
FORECASTING MODELS FOR GRAPH PROCESSES

A STUDY ON THE MULTI-DIMENSIONAL CASE

FORECASTING MODELS FOR GRAPH PROCESSES

A STUDY ON THE MULTI-DIMENSIONAL CASE

Thesis

to obtain the degree of Master of Science in Electrical Engineering,
at the Delft University of Technology,

to be publicly defended on Monday February 21, 2022.

by

Jelmer VAN DER HOEVEN

Thesis Committee:

Prof. dr. ir. G.J.T. Leus, TU Delft, Chair
Dr. E. Isufi TU Delft
Msc. A. Natali, TU Delft, Daily Supervisor

Keywords: Forecasting, graph signal processing, multi-dimensional signal pro-
cessing, product graphs

Copyright © 2022 by J.A. vander Hoeven

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

ABSTRACT

In the current Big Data era, large amounts of data are collected from complex systems,
such as sensor networks and social networks. The emerging field of graph signal pro-
cessing (GSP) leverages a network structure (graph) to process signals on an irregular
domain. This thesis studies the forecasting of multi-dimensional graph processes, i.e.,
where each entity in the network carries a multivariate time series. Recent research has
proposed to use product graphs to model the dependencies between different variables
in multi-dimensional graph processes and employ them in graph-based vector autore-
gressive models to predict future values. A problem with these product graph-based
models is that they can be too restrictive. In this work, it is proposed to combine product
graph-based models with multiple one-dimensional models to implement more esti-
mation flexibility. To further increase the degrees of freedom, the use of multiple-input-
multiple-output graph filters is also proposed. The proposed models are implemented
and tested on synthetic and real-world data sets, which shows an improved forecasting
performance compared to state-of-the-art alternatives.

v

ACKNOWLEDGEMENTS

At this moment, I am a just a few steps away from obtaining my Master of Science de-
gree. Hereby I would like to thank everyone who helped and supported me over the past
year to successfully complete this thesis project.

First, I would like to express my gratitude to both my supervisors, with their advice
and feedback they made it a great learning experience. I would like to thank my daily-
supervisor, Alberto Natali, for his guidance and all the fruitful discussions. Also, with the
necessary coffee breaks, he made working at the department more fun. I would like to
thank Professor Geert Leus for his supervision. Whenever I was stuck or wanted discuss
some new ideas, his door was always open. I am also like to thank and aw knowledge
Elvin Isufi, for taking the time to being part of my thesis defense committee.

Secondly, I want to thank Tobias Bonsen and Paul Treanor, for reading my thesis and
and proving me with feedback. Further, I want to thank my boyfriend, Dion Treanor, to
help me keep focused when I had trouble concentrating and made sure I took time for
the necessary relaxation. Lastly, I would like to thank my parents for believing in me and
their support. Whenever I needed, they were there to help.

Jelmer van der Hoeven
Delft, February 2022

vii

CONTENTS

Abstract v

Acknowledgements vii

Abbreviations xiii

1 Introduction 1

2 Background 5
2.1 Graph Signal Processing . 6

2.1.1 Graphs . 6
2.1.2 Signals on graphs . 6
2.1.3 Graph Shift Operator. 7
2.1.4 Graph Fourier Transform . 8
2.1.5 Graph Signal Filtering: Spectral-domain 8
2.1.6 Graph Signal Filtering: vertex domain 9

2.2 Multi-Dimensional Graph signal processing 9
2.2.1 Multi-Dimensional Graphs Signals. 9
2.2.2 MIMO Graph Filter. 10
2.2.3 Product Graphs . 11
2.2.4 Product Graph filter . 13

2.3 Forecasting Models . 14
2.3.1 VAR . 14
2.3.2 Graph-VAR . 14
2.3.3 Product graph-based VAR . 15

3 Graph-VAR Models 17
3.1 MIMO G-VAR model . 18
3.2 Combined (G)PG-VAR and G-VAR model 19
3.3 Overview of graph-based VAR models. 20
3.4 Graph Filter Estimation . 20

3.4.1 Multivariate Least Squares Estimator 20
3.4.2 Yule-Walker Least Squares Estimator. 22

3.5 Joint estimation of graph filter coefficients and feature graph 23

4 Numerical Results:
Synthetic Data 27
4.1 Synthetic Data Generation . 28
4.2 Numerical Results. 28

4.2.1 Estimators . 28
4.2.2 (G)PG-VAR . 29

ix

x CONTENTS

4.2.3 parametric product graph VAR . 30
4.2.4 Jointly estimating the feature GSO 31
4.2.5 Combined G-VAR and (G)PG-VAR 31
4.2.6 Jointly estimating the feature GSO:

Combined G-VAR and (G)PG-VAR 31
4.3 Conclusion . 32

5 Numerical Results:
Real-World Data 37
5.1 datasets . 38

5.1.1 Weather Data . 38
5.1.2 Air-Quality Data . 39

5.2 Experimental Setup . 40
5.2.1 Hyperparameters . 41

5.3 Numerical Results. 41
5.4 conclusion . 44

6 Conclusion and Future Work 47
6.1 Thesis Summary . 48
6.2 Answers to the research questions . 48
6.3 Future Work. 49

A Real-World Data:
Supplementary Material 57

CONTENTS xi

ABBREVIATIONS

(I)GFT (Inverse) Graph Fourrier Transform.

Dof Degrees of Freedom.

FIR Finite Impulse Response.

GPG Generalized Product Graph.

GSO Graph Shift Operator.

GSP Graph Signal Processing.

LS Least-Squares.

LSI Linear Shift Invariant.

MIMO Multiple-Input-Multiple-Output.

PG Product Graph.

PPG Parametric product graph.

rAEPR root Average Excess Prediction Risk.

VAR Vector AutoregRessive.

YW Yule-Walker.

xiii

NOMENCLATURE

Graph theory

L Graph Laplacain matrix

W Weighted adjacency matrix

D Degree matrix

G = (V ,E) Graph with node set V and edge set E

Ni Set of neighbors of node i

¦ General graph product

Linear Algebra

AT Transpose of A

A−1 Inverse of A

A† Pseudo-inverse of A

⊗ Kronecker matrix product

¯ Element-wise matrix product

vec(A) Vectorization of A

Mathematical objects

a Scalar

a Vector

A Matrix

ai The i th element of a

Ai j The (i , j)th element of A

IN N ×N identity matrix

Other symbols

E(·) Expectation operation

O Big O notation

xv

xvi NOMENCLATURE

σ point-wise nonlinearity

Set theory

R Set of real numbers

∈ Belong to

1
INTRODUCTION

The forecasting of processes that evolve over time is a crucial topic in signal process-
ing [1]. Especially in the current era of big data, much complex data is available from
which useful information can be extracted to predict future trends. This data can be
derived from complex systems, such as sensor networks [2, 3], social networks [4, 5],
and protein-protein interaction networks [6, 7]. The underlying network structure can
be used to efficiently process large volumes of data, since neighboring elements in the
network are likely to influence each other.

For example, opinion data collected from a social network, which stores the connec-
tions between people, contains influences from people closely related to each other [8].
Similarly, in an air-quality monitoring network, measurements from a particular station
are related to its previous measurements and also to data from neighboring stations.
Information about time and the network, which has an irregular structure, should be ac-
counted for in a model to enhance forecasting. Classical signal processing does not offer
the tools to deal with this type of irregularly structured data. Therefore, recent research
has focused on extending methods for regularly structured data (e.g., time signals and
images) to irregular network structured data [9, 10].

