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Abstract
Gabor phase retrieval is the problem of reconstructing a signal from only the magni-
tudes of its Gabor transform. Previous findings suggest a possible link between unique
solvability of the discrete problem (recovery from measurements on a lattice) and sta-
bility of the continuous problem (recovery from measurements on an open subset of
R
2). In this paper, we close this gap by proving that such a link cannot be made.

More precisely, we establish the existence of functions which break uniqueness from
samples without affecting stability of the continuous problem. Furthermore, we prove
the novel result that counterexamples to unique recovery from samples are dense in
L2(R). Finally, we develop an intuitive argument on the connection between direc-
tions of instability in phase retrieval and certain Laplacian eigenfunctions associated
to small eigenvalues.
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1 Introduction

Phase retrieval is a broad term encompassing many different inverse problems in
imaging and signal processing, in which one seeks to reconstruct an object from
measurements that arise as magnitudes of some quantities and lack phase information.
While in imaging applications such as coherent diffraction imaging, this loss of phase
information is due to the physics of the data acquisition process, in audio processing
applications (cf. [26]) working with phaseless information is often a choice (to avoid
recovery from noisy phases for example).

A particular instance of such a phase recovery problem is STFT phase retrieval,
i.e. the recovery of a signal f ∈ L2(R) from the magnitude of its short-time Fourier
transform with respect to a window ψ ∈ L2(R), which is defined as

Vψ f (x, ω) :=
∫
R

f (t)ψ(t − x)e−2π itω dt, (x, ω) ∈ R
2. (1)

STFT phase retrieval then refers to the problem of recovering f from |Vψ f (x, ω)|,
up to a constant global phase factor (cf. Eq. (4)).

A popular window choice for the STFT is the Gauss function ϕ(t) = 21/4e−π t2 , in
which case one also refers to the STFT as the Gabor transform defined as

G f (x, ω) := 21/4
∫
R

f (t)e−π(t−x)2e−2π itω dt, (x, ω) ∈ R
2, (2)

and the related STFT phase retrieval as Gabor phase retrieval.
In what follows, we will distinguish two setups: first, (continuous) Gabor

phase retrieval problems, in which one seeks to recover f from A�( f ) :=
(|G f (x, ω)|)(x,ω)∈�, for � containing an open subset of R

2. Second, and more rele-
vant in view of applications, sampled Gabor phase retrieval problems that deal with
the recovery of f (up to global phase) fromA�( f ) := (|G f (x, ω)|)(x,ω)∈�, where �

is a discrete subset of the time-frequency plane R
2.

It is by now well-known that f may be uniquely recovered (up to global phase)
from AR2( f ) and that this recovery is weakly but not strongly stable, i.e. the inverse
phase retrieval operator,A−1

R2 , is continuous but not uniformly continuous [1]. In view
of this insight, one can attempt to derive upper bounds for the local Lipschitz constants
cR2( f ) for the inverse phase retrieval operator (cf. equation (20)).

Different further aspects of uniqueness and stability for Gabor phase retrieval have
been studied over the past decade [2–6, 8, 12, 14–21, 23, 24, 27, 30–32]. Here, we
want to highlight two findings that motivate the study of this paper:
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Fig. 1 The Gabor transform
magnitudes |Gh+

a | for a=1/6.
The two bumps move apart as
the sample rate a goes to zero.
As a consequence, the local
Lipschitz constant of h+

a
increases as a goes to zero
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• Prior work by two authors of this paper on the (non-)uniqueness of sampled Gabor
phase retrieval [4] shows that sampledGabor phase retrieval does not enjoy unique-
ness (for signals in L2(R)) when the sampling set � is any (shifted) lattice in R

2.
This is done by constructing explicit counterexamples:

Theorem 1 [4, Theorem 1 on p. 6] For any a > 0, the functions

h±
a (t) := 21/4 exp(−π t2)

(
cosh

(
π t

a

)
± i sinh

(
π t

a

))
, t ∈ R,

do not agree (up to a constant global phase factor) and yet

|Gh+
a | = |Gh−

a | on R × aZ ⊃ aZ
2.

As a consequence, a priori knowledge about the signals is necessary to restore
uniqueness in sampled Gabor phase retrieval, and the search for proper subspaces of
L2(R) enjoying uniqueness from sampled Gabor transform magnitudes has attracted
recent attention [5, 18, 30].

• When the sampling lattice is sufficiently fine (i.e. a → 0), the counterexamples h±
a

strongly resemble signals proposed byGrohs and one of the authors to demonstrate
that continuous Gabor phase retrieval is severely ill-posed [2]: The magnitude
measurements |Gh±

a | are concentrated on disjoint domains in the time-frequency
plane and this results in a source of instability for Gabor phase retrieval (i.e. the
local Lipschitz constants cR2(h±

a ) are large). More precisely, the local stability
constant of the counterexamples increases as the sampling lattice becomes finer
and finer (see Fig. 1).

We therefore observe that function pairs breaking stability of continuous Gabor
phase retrieval seemingly resemble function pairs breaking uniqueness of sampled
Gabor phase retrieval. One is thus tempted to expect a direct connection between
uniqueness of sampled Gabor phase retrieval and stability of continuous Gabor phase
retrieval. This observation naturally leads to the following central question:
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Fig. 2 A plot of the Gabor
transform magnitude of the
counterexamples whose
existence is postulated in
Theorem 10
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Question 1 Consider the set Mν(R
2) of signals whose local Lipschitz constant

(defined in Eq. (21)) is upper bounded by ν > 0. Is there a lattice � ⊂ R
2 such

that |G f | = |Gg| on � implies that there exists an α ∈ R with f = eiαg for all
f , g ∈ Mν(R

2)?

This question has been the starting point and main motivation of this paper. Along
the way, we have established other results that are interesting on their own. The four
main contributions of our work can be summarized as follows:

1. The set of counterexamples is dense in L2(R). For every lattice and for every
square-integrable function f , we can construct signals which are arbitrarily close
to f , do not agree up to a global constant phase factor and yet haveGabor transform
magnitudes agreeing on the lattice (see Sect. 3.2).

2. The notion of uniqueness for sampled Gabor phase retrieval is fragile. The Gaus-
sian can be recovered from sampled Gabor transform magnitudes on sufficiently
fine lattices but for each of such lattices there exist counterexamples which are
arbitrarily close to the Gaussian (cf. Sect. 3).

3. Considering the class of signals for which the local Lipschitz constant satisfies
a uniform bound is not enough to restore uniqueness in sampled Gabor phase
retrieval.Much to our surprise, we answer Question 1 in the negative. This is due
to the existence of counterexamples which break uniqueness without affecting
stability, see Fig. 2. Indeed, the counterexamples in Theorem 10 are constructed to
be arbitrarily close to the normalized Gaussian ϕ(t) = 21/4e−π t2 which is known
to enjoy very strong stability properties. Restoring uniqueness will necessitate a
more restrictive signal class (cf. Section4).

4. Local stability of (Gabor) phase retrieval may be quantified by Laplacian eigen-
values. In particular, we suggest that small Laplacian eigenvalues correspond to
unstable directions: If there are only very few small eigenvalues of the Laplacian,
there are only few directions of instability. Moreover, each direction of instability
corresponds to an associated Laplacian eigenfunction (see Sect. 5).

Remark 1 As there is a lot of notation introduced throughout this paper, we include a
list of symbols in Appendix A for the convenience of the reader.
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2 Preliminaries andmain concepts

We will consider signals in the modulation spaces

M p(R) :=
{
f ∈ S ′(R) : G f ∈ L p(R2)

}
, 1 ≤ p ≤ ∞, (3)

where S ′(R) denotes the class of tempered distributions. Mp(R) can be equipped with
the norm

‖ f ‖Mp(R) := ‖G f ‖p.

Let us emphasize that we are exclusively interested in the modulation spaces with
parameter p ∈ [1, 2]. We will thus always be working with functions rather than
abstract distributions. In particular, the following simple inclusion holds (cf. [29,
Proposition 1.7 on p. 408]):

Mp(R) ⊂ Lr (R), r ∈ [p, p′],

where p′ ∈ [2,∞] denotes the Hölder conjugate of p and where we have equality as
sets if p = 2. We observe that the above inclusion implies that Mp(R) ⊂ L2(R), for
p ∈ [1, 2], such that the application of the Gabor transform to signals f ∈ Mp(R) is
well-defined.

Next, we note that one cannot distinguish between f and eiα f on the basis of the
magnitudes of the Gabor transform. As is usual in phase retrieval, we will therefore
only seek to recover f up to a global constant phase factor. To formalize this, we
introduce the equivalence relation

f ∼ g : ⇐⇒ ∃ α ∈ R : f = eiαg (4)

on Mp(R).
For ease of notation, we introduce the following operations in the context of L p(R)

with p ∈ [1,∞]: The translation operator Tx : L p(R) → L p(R) is defined as

Tx f (t) := f (t − x), t ∈ R, (5)

for x ∈ R; the modulation operator Mω : L p(R) → L p(R) is defined as

Mω f (t) := f (t)e2π itω, t ∈ R,

for ω ∈ R.
Moreover, to represent rotation in R

2 by an angle θ ∈ R, we use the rotation
operator Rθ : R

2 → R
2, which, in matrix form, can be expressed as

Rθ :=
(
cos θ − sin θ

sin θ cos θ

)
. (6)
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Finally, we say that a lattice� ⊂ R
2 is a discrete subset of the time-frequency plane

that can be expressed as LZ
k , where L ∈ R

2×k is a matrix with linearly independent
columns and k ∈ {1, 2}.

