custom

Reset

 40 Prototype

 41 High level design

7 High level design

In this chapter we will discuss the architecture of the destruction algorithm. Section 7.1 will

give a description of the different steps of the procedure and what their inputs and outputs

are. In section 7.2, cracking will be discussed, followed by fracturing in section 7.3. Lastly

section 7.4 contains a discussion on the Boolean operation.

7.1 Algorithm overview

At the highest level there are only a few steps involved in the entire procedure, see Figure

7.1. The first step is the input step in which the user performs an action, like clicking in the

viewport in the editor. The target object and the impact information, which consists of:

 the force of the impact,

 the triangle which was hit by the ray impact,

 the location in that triangle where the object was hit,

are then fed to the second step which determines the type of destruction to perform and

selects an appropriate pattern from the destructible material assigned to the object. This

pattern and the target model are then fed to either the cracking or fracturing sub-routine

which generates a destruction mesh. The models created in these steps are then used in a

Boolean operation together with the target model, after which the resulting model(s) is/are

returned (in the case of a fracture n fragments are created).

Figure 7.1 High level overview of the entire destruction procedure.

Perform boolean
operation

Generate
destruction mesh

Determine action

User action Impact
information

Cracking

Carving
volume

Cracked
model

Fracturing

Fracture
mesh

Fragment ... Fragment n

 42 High level design

7.2 Cracking

The cracking sub-routine consists of 2 steps, see Figure 7.2, and requires as input the target

model, the crack pattern to apply and the impact information as described in the previous

section.

The impact information is used to wrap the given pattern around the target model to create

a three dimensional skeleton. The wrapping starts by placing the first node of the pattern on

the surface of the given model at the impact location. One by one the edges in the pattern

are projected onto the surface of the model. Projecting these edges consists of a loop in

which two cases occur, see Figure 7.3: either the end point of the edge lies somewhere

inside the triangle (reached edge end), or the projected edge has intersected with one of the

edges of the triangle.

In both cases a new node is generated for the three dimensional skeleton. In the first case

the next edge is retrieved and processed. In the second case the algorithm moves to the

triangle that shares the intersected edge and continues until the end of the edge is reached.

A detailed description of the wrapping algorithm can be found in section Error! Reference

ource not found..

Figure 7.3 High level overview of the wrapping step.

Intersected
triangle edge Get edge

Project
edge

Get
triangle

Reached edge end

Figure 7.2 High level overview of the cracking algorithm.

 Carving
volume

 Three dimensional
skeleton

 Model

 Crack pattern

 Impact
information

Wrap
crack

Generate
volume

 43 High level design

Once the entire pattern has been processed the carving volume can be generated. This is

essentially a two step process which consists of filtering operations and the actual mesh

generation, see Figure 7.4. In the first step, filtering operations are performed upon to the

skeleton to ensure the generated volume does not intersect itself, as this would cause

problems during the Boolean operation. After the entire skeleton is filtered, it is processed

and the carving mesh is generated. A more detailed description of the filtering steps and the

carving mesh generation can be found in sections Error! Reference source not found. and

 REF _Ref261704059 \r \h Error! Reference source not found..

7.3 Fracturing

Compared to the cracking sub-routine, the fracturing sub-routine is a lot simpler. The first

two steps involve the generation of the fracture mesh from the fracture pattern and the

calculations of the principal axis of the target model, see Figure 7.5.

The fracture mesh is generated in a straightforward way; by simply extruding the line

representing the planar fracture pattern in a direction perpendicular to its plane, see Figure

7.6. The geometry is generated in a unit size cube, so that the fracture mesh geometry can

be reused by simply applying a transformation to the model for the specific fracture

Figure 7.5 High level overview of the fracturing algorithm.

Generate
fracture

mesh

Calculate
principal

axis

Transform
fracture

mesh

Figure 7.4 High level overview of the volume generation step.

Merge
nodes

Adjust
node radii

Check line
segments

Generate
mesh

Filtering steps

 44 High level design

instance, without needing to generate geometry multiple times for the same fracture

pattern.