A possibility to model such irregular structures is offered by graphs, which are mathe-
matical objects composed of nodes and edges, where nodes represent objects and edges
capture the relationship between objects [11]. In the example of the air-quality mon-
itoring network, measurement stations can be defined as nodes, and edges define the
spatial relationship between them. An illustrative example of a graph that captures the
spatial relationships in an air-monitoring network is depicted in Figure 1.1. The field of
graph signal processing (GSP) has emerged to extend classical signal processing tech-
niques, applied to signals defined on a regular domain, to signals defined on irregular
domains [12, 13]. Thus far, GSP methods have been developed to solve signal processing
problems, such as filtering, denoising, tracking, and forecasting [14, 15, 16].

Most graph signal forecasting models consider a one-dimensional signal at each node
[17, 18, 19]. There are also scenarios in which a multi-dimensional signal evolves on
each node of a network. For example, when a sensor in a network performs different

1

1

2 1. INTRODUCTION

Figure 1.1: Locations of the 12 air-quality monitoring stations in the region of Beijing . The graph is built using
a 3-nearest neighbor approach.

kinds of measurements, each node carries a vector of data (features) at every instant.
There might be some kind of relationship between the features themselves, which may
also be captured by a graph. This graph can add prior information about the domain
where the data resides to a model, which may help in low-amount of data situations. In
order to model the relationship between features and nodes, an extended graph can be
defined that captures the information from both graphs. A suitable option to represent
this extended graph is through a product graph [20]. In recent work, product graphs-
based models have been applied to predict multi-dimensional processes on graphs [21].
However, more experiments to determine the efficacy of these models to enhance the
forecasting of multi-dimensional graph processes are required.

In this thesis, we address the problem of forecasting multi-dimensional graph pro-
cesses. In order to improve the forecasting accuracy, we propose models that have more
freedom to incorporate the relationship between features. Extensive experiments were
performed on our proposed models as well as state-of-the-art models to verify their ef-
ficacy. The scope of this research is limited to linear models, yet they can be extended to
nonlinear approaches.

RESEARCH STATEMENT

This thesis focuses on answering the following research questions:

RQ1: "How to incorporate the relationship between features of multi-dimensional graph
signals into a model to enhance their prediction?"

RQ2: "How to learn the parameters that capture the influence between features in multi-
dimensional graph signal models?"

1

3

RQ3: "How well do the proposed architectures perform the task of forecasting multi-
dimensional graph processes?"

To answer the posed research questions, a literature study is first performed on the
theory of GSP, and the state-of-the-art linear multi-dimensional graph-based forecast-
ing models. Using the knowledge obtained from the literature, new models to forecast
multi-dimensional graph processes are proposed. These models are extensions of state-
of-the-art models, where more flexibility is added to enhance the forecasting of multi-
dimensional graph processes. To validate the performance, the models are implemented
and tested. First, tests are done on synthetic data generated according to different prod-
uct graph-based models. Finally, the proposed and state-of-the-art models are validated
on two real-world datasets.

THESIS OUTLINE

The thesis structure is as follows: Chapter 2 introduces the theory of graph signal pro-
cessing and discusses the state-of-the-art models to forecast multi-dimensional graph
signals. In Chapter 3 the proposed multi-dimensional graph models are presented. Chap-
ter 4 evaluates the performance of our proposed models on synthetic data, while in
Chapter 5 we evaluate the proposed models on real-world data. The conclusions and
future research directions are discussed in Chapter 6.

2
BACKGROUND

This chapter presents the necessary background on graph signal processing to conduct
the research provided in this thesis and addresses relevant work. Section 2.1 introduces
the notion of graphs and graph signals. Further, it discusses the concepts of graph filters.
In Section 2.2, we present multi-dimensional graph signals and extend the concept of
graph filters to the multi-dimensional domain. Finally, we discuss models that model
time-varying graph signals in Section 2.3.

5

2

6 2. BACKGROUND

2.1. GRAPH SIGNAL PROCESSING

2.1.1. GRAPHS
A graph, denoted as G = (V ,E), is defined by a set of N nodes V = {v1, v2,, vN }, and
by a set of edges E ⊆ V × V which defines how the nodes are connected [11]. An edge
between node u ∈ V and node v ∈ V is denoted as (u, v) ∈ E . A graph is called directed
if the edges have a direction. This means, that if node i is connected to node j , it is not
implied that there is an edge that connects node j to node i . For an undirected graph,
this implication does hold. A graph can also be represented in an algebraic manner using
the adjacency matrix. The adjacency matrix A is a binary N ×N matrix such that each
element Ai j contains a one if there is an edge between node v1 and v j , otherwise Ai j = 0.
In the case of an undirected graph, the adjacency matrix is symmetric. The matrix W
denotes the weighted adjacency matrix, containing the weights of the edges. The next
definitions are defined for undirected graphs. The degree of node i is the sum of edge
weights connected to node i ,

di =
∑

j∈Ni

Wi j , (2.1)

where Ni = { j ∈ V : (i , j) ∈ E } is the set of nodes that define the neighborhood of node i .
The degree matrix D is a diagonal matrix where the i th diagonal element is given by di ,

Di i = di . (2.2)

Another matrix representation of a graph is the graph Laplacian, which is defined as

L = D−W. (2.3)

The normalized graph Laplacian is defined as

Lnor m = D− 1
2 LD− 1

2 , (2.4)

and has the property that its eigenvalues satisfy 0 =λ1 ≤ . . . ≤λN ≤ 2 [22].

2.1.2. SIGNALS ON GRAPHS
The values on top of nodes can be represented by graph signals. A graph signal x =
[x(1), ..., x(N)]T ∈ RN is defined as the vector containing N data elements, where each
data element x(i) corresponds to the value residing on node vi ∈ V . For example, a set
of measurements in a sensor network can be represented by a graph signal, this is illus-
trated by Figure 2.1. Each node in the network is a sensor and is connected by edges to
its neighbors. The measurement of each sensor is stored in the graph signal x.
A time series can also be represented as a graph signal. The graph that models the under-
lying structure of a finite periodic times series is represented by a directed cyclic graph
[23, 10] , which is shown in Figure 2.2. Each node represents a time instant, and the di-
rected links capture the causality of the time series. The periodic extension of the signal
is captured by the edge between node vN and v1. In the next sections, the directed cyclic
graph will be used to illustrate that graph signal processing can be seen as a generalized
form of classical discrete signal processing.

2.1. GRAPH SIGNAL PROCESSING

2

7

Figure 2.1: A undirected graph of five nodes, with graph signal x = [0,−1,1,−2,2]. The red bars represent the
signal value

Figure 2.2: Directed cyclic graph

2.1.3. GRAPH SHIFT OPERATOR
The graph shift operator (GSO) is one of the fundamental building blocks in GSP, and
defines the one-step information flow over a graph and is noted by the matrix S ∈ RN×N

[12, 24]. The shifted version of a graph signal x, is a new graph signal obtained by the
matrix-vector multiplication Sx. The n-shifted graph signal, denoted as x(n), is given by

x(n) = Sx(n−1) = Sn x. (2.5)

A shift in the classical signal processing sense is similar to that of a graph shift operation
performed on a directed cyclic graph. If the adjacency matrix is used as GSO, i.e. S = A,
the value of a node is passed to its one-hop neighbor. The one-shifted graph signal of
the graph depicted in Figure 2.2 is

xN

x1
...

xN−2

xN−1

=


0 0 · · · 0 1
1 0 · · · 0 0
...