2.1 The Fock space and the Bargmann transform

Throughout this work, and notably in Sect. 3.2, we rely on the well-known connection
between theGabor transform, theBargmann transform and the Fock space [13, Section
3.4 on pp. 53–58]. The Fock space F2(C) is the Hilbert space of all entire functions
for which the norm induced by the inner product

(F,G)F :=
∫
C

F(z)G(z)e−π |z|2 dz

is finite. Interestingly, the Fock space is isomorphic to L2(R) with the Bargmann
transform B : L2(R) → F2(C), given by

B f (z) := 21/4
∫
R

f (t)e2π t z−π t2− π
2 z

2
dt, z ∈ C,

acting as the isomorphism. Moreover, the Bargmann transform and the Gabor trans-
form are intimately related via the formula

G f (x,−ω) = eπ ixωB f (x + iω)e− π
2 (x2+ω2), (x, ω) ∈ R

2. (7)

Therefore, the range of the Gabor transform can be identified withF2(C) by reflection
and multiplication with a smooth, non-zero function.

For our purposes, it is interesting to note that the Fock space is the space of all
entire functions with a specific growth. Let us briefly explain this: The order ρ ≥ 0
of an entire function F is the infimum of all r > 0 for which F(z) ∈ O(exp(|z|r ))
as |z| → ∞. In the case where F is an entire function of order ρ ∈ (0,∞), the type
τ ≥ 0 of F is the infimum of all t > 0 such that F(z) ∈ O(exp(t |z|ρ)) as |z| → ∞.
An entire function F with order ρ < 1 or order ρ = 1 and type τ < ∞ is said to be
of exponential type.

According to [13, Theorem 3.4.2 on p. 54], all functions in the Fock space are either
of order ρ < 2 or of order ρ = 2 and type τ ≤ π/2. Conversely, it is readily seen
that functions of order ρ < 2 and functions of order ρ = 2 with type τ < π/2 belong
to the Fock space. In particular, functions of exponential type are in the Fock space.
However, functions of order ρ = 2 and type τ = π/2 must not necessarily belong to
the Fock space as demonstrated in [7].

2.2 Laplacian eigenvalues, the Poincaré, and the Cheeger constant

In their work, Grohs and Rathmair [19] establish a connection between the Cheeger
constant from spectral geometry and the local stability of the Gabor phase retrieval
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problem. They do so by linking stability to the Poincaré constant, which is the recip-
rocal of the first non-trivial eigenvalue of the Laplace operator. The connection to
the Cheeger constant is then made through Cheeger’s inequality (cf. Eq. (9)). Since
we use the link between the local stability of the Gabor phase retrieval problem and
the Poincaré constant in Sect. 4, and refine the findings in [19] by making use of the
Laplacian eigenvalues in Sect. 5, we briefly explain these concepts in the following.

Laplacian eigenvalues, the Poincaré, and the Cheeger constant in Riemannian geom-
etry

To facilitate understanding, let us begin by briefly summarizing some fundamental
concepts from spectral geometry [9]. For a compact, connected smooth Riemannian
manifold M of dimension n, with Laplace–Beltrami operator 
 = − div grad, we
consider the following eigenvalue problem: Find all λ ∈ R such that there exists a
non-trivial solution φ ∈ C2(M) to 
φ = λφ. It is known that the eigenvalues form
a sequence 0 = λ0 < λ1 < · · · , where the non-negativity of the eigenvalues follows
from the divergence theorem which implies1

λi ·
∫
M

|φi |2 dV =
∫
M

|grad φi |2 dV ,

for all eigenpairs (λi , φi ). This equation also demonstrates that the only eigenfunctions
with trivial eigenvalue are the constant functions.

Let H1(M) denote the Sobolev space of L2-functions with square-integrable weak
derivatives up to first order. It can be shown that

∫
M

| f |2 dV ≤ λ−1
1 ·

∫
M

|grad f |2 dV (8)

for all f ∈ H1(M) with zero mean. We refer to this inequality as the Poincaré
inequality and to the reciprocal λ−1/2

1 as the Poincaré constant. It is worth noting that
equality in Eq. (8) is achieved by the eigenfunctions with eigenvalue λ1, making λ−1

1
the smallest constant for which Eq. (8) holds.

Lastly, the first non-trivial eigenvalue of the Laplace operator is connected to
Cheeger’s (isoperimetric) constant,2

h(M) := inf
S

A(S)

min {V (M1), V (M2)} ,

where the infimum is taken over all compact (n − 1)-dimensional submanifolds S of
M that divide M into two open submanifolds M1 and M2 satisfying ∂M1 = ∂M2 = S:
Specifically, we have [10]

λ1 ≥ h(M)2/4. (9)

1 Here, dV denotes integration with respect to the Riemannian measure.
2 Here, V (·) denotes n-dimensional volume, while A(·) represents (n − 1)-dimensional volume.
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Intuitively, the Cheeger constant measures the ease with which we can cut the mani-
fold M into two parts of roughly equal size. The Calabi dumbbell (cf. Fig. 6) nicely
exemplifies this: It has a small Cheeger constant because cutting through the middle
(the "bridge") requires only a short incision to separate the two large regions on either
side of the bridge.

The Poincaré constant and stability in Gabor phase retrieval

Next, we provide a brief overview of the connection between the weighted Poincaré
constant and stability of the Gabor phase retrieval problem as established in [19].

Let 1 ≤ p < ∞, � ⊆ R
2 be a domain, and w be a weight on �. In the following,

L p(�,w) andWk,p(�,w) denote the respective weighted spaces on�. Theweighted
Poincaré constant is defined as

Cpoinc(p,�,w) := sup

{‖F − Fw
� ‖L p(�,w)

‖∇F‖L p(�,w)

:

F ∈ W 1,p(�,w) ∩ M(�), F �= const.

}
(10)

in [19], where

Fw
� := 1

w(�)

∫
�

F(x)w(x)dx, w(�) :=
∫

�

w(x)dx,

andM(�) denotes the set of functions F : � → C for which {x + iy : (x, y) ∈ �} �
(x + iy) �→ F(x, y) ∈ C is meromorphic.

Remark 2 It is worth noting that the definition of the Poincaré constant used here
slightly deviates from the classical definition, as we specifically consider the case for
which results from [19] are applicable.

The central result of [19] states that under certain assumptions (see Theorem 5.9
therein), the following stability result holds: For every function f ∈ Mp(R), there
exists a constant c > 0 such that for every g ∈ Mp(R),

inf
α∈R‖G f − eiαGg‖L p(�) ≤ c (1 + Cpoinc(p,�, |G f |p)) · ‖|G f | − |Gg|‖D1,4

p,q (�)
, (11)

where

‖F‖D1,4
p,q (�)

:= ‖F‖W 1,p(�) + ‖F‖Lq (�) + ‖(x, ω) �→ (|x | + |ω|)4F(x, ω)‖Lq (�). (12)

The Cheeger constant and stability in Gabor phase retrieval

Finally, the Poincaré constant can be upper bounded in terms of theCheeger constant,

h p,�( f ) := inf
S

‖G f ‖p
L p(∂S)

min{‖G f ‖p
L p(S), ‖G f ‖p

L p(Sc)}
,
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where the infimum is taken over all open subsets S of � for which ∂S ∩ � is smooth
[19]. Here, f ∈ Mp(R) for some p ∈ [1, 2] and � ⊂ R

2 is a connected domain.
The Cheeger constant quantifies the ease with which we can cut |G f | into two parts
of roughly equal size. Consider the function h+

a whose Gabor transform magnitude
is depicted in Fig. 1, for instance: Cutting right down the middle of the two bumps
is easy, i.e., ‖G f ‖L p(∂S) is small. It can then be shown that the Cheeger constant
of h+

a is small. We can compare this to the function whose Gabor transform mag-
nitude is depicted in Fig. 2: There, cutting right down the middle of the two bumps
is even easier. However, when one of the bumps is significantly smaller than the
other, min{‖G f ‖L p(S), ‖G f ‖L p(Sc)} becomes small as well, and it is not clear whether
h p,�( f ) is small.

3 Uniqueness is fragile in sampled Gabor phase retrieval

In this section,we show that there exist functionswhich canbeuniquely recovered from
sampled Gabor transform magnitudes but that, for every function f ∈ L2(R), there
exist counterexamples to sampled Gabor phase retrieval which are arbitrarily close to
f . Therefore, uniqueness is a fragile concept in sampled Gabor phase retrieval.

3.1 On counterexamples for sampled Gabor phase retrieval

Let us first definewhat ismeant by counterexamples for sampledGabor phase retrieval.

Definition 1 Let � ⊂ R
2. The class of counterexamples for sampled Gabor phase

retrieval on � is defined by

C(�) :=
{
f ∈ L2(R) : ∃ g ∈ L2(R) s.t. f � g and |G f | = |Gg| on �

}
.

An element f ∈ C(�) is called a counterexample for sampled Gabor phase retrieval
on �.