The principal axis calculations result in 3 vectors which can be used as the up, right and

forward vector of the transformation basis for the fracture mesh. The size of the target

model can be used as a scaling factor for the fracture mesh, to ensure the fracture will fully

intersect the target model. The fracture parameters can also be combined into the

transformation. The rotation parameter can be included as a rotation component around

the forward vector of the fracture mesh. The volume ratio parameter can be included as a

translation along the up vector. After combining all these parameters into a single

transformation matrix, the transformation is applied to the fracture mesh and it is ready to

be used in the Boolean operation.

As we make sure that the fracture mesh fully intersects the target model, the fracture can be

considered as splitting the model in two half-spaces, see Figure 7.7. One part of the target

model will be in the top half-space, and the other part in the bottom half-space. The top part

can then be constructed using a Boolean difference operation, while the bottom part can be

constructed using a Boolean intersection operation, as the bottom half space represents the

‘inside’ of the fracture, see Figure 7.7. A more detailed description of the fracturing sub-

routine can be found in subsection Error! Reference source not found..

Figure 7.6 Fracture pattern extruded to a three dimensional fracture mesh.

 45 High level design

7.4 Boolean operation

The Boolean operation between the destruction mesh and the target model is fairly

straightforward and consists of 6 steps, see Figure 7.8.

First, all intersections are calculated between the triangles of both models, storing all line

segments that result from these intersections and determining the classifications, whether

they are inside/outside the other model. Subsequently, this classification information is

processed to create polygons, which are then processed to ensure they are all monotone so

they can be easily triangulated in the next step. Once all polygons have been triangulated,

the classifications that where determined earlier need to be propagated to the triangles

which did not have any intersections, as these triangles will have an unknown classification

at this point. In the final step, triangles are moved between the two models or removed,

depending on the type of Boolean operation. A more detailed description of the Boolean

operation can be found in subsection Error! Reference source not found..

Figure 7.8 High level overview of the Boolean operation algorithm.

Intersect
and classify

triangles

Monotize
polygons

Triangulate
polygons

Propagate
classifications

Move
triangles

Create
polygons from

intersection
information

Figure 7.7 The fracture pattern forms two half-spaces. The bottom half-space can be considered to be the ‘inside’
of the fracture mesh.

 46 High level design

 47 Implementation

8 Implementation

This chapter has been removed because of intellectual property protection. Inquiries about

this content can be directed at Cannibal Game Studios:

Cannibal Game Studios

Molengraaffsingel 12-14

2629 JD Delft

The Netherlands

contact@cannibalgamestudios.com

 48 Implementation

 49 Results

9 Results

With the algorithms and editors implemented as described in the previous three chapters,

we can now present the results that can be achieved using the developed approach. Section

9.1 will show how the prototype can be used to design a destructible material, followed by

section 9.2 where we will show how the prototype can be used to preview the created

destructible behaviour. In section 9.3 result of the performance will be presented.

9.1 Designing a destructible material

The first steps in designing a destructible material are the creation of crack and fracture

patterns, as described in section 5.1. In sections 9.1.1 and 9.1.2 we will show how crack and

fracture patterns can be created. In section 9.1.3 we will show how these patterns are then

used to create a destructible material.

9.1.1 Creating a crack pattern

When the user opens the editor to create a crack pattern, he is presented with an empty

canvas, see Figure 9.1 (a). Nodes can be added to the pattern by holding shift and clicking.

The currently selected node is highlighted in red, and, as can be seen in Figure 9.1, each new

node is automatically selected so a sequence of connected nodes can be created without

any additional selections having to be made.

To help identify the root node of the pattern, i.e. the point at which the crack originates, it is

coloured differently from the other nodes in the pattern. Once a node has been created its

settings can be edited, which will influence the shape of the volume that will be generated

later. To indicate the approximate shape of this volume, the editor visualizes these settings

in blue, as seen in Figure 9.1.

To better emulate the dissipation of impact energy the further away from the centre of the

crack, the settings of nodes can be edited; the visualization is updated to reflect the

changes, see Figure 9.2 (a). Should the user accidently input any erroneous values, the

visualization will instantly alert the user to his mistake, see Figure 9.2 (b).