. . .
. . .

. . .
...

0 · · · 1 0 0
0 · · · 0 1 0




x1

x2
...

xN−1

xN

 .

In the cyclic graph example, the energy of the signal remains constant for every shift,
but this is often not the case for more complex graphs, as seen in Figure 2.3. Using the
adjacency matrix as the choice for S, the shifted node values are a summation of all its
neighboring node values. When the graph Laplacian is used as choice for S, the one-
shifted value of node i is given by x(1)

i = ∑
j∈Ni

Wi j (xi − x j), where Ni defines the set of

2

8 2. BACKGROUND

nodes that are connected to node i . Both the adjacency matrix and the graph Laplacian
are common choices for the GSO, as well as variations of them [25]. The adjacency matrix
can be used with undirected and directed graphs, while the graph Laplacian is mainly
used for undirected graphs, as L is symmetric and positive semidefinite [10].

(a) Original graph signal (b) one-shifted graph signal (c) two-shifted graph signal

Figure 2.3: Illustration of the graph shift operation, where the adjacency matrix is used as GSO. i.e. S = A.

2.1.4. GRAPH FOURIER TRANSFORM
The graph Fourier transform (GFT) uses the eigendecomposition of the GSO. If the the
Laplacian is used as GSO, i.e. S = L, it can be decomposed as S = UΛUH , where U =
[u1 u2 ... uN] is the orthonormal matrix of eigenvectors. Λ is the diagonal matrix of
eigenvalues, ordered from 0 = λ1 ≤ λ2 . . . ≤ λN := λmax. The graph Laplacian has only
real eigenvalues as it is a real and symmetric matrix. The GFT of a graph signal x is de-
fined as

x̂ = UH x (2.6)

With the unitary property that UH U = I, the inverse graph Fourier transform (IGFT) is
then

x = Ux̂. (2.7)

The eigenvalues and eigenvectors of the GSO provide a notion of frequency [13]. Eigen-
vectors associated with small eigenvalues vary in a smooth way over the graph in com-
parison with higher eigenvalues. When having a directed graph, the adjacency ma-
trix can be used as GSO, which can be decomposed using the Jordan decomposition
S = UJUH [25].

2.1.5. GRAPH SIGNAL FILTERING: SPECTRAL-DOMAIN
In GSP filters can be used in a similar way as they are used in traditional signal process-
ing. With filtering in the frequency domain, certain frequencies of a signal are ampli-
fied or suppressed. Using the GFT to represent a graph signal in the frequency domain,
the described filtering operation can be applied [13]. The graph filter h(λk) is a func-
tion that scales the k th frequency component of x̂ to its desired output. This can be
denoted by the point-wise multiplication of the frequency components with the graph

2.2. MULTI-DIMENSIONAL GRAPH SIGNAL PROCESSING

2

9

filter, ŷ(k) = h(λk)x̂(k). The output vector ŷ of filtered graph frequencies is given by,

ŷ = h(Λ)x̂, (2.8)

where h(Λ) is the diagonal matrix that contains the the frequency response vector h =
[h(λ1) · · · h(λN)]. The filtered graph signal can now be obtained by converting ŷ back to
the vertex-domain using the IGFT. The three steps that describe the filtering of a graph
signal in the spectral domain, computing the GFT of the input graph signal (2.6), scaling
x̂ (2.8) and applying the IGFT (2.7), can be written in one equation as

y = Uh(Λ)UH x = Hx. (2.9)

Computing the eigenvectors of the GSO and applying the (I)GFT are computationally
expensive operations, especially for large graphs. Because of this filtering in the vertex-
domain may be preferable [10, 26]. This can be done by constructing the graph filter
H, so the output of the filter is given matrix-vector multiplication, with a computational
cost of O(N 2).

2.1.6. GRAPH SIGNAL FILTERING: VERTEX DOMAIN
A standard choice of a graph filter in the vertex domain is the finite impulse response
(FIR) filter, which is a linear, shift-invariant (LSI) graph filter [12, 26]. All LSI graph filters
of order K are given by a linear combination of filter taps and powers of the GSO and are
denoted by

H(S) =
K−1∑
k=0

hk Sk . (2.10)

The FIR graph filter operation performed on a graph signal x is given by

y = h0x+h1Sx+ ...+hK−1SK−1x =
K−1∑
k=0

hk Sk x. (2.11)

For k = 0 the GSO is the identity matrix, i.e. S = IN . Since matrix S is sparse, the compu-
tational complexity of the graph filtering operation is O (|E |K). This is cheaper than the
spectral filter in equation (2.9), as |E | is of comparable size as N for sparse graphs, and
the filter order K is often small [27].

2.2. MULTI-DIMENSIONAL GRAPH SIGNAL PROCESSING

2.2.1. MULTI-DIMENSIONAL GRAPHS SIGNALS
In the case of multi-dimensional graph processes, each node in the network holds a fea-
ture vector containing multiple types of values. The graph signal that captures all the
data from the multiple features is called a multi-dimensional graph signal. An example
of a multi-dimensional graph signal is given in Figure 2.4. In this example, the graph
resembles for instance a sensor network, wherein the measured features could be tem-
perature, humidity, and air pressure. An F -dimensional graph signal can be represented
by a matrix

X =
 | |

x1 · · · xF

| |

 ∈RN×F , (2.12)

2

10 2. BACKGROUND

Figure 2.4: A three-dimensional graph signal, where each color represents a feature.

or by a vector, where all the individual graph signals of each feature are stacked together

x = vec(X) =

x1

...
xF

 ∈RN F . (2.13)

One can view the multi-dimensional graph signal as F different graph signals, where the
entries in the feature vector are somehow related to each other. By processing the multi-
dimensional graph signal, instead of each graph signal separately, those relationships
can be captured. The discussed notations of multi-dimensional graph signals will be
used interchangeably in the rest of the thesis and will be made clear by the context.

2.2.2. MIMO GRAPH FILTER
The MIMO graph filter uses information from multiple features as input to construct
multiple output signals. This type of graph filter is mainly used in graph convolutional
neural networks, to connect the features between different layers [28]. Without loss of
generality, we will consider that the amount of output and input signals are the same.