There is a principled way of generating large families of counterexamples starting
with two counterexamples only. Specifically, we may consider f , g ∈ L2(R) such
that f and g do not agree up to global phase while

|G f | = |Gg| on �, (13)

where � ⊂ R
2. If for some element m ∈ F2(C) of the Fock space, it is true that

m · B f ,m · Bg ∈ F2(C), i.e. both m · B f and m · Bg are in the Fock space, then
fm := B−1(m · B f ) and gm := B−1(m · Bg) are well-defined functions in L2(R)

such that |G fm | = |Ggm | on �. Additionally, fm and gm will generally not agree up
to global phase. The above construction works because the magnitudes of the Gabor
transforms of fm and gm agree on � if and only if the magnitudes of their Bargmann
transforms agree. By construction, their Bargmann transforms are m ·B f and m ·Bg
whose magnitudes must agree on � by Eq. (13). While this idea can be explored in
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various ways, we choose to focus on its most straightforward corollary in this context,
applying it to the counterexamples presented in [4].

Let a > 0 and denote the normalized Gaussian by ϕ(t) = 21/4 exp(−π t2) for
t ∈ R. Recall from the introduction (cf. Theorem 1) that the functions

h±(t) := ϕ(t)

(
cosh

(
π t

a

)
± i sinh

(
π t

a

))
, t ∈ R, (14)

do not agree up to global phase and still satisfy |Gh+| = |Gh−| on R × aZ.
The Bargmann transforms of the signals h± ∈ L2(R) are given by

Bh±(z) = e
π
8a2

(
cosh

(π z

2a

)
± i sinh

(π z

2a

))
, z ∈ C,

and are thus of exponential type. It therefore follows that, if m ∈ F2(C) is not of
second order and type π/23, then m · Bh± ∈ F2(C) and thus

h±
m := B−1(m · Bh±) ∈ L2(R)

satisfy |Gh+
m | = |Gh−

m | on R×aZ. In particular, we can considermτ (z) := exp(πτ z),
for τ ∈ R and z ∈ C, which is of exponential type and therefore in the Fock space.
The corresponding functions

h±
τ := B−1(eπτ · · Bh±) ∈ L2(R)

do not agree up to global phase and have Gabor transform magnitudes that agree on
R × aZ. The former is true because mτ = exp(πτ ·) has no roots while Bh+ and
Bh− have disjoint root sets such that mτ · Bh+

� mτ · Bh−. Therefore, the linearity
of the Bargmann transform implies that h+

τ � h−
τ . We visualize the Gabor transform

magnitude of h+
τ in Fig. 2 and note that one of the two bumps has shrunk considerably

in comparison to Fig. 1. In fact, it looks like h+
τ is very close to a time-shifted (and

scaled) Gaussian when |τ | is large.
It is therefore no surprise that time-shifting and scaling4 h±

τ , yields the functions

f ± := f ±
γ := ϕ ± iγ T1/a ϕ, γ > 0, (15)

where the translation operator Tx is defined in Eq. (5). We emphasize that these
functions satisfy

lim
γ→0

f ±
γ = ϕ

pointwise and in L p(R), for all p ∈ [1,∞]. Therefore, there exist counterexamples
to sampled Gabor phase retrieval which are arbitrarily close to the Gaussian.

3 Ifm is of second order and typeπ/2, thenm ·Bh± is not guaranteed to be in the Fock space (cf. Remark 3).
4 For a precise explanation of how to time-shift and scale h±

τ to obtain f ±, the reader is referred to
Appendix B.
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Next, we rigorously show that f ± are counterexamples to sampled Gabor phase
retrieval by direct computation. We note that this already follows from [4, 17]. Since
most of our proof will be used at a later point and for the convenience of the reader,
we give an independent derivation here. In the following, we will use the well-known
fact that the Gabor transform of the normalized Gaussian ϕ is

Gϕ(x, ω) = 21/4
∫
R

ϕ(t)e−π(t−x)2e−2π itω dt = e−π ixωe− π
2

(
x2+ω2

)
, (16)

for (x, ω) ∈ R
2.

Lemma 2 Let a, γ > 0 and let f ± be defined as in Eq. (15). Then, f + and f − do not
agree up to global phase and yet

|G f +| = |G f −| on R × aZ.

Proof The statement can be obtained by computing the Gabor transforms of f ±. By
the linearity of the Gabor transform and the covariance property (cf. [13, Lemma 3.1.3
on p. 41]), we find that

G f ±(x, ω) = Gϕ(x, ω) ± iγG T1/a ϕ(x, ω) = Gϕ(x, ω) ± iγ e−2π i ωa Gϕ

(
x − 1

a
, ω

)

= e−π ixωe− π
2

(
x2+ω2

)
± iγ e−2π i ωa e

−π i
(
x− 1

a

)
ω
e
− π

2

((
x− 1

a

)2+ω2
)

= e−π ixωe− π
2

(
x2+ω2

)
± iγ e

−π i
(
x+ 1

a

)
ω
e
− π

2

((
x− 1

a

)2+ω2
)
,

for (x, ω) ∈ R
2. Therefore, we may compute

|G f ±(x, ω)| =
∣∣∣∣∣∣e

− π
2

(
x2+ω2

)
± iγ e− π iω

a e
− π

2

((
x− 1

a

)2+ω2
)∣∣∣∣∣∣

= e− π
2

(
x2+ω2

) ∣∣∣1 ± iγ e
π
a (x−iω)e− π

2a2

∣∣∣ . (17)

According to equation (17), the Gabor transform of f ± is zero at (x, ω) if and only
if

e
π
a (x−iω)− π

2a2 = ± i

γ
= e− log γ± π i

2 +2π ik,

for some k ∈ Z, which is equivalent to

π

a
(x − iω) = π

2a2
− log γ ± π i

2
+ 2π ik.
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Therefore, the root sets of G f ± are given by

{(
1

2a
− a log γ

π
,±a

2
+ 2ak

)
: k ∈ Z

}
. (18)

We note here that the root sets of G f + and G f − are different from each other so
that G f + and G f − do not agree up to global phase. It follows by the linearity of the
Gabor transform that f + and f − cannot agree up to global phase. Finally, we consider
Eq. (17) once again to see that

|G f +(x, ak)| = e− π
2

(
x2+a2k2

) ∣∣∣1 + iγ e
π
a (x−aik)e− π

2a2

∣∣∣
= e− π

2

(
x2+a2k2

) ∣∣∣1 + iγ e
πx
a e−π ike− π

2a2

∣∣∣
= e− π

2

(
x2+a2k2

) ∣∣∣1 + i(−1)kγ e
πx
a e− π

2a2

∣∣∣
= e− π

2

(
x2+a2k2

) ∣∣∣1 − i(−1)kγ e
πx
a e− π

2a2

∣∣∣
= e− π

2

(
x2+a2k2

) ∣∣∣1 − iγ e
π
a (x−aik)e− π

2a2

∣∣∣
= |G f −(x, ak)|

must hold, for x ∈ R and k ∈ Z.

3.2 The set of counterexamples is dense in the space of square-integrable signals

Using the counterexamples f ±, which can be arbitrarily close to the Gaussian, we can
show that if� ⊂ R

2 is any set of equidistant parallel lines or any lattice, then the class
of counterexamples C(�) is dense in L2(R). Intuitively, our proof for this statement
will work because the Bargmann transforms of the counterexamples f ± are given by

B f ±(z) = 1 ± iγ e
− π
2a2

+π z
a , z ∈ C.

We can absorb the factor exp(−π/(2a2)) into γ and obtain

H±
δ (z) := 1 ± iδe

π z
a , z ∈ C, (19)

with δ > 0, which are entire functions of exponential type and thus in the Fock space.
Additionally, H±

δ converge to 1 inF2(C) as δ → 0, do not agree up to global phase and
satisfy |H+

δ | = |H−
δ | on R + iaZ: They are, in short, the ideal multipliers in the Fock

space to transform a general function f ∈ L2(R) into a “close-by" counterexample.

Theorem 3 Let a > 0. Then, C(R × aZ) is dense in L2(R).

Proof Let ε > 0 and f ∈ L2(R). We want to show that there exist g± ∈ L2(R) which
do not agree up to global phase, are ε-close to f in L2(R), i.e. ‖ f − g±‖2 < ε, and
satisfy
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|Gg+| = |Gg−| on R × aZ.

According to [13, Theorem 3.4.2 on p. 54], the monomials

en(z) :=
(

πn

n!
)1/2

zn, n ∈ N0, z ∈ C,

form an orthonormal basis for the Fock spaceF2(C). Therefore, the space of complex
polynomials is dense in the Fock space and we can find P ∈ C[z] such that

‖B f − P‖F <
ε

2
.

Let us now consider the functions H±
δ defined in Eq. (19) and note that G±

δ :=
H±

δ · P ∈ F2(C) since G±
δ are entire functions of exponential type. Hence, we can

define g±
δ := B−1G±

δ ∈ L2(R). To establish the necessary properties of g±
δ , we will

work with their Bargmann transforms G±
δ . First, we note that

|H+
δ (t + iak)| = |1 + (−1)k iδe

π t
a | = |1 − (−1)k iδe

π t
a | = |H−

δ (t + iak)|,

for t ∈ R and k ∈ Z. It follows that |G+
δ | = |G−

δ | on R + iaZ and thus that |Gg+
δ | =

|Gg−
δ | on R×aZ. Secondly, we note that G±

δ do not agree up to global phase: Indeed,
H±

δ both have infinitely many roots but no root of H+
δ is a root of H−

δ and vice versa.
At the same time, P is a polynomial and has only finitely many roots. It follows that
G+

δ does have roots which are no roots of G−
δ (and vice versa) and thus G+

δ � G−
δ .