 50 Results

The pattern shown in Figure 9.1 and Figure 9.2 is relatively simple, and was created in less

than a minute. More complex patterns can be created in a similar fashion, a pattern as the

one seen in Figure 9.3 can be created in less than five minutes.

Figure 9.3 More complex crack patterns can also be created.

Figure 9.2 a: After creation node properties can be edited. b: Erroneous input values can be seen instantly.

a b

a b c d

e f g h

Figure 9.1 Creating a simple crack pattern.

 51 Results

9.1.2 Creating a fracture pattern

When the user opens the editor to create a fracture pattern, he is presented with the

default fracture pattern, see Figure 9.4 (a). Similarly to editing crack patterns new nodes can

be added by repeatedly shift-clicking, as seen in Figure 9.4 (b) through (e). All nodes can be

positioned using a single mouse stroke during which the two nodes nearest to the mouse

are adjusted. After this initial placement the position of individual nodes can also be

adjusted by clicking directly on them and then dragging them up or down.

9.1.3 Creating a destructible material

When the user opens the editor to create a destructible, he is presented with several

widgets, as can be seen in Figure 9.5. The previously created crack and fracture patterns are

visible in the library widget, from which the patterns of choice can be dragged to the list

view assigning them to the material. Once assigned in this manner, crack and fracture

patterns can be selected and their settings edited, see Figure 9.6. To help identify specific

patterns, any pattern that is selected is displayed on the canvas.

Figure 9.4 Creating a fracture pattern.

a b c

e d

 52 Results

Figure 9.5 Patterns can be assigned to a material by dragging them from the library to the list view.

Figure 9.6 The settings for individual crack and fracture patterns can be edited by selecting them in the list view.

9.2 Previewing a destructible material

As soon as a pattern has been assigned to a material the destructible behaviour that has

been created can be previewed. The user is presented a viewport, a settings widget and a

library of objects, as seen in Figure 9.7. Three models have been loaded into the editor

which can be used for testing the destructible material. In sections 9.2.1, 9.2.2, 9.2.3 and

9.2.4 we will show how these models can be used to preview the destructible material that

has been created.

 53 Results

Figure 9.8 New cracking operations can be performed on the result of previous operations.

Figure 9.7 To preview a destructible material the user is presented a simple interface.

9.2.1 Cracking

To initiate a cracking operation, the force applied has to be lower than the strength of the

material that was set during the design phase. In the prototype, the exact magnitude of the

force does nothing else than determine if a crack or fracture operation should be performed.

Once the user clicks on the viewport, as described in Section 6.3, a ray is cast to determine

the exact triangle and position to place a crack pattern at. A crack pattern is then selected

semi-randomly, as described in Section 6.1. With all this information a cracking operation is

then performed as described in Section 7.2 and once the operation completes the resulting

cracked object is displayed, as seen in Figure 9.8 (a).

More cracking operations can be performed on the result of the previously operation, see

Figure 9.8 (b) through (e), allowing a user to simulate how their material would behave in a

run-time environment. Should the user not unsatisfied with the results, he can simply switch

back to the editing mode, change some settings like the size of the crack pattern, switch

back, and evaluate the new results, see Figure 9.9.

a b c d e

 54 Results

Figure 9.9 After changing settings of the destructible material the new settings can be just as easy previewed.

However, due to stability issues of the implementation of the algorithms, sometimes the

cracking operation fails to complete successfully. The most common errors occur during

either the generation of the cracking volume, or during the Boolean operation between the

cracking volume and the target object. In the case that the error occurs during the volume

generation, nothing can be done other than informing the user of the failure. In the case of

the error occurring during the Boolean operation we can visualize the cracking volume, see

Figure 9.10, in order to help ascertain if there could be an obvious reason why an error

would occur, for instance if the generated volume is irregularly shaped. In either case, the

user has the option of saving the actions he performed by pressing the ‘Save recording’

button that was added to the settings widget, see Figure 9.7. This recording can be used as

input for unit testing, so that once the source of the error is located and resolved we are

assured that the same particular error will never return.

Figure 9.10 To help debug purposes the cracking volume is visualized should the cracking operation fail to
complete successfully.