The output signal of the MIMO graph filter is defined by the summation of F input
graph signals (one for each feature), which are processed by F different graph filters. The
summation to compute the i th output signal is given by

yi =
K−1∑
k=0

(
hki 1Sk

)
x1 + ...+

K−1∑
k=0

(
hki F Sk

)
xF =

F∑
j=1

K−1∑
k=0

(
hki j Sk

)
x j (2.14)

where hki j is the kth filter tap corresponding to the graph filter processing the input
graph signal x j and is used to obtain the output signal yi . The influence each feature
has on the output is captured by the filter coefficients. Using the matrix form of the F -
dimensional graph signal as defined in (2.12), this equation can also be written as

yi =
K−1∑
k=0

Sk Xhk , (2.15)

where hk = [
hki 1, . . . ,hki F

]T
. This equation shows in a more intuitive way how each out-

put signal is a linear combination of the input signals from the F available features. To

2.2. MULTI-DIMENSIONAL GRAPH SIGNAL PROCESSING

2

11

write the computation of all the the F output signals, the previous equation can be ex-
panded into

Y =
K−1∑
k=0

Sk XHk , (2.16)

where Y ∈RN×F contains the F -dimensional output graph signal and Hk ∈RF×F contains
the filter coefficients corresponding to kth filter tap of the F 2 employed graph filters. By
using the Kronecker matrix product, denoted by ⊗, the MIMO graph filter can also be
written in another manner as

y =
K−1∑
k=0

(
Hk ⊗Sk

)
x, (2.17)

where y and x are respectively the F -dimensional output and input graph signals, as
defined in (2.13). There are a total F 2K number of trainable parameters, and the com-
putational complexity of performing the MIMO graph filter operation is O (|E |F 2K). The
MIMO graph filter has a lot of trainable parameters, which can be helpful in learning the
relationship between the features; when the relationship between features is known, this
information could be incorporated into a model acting as an inductive bias to reduce the
estimation complexity.

2.2.3. PRODUCT GRAPHS
We assume there exists a relationship between features that can be captured by a graph,
referred to as the feature graph. Using this graph structure could be beneficial to model
a multi-dimensional network process in an efficient way. Consider a feature graph GF =
(VF ,EF ,SF) with a vertex set VF = {v f 1, . . . , v f F } of F nodes, where each node represents
a feature. EF is the set of edges containing the information about how the features are
connected. The feature GSO is given by the matrix SF ∈ RF×F . To capture the intra-
connections between the feature graph of a node in a network to another node in the
network, we can define a graph that combines both G and GF into a new graph [21].
This can be done by taking the product graph of the two graphs [20]. The most common
product graphs are the Cartesian, Kronecker, and Strong graph products [29, 30]. The
product graph between G and GF is mathematically written as

G¦ =G ¦GF , (2.18)

where the symbol ¦ represents the type of product graph used to generate the new graph
G¦ = (V¦,E¦,S¦). Each type of product graph has the same vertex set defined by V¦ =
V×VF , with N F nodes. A node in G¦ is noted as vi j and represents the node pair of nodes
vi in G and v f , j in GF . Next, the different types of product graphs will be discussed in
more detail.

KRONECKER PRODUCT

The Kronecker product graph is denoted by G⊗ = {V⊗,E⊗,S⊗}, and the GSO is defined as,

S⊗ = SF ⊗S. (2.19)

There is an edge between nodes vi j and vkl of G⊗, if there is an edge between nodes
vi and vk of G and between nodes v f j and v f l of GF . The number of edges in G⊗ is

2

12 2. BACKGROUND

given by |E⊗| = |E | |EF |. An example of the Kronecker product graph is given in Figure
2.5. Here, we see that in the Kronecker product graph does not retain the original edge
structure of both graphs.

cba

1a

3a

2a

5a

4a

1b

3b

2b

5b

4b

1c

3c

2c

5c

4c

1

3

2

5

4

Figure 2.5: Kronecker product of two graphs

CARTESIAN PRODUCT

The Cartesian product graph is denoted as G× = {V×,E×,S×}, with the GSO defined as,

S× = SF ⊗ IN + IF ⊗SN , (2.20)

where IN (IF) is the N ×N (F ×F) identity matrix. In the following two cases there is an
edge between nodes vi j and vkl of G×: if i = k and there is an edge between nodes
v f , j and v f ,l of GF , or if j = l and there is an edge between nodes vi and vk of G . The
number of edges in G× is given by |E×| = F |E | + N |EF |. An example of the Cartesian
product graph is given in Figure 2.6. Here we see that, unlike with the Kronecker product
graph, the original structure of both graphs is retained in the Cartesian product graph.

1

cb3

2

5

4

a

1a

3a

2a

5a

4a

1b

3b

2b

5b

4b

1c

3c

2c

5c

4c

Figure 2.6: Cartesian product of two graphs

STRONG PRODUCT

The strong product graph is a combination of both the Cartesian and Kronecker product
graph. The Strong graph product is denoted as G� = {V�,E�,S�}, with the GSO defined
as

S� = S⊗+S× = SF ⊗S+SF ⊗ IN + IF ⊗S. (2.21)

2.2. MULTI-DIMENSIONAL GRAPH SIGNAL PROCESSING

2

13

The number of edges in the strong product graph is the sum of the number of edges in
the Cartesian and Kronecker product graph,

∣∣E�
∣∣= |E | |EF |+F |E |+N |EF |.

PARAMETRIC PRODUCT GRAPH

All of the above-mentioned product graphs can be described in a parametric product
graph [21]. The GSO of the parametric product graph is noted by S¦, which is defined as

S¦ =
1∑

i=0

1∑
j=0

si j

(
Si

F ⊗S j
)

, (2.22)

with si j ∈ {0,1}. By fitting si j , the optimal structure of the S¦ can be learned [21]. When
S¦ is written out as,

S¦ = s00 (IF ⊗ IN)+ s01 (IF ⊗S)+ s10 (SF ⊗ IN)+ s11 (SF ⊗S) , (2.23)

it can easily been seen how the parametric product graph can represent all product
graphs. When s11 = 1 and all other si j are zero the Kronecker graph product is repre-
sented. For s01 = 1 and s10 = 1 and all other si j are zero, the Cartesian graph product is
represented. If all si j are equal to one, then the strong product graph is given with addi-
tional self loop on all nodes. The number of edges is in that case |E¦| = N |EF |+F |E |+
|E | |EF |+N F .

2.2.4. PRODUCT GRAPH FILTER
To represent a multi-dimensional graph signal we can extend the original graph by a
graph that captures both the relationship between features on a node and between nodes.
A suitable option to define such an extended graph is a product graph, which we dis-
cussed in the previous section. We can then apply the notion of graph filtering, as dis-
cussed Section 2.1.6, to this extended graph. Instead of the shift operator S, defined by
the graph G , we use the GSO obtained by the product graph of graph G and the feature
graph GF . Dependent on the type of product graph used, we can apply S×, S⊗, S� or, S¦
in (2.10). A product graph filter using the parametric product graph is then written as

H (S¦) =
K∑

k=0
hk Sk

¦ =
K∑

k=0
hk

(
1∑

i , j=0
si j

(
Si

F ⊗S j
))k

, (2.24)

with hk and si j are the graph filter coefficients and the parametric product graph co-
efficients, respectively. The output y defined by the filtering operation of the multi-
dimensional graph signal x ∈RF N×1 with graph filter H(S¦), is given by

y = H (S¦)x. (2.25)

The product graph filter operation doesn’t perform shifts over the graph G but instead
performs shifts over the graph G¦. By applying the product graph filter to process multi-
dimensional graph signals, the output signal corresponding to a feature takes now also
into account values from neighboring features. This can be illustrated by Figure 2.7,
where the neighborhood of a node in a product graph is shown.

2

14 2. BACKGROUND

i

S0x

i i

S1x S2x

Figure 2.7: Illustration of the neighborhood of node i , with the green border, on the Cartesian product graph
defined in Figure 2.6. The different colors of the nodes represent a different feature. The nodes, with the red
circle border, are in the k-hop neighborhood of node i .