By the linearity of the Bargmann transform, we find g+
δ � g−

δ . Finally, we note that

‖P − P · H±
δ ‖F = δ‖P · eπ/a·‖F

and so there exists a δ > 0 depending on a, ε and P (which in turn depends on f and
ε) such that

‖P − P · H±
δ ‖F <

ε

2
.

We conclude that

‖ f − g±
δ ‖2 = ‖B f − H±

δ · P‖F ≤ ‖B f − P‖F + ‖P − H±
δ · P‖F < ε.

Remark 3 (Some explanations on the proof) As B f ∈ F2(C), for f ∈ L2(R), we
know that B f is either an entire function of exponential type or an entire function of
second order. If B f is of second order, then its type is less or equal to π/2. In the case
that the type is strictly smaller than π/2, it holds that B f · H±

δ ∈ F2(C) and thus we
can define

g±
δ := B−1 (B f · H±

δ

) ∈ L2(R),
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with

δ <
ε

‖B f · eπ/a·‖F ,

to obtain counterexamples which are ε-close to f in L2(R).
On the other hand, if B f is a second-order entire function of type π/2, it is not

guaranteed that B f · H±
δ is in the Fock space (see [7] for two striking examples for

why this can fail). As the only situation in which B f · H±
δ may not be in the Fock

space occurs when B f is exactly of order two and of type π/2, it seems obvious that
the functions f for which B f · H±

δ ∈ F2(C) holds must be dense in L2(R). We can
prove this by realizing that the complex polynomials are dense in F2(C).

We can adapt the argument above to work on a general set of parallel lines in the
time-frequency plane. In order to do so, we use the functions

H±
δ (z) := 1 ± iδ exp

(
πeiθ

a

(
z − λ0

))

in our proof and note that the corresponding g±
δ ∈ L2(R) satisfy

|Gg+
δ | = |Gg−

δ | on Rθ (R × aZ) + λ0,

where a > 0, λ0 ∈ R
2 � C, and Rθ : R

2 → R
2 denotes rotation by θ ∈ R

in R
2 as defined in Eq. (6). The statement for general lattices follows from the same

consideration because all lattices are a subset of some set of infinitelymany equidistant
parallel lines. We therefore arrive at the following result.

Theorem 4 Let � ⊂ R
2 be a set of equidistant parallel lines or a lattice. Then, C(�)

is dense in L2(R).

Example 1 To illustrate our result, we create counterexamples to sampled Gabor phase
retrieval which are close to the Hermite functions (Hn)n≥0 ∈ L2(R). To do so, we
recall [13, Theorem 3.4.2 on p. 54] that

BHn(z) = en(z) =
(

πn

n!
)1/2

zn, z ∈ C.

Therefore, the Gabor transform of the Hermite functions is

GHn(x, ω) = e−π ixωBHn(x − iω)e− π
2

(
x2+ω2

)

=
(

πn

n!
)1/2

e−π ixω (x − iω)n e− π
2

(
x2+ω2

)
,

for (x, ω) ∈ R
2. Figure3a provides a plot of the Gabor transform (in magnitude) of

the Hermite function for n = 5.
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Fig. 3 The Gabor transform magnitude of the fifth Hermite function (Fig. 3a) and of a counterexample g+
δ

to sampled Gabor phase retrieval on R × 1
4Z (Fig. 3b)

To find a counterexample which is close to Hn , we can define

g±
δ := B−1(BHn · H±

δ )

as described in Remark 3. For visualization purposes, we are interested in the spec-
trogram of g±

δ and compute

Gg±
δ (x, ω) = e−π ixωBg±

δ (x − iω)e− π
2

(
x2+ω2

)

= e−π ixωBHn(x − iω)e− π
2

(
x2+ω2

)
· H±

δ (x − iω)

= GHn(x, ω) · H±
δ (x − iω)

=
(

πn

n!
)1/2

e−π ixω (x − iω)n
(
1 ± iδe

π(x−iω)
a

)
e− π

2

(
x2+ω2

)
.

For comparison, we plot the magnitude of the above Gabor transform (for n = 5,
a = 1

4 and δ = 1
50 exp(−10π)) in Fig. 3b.

Remark 4 It is notable that if f ∈ L2(R) is such that B f is not of second order and
of type π/2, then there are counterexamples of the form

g±
δ = f ± iδB−1

(
z �→ e

π z
a B f (z)

)
;

i.e. g±
δ are small additive perturbations of our original signals f .

3.3 Recovering the Gaussian from Gabor transformmagnitudes on a lattice

Theorem4 states that the counterexamplesC(�) are dense in L2(R); in otherwords, for
every f ∈ L2(R), there is a counterexample to sampled Gabor phase retrieval which



    6 Page 16 of 36 R. Alaifari et al.

is arbitrarily close to f . Naturally, one might wonder whether all f ∈ L2(R)\{0}
are counterexamples. In this subsection, we show that this is not true and that, in
particular, the normalized Gaussian can be recovered from Gabor magnitude samples
on sufficiently fine square lattices.

In order to accomplish this, we relate sampled Gabor phase retrieval to a sampling
problem in the Fock space of entire functions. In this way, our result reduces to
identifying all F ∈ F2(C) which have unit absolute value on a square lattice. This
reduction relates our problem to some form of maximum modulus (or Phragmén–
Lindelöf) principle (cf. [28, Section 5.1 on pp. 165–168 and Section 5.6 on pp. 176–
181]): Indeed, we are considering a second order entire function F which is bounded
on all lattice points; this suggests that F should be constant in the entire complex plane
as long as the lattice is dense enough. This intuition is correct and follows from an
elegant result discovered independently by V. Ganapathy Iyer [22] and Albert Pfluger
[25] in 1936.

Theorem 5 (Cf. [25, Theorem I A on p. 305]) Let h be an entire function such that

lim sup
r→∞

logMh(r)

r2
<

π

2
,

where Mh(r) := max|z|=r |h(z)|. If there exists a constant κ > 0 such that

|h(m + in)| ≤ κ, m, n ∈ Z,

then h is constant.

We can now prove the following result.

Theorem 6 Let 0 < a < 1 and f ∈ L2(R) be such that

|G f (x, ω)|2 = e−π
(
x2+ω2

)
= |Gϕ(x, ω)|2, (x, ω) ∈ aZ

2.

Then, there exists an α ∈ R such that f = eiαϕ.

Proof Let us consider the entire function h(z) := B f (az) for z ∈ C. We directly
estimate

|h(z)| = |B f (az)| ≤ ‖B f ‖F · e π
2 |az|2 = ‖ f ‖2 · e πa2

2 |z|2 , z ∈ C,

following [13, Proposition 3.4.1 and Theorem 3.4.2 on p. 54] which shows that

lim sup
r→∞

logMh(r)

r2
≤ lim sup

r→∞

(
log‖ f ‖2

r2
+ πa2

2

)
= πa2

2
<

π

2
.

Additionally, Eq. (7) and our assumption on f imply that

|h(m + in)| = |B f (am + ian)| = |G f (am,−an)|e πa2
2 (m2+n2) = 1.
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Therefore, Theorem 5 shows that h is constant which together with |h| = 1 implies
that there exists an α ∈ R such that h = eiα . Since the Bargmann transform is unitary
[13, Theorem 3.4.3 on p. 56] and linear, and since Bϕ = 1, it follows that f = eiαϕ

as desired.

Remark 5 A natural confusion that might arise in connection with Theorem 6 is in
how far it is different from the result in [18] on shift-invariant spaces with Gaussian
generator,

V p
β (ϕ) :=

{
f ∈ L p(R) : f =

∑
k∈Z

ck Tβk ϕ, c ∈ �p(Z)

}
,

where p ∈ [1,∞] and β ∈ (0,∞). The aforementioned result applied to the Gaussian
states that if β > 0 and 0 < a < β/2 are such that aβ /∈ Q, then the only functions
f ∈ V 1

β (ϕ) satisfying

|G f (x, ω)|2 = |Gϕ(x, ω)|2 = e−π
(
x2+ω2

)
, (x, ω) ∈ aZ

2,

are of the form f = eiαϕ, where α ∈ R. The difference is the assumption f ∈ V 1
β (ϕ)

which stands in contrast to the weaker assumption f ∈ L2(R) in Theorem 6. In short,
Theorem 6 implies that the Gaussian can be distinguished from all other functions in
L2(R) by looking at its sampled Gabor transformmagnitude measurements while [18,
Theorem 3.10 on p. 188] only implies that it is distinguishable from the functions in
V 1

β (ϕ) � L2(R).

4 On the stability of Gabor phase retrieval

Having discussed uniqueness from samples in the previous section, we now turn to
the question of stability and the lack of connection between these two properties. Let
� ⊆ R

2 be a domain and let 1 ≤ p ≤ ∞. Given f ∈ Mp(R), we denote by |G f|� | the
magnitude of the Gabor transform of f on �. We are interested in the local Lipschitz
constant of f on �, i.e. the smallest constant C > 0 such that

inf
α∈R ‖G f − eiαGg‖L p(�) ≤ C‖|G f|� | − |Gg|� |‖B, for all g ∈ Mp(R). (20)

Here, ‖·‖B denotes the norm of aBanach spaceB inwhich the space ofmeasurements
|G f|� |, for f ∈ Mp(R), lie. In particular, we denote the local Lipschitz constant by
cp,�( f ) when ‖ · ‖B is given by (12), i.e. cp,�( f ) is the best possible constant C > 0
for which

inf
α∈R ‖G f − eiαGg‖L p(�) ≤ C‖|G f|� | − |Gg|� |‖D1,4

p,q (�)
, for all g ∈ Mp(R). (21)

A large constant cp,�( f ) indicates that the problem of recovering G f|� from |G f|� |
cannot be controlled well since there exists a function g ∈ Mp(R) with |Gg|� | very
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close to |G f|� | while the distance between G f|� and Gg|� is not small. Consequently,
the problem of recovering f from |G f|� | is not well controlled either since

inf
α∈R ‖ f − eiαg‖Mp(R) = inf

α∈R ‖G f − eiαGg‖L p(R2) ≥ inf
α∈R ‖G f − eiαGg‖L p(�).