9.2.2 Additional cracking examples

Any custom model loaded into the editor can also be selected to preview the destructible

behaviour. These models represent simple objects commonly found in games, namely a door

and a vase, see Figure 9.11. The door consists of 208 triangles, for the vase there are 2

different versions. The first one which is solid, the way a vase would typical be modelled in a

game, without an actual thickness, consisting of 288 triangles. The second version of the

a b c

 55 Results

vase represents a vase as it would be in real life, with an actual thickness, this version

consists of 576 triangles.

Figure 9.12 shows the door being cracked multiple times; a couple of artefacts can be seen

like some polygons not being removed.

Figure 9.13 shows the solid vase being cracked multiple times. The volume removed by the

cracking is entirely closed, giving the impression that the vase is a solid object.

Figure 9.14 shows the thin vase being cracked. Because this vase has a thickness cracking it

results in holes being created in the object and allowing us to see the insides. If the vase is

a b c

Figure 9.12 Door being cracked.

Figure 9.11 The three custom models in their pristine state.

Figure 9.13 A solid vase represented by a single shell, cracked repeatedly.

 56 Results

cracked on opposite sides, see the rightmost image in Figure 9.14, it is possible to see the

background through the vase.

9.2.3 Fracturing

Previewing fracturing is very similar to the way cracking is previewed. Once a user clicks on

the object, and the force is high enough, a fracture pattern is randomly selected from the

assigned patterns to apply to the object. All settings are applied and the target object is

fractured once with the selected fracture, once the operation is complete the original model

is removed and replaced with 2 fragments, see Figure 9.15 (a). Successive clicks apply a

fracturing operation on all fragments created during the previous operation, as many times

as desired by the user, as can be seen in Figure 9.15 (b) through (d).

Similar to cracking, stability issues sometimes prevent the operation from completing

successfully, especially if a fragment has been fractured multiple times already. Any

fragments which cannot successfully be fractured are then simply no longer included in the

set of fragments to fracture should a user perform another destruction operation.

9.2.4 Additional fracturing examples

Similar to the additional cracking examples all three models can be fractured. Figure 9.16

shows the door model being fractured: in (a) and (b) the shape of the fracture pattern is

a b c d

Figure 9.14 A thin vase with a modeled interior cracked repeatedly. In the right most image you can see through
the vase after it is cracked on both sides.

a b c

Figure 9.15 Successive fracture operations are applied on the fragments generated earlier.

 57 Results

clearly visible, but in (c), after three iterations of the fracture operation, the fragments

become less distinct. In (d) most fragments start to become unrecognizable pieces.

Figure 9.17 shows the solid vase model being fractured. Similar to the door, the further the

object is fractured the less distinct all fragments become. A drawback of using a ‘solid’ object

to represent an object that is in fact hollow can be clearly seen. As the vase is considered to

be hollow every fragment forms a closed surface, while a real vase would consist of thin

pieces.

Figure 9.18 shows the thin vase being fractured. Contrary to the solid vase, when fracturing

the thin vase flat fragments are created, similarly to how a real vase would break.

9.3 Performance

One important aspect of the prototype is the performance of the created algorithms, as the

goal is to apply the presented approach in a real-time environment. In this section we will

a b c d

Figure 9.17 The solid vase being fractured.

a b c d

a b c d
Figure 9.16 The door model being fractured.

Figure 9.18 The thin vase being fractured.

 58 Results

therefore discuss some results regarding the performance of the prototype. All performance

testing was performed on a normal desktop PC, with the following specifications; Intel core

duo 6600 @ 2.4 GHz, 2 GB of RAM, Geforce 8800 GTX, Windows XP SP 3. In subsection 9.3.1

we will present some in-depth performance results, while in subsection 9.3.2 we will discuss

performance scaling.

9.3.1 Performance per method

Two test cases were created from which detailed performance information was recorded.

The solid and thin vases where used to perform a cracking operation, creating a result

similar to that in Figure 9.13 a) and Figure 9.14 a). In these test cases, the methods involved

with the graph application, mesh generation and Boolean operation where timed. To time

each method call, a built in time measurement system of the Cannibal Engine was used.

Each measurement records the time between calls to a start and stop method, like the

standard .Net stopwatch, and for each frame the total time is then stored. While this system

will not provide highly accurate results and introduces some overhead, it will provide a good

indication of the performance. For each test the cracking operation was performed 100

times in order to get a good average result.