GENERALIZED PRODUCT GRAPH FILTER

The parametric product graph filter (2.24) can be extended to a more generalized version

H (S¦) =
K∑

k=0

L∑
l=0

hkl

(
Sl

F ⊗Sk
)

, (2.26)

where the generalized graph filter coefficients are defined by hkl [21]. This filter embod-
ies the product graph coefficients si j into the filter coefficients. We recall that the k th

power of S carries information of the k-hop neighborhood in G , and the l th power of SF

carries information about the l-hop neighborhood in GF . This means that if k = 4 and
l = 2, and we consider feature f corresponding to node i , all feature values in the 2-hop
neighborhood of f that belong to the nodes in the 4-hop neighborhood of node i are
considered.

2.3. FORECASTING MODELS

2.3.1. VAR
A common model used to forecast multivariate time series is the vector autoregressive
(VAR) model [31]. This model describes the evolution of a set of N variables over time.
The variables are stored in a vector xt ∈RN . The linear relationship between the multiple
variables over time can be modeled by a matrix of trainable parameters, denoted by A ∈
RN×N . The VAR model is described as follows

xt =−
P∑

p=1
Ap xt−p +εt . (2.27)

where P are the number of previous time steps taken into account, and the vector εt ∈RN

is the error term. This model has in total P N 2 parameters to estimate. As the number
of parameters scales quadratically for the number of variables, it can become difficult to
estimate the parameters for large N .

2.3.2. GRAPH-VAR
When the relations between the variables in Ap can be described as connections of a
network, GSP can be used to reduce the size of the number of parameters in the VAR

2.3. FORECASTING MODELS

2

15

model. Let those relations be described by a graph G = {V ,E ,S}. As most graphs are
sparse, using the graph information we can already reduce the number of parameters
to P |E |. As proposed in [19] graph filters can be used to process the time-varying graph
signal, instead of the matrix Ap . Using the definition in (2.11) we can rewrite (2.27) to
define the Graph-VAR (G-VAR) model.

xt =−
P∑

p=1
Hp (S)xt−p =−

P∑
p=1

K∑
k=0

hkp Sk xt−p . (2.28)

The computation of Sx has complexity of O (|E |). The power function Sk defines how
often a shift is applied, where the k − th power results in a computational complexity of
O (K |E |). The G-VAR model (2.28) has significantly fewer parameters to estimate than
the normal VAR model, namely P (K +1) filter coefficients. This results in a number of
parameters that are independent of the number of nodes in the network.

2.3.3. PRODUCT GRAPH-BASED VAR
To model an F-dimensional graph process, one could process each graph process sep-
arately. However, if there is any type of relationship between those processes, this does
not take them into account. Let us consider that there are relations between the pro-
cesses and that those relationships can be captured by a graph. As discussed in Section
2.2, product graphs can be used to model multi-dimensional graph signals. To incorpo-
rate the relationship between features and nodes into a predictive model Natali et al. in
[21] propose to employ product graph filters instead of a graph filter in the G-VAR model.
This leads to the following models, where a distinction will be made between the used
type of product graph. As we consider multi-dimensional graph processes, xt ∈ RN F×1

represents the multi-dimensional graph signal corresponding to time instant t .

PRODUCT G-VAR
The product graph-VAR (PG-VAR) model uses the product graph shift operator S¦, which
is defined by the used type of product graph, i.e., the Kronecker, Cartesian or Strong
product graph. This model can be written very similar to (2.28), as the main difference is
the used GSO. The PG-VAR model is defined as,

xt =−
P∑

p=1
Hp (S¦)xt−p =−

P∑
p=1

K∑
k=0

hkp (S¦)k xt−p . (2.29)

The foretasted values xt of the PG-VAR model takes now also into account the relation-
ships between features as this is captured by S¦. The amount of parameters is the same
for all the three product graph types, PK , and its complexity (O (PK |E¦|)) is type de-
pended as |E ¦ | is different for each product type.

PARAMETRIC PRODUCT G-VAR
As explained in Section 2.2.3, the parametric product graph can be used when it is not
known which product graph best models the graph process. This can be learned by esti-
mating the parameters si j . The parametric product graph VAR (PPG-VAR) model is given

2

16 2. BACKGROUND

by

xt =−
P∑

p=1

K∑
k=0

hkp

(
1∑

i , j=0
si j

(
Si ⊗S j

F

))k

xt−p . (2.30)

This model has the same computational complexity as the PG-VAR model, and also the
same number of graph filter coefficients.

GENERALIZED PRODUCT G-VAR
For the last product graph-based VAR model, the generalized product graph filter, which
is discussed in Section 2.2.4 is used. We present the generalized product graph VAR
(GPG-VAR) model, which is defined as

xt =−
P∑

p=1

K∑
k=0

L∑
l=0

hkl p

(
Sk ⊗Sl

F

)
xt−p . (2.31)

This model has PK L parameters, which is a an increase compared to the previous dis-
cussed graph-based VAR models. The computational complexity of this model is O (P (K F |E |+
LN |EF |), and if L<K this is smaller then the other product graph based models. To illus-
trate this, the computational complexity of the PG-VAR for the Cartesian product graph
type is O (PK (F |E |+N |EF)|).

3
GRAPH-VAR MODELS

This chapter describes our proposed models to model multi-dimensional graph pro-
cesses. They extend the G-VAR model such that it accounts for the dependencies be-
tween features. In Section 3.1, we define the MIMO G-VAR model. Next, in Section 3.2
we propose two models that combine the G-VAR with the PG-VAR and GPG-VAR, re-
spectively. Further, we propose in Section 3.4, two estimators to estimate the graph filter
coefficients of the graph-based VAR models. Finally, Section 3.5 describes a method to
jointly estimate the graph filter coefficients and feature GSO.

17

3

18 3. GRAPH-VAR MODELS

3.1. MIMO G-VAR MODEL
The PG-VAR model makes use of a feature graph to forecast the evolution of multi-
dimensional graph signals. The use of this feature graph can be very constrained, as it
has the same degrees of freedom (DoF) a G-VAR has to predict one feature. Also, the PG-
VAR model relies heavily on the feature graph, which models the relationship between
the features. Therefore, we here propose a model that learns the influence features have
on each other in a flexible way.

We will first consider the G-VAR model, which does not take into account the effect
features have on each other. To forecast an F -dimensional graph signal we can use F
separate G-VARs. If the orders of P and K are the same for each feature, this can be
written as

xt =−
P∑

p=1

K−1∑
k=0




h(1)
kp

. . .

h(F)
kp

⊗Sk

xt−p , (3.1)

where x ∈ RN F×1 is a multi-dimensional graph signal as defined in (2.13), and h(f)
kp is

the graph filter coefficient that corresponds to the f th feature. There are a total of F K P
coefficients in this model to estimate. To take the influence that features have on each
other into account, the diagonal matrix of filter coefficients is changed into a full matrix

xt =−
P∑

p=1

K−1∑
k=0

(
Hkp ⊗Sk

)
xt−p , (3.2)

where the matrices Hkp ∈RF×F contain the filter coefficients that belong to the F 2 G-VAR
models. The multidimensional graph filtering operation in this model corresponds to
the MIMO graph filter (2.17), and we will refer to graph-based VAR model as the MIMO
G-VAR. This model has a total amount of PK F 2 learnable parameters and a computa-
tional complexity of O (PK F 2 |E |).