On the other hand, a small cp,�( f ) translates into good stability guarantees for the
recovery of G f|� from |G f|� |. We observe that, if � � R

2, this does not guarantee
that the problem of recovering f from |G f|� | is stable. However, if we suppose that
f is ε-concentrated on �, i.e. f satisfies

‖G f ‖L p(R2\�) ≤ ε, (22)

for some small ε > 0, then we obtain a weaker notion of stability for the recovery of
f from |G f|� | in the sense that

inf
α∈R ‖ f − eiαg‖Mp(R) = inf

α∈R ‖G f − eiαGg‖L p(R2)

≤ cp,�( f )‖|G f|� | − |Gg|� |‖B + 2ε,

for any g ∈ Mp(R) that is ε-concentrated on �.
As discussed in Sect. 2.2, the stability constant cp,�( f ) can be controlled by the

weighted Poincaré constant: the smaller the Poincaré constant, the better the local
stability of Gabor phase retrieval at f (cf. equation (11)). The relation to the Cheeger
constant is inversely proportional. More precisely, the overall picture is:

cp,�( f ) � Cpoinc(p,�, |G f |p) � h p,�( f )−1.

In what follows, we will show that the construction of the counterexamples (15)
leads to the existence of function perturbations which break uniqueness from samples
while not affecting stability. Hence, much to our surprise, the answer to Question 1
is negative. Note that the precise statement in our Theorem 10 slightly differs from
Question 1 and we discuss these technicalities in Sect. 4.2.

4.1 On the variation of the weighted Poincaré constant

A natural question concerning weighted Poincaré inequalities is how the Poincaré
constantCpoinc(p,�,w) changes under variations of the weightw. Lemma 8 provides
a simple result in that direction. We first state a classical fact that we exploit in its
proof.

Lemma 7 [11] Let 1 ≤ p < ∞, let � ⊂ R
2 be a domain, and let w be a weight on

�. Then, for every F ∈ L p(�,w), it holds that

inf
c∈R‖F − c‖L p(�,w) ≤ ‖F − Fw

� ‖L p(�,w) ≤ 2 inf
c∈R‖F − c‖L p(�,w). (23)
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Lemma 8 Let 1 ≤ p < ∞, let � ⊂ R
2 be a domain, and let w be a weight on �.

Let w′ be another weight on � which satisfies

Aw(x) ≤ w′(x) ≤ Bw(x), x ∈ �, (24)

for some constants 0 < A ≤ B < ∞. Then, it holds that

A1/p

2B1/p Cpoinc(p,�,w) ≤ Cpoinc(p,�,w′) ≤ 2B1/p

A1/p Cpoinc(p,�,w). (25)

Proof By Equation (24), it follows that for every F ∈ L p(�,w), the integral inequal-
ity

A
∫

�

|F(x)|pw(x) dx ≤
∫

�

|F(x)|pw′(x) dx ≤ B
∫

�

|F(x)|pw(x) dx

holds true. Hence, we have that

A1/p‖F‖L p(�,w) ≤ ‖F‖L p(�,w′) ≤ B1/p‖F‖L p(�,w)

and consequently L p(�,w) = L p(�,w′) as well as W 1,p(�,w) = W 1,p(�,w′).
In particular, we obtain that for every F ∈ L p(�,w) and for every c ∈ R,

A1/p‖F − c‖L p(�,w) ≤ ‖F − c‖L p(�,w′) ≤ B1/p‖F − c‖L p(�,w),

as well as

A1/p‖∇F‖L p(�,w) ≤ ‖∇F‖L p(�,w′) ≤ B1/p‖∇F‖L p(�,w).

We can now prove the upper and lower bounds in Eq. (25). By using Lemma 7 and
Eq. (10) along with the above inequalities, we find that

Cpoinc(p,�,w′)

⎧⎪⎪⎨
⎪⎪⎩

≤ 2 sup

{
infc∈R

‖F−c‖L p (�,w′)
‖∇F‖L p (�,w′)

:

F ∈ W 1,p(�,w′) ∩ M(�), F �= const.

}
⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎨
⎪⎪⎩

≤ 2B1/p

A1/p sup

{
infc∈R

‖F−c‖L p (�,w)

‖∇F‖L p (�,w)
:

F ∈ W 1,p(�,w) ∩ M(�), F �= const.

}
⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎨
⎪⎪⎩

≤ 2B1/p

A1/p sup

{
‖F−Fw

� ‖L p (�,w)

‖∇F‖L p (�,w)
:

F ∈ W 1,p(�,w) ∩ M(�), F �= const.

}
⎫⎪⎪⎬
⎪⎪⎭

= 2B1/p

A1/p Cpoinc(p,�,w).
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We can essentially repeat the same argument to show the lower bound

Cpoinc(p,�,w′) ≥ A1/p

2B1/p Cpoinc(p,�,w)

which concludes the proof.

4.2 Answering question 1

We apply Lemma 8 to the special case where the weights are given by

w = |Gϕ|p, w′± = |G f±|p,

for some 1 ≤ p < ∞, and where f± denotes the counterexamples

f± = ϕ ± iγ T1/a ϕ, γ > 0, a > 0,

constructed in Sect. 3.1. By Eqs. (16) and (17), we have that for all (x, ω) ∈ R
2,

|G f±(x, ω)|p = |Gϕ(x, ω)|p
∣∣∣1 ± iγ e

π
a (x−iω)e− π

2a2

∣∣∣p .

The expression of the Gabor transform of the counterexamples f± allows us to show
that for all a, R > 0, there exists a γ0 = γ0(a, R) > 0 such that for all γ ∈ (0, γ0),
the roots of G f± fall outside of the cube [−R, R]2. By Eq. (16), |Gϕ(x, ω)| > 0
for all (x, ω) ∈ R

2 and, thus, the roots of G f± correspond to the roots of (x, ω) �→
|1 ± iγ e

π
a (x−iω)e− π

2a2 |. Furthermore, by the reverse triangular inequality

∣∣∣1 ± iγ e
π
a (x−iω)e− π

2a2

∣∣∣ ≥ 1 − γ

∣∣∣e π
a (x−iω)e− π

2a2

∣∣∣ ,

and the continuous function (x, ω) �→ |e π
a (x−iω)e− π

2a2 | attains its maximum on
[−R, R]2. Hence, the Gabor transforms G f± have no roots in [−R, R]2 provided
that we choose

γ <

(
max

x,ω∈[−R,R]

∣∣∣e π
a (x−iω)e− π

2a2

∣∣∣
)−1

.

We can also determine γ0 precisely by examining the root sets of G f ± which are

{(
1

2a
− a log γ

π
,±a

2
+ 2ak

)
: k ∈ Z

}
,

as proven in equation (18). (We have visualized these roots in Fig. 4.) Indeed, let us
consider arbitrary but fixed a, R > 0 and set

γ0 := e
− π

a

(
R− 1

2a

)
.
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Fig. 4 We consider a = 1/2 and γ = exp(−5π). The roots of G f + are indicated by circles and the roots
of G f − are indicated by disks. We have also drawn the local maxima of G f ± as squares and indicated
the region on which 99% of the L2-mass of G f ± is concentrated in light gray. We highlight that we have
chosen γ < γ0(1/2, R = 3) = exp(−4π) such that the roots of G f ± fall outside the open ball of radius
R = 3. We also note that there is no gray region around the local maximum at (2, 0) indicating that very
little mass is concentrated on the small bump

Then, it holds that for all γ ∈ (0, γ0], the roots of G f± fall outside the strip (−R, R)×
R.

Hence, we restrict to a bounded domain � ⊆ R
2 and choose R > 0 such that

� ⊆ (−R, R) × R. If γ < γ0 as above, all the roots of |G f±|p fall outside of �. As a
consequence of the extreme value theorem, there exist 0 < Aγ ≤ Bγ < ∞ such that

Aγ ≤
∣∣∣1 ± iγ e

π
a (x−iω)e− π

2a2

∣∣∣p ≤ Bγ , (x, ω) ∈ �.

More precisely, given any 0 < δ < 1, the stronger condition

γ < δe
− π

a

(
R− 1

2a

)

implies that for all (x, ω) ∈ �,

(1 − δ)p ≤
∣∣∣1 ± iγ e

π
a (x−iω)e− π

2a2

∣∣∣p ≤ (1 + δ)p,

and consequently

(1 − δ)p |Gϕ(x, ω)|p ≤ |G f±(x, ω)|p ≤ (1 + δ)p|Gϕ(x, ω)|p, (26)
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for all (x, ω) ∈ �.

Corollary 9 Let 1 ≤ p < ∞, let � ⊂ R
2 be a bounded domain and let a > 0. Then,

for any 0 < δ < 1, there exists a constant γδ = γδ(a,�) > 0 such that for all γ < γδ ,
it holds that

(1 − δ)

2(1 + δ)
· Cpoinc

(
p,�, |Gϕ|p) ≤ Cpoinc

(
p,�, |G f±|p)

≤ 2(1 + δ)

(1 − δ)
· Cpoinc

(
p,�, |Gϕ|p) .