The performance results for the solid vase can be seen in Figure 9.19. In both test cases, the

graph application and mesh generation methods only required, on average, zero to two

milliseconds to complete, therefore only the timings for the Boolean operation methods are

significant. The figure shows that the triangle intersection method on average takes fifty

percent of the time of the whole cracking operation. Twenty five percent is needed to move

triangles between the models; the remaining twenty five percent is taken by the rest of the

methods, like propagating classifications and updating the boundary representation, as well

as the earlier steps of the process like the graph application and mesh generation. Two large

outliers can be seen, which run off the chart, as well as other small peeks. These two large

peeks are most likely caused by the garbage collector being triggered while the cracking

operation is being performed. The remaining other peeks are likely caused by external

factors, like threading.

 59 Results

Figure 9.19 Performance measurements for the solid vase test case.

Figure 9.20 shows the performance results of the thin vase test case, which shows the exact

same patterns as the solid vase test case. The main difference in these timings is that they

are slightly higher, most likely because the thin vase model consists of more triangles. Once

again two large outliers can be seen.

Figure 9.20 Performance measurements for the thin vase test case.

It should be noted that the timings reported here were gathered in debug mode, due to the

timing mechanism being disabled in release mode. To get an idea of the timings for a release

mode build, a single timer was implemented by hand to time the entire cracking operation.

Figure 9.21 shows the recorded timings of a release mode build of the thin vase test case,

showing a 50% decrease in required time to complete the operation. Also, no large outliers

were detected, most likely due to the reduced number of debugging operations and a lack of

debug output which results in less memory being used.

0

20

40

60

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

M
ill

is
e

co
n

d
s

test #

Crack

Intersect
triangles
Move triangles

Propagate
classifications

0

20

40

60

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

M
ill

is
e

co
n

d
s

test #

Crack

Intersect
triangles
Move triangles

Propagate
classifications

 60 Results

Figure 9.21 Reported cracking timings for release mode.

9.3.2 Performance scaling

To gather more information on the scaling of the performance when the model complexity

increases, timing information was gathered for each cracking example in Sections 9.2.1 and

9.2.2, in a similar fashion as the timings reported in Figure 9.21. Figure 9.22 would suggest

that the cracking algorithm is roughly O(n). However it is very hard to accurately determine

the performance scaling as the algorithms in the different steps of the destruction

algorithms have different orders of complexity.

For instance, cracking the door model took relatively long, compared to the ‘cube small

graph’ example. This however, is simply caused by the space of the object being cracked. In

the case of the door, which is high, wide and flat object, triangles on both sides of the model

will be found to be near the carving volume and will have to be submitted for detailed

intersection checks. As the triangle-triangle intersection is probably around O(n2), or

something similar, performing a crack operation in an area with many triangles will be more

detrimental to the performance than the object having a high global triangle count. This can

be further seen in the ‘cube small graph’ example, where the last 2 cracking operations take

nearly the same amount of time as the one before those, due to the cracking operation

being performed in an area with few triangles.

Figure 9.22 Release mode timing results of the cracking examples.

0

10

20

30

40

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

M
ill

is
e

co
n

d
s

test #

Crack

0

20

40

60

80

100

120

140

160

0 500 1000 1500

m
ill

is
e

n
co

n
d

s

Triangle count

Example timings

cube large graph

cube small graph

door

solid vase

thin vase

 61 Conclusions

10 Conclusions

The goal of this project was to investigate how to create a designer friendly approach for

authoring specific destructible behaviour which can then be applied to a variety of objects in

real-time.

A survey of research in this area showed that no existing approach satisfies enough criteria,

like ease of use, user control or speed, as specified by industry professionals. Approaches

that could be applied in real-time would usually be very abstract or lack user control over

the generated result, or vice versa.

Looking at commercial solutions it becomes clear that even though they can create some

spectacular results, they often still require a lot of manual labour. The use of the specific

software is usually also limited to a handful of games created by the same studio that

developed the software.