To gain some more intuition about the MIMO G-VAR, some special cases will be dis-
cussed. First, we will look at the case K = 1, i.e. only S0 = IN is considered. The model
can then be rewritten as

xt =−
P∑

p=1

(
Hp ⊗ IN

)
xt−p . (3.3)

By reordering the F-dimensional graph signal x so the feature values corresponding to

a node are stacked on top each other, x̃ = [
x1(1), ..., x f (1), ..., x1(N), ..., x f (N)

]T
, this can

also be written as

xt =−
P∑

p=1

Hp

. . .
Hp

 x̃t−p . (3.4)

From this, one can see that, for K = 1, the MIMO G-VAR is equal to N VAR models ap-
plied on the feature values of each node, where the matrices of filter coefficients of each
VAR are the same. For higher orders of K , the shifted graph signals are also taken into
account.

3.2. COMBINED (G)PG-VAR AND G-VAR MODEL

3

19

Further, we can consider the case where the matrix Hkp is a linear scaled version of

Sk
F

, i.e., the model can be written as

xt =−
P∑

p=1

K−1∑
k=0

((
hkp Sk

F

)
⊗Sk

)
xt−p . (3.5)

This shows, that under specific conditions, the Kronecker PG-VAR model is equal to the
MIMO G-VAR model.

3.2. COMBINED (G)PG-VAR AND G-VAR MODEL
To forecast multi-dimensional processes over graphs Natali et al. [21] proposed the use
of product graphs in graph-based VAR models, leading to the PG-VAR model (2.29) and
the GPG-VAR model (2.31). The number of parameters of these models are independent
of the number of nodes in both, the graph G and feature graph GF . In the case that k = 0,
and for the GPG-VAR also l = 0 only information of prior values of the feature in GF and
node in G itself are taken into account. This can be clearly seen when these terms are
written outside of the summation. For example, the PPG-VAR is then written as

xt =−
(

P∑
p=1

h0p
(
S0

F ⊗S0)+ P∑
p=1

K−1∑
k=1

hkp

(
1∑

i , j=0
si j

(
Si

F ⊗S j
))k)

xt−p

=−
(

P∑
p=1

h0p (IF ⊗ IN)+
P∑

p=1

K−1∑
k=1

hkp

(
1∑

i , j=0
si j

(
Si

F ⊗S j
))k)

xt−p .

(3.6)

The summation at k = 0 represents N F univariate autoregressive models, where all mod-
els are constrained to have the same set of parameters h0p .

We now assume that in a multi-dimensional process each feature has similar time-
varying characteristics, but that they differ between features. In that case, the param-
eters h0p restrict the DoF of the product graph-based models too much to predict this
kind of multi-dimensional process. Similar to the model defined in (3.1), F independent
sets of parameters h0p can be used to give the model more DoF. Again for the PPG-VAR,
this can be denoted as

xt =−

 P∑
p=1




h(1)
0p

. . .

h(F)
0p

⊗ IN

+
P∑

p=1

K−1∑
k=1

hkp

(
1∑

i , j=0
si j

(
Si

F ⊗S j
))k

xt−p , (3.7)

where h(f)
0p represent the set of parameters h0p corresponding to the f th feature. This

model combines a G-VAR for each feature, with graph filter order K = 1, with a PPG-VAR
model, where the graph filter order of zero is not included. To even further extend the
DoF we can generalize the above model to a combination of the G-VAR for each feature
and the PG-VAR or GPG-VAR. We will refer to the combined PG-VAR and G-VAR as the

3

20 3. GRAPH-VAR MODELS

PG-G-VAR model, which is defined as

xt =−

 P∑
p=1

K−1∑
k=0




h(1)
kp

. . .

h(F)
kp

⊗Sk

+
P∑

p=1

K−1∑
k=0

h(0)
kp Sk

¦

xt−p , (3.8)

and the combined GPG-VAR and G-VAR is referred to as the GPG-G-VAR, which is written
as

xt =−

 P∑
p=1

K−1∑
k=0




h(1)
kp

. . .

h(F)
kp

⊗Sk

+
P∑

p=1

K−1∑
k=0

L−1∑
l=0

hkl p

(
Sk

F ⊗Sl
)xt−p . (3.9)

Compared to a G-VAR per feature, the number of parameters is increased only by a small
amount. This increase comes with the flexibility of modeling each feature separately
using the G-VAR and also include information of related features using a type of product
graph.

3.3. OVERVIEW OF GRAPH-BASED VAR MODELS
In the previous sections the MIMO G-VAR, PG-G-VAR, and GPG-G-VAR are presented
and in Section 2.3.3 the different multi-dimensional graph VARs using product graphs
are discussed. The difference in those graph VAR methods is in the way they model the
connections between the graph and the multiple features on it. This results in different
multi-dimensional graph filters H. Whatever the specific type of VAR, the basic structure
of a graph-based VAR is given by,

xt =−
P∑

p=1
Hp xt−p +εt , (3.10)

where x is the graph signal of a single feature in the case of the G-VAR and in the other
cases x is the multi-dimensional graph signal, as defined in (2.13). An overview of the
graph filters that are being used in the different graph VAR models, is given in Table 3.1.

3.4. GRAPH FILTER ESTIMATION
In this section two methods to find the graph filter coefficients hk(l)p will be discussed.
These methods fit the model on available F -dimensional graph data. An advantage of
the proposed methods is that they have a closed-form solution. Further, we will exploit
the fact that the graph-based VAR models are all linear with respect to the graph filter
coefficients.

3.4.1. MULTIVARIATE LEAST SQUARES ESTIMATOR
The first method is the multivariate least squares (LS) estimator, which is one of the most
used methods to estimate VAR coefficients [31, 32, 33]. We assume that, for each variable

3.4. GRAPH FILTER ESTIMATION

3

21

G-VAR Hp =∑K−1
k=0 hkp Sk

PG-VAR Hp =∑K−1
k=0 hkp Sk

♦

PPG-VAR Hp =∑K−1
k=0 hkp

(∑1
i=0

∑1
j=0 si j

(
Si

F
⊗S j

))k

GPG-VAR Hp =∑K−1
k=0

∑L
l=0 hkl p

(
Sk

F
⊗Sl

)
PG-G-VAR Hp =∑K−1

k=0




h(1)
kp

. . .

h(F)
kp

⊗Sk

+∑K−1
k=0 h(0)

kp Sk¦

GPG-G-VAR Hp =∑K−1
k=0




h(1)
kp

. . .

h(F)
kp

⊗Sk

+∑K−1
k=0

∑L−1
l=0 hkl p

(
Sk

F
⊗Sl

)
MIMO G-VAR Hp =∑K−1

k=0

(
Hkp ⊗Sk

)
Table 3.1: Different types of graph filters, where the first model is the one-dimensional graph VAR model (G-
VAR). The rest of the presented filters are multi-dimensional product graph-based filters. Presented from the
least number of graph filter coefficients to the model with the most degrees of freedom, are the product graph
VAR (PG-VAR), parametric product graph VAR (PPG-VAR), generalized product graph VAR (GPG-VAR), com-
bined product graph and graph based VAR (PG-G-VAR), combined generalized product graph and graph VAR
(GPG-G-VAR) and the multiple-input-multiple-output graph VAR (MIMO G-VAR), respectively.