Proof The proof follows by applying Lemma 8 along with Eq. (26).

Remark 6 Theorem B.7 together with Theorem B.8 in [19] ensure that

Cpoinc
(
p,�, |Gϕ|p) < ∞

whenever p ∈ [1, 2] and � ⊆ R
2 is a bounded domain with Lipschitz boundary.

Let ν > 0 and let BR denote the ball of radius R > 0 centered at 0. We recall the
notation Mν(BR) introduced in Question 1 for the class of functions

Mν(BR) = { f ∈ Mp(R) : cp,BR ( f ) ≤ ν}.

The following theorem is our main result. It provides a theoretical foundation for
our claim that the signal class Mν(R

2) cannot serve as a prior for uniqueness in
sampled Gabor phase retrieval. More precisely, it states that there exists ν > 0 for
which the signal class Mν(BR), R > 1, contains functions that do not agree up to
global phase but whose Gabor transform magnitudes agree on a rectangular lattice �

— no matter how large we choose R > 1 and how fine we choose the lattice. This
clearly implies the existence of counterexamples for sampled Gabor phase retrieval on
arbitrary rectangular lattices in all the classes of functions Mν(BR), ν > ν, R > 1.
Observe that every rectangular lattice � is contained in a set of parallel lines; that is,
there exists a > 0 such that � ⊆ R × aZ.

Theorem 10 (Main result) Let p ∈ [1, 2), q ∈ (2p/(2 − p),∞). There exists ν > 0
such that, for all R > 1 and for all a > 0, there exist f , g ∈ Mν(BR) such that
f � g but

|G f (x, ω)| = |Gg(x, ω)|, (x, ω) ∈ R × aZ.

Proof We show that there exists ν > 0 such that, for all R > 1 and for all a > 0, there
exists γ > 0 such that

cp,BR ( f±) ≤ ν,
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where

f± = ϕ ± iγ T 1
a
ϕ.

We already know from Sect. 3.1 that f± ∈ Mp(R), f+ � f− and

|G f+(x, ω)| = |G f−(x, ω)|, (x, ω) ∈ R × aZ.

Let R > 1 and a > 0. We choose

γ < δ · min

{
1, e

− π
a

(
R− 1

2a

)}
,

with 0 < δ < 1. The condition γ < δe
− π

a

(
R− 1

2a

)
ensures that the roots of f± fall

outside the ball BR . Theorem 5.9 in [19] states that

cp,BR ( f±) ≤ c(1 + Cpoinc(p, BR, |G f±|p)), (27)

where c > 0 is a constant depending on p, q and monotonically increasingly on

max{‖G f±‖L p(BR)/‖G f±‖L∞(BR), ‖Vϕ′ f±‖L∞(BR)/‖G f±‖L∞(BR)}, (28)

where ϕ′ denotes the first derivative of the Gaussian ϕ.
By Corollary 9, we know how to upper bound the weighted Poincaré constant in

(27):

cp,BR ( f±) ≤ c

(
1 + 2(1 + δ)

(1 − δ)
Cpoinc

(
p, BR, |Gϕ|p)

)
. (29)

By Theorem B.12 together with Theorem 5.10 in [19], there exists η depending on p
but independent of R > 0 such that

Cpoinc
(
p, BR, |Gϕ|p) ≤ η,

which yields

cp,BR ( f±) ≤ c

(
1 + 2(1 + δ)

(1 − δ)
η

)
.

Moreover, by equation (26), we have that

‖G f±‖L p(BR)

‖G f±‖L∞(BR)

≤ (1 + δ)‖Gϕ‖L p(BR)

(1 − δ)‖Gϕ‖L∞(BR)

≤ (1 + δ)‖Gϕ‖L p(R2)

(1 − δ)‖Gϕ‖L∞(R2)

,
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as well as

‖Vϕ′ f±‖L∞(BR)

‖G f±‖L∞(BR)

≤ ‖Vϕ′ϕ‖L∞(BR) + γ ‖Vϕ′ϕ‖L∞(R2)

(1 − δ)‖Gϕ‖L∞(BR)

≤ (1 + δ)‖Vϕ′ϕ‖L∞(R2)

(1 − δ)‖Gϕ‖L∞(R2)

.

Since the constant c in (29) depends monotonically increasingly on (28), the above
inequalities allow to upper bound the constant c with a constant c′ independent of R,
a and γ . Hence, we conclude the proof by defining

ν = c′
(
1 + 2(1 + δ)

(1 − δ)
η

)
,

which is independent of R and a.

4.3 Discussion of Theorem 10

To conclude this section, we give some insights and discuss possible extensions of our
main theorem.

1. The constant ν is linked to the stability constant of the Gaussian ϕ, which in the
result in [19] is estimated by c(1+η). The Gaussian ϕ enjoys very strong stability
properties for Gabor phase retrieval and the class Mν(BR) with our choice of ν

has stability properties close to that of ϕ.
2. It is worth observing that, while Question 1 is stated for � = R

2, Theorem 10 is
proved for arbitrary large balls BR , with R > 1. This restriction originates from
the bounds on the Poincaré constant. However, Theorem 10 shows that for every
sampling rate a > 0, we can construct functions f± satisfying

cp,BR ( f±) ≤ ν,

with R > 1/a. The condition R > 1/a implies that the ball BR encloses the
centers (0, 0) and (1/a, 0) of the two bumps of |G f±|p, and consequently all the
features that may affect the local stability constants cp,R2( f±). For this reason, it
seems plausible to conjecture that cp,R2( f±) may also be bounded by a constant
ν′ independent of the sampling rate a. While a proof of this final argument would
allow us to fully answer Question 1, this seems to be mainly a technicality.

3. We can extend Theorem 10 to general lattices of the form� = LZ
2, L ∈ GL2(R):

Given a lattice �, there exist a > 0 and θ ∈ R such that � ⊆ Rθ (R × aZ), where
Rθ denotes the rotation matrix

Rθ =
(
cos θ − sin θ

sin θ cos θ

)
.
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We can therefore adapt the proof of Theorem 10 to the functions

f θ±(t) = F−θ f±(t),

whereF−θ : L2(R2) → L2(R2) denotes the fractional Fourier transform5 of order
−θ . It holds that f θ± ∈ Mp(R), f θ+ � f θ− and

|G f θ+(x, ω)| = |G f θ−(x, ω)|, (x, ω) ∈ Rθ (R × aZ) ⊇ �.

Furthermore, we can directly compute that

|G f θ±(x, ω)| = |G f±(R−θ (x, ω))|, (x, ω) ∈ R
2. (30)

The reader may consult [4, 17] for the detailed proofs of the above facts. We see
from Eq. (30) that |G f θ±| is the result of a rotation of |G f±| in the time-frequency
plane. Thus, it follows by Eq. (18) that the root sets of G f θ± are

{
Rθ

(
1

2a
− a log γ

π
,±a

2
+ 2ak

)
: k ∈ Z

}
.

Therefore, given R > 1 and a > 0, the condition

γ < e
− π

a

(
R− 1

2a

)

ensures that all the roots of G f θ± fall outside the strip Rθ ((−R, R) × R) in the
time-frequency plane. With this, it is easy to see that analogous arguments as in
the proofs of Corollary 9 and Theorem 10 apply to |G f θ±|.

4. A natural question is whether a real-valuedness assumption on the signals com-
bined with a uniform bound on the local Lipschitz constant would restore
uniqueness from samples. We expect the answer to this question to be negative:
One can construct counterexamples

g± = ϕ ± iγ M1
a
ϕ ∓ iγ M− 1

a
ϕ, γ > 0.

which by [17, Theorem 3.13] are real-valued, do not agree up to global phase and
satisfy

|Gg+(x, ω)| = |Gg−(x, ω)|, (x, ω) ∈ aZ × R.

5 The fractional Fourier transform of order θ ∈ R of a function f is given by

Fθ f (ξ) = √
1 − i cot θ · eπ i cot(θ)ξ2

∫
R

f (t)e
−2π i

(
csc(θ)tξ− cot θ

2 t2
)
dt, ξ ∈ R,

where the square root is defined such that the argument of the result lies in (−π/2, π/2].
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Therefore, we see that for any given rectangular lattice �, there exist real-valued
functions which are arbitrarily close to the Gaussian and are thus expected to have
good local stability properties. At the same time, they do not agree up to global
phase but have Gabor transform magnitudes agreeing on �.

5 Directions of instability

This section is a general discussion regarding the connection between instability of
phase retrieval and Laplacian eigenfunctions and extends some of the ideas in [19].
The main goal of this section is

1. to illustrate the idea of Grohs and Rathmair [19] showing that the difficulty of a
phase retrieval problem can be captured by a quantity from spectral geometry, the
spectral gap of the Laplacian,

2. then to extend this idea and show that the corresponding eigenfunction indicates
where the obstruction in the phase retrieval problem lies,

3. and to highlight that, by considering the growth of the next few eigenvalues, one
can actually show that the “space of instabilities” is often finite-dimensional. If λk
is large, then there is at most a k-dimensional subspace of functions such that f
cannot be stably distinguished from f + g for any g in this subspace.