As basis for the approach developed in this thesis, an existing method was used that

satisfied the criteria of user friendliness. The novel concept of destructible materials has

been introduced to extend that basic approach with reusability, making it more designer

friendly and allowing it to be easily applied to different objects. We can therefore say that

the first goal has been successfully achieved.

The prototype implementation proved that destructible materials enable designers to easily

create reusable destructible behaviour which can be applied to a variety of objects. Its

current implementation also showed that for simple cases this destructible behaviour can be

applied in real-time. Therefore, we can consider the second goal to be, at most, partially

achieved.

The presented work focuses largely on the technical aspect of destructible behaviour, and

while it demonstrates the feasibility of the approach it does not present a finished work. A

lot of work remains, some on the technical side, but also on the user experience side.

However, the presented work does provide a step in the right direction.

 62 Conclusions

10.1 Recommendations

While this project is now completed, there are still various aspects of the prototype system

that could be improved, which will now be briefly discussed.

Editor

While the editor enables designers to create reusable destructible behaviour in a fast and

easy manner, there are several ways in which the editing process could be further improved:

Currently the editor uses a very old-school point-and-click style interaction paradigm; this

paradigm could be made a lot more dynamic by actually allowing a user to draw a crack

pattern which is automatically converted into a graph.

This could even be further extended by enabling users to specify cracks directly on the

surface of an object from which a two dimensional crack pattern is created and stored for

later reuse.

Algorithms

The prototype implementations of the described algorithms showed that the destructible

behaviour defined by using the presented approach can be applied in near real-time. The

majority of the examples displayed took less than eighty milliseconds to complete, which is

only five frames at sixty Hz. This is a very promising result considering the implementations

of the algorithms are the part of the prototype where the largest gains can be achieved in

future optimization work.

Currently the largest problem areas are the stability of the system and the computation

complexity. The stability issues are largely related to problems resulting from floating point

inaccuracies, but the sheer complexity of the code base and algorithms makes it difficult to

pinpoint the source of a lot of problems. Programming errors in one section of code often do

not create a problem until later, greatly increasing the difficulty of finding the source of the

problem.

The triangle-triangle intersection calculations are by far the most computationally expensive

part of the prototype. However, there are many different things that can be done to reduce

this cost. In the prototype, the intersection calculations are all performed on a single thread.

By using a multithreaded approach, or even a hyper-threaded approach like a GPU-based

solution, the time needed to calculate all intersections could be massively reduced. Not only

can we reduce the computational cost on a per operation basis, more efficient broad phase

filtering, using a more efficient spatial data structure, could further reduce the CPU load.

 63 Conclusions

Process

One aspect of this thesis project that should not be forgotten is the process itself. In

hindsight the amount of work required for implementing the prototype system was vastly

underestimated. As a direct result of this, many aspects of the prototype system did not

receive as much attention as possible as much time was spend on simply getting everything

to work. As a side effect, not only did the project go way overdue, it also caused a strain on

moral which in turn only created further delays. In future projects, more care will have to be

taken in creating a planning, and thought will have to be put into creating a plan that has

contingencies for the case in which the project does go overdue.

My recommendation to Cannibal Game Studios is to further develop the present approach

into a fully-fledged product. While a lot of work needs to be done in order to achieve this,

the presented approach is a technology that would provide a unique selling point and shows

that the company is able to take existing ideas to new levels.

 64 Conclusions

 65

Bibliography

1. LucasArts. Star Wars: Force Unleashed - Digital Molecular Matter Tech Demo. [Online]
February 14, 2007. [Cited: January 5, 2009.]
http://www.gametrailers.com/player/17054.html.

2. Nealen, Andrew, et al. Physically Based Deformable Models in Computer Graphics.
Computer Graphics Forum. 2006, pp. 809-836.

3. O'Brien, James F and Hodgins, Jessica K. Graphical Modeling and Animation of Brittle
Fracture. SIGGRAPH. 1999, pp. 137-146.

4. Müller, Matthias, Teschner, Matthias and Gross, Markus. Physically Based Simulation of
Objects Represented by Surface Meshes. Computer Graphics International. June 2004, pp.
26-33.

5. Galoppo, Nico, et al. Fast simulation of deformable models in contact using dynamic
deformation textures. Symposium on Computer Animation. 2006, pp. 73-82.