in the graph, there are T +p samples available. Let h represents the vector that contain
the unknown filter coefficients hk(l)p . The least-squares estimator to find the filter coef-
ficients that bests fit the data is given by the argument that minimizes the sum of squared
errors,i.e.,

ĥ = arg min
h

T∑
j

∥∥∥∥∥x j +
P∑

p=1
Hp (S)x j−p

∥∥∥∥∥
2

2

. (3.11)

This minimization has a closed form solution. For the G-VAR the closed form solution
can easily be formulated if the model is rewritten into a matrix-vector product. The sum-
mations over P and K , can be written out as,

P∑
p=1

K∑
k=0

hkp Sk xt−p =
K∑

k=0
Sk [xt−1, · · · ,xt−p]

hk1
...

hkp

 (3.12)

= [
S0[xt−1, · · · ,xt−p] · · · SK [xt−1, · · · ,xt−p]

]
h,

where h = [h01 . . .h0P . . .hK 1 . . .hK P]T . In this way, the output of the G-VAR is given by a
linear equation of the filter coefficients with the shifted graph signals. Using all T + p

3

22 3. GRAPH-VAR MODELS

samples, we can define

A =

(
IT ⊗S0

) xP−1 · · · x0
... · · · ...

xT+P−1 · · · xT

 · · · (
IT ⊗SK

) xP−1 · · · x0
... · · · ...

xT+P−1 · · · xT


 , (3.13)

b =

xP−1
...

xT+P


Using this notation we can write (3.11) as a classical linear least squares problem,

ĥ = arg min
h

‖b+Ah‖2
2 . (3.14)

Solving this problem leads to the ordinary least squares estimator, which is given by

ĥ =−(AT A)−1AT b =−A†b. (3.15)

As all other graph-based VAR models are also linearly dependent on the graph filter co-
efficients, we can estimate them in a similar way.

3.4.2. YULE-WALKER LEAST SQUARES ESTIMATOR
Another method to estimate a VAR model is the Yule-Walker approach [31]. For a VAR
process the Yule-Walker equations are obtained by multiplying both sides of eq. (2.27)
with xt−h and taking the expectation of both sides; resulting for h > 0 in:

E[xt xT
t−h] = E[−

P∑
p=1

Ap xt−p xT
t−h] (3.16)

Rh =−
P∑

p=1
Ap Rh−p = [

A1, . . . ,Ap
] Rh−1

...
Rh−p

 , (3.17)

where Ri = E[xt xT
t−i] is the auto-correlation matrix, and i denotes the lag between the

signals. Using the Yule-Walker equations, the LS estimator of the VAR model can be
derived. This can be done by concatenating the yule-walker equations for h = 1, ...,P ,
resulting in

[R1, . . . ,RP] =−[
A1, . . . ,Ap

] R0 · · · RP−1
...

. . .
...

R−P+1 · · · R0

 (3.18)

=−AΨ,

and by multiplying both sides with the inverse ofΨ, which is a square matrix, leading to

A =−[
R1, . . . ,Rp

]
Ψ−1. (3.19)

3.5. JOINT ESTIMATION OF GRAPH FILTER COEFFICIENTS AND FEATURE GRAPH

3

23

When the auto-correlations are estimated by the available data this is equal to the LS
estimator. Now, instead of estimating a classical VAR model, we apply this approach
to the graph VAR models, as proposed by Isufi et al. in [19]. The graph filter can be
substituted for the matrices Ap in (3.18), which for the G-VAR model is then defined as

[R1, . . . ,RP] =−
[

K∑
k=0

hk1Sk , . . . ,
K∑

k=0
hkP Sk

] R0 · · · RP−1
...

. . .
...

R−P+1 · · · R0

 . (3.20)

As the right-hand side of this equation is linearly dependent on the graph filter coeffi-
cients hkp , we can write this as a matrix-vector multiplication. Let us define

β= [
vec(R1)T , ...,vec(Rp)T]T

,

ϕi =
[
vec(Ri), · · · ,vec(RP+i−1)

]
, (3.21)

Γ=
[(

IN P ⊗S0
)
ϕ0, ...,

(
IN P ⊗S0

)
ϕ−p+1, ...,

(
IN P ⊗Sk

)
ϕ0, ..,

(
IN P ⊗Sk

)
ϕ−p+1

]
,

h = [h01 . . .h0p . . .hk1 . . .hkp]T ,

where vec(·) stands for the vectorization operation that transforms a matrix into a col-
umn vector. We can now write (3.20) as

β=−Γh. (3.22)

This can’t be solved by just multiplying with the inverse of Γ ∈ RN 2P×K P , as this matrix
is not square. Instead, we estimate h in a least-squares sense. The LS estimator of the
Yule-Walker equations is obtained by solving

ĥ = arg min
h

∥∥β+Γh
∥∥2

2 . (3.23)

Finally, the solution of the Yule-Walker LS estimator is expressed as

ĥ =−(ΓTΓ)−1ΓTβ=−Γ†β. (3.24)

In a similar way, this approach can be applied to the other graph-based VAR methods.
Solving the Yule-Walker equations in (3.18) for the VAR model results into the LS estima-
tor. When the same set of Yule-Walker equations are used to estimate the G-VAR param-
eters, this results in a different solution than given by LS estimator derived in Section
3.4.1. In the rest of the work, we will stick to the LS estimator.

3.5. JOINT ESTIMATION OF GRAPH FILTER COEFFICIENTS AND

FEATURE GRAPH
We assume that the network structure that captures a graph process is known or can be
built with available data. For example in a sensor network, graphs using spatial informa-
tion have been proven to work well in forecasting [34, 18]. A simple method to build the
feature graph is by determining if features are correlated, e.g., calculating the Pearson

3

24 3. GRAPH-VAR MODELS

correlation coefficients, and connecting features with a high correlation [35, 36]. This
method is useful in finding out if there is a relation between features, but it does not
necessarily capture the influence each feature has in predicting connected feature val-
ues.

To find the feature graph that best suits the graph-based VAR model, we propose to
identify the weights of the GSO by minimizing the forecast error. As the optimal graph
filter coefficients are dependent on the used feature GSO we jointly estimate them. For
a Kronecker PG-VAR this joint problem is defined as,

{ĥ, ŜF } = argmin
h,SF

∑T
t=1

∥∥∥xt −∑P
p=1

∑K
k=0 hkp (SF ⊗S)k xt−p

∥∥∥2

2
. (3.25)

This is a non-convex problem, due to the polynomials of the feature GSO. As we don’t
put any constraints on SF , the estimated weights represent the adjacency matrix of a
directed graph including possible self-loops.