5.1 A one-dimensional toymodel

Before discussing the full model in the complex plane, we introduce a very simple
one-dimensional toy model for phase retrieval that will illustrate all these ideas using
elementary ideas from calculus.

Toy Model. Let a : [0, 1] → R>0 be a positive, continuous function. Suppose
that f , g : [0, 1] → R are two smooth real-valued functions such that

∫ 1

0
a(x)( f ′(x) − g′(x))2dx is small.

Does this mean that f (x) ∼ g(x) + c for some constant c?

It is clear that if f (x) = g(x)+ c, then the integral is 0. The condition seems to say
that f ′(x) ∼ g′(x) for most points x . So, one would expect that, after integrating, the
functions only differ by a global unknownconstant (playing the role of uniqueness up to
the global phase shift in phase retrieval). However, the weight a(x) could become very
small in certain regions of space: The derivatives f ′ and g′ could be very different in
that small region of space and the difference might hardly be noticeable in the integral.

The analogue of the idea in [19] in this setting is to consider the spectral gap of the
second-order differential operator

Lu = − d

dx

(
a(x)

d

dx
u

)
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Fig. 5 A sketch of an example of a function a(x) (left) corresponding to a difficult “toy phase retrieval
problem”. There is a function φ (right) for which

∫ 1
0 a(x)φ′(x)2 dx is small even though φ not close to a

constant

which, after integration by parts, can be defined as the largest constant c > 0 such
that

∫ 1

0
u(x) dx = 0 �⇒

∫ 1

0
a(x)u′(x)2 dx ≥ c

∫ 1

0
u(x)2 dx .

As an easy example, if a(x) = 1, then the classicalWirtinger inequality can be phrased
as saying

∫ 1

0
u(x) dx = 0 �⇒

∫ 1

0
u′(x)2 dx ≥ π2

∫ 1

0
u(x)2 dx,

so the constant is c = π2 in this case. It is now clear how we can employ this constant
in our toy phase retrieval problem: We can normalize both f and g so that they have
mean value 0 and then use

∫ 1

0
a(x)( f ′(x) − g′(x))2 dx ≥ c

∫ 1

0
( f (x) − g(x))2 dx .

If the first integral is small and the constant c is not too small, then we can deduce f
and g are close to each other in L2 in this very precise quantitative sense. However,
as already mentioned above, problems can arise when a(x) is allowed to be small and
this difficulty will be reflected in the spectral gap being small. We will illustrate this
with a simple example (see Fig. 5). In this example, there is a region where a(x) is so
small that the integral will not detect big changes in the derivative in that region.

We can now illustrate our main new idea in this simple case: Further analysis
shows that the spectrum of the operator Lu = − d

dx

(
a(x) d

dx u
)
has one eigenvalue 0

(corresponding to constant functions) and one very small eigenvalue, corresponding
to the function φ(x), but all the other eigenvalues are actually large. This means that:

1. While the inequality

∫ 1

0
a(x)u′(x)2 dx ≥ c

∫ 1

0
u(x)2 dx
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is only true for a small constant c > 0 when looking at all functions with mean
value 0, it is actually true with a much larger constant for all functions with mean
value 0 that are also orthogonal to φ(x).

2. Consequently, while (toy) phase retrieval is difficult for this problem, the only
difficulty comes from the function φ(x). Indeed, the problem is actually easy for
all other functions.

3. There are directions of instability but they are finite-dimensional and, in this case,
one-dimensional. In particular, if

∫ 1
0 a(x)( f ′(x)− g′(x))2 dx is small then, in this

case, we can deduce in a stable and well-posed manner that f (x) = g(x) + c1 on
the left side of the interval and f (x) = g(x) + c2 on the right-hand side. This is
the only source of instability.

The implications for phase retrieval are as follows. There are many classical exam-
ples of functions where phase retrieval is extremely difficult but they tend to follow the
same pattern [2, 19]: The signal is strong in two different regions in time-frequency
and very weak in between and it is difficult to notice phase shifts in the intermediate
region. The implication of our approach is that this is, in a suitable sense, the only
difficulty: The phase retrieval problem is actually easy if one is content to recover
two different phase shifts (one for each region in time-frequency where the signal is
strong), cf. [6]. We now make this precise.

5.2 Problem statement and preliminary discussion

For the purpose of this discussion, we assume that � ⊂ C is a bounded domain and
that we have two holomorphic functions F1, F2 : � → C where we assume for the
sake of simplicity that |F1| > 0 on all of �. The main question to be discussed is as
follows: If

|F1| ≈ |F2| on most of �, does this imply that F1 ≈ eiαF2

on most of �? Phrased differently: If two holomorphic functions share the same
modulus over a large region, does this imply that one is a global phase-shift of the
other? We observe that, throughout this section, the considerations do not invoke the
short-time Fourier transform and are more generally applicable. This subsection may
be understood as a short discussion of some of the ingredients in [19] and will set the
stage for our subsequent argument. We write

inf
α∈R‖F1 − eiαF2‖2L2(�)

= inf
α∈R

∫
�

∣∣∣∣ F2(z)F1(z)
− eiα

∣∣∣∣
2

|F1(z)|2 dz

and thus by defining the measure dμ = |F1(z)|2 dz, we have

inf
α∈R‖F1 − eiαF2‖2L2(�)

= inf
α∈R

∫
�

∣∣∣∣ F2(z)F1(z)
− eiα

∣∣∣∣
2

dμ(z).
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Wecan think of themeasureμ as inducing a conformal change of themetric. Assuming
|F1| is sufficiently well behaved, this allows us to interpret the quantity as the L2-norm
of a function on a manifold. We now define the real-valued function

h(z) =
∣∣∣∣ F2(z)F1(z)

− eiα
∣∣∣∣ , z ∈ �.

At this point, we can invoke the Poincaré inequality and argue that

∫
�

h(z)2 dμ(z) ≤ 1

μ(�)

(∫
�

h(z) dμ(z)

)2

+ Cpoinc(2,�,w)2
∫

�

|∇h(z)|2 dμ(z),

where the Poincaré constant, see Eq. (10), is given by

Cpoinc(2,�,w)2 = 1

λ1

and λ1 is the first nontrivial eigenvalue of the Laplace operator on the manifold (�,μ)

equipped with Neumann boundary condition [9]. Hölder’s inequality immediately
implies that

1

μ(�)

(∫
�

h(z) dμ(z)

)2

≤
∫

�

h(z)2 dμ(z)

with equality if and only if h is constant. In the context of phase retrieval problems
considered in this paper, we are mainly interested in the setting where the domain
naturally decouples into several subdomains � = �1 ∪�2 ∪ · · · ∪�k such that on �i

we have F2(z) ∼ F1(z)eαi . We observe that in this case, h is not close to a constant
globally unless the αi are all close to each other (corresponding, in essence, to being
close to a unified global phase shift). We also note that if f : � → C is analytic in
z0 ∈ �, then

|∇| f (z0)|| = | f ′(z0)|

which follows immediately from recalling that the Cauchy–Riemann equations can
be geometrically stated as saying that infinitesimal balls are mapped to infinitesimal
balls. Therefore, applying this twice,

∫
�

|∇h(z)|2 dμ(z) =
∫

�

∣∣∣∣
(
F2(z)

F1(z)

)′∣∣∣∣
2

dμ(z) =
∫

�

∣∣∣∣∇
∣∣∣∣ F2(z)F1(z)

∣∣∣∣
∣∣∣∣
2

dμ(z)

from which we infer

inf
α∈R‖F1 − eiαF2‖2L2(�)

≤ 1

μ(�)

(∫
�

h(z) dμ(z)

)2
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Fig. 6 An example of a manifold (�, μ) isometrically embedded into R
2: This example corresponds to

the case where |F1(z)|2 is large on two separate regions and small everywhere else (including in the area
connecting the two regions). This is the prototypical example of a domain for which Cpoinc(2, �,w) is
large

+Cpoinc(2,�,w)2
∫

�

∣∣∣∣∇
∣∣∣∣ F2(z)F1(z)

∣∣∣∣
∣∣∣∣
2

dμ(z).

If the first term on the right-hand side were to be large, then this would imply that h is
typically not small from which we immediately infer that F1 ≈ eiαF2 cannot be true
over a large region. So we may henceforth assume that the first term is small. This
leaves us with the second term: If the integral were to be large, then this would be a
quantitative measure indicating that |F1| ≈ |F2| is not true on most of the domain �.
However, there is one remaining possibility: It is quite conceivable that the integral is
also quite small which would require that Cpoinc(2,�,w) is quite large. This in turn
implies that λ1 is quite small.

5.3 The Calabi dumbbell example

An example is given in Fig. 6: the classical “dumbbell” example is a two-dimensional
manifold comprised of two separate regions that are connected via a thin “bridge”.
One way of seeing that the Poincaré constant for this example is large is to show that
λ1 is small: Recall that

λ1 = inf
f ∈C∞(�)∫
� f dμ=0

∫
�
|∇ f |2 dμ∫

�
| f |2 dμ .

By taking f to be constant on the left-hand side and right-hand side of the domain
and by interpolating linearly in between, we see that |∇ f | is not necessarily small but
that the region over which it is actually nonzero has rather small measure. By making
the “bridge” thinner, we can make λ1 as small as possible. The work of Cheeger
then implies that the manifold (�,μ) can be separated into two distinct parts. Since
μ = |F1|2, this simply means that |F1| becomes rather small in some regions and
this causes the classical and familiar obstruction for phase retrieval: Indeed, when
trying to do successful phase retrieval of a function whose information is stored on
two separate regions and the function is close to 0 in between, it becomes very difficult
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to reconstruct the phase globally: Each of the regions may come with a different phase
shift. Now, one could wonder whether this is indeed the only obstruction.