6. Müller, Matthias, et al. Meshless Deformations Based on Shape Matching. ACM Trans.
Graph. 2005, Vol. 24, 3, pp. 471-478.

7. Rivers, Alec R. and James, Doug L. FastLSM: Fast Lattice Shape Matching for Robust Real-
Time Deformation. ACM Trans. Graph. 2007, Vol. 26, 3, p. 82.

8. Martinet, Aurélien, et al. Procedural Modeling of Cracks and Fractures. SMI. 2004, pp.
346-349.

9. Fox, Daniel. Demolishing Objects in Computer Games. 2003. Msc Thesis.

10. Miller, Adam. A Cracking Algorithm for Exploding Objects. 2004. Msc Thesis.

11. Workman, Steven. A Cracking Algorithm for Destructible 3D Objects. 2006. Msc Thesis.

12. Smith, Jeffrey, Witkin, Andrew and Baraff, David. Fast and Controllable Simulation of
the Shattering of Brittle Objects. Comput. Graph. Forum. 2001, Vol. 20, 2, pp. 81-90.

13. Havok. Home. [Online] Havok. [Cited: June 23, 2010.] http://www.havok.com/.

14. —. Havok Destruction Product Brief. [Online] [Cited: March 10, 2010.]
http://www.havok.com/uploads/Havok_Destruction_Brief_Mar%204.pdf.

15. —. Havok product showcase. [Online] [Cited: March 10, 2010.]
http://www.havok.com/index.php?page=showcase.

16. Pixelux. Pixelux Entertainment. [Online] [Cited: June 23, 2010.]
http://www.pixelux.com/.

 66

17. Nvidia. PHYSX. [Online] [Cited: June 23, 2010.]
http://www.nvidia.com/object/physx_new.html.

18. Unreal. Unreal Technology. [Online] [Cited: June 23, 2010.]
http://www.unrealtechnology.com/.

19. Epic Games. Static Mesh Editor User Guide. [Online] 2008.
http://udn.epicgames.com/Three/StaticMeshEditorUserGuide.html.

20. Hubbard, Philip M. Constructive Solid Geometry for Triangulated Polyhedra. 1990.

21. Dice. DICE. [Online] [Cited: June 23, 2010.] http://www.dice.se/.

22. IGN.com. Battlefield: Bad Company Xbox 360 Commentary - Developer Commentary.
[Online] December 18, 2007. [Cited: March 11, 2010.]
http://xbox360.ign.com/dor/objects/713943/dice-project-
2/videos/bfbc_destruction_121407.html.

23. GameTrailers.com. Battlefield Moments Episode II. [Online] November 19, 2009. [Cited:
March 11, 2010.] http://www.gametrailers.com/video/battlefield-moments-battlefield-
bad/59221.

24. Ericson, Christer. Real time collision detection. 2005.

25. Moller, Tomas. A fast triangle-triangle intersection test. Journal of Graphics Tools. 1997,
pp. 25-30. See http://jgt.akpeters.com/papers/Moller97/tritri.html (Last accessed April
2009).

26. O'Rourke, Joseph. Computational Geometry in C. s.l. : Cambridge University Press, 1998.

27. de Berg, Mark, et al. Computational Geometry. 2nd revised edition. s.l. : Springer-Verlag,
2000. pp. 45-61.

28. Moondoggy. Deformation (engineering). Wikipedia. [Online] May 13, 2008.
http://en.wikipedia.org/wiki/Image:Stress-strain1.svg.

29. Galoppo, Nico, et al. Fast simulation of deformable models in contact using dynamic
deformation textures. Symposium on Computer Animation. 2006, pp. 73-82.

30. —. Dynamic Deformation Textures, GPU-Accelerated Simulation of Deformable Models
in Contact. SIGGRAPH courses. 2007, pp. 59-79. Advanced Real-Time Rendering in 3D
Graphics and Games Course.

31. Allègre, Rémi, et al. A Hybrid Shape Representation for Free-form Modeling. Shape
Modeling International. 2004, pp. 7-18.

32. —. A Hybrid Shape Representation for Free-form Modeling. Shape Modeling
International. 2003.