5.4 A refinement

Our main new idea will be to refine the inequality, valid for all real-valued h ∈
W 1,2(�,μ),

∫
�

h(z)2 dμ(z) ≤ 1

μ(�)

(∫
�

h(z) dμ(z)

)2

+ Cpoinc(2,�,w)2
∫

�

|∇h(z)|2 dμ(z).

To this end, we introduce a sequence of Laplacian eigenfunctions: These are solutions
of

−
uk = λkuk inside (�,μ),

∂uk
∂n

= 0 on ∂�,

where

0 = λ0 < λ1 ≤ λ2 ≤ . . .

is a discrete sequence of eigenvalues and n is the normal derivative.
The fundamental inequality that is then being used is

∫
�

h(z)2 dμ(z) ≤ 1

μ(�)

(∫
�

h(z) dμ(z)

)2

+ 1

λ1

∫
�

|∇h(z)|2 dμ(z).

We see that in the case of functions with mean value 0, the first term vanishes and
we are exactly in the setting described in Section 5.1. The main purpose is now to
introduce the following refinement.

Proposition 11 Let k ∈ N and let

πk : L2(�,μ) → span
{
u j : 1 ≤ j ≤ k

}

denote the orthogonal projection. Then, for all real-valued h ∈ W 1,2(�,μ), we have

∫
�

h(z)2 dμ(z) ≤ 1

μ(�)

(∫
�

h(z) dμ(z)

)2

+ 1

λ1
‖∇πkh‖2L2(�,μ)

+ 1

λk+1

∫
�

|∇h(z)|2 dμ(z).
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Proof Let h ∈ W 1,2(�,μ) be real-valued. We can write

h = (h, u0) u0 +
k∑
j=1

(
h, u j

)
u j +

∞∑
j=k+1

(
h, u j

)
u j .

We note that this is an orthogonal decomposition into three mutually orthogonal sub-
spaces. The first term gives the constant contribution. As for the other two terms, we
note that

‖h‖2L2(�,μ)
= 1

μ(�)

(∫
�

h(z) dμ(z)

)2

+
k∑
j=1

(
h, u j

)2 +
∞∑

j=k+1

(
h, u j

)2
.

By orthogonality, we have

k∑
j=1

(
h, u j

)2 =
k∑
j=1

(
πkh, u j

)2

and thus, arguing as above,

k∑
j=1

(
πkh, u j

)2 ≤ 1

λ1
‖∇πkh‖2L2(�,μ)

.

The same line of reasoning implies

∞∑
j=k+1

(
h, u j

)2 ≤ 1

λk+1

∫
�

|∇h(z)|2 dμ(z).

5.5 Summarizing the refinement

Proposition 11 can now be applied as follows:

1. If the spectral gap — the first nontrivial eigenvalue of the Laplacian λ1 > 1 — is
large, then the phase retrieval problem is stable (this is [19]),

2. and if λ1 is small, the problem is generally unstable.
3. However, if λk is large, then the phase retrieval problem is actually stable up to a k-

dimensional subspace (see Proposition 11). This means that while phase retrieval
is difficult, there are only k different profiles that are difficult to resolve,

4. and these profiles are given by the Laplacian eigenfunctions.

Moreover, this scenario actually happens in all the typical examples where phase
retrieval is difficult: There, usually, λ1 is small because of a dumbbell type construction
as in Fig. 6. However, λ2 is already large. The only difficulty in the phase retrieval
problem is distinguishing phase shifts on each side of the dumbbell but the problem is
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otherwise (relatively) easy and one can reconstruct the phase within each region from
the magnitude up to one of two possible global phase shifts (one for each side of the
dumbbell).
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Appendix A: List of symbols

• Vψ f (x, ω): Short-time Fourier transform defined in Eq. (1).
• ϕ: Normalized Gaussian.
• G f (x, ω): Gabor transform defined in Eq. (2).
• A�( f ): Phase retrieval operator defined in Sect. 1.
• Mν(R

2): Set of ν-locally stable signals defined in Question 1.
• Mp(R): Modulation spaces defined in Eq. (3).
• ‖ f ‖Mp(R): Norm in the modulation spaces defined in Sect. 2.
• f ∼ g: Equivalence up to global phase defined in Eq. (4).
• Tx : Translation operators defined in Eq. (5).
• Mω: Modulation operators defined in Sect. 2.
• Rθ : Rotation operators defined in Eq. (6).
• F2(C): Fock space defined in subsection 2.1.
• B: Bargmann transform defined in subsection 2.1.
• 
: Laplace–Beltrami operator.
• 0 = λ0 < λ1 < . . . : Eigenvalues of the Laplace–Beltrami operator.
• L p(�,w) and Wk,p(�,w): Weighted Lebesgue and Sobolev space defined in
subsection 2.2.

• Cpoinc(p,�,w): Weighted Poincaré constant defined in Eq. (10).
• Fw

� : Mean of a function F defined in subsection 2.2.
• w(�): Weight of a set � defined in subsection 2.2.
• ‖F‖D1,4

p,q (�)
: Polynomially weighted Sobolev norm defined in Eq. (12).

http://creativecommons.org/licenses/by/4.0/
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• h p,�( f ): Cheeger constant defined in subsection 2.2.
• C(�): Class of counterexamples defined in Definition 1.
• h±(t): Original counterexamples to uniqueness in sampled Gabor phase retrieval
defined in Eq. (15).

• cp,�( f ): Local Lipschitz constant defined in Eq. (21).

Appendix B: Time-shifting and scaling the counterexamples

In Sect. 3.1, we show that the functions h±
τ = B−1(eπτ · ·Bh±) ∈ L2(R) —where h±

are defined in Eq. (14) and τ �= 0 — are counterexamples to sampled Gabor phase
retrieval on R × aZ. Additionally, we claim that by applying time-shift and scaling
operations to h±

τ , we can obtain the counterexamples f ±
γ = ϕ ± iγ T1/a ϕ, where

γ > 0. The proof of this claim is presented in the following.
As a first step, we express h±

τ as a linear combination of two time-shiftedGaussians.
To do so, we recall from Sect. 3.1 that the Bargmann transforms of h± are given by

Bh±(z) = e
π
8a2

(
cosh

(π z

2a

)
± i sinh

(π z

2a

))
, z ∈ C.

Therefore, the relation of the Gabor and the Bargmann transform implies that

Gh±
τ (x, ω) = e−π ixω− π

2 (x2+ω2)Bh±
τ (x − iω)

= eπτ(x−iω)−π ixω− π
2 (x2+ω2)Bh±(x − iω)

=
⎧⎨
⎩
e

π
8a2

+πτ(x−iω)−π ixω− π
2 (x2+ω2)

·
(
cosh

(
π(x−iω)

2a

)
± i sinh

(
π(x−iω)

2a

))
⎫⎬
⎭

=
⎧⎨
⎩
e

π
8a2

+πτ(x−iω)−π ixω− π
2 (x2+ω2)

·
(
1∓i
2 e− π(x−iω)

2a + 1±i
2 e

π(x−iω)
2a

)
⎫⎬
⎭

=
{

1∓i
2 e

π

8a2
+ π

2 ( 1
2a −τ)2e−π i(x− 1

2a +τ)ωe− π
2 ((x+ 1

2a −τ)2+ω2)

+ 1±i
2 e

π

8a2
+ π

2 ( 1
2a +τ)2e−π i(x+ 1

2a +τ)ωe− π
2 ((x− 1

2a −τ)2+ω2),

}

for (x, ω) ∈ R
2, where we completed the square in the exponent in the final equality.

According to the covariance property of the Gabor transform (cf. [13, Lemma 3.1.3
on p. 41]) and Eq. (16), it holds that

G Tα ϕ(x, ω) = e−2π iαωGϕ(x − α,ω) = e−2π iαωe−π i(x−α)ωe− π
2 ((x−α)2+ω2)

= e−π i(x+α)ωe− π
2 ((x−α)2+ω2),

for α ∈ R and (x, ω) ∈ R
2. Therefore,

Gh±
τ = 1 ∓ i

2
e

π

8a2
+ π

2 ( 1
2a −τ)2G T− 1

2a +τ ϕ + 1 ± i

2
e

π

8a2
+ π

2 ( 1
2a +τ)2G T 1

2a +τ ϕ
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which implies

h±
τ = 1 ∓ i

2
e

π

8a2
+ π

2 ( 1
2a −τ)2 T− 1

2a +τ ϕ + 1 ± i

2
e

π

8a2
+ π

2 ( 1
2a +τ)2 T 1

2a +τ ϕ,

as desired.
Finally, we can time-shift and scale h±

τ appropriately: In particular, we have

(1 ± i)e− π

8a2
− π

2 ( 1
2a −τ)2 T 1

2a −τ h
±
τ = ϕ ± ie

πτ
a T1/a ϕ

which exactly corresponds to f ±
γ = ϕ ± iγ T1/a ϕ with γ = eπτ/a . The fact that

the functions f ±
γ are counterexamples to sampled Gabor phase retrieval on R × aZ

follows from the invariance of C(R × aZ) under time-shifts and scalar multiplication.
Alternatively, one may show that f ±

γ ∈ C(R × aZ) by direct computation (cf. the
proof of Lemma 2).
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