To reduce the complexity of computing the joint problem, we follow Natali et al. [37]
where h and SF are estimated iteratively using an alternating minimization approach.
The pseudo-code that describes our AM approach is given in Algorithm 1. In this algo-
rithm, we use the estimate of SF at the (n−1)th iteration to find the vector of parameters
h, which is obtained by solving

ĥ = argmin
h

∑T
t=1

∥∥∥xt −∑P
p=1

∑K
k=0 hkp (SF ⊗S)k xt−p

∥∥∥2

2
. (3.26)

As shown in Section 3.4 this is a linear least-squares problem, which has a closed-form
solution as defined in (3.15). We then use the estimated graph-based VAR parameters
at the nth iteration to estimate SF . This estimate is found by minimizing the original
objective function with respect to the feature GSO

ŜF = argmin
SF

∑T
t=1

∥∥∥xt −∑P
p=1

∑K
k=0 hkp (SF ⊗S)k xt−p

∥∥∥2

2
. (3.27)

This problem is still non-convex, but it’s a lighter problem than (3.25). A non-convex
method can be used to obtain ŜF , as the gradient is not hard to find, we use the sequen-
tial quadratic programming (SQP) method; see [37] for details.

3.5. JOINT ESTIMATION OF GRAPH FILTER COEFFICIENTS AND FEATURE GRAPH

3

25

Algorithm 1 Joint GF and feature GSO

Require: S(0)
F

,ε> 0
1: n ← 1
2: while not converged do

3: h(n) ← argmin
h

f
(
h,S(n−1)

F

)
. See equation (3.26)

4: S(n)
F

← argmin
S

f
(
h(n),SF

)
. See equation (3.27)

5: Check convergence (h(n),S(n)
F

,ε)
6: n ← n +1
7: end while
8: return h(n),S(n)

F

4
NUMERICAL RESULTS:

SYNTHETIC DATA

In this chapter, we evaluate the performance of the graph-based forecasting models
discussed in the previous chapters. The evaluations are performed on synthetic multi-
dimensional graph data. Section 4.1 discusses the specifics of how the synthetic datasets
are generated. In Section 4.2, we present the performed experiments with their numer-
ical results. Finally, we conclude this chapter with a discussion of the results in Section
4.3.

27

4

28
4. NUMERICAL RESULTS:

SYNTHETIC DATA

4.1. SYNTHETIC DATA GENERATION
The synthetic data is generated based on a (G)PG-VAR model. To do this we generate
two random graphs. First, a random sensor graph G , with N nodes, is constructed using
the GSP toolbox [38]. Secondly, a feature graph GF , with F features, is constructed. The
weighted adjacency matrix of this feature graph is generated from a random symmetric
matrix, with

⌈
0.4F 2

⌉
non-zero elements, and we set the elements on the diagonal to zero

to avoid self-loops. As we use a random symmetric matrix, not all features in the graph
might be connected; in that case, a new matrix is generated until we have a connected
feature graph. We define the GSO of each graph as the graph Laplacian normalized by its
maximum eigenvalue, i.e., S = 1

λmax
L.

To be sure that the generated signals are stationary, the used model needs to be stable
[31]. A VAR model is stable if the eigenvalues of the first-order model have a modulus of
less than one [39]. This also holds for graph VAR models, as these are a particular case of
the VAR model. All graph VAR models of order P can be rewritten into a model of order 1

xt

xt−1
...

xt−p+1

= A


xt−1

xt−2
...

xt−p

=


H1 H2 · · · Hp

I 0 · · · 0

0
. . . 0

...
0 0 I 0




xt−1

xt−2
...

xt−p

 . (4.1)

Now the eigenvalues of A can be checked to determine if the model of order P is stable.
The graph filter coefficients hkp are randomly generated from a normal distribution

N (0,1), and are scaled such that the graph VAR is stable. The synthetic data samples are
stored in a data matrix X = [x1, . . . , xT], where the graph signals xt are generated accord-
ing to (3.10), with random initial samples and εt is white Gaussian noise with N (0,I).
There are T +500 graph signals generated, where the first 500 samples are discarded to
reach steady state.

EVALUATION METRIC

To measure the performance we adopt the error metric as defined in [34], which is the
average excess prediction risk (AEPR), and take its root.

rAEPR =
√√√√E

[
1

N F

∥∥∥∥∥xt −
P∑

p=1
Ĥp xt−p

∥∥∥∥∥
2

2

]
−E

[
1

N F

∥∥∥∥∥xt −
P∑

p=1
Hp xt−p

∥∥∥∥∥
2

2

]
, (4.2)

where we recall that Ĥ contains the estimated model and H is the model used to generate
the data. This metric measures the difference between the error in the prediction of xt

and the variance.

4.2. NUMERICAL RESULTS

4.2.1. ESTIMATORS
First, we compare the proposed estimators from Section 3.4, against the minimum mean
square error (MMSE) estimator proposed [19]. Both, the accuracy and the computa-
tional time of the estimators are evaluated against the number of training samples. There

4.2. NUMERICAL RESULTS

4

29

are T = 2000 data samples in the generated dataset, and they are generated according to
a G-VAR model, i.e., there is just one feature, with p = 2 and K = 2. The number of nodes
used to create graph G is set to N = 100. The results are averaged over 25 different gen-
erated datasets.

In Figure 4.1, one can see that the performance of the estimators increases when
there is more training data. The amount of training data has the most influence on the
YW-LS estimator. In contrast, the LS and MMSE estimators already have a low prediction
error on a lower amount of training data. Further, the LS and MMSE have the same
prediction error, which makes sense as they both minimize the same objective function.
In terms of the computational time, there is a clear linear trend visible. The linear trend
of the YW-LS and the MMSE are approximately the same, because of the computation
of the auto-Pearson correlation matrix. When a more efficient algorithm for calculating
the auto-Pearson correlation matrix is used, the computational time can be decreased.
In the rest of the experiments, the LS estimator will be used, as this one has the best
prediction error as well as the least computational time required.

0 500 1000 1500 2000

Training samples

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

rA
E

P
R

LS
YW-LS
MSE

0 500 1000 1500 2000

Training samples

0

0.05

0.1

0.15

0.2

0.25

0.3

tim
e(

S
)

LS
YW-LS
MSE

Figure 4.1: Prediction performance of the Least Squares (LS), Yule-Walker Least Squares (YW-LS), and Mean
Square Error (MSE) estimator for the G-VAR model (left) and the computational time of each estimator (right)
versus the number of training samples.

4.2.2. (G)PG-VAR
In this experiment, the prediction performance is evaluated for synthetic data generated
with a Kronecker, Cartesian, Strong, and Generalized PG-VAR model. For each model,
we compare it against all other described graph VAR models and also include the MIMO
G-VAR model. The graphs G and GF are generated with N = 50 and F = 10 nodes, re-
spectively. The orders of the graph filters are set to P = 2 and K = 2. For each dataset,
there are T = 2000 samples generated. We independently generate 25 of such datasets
and again take the averaged rAEPR of the obtained results, which are shown in Figure
4.2. The results show that the GPG-VAR model works well in all cases; only the model
used to generate the data has a smaller prediction error. Further, one can see that the
Kronecker product graphs don’t perform well on the data that is generated through the
other models, this is because the Kronecker product graph does not retain any informa-

4

30
4. NUMERICAL RESULTS:

SYNTHETIC DATA

tion about the edges of graphs G and GF . The MIMO G-VAR model needs more training
samples to achieve a lower prediction error, this is because the model does not have any
prior information about the feature graph.

0 10 20 30 40 50 60 70 80 90

% in-sample data

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

rA
E

P
R

MIMO G-VAR
Strong PG-VAR
Kronecker PG-VAR
Cartesian PG-VAR
GPG-VAR

(a)

0 10 20 30 40 50 60 70 80 90

% in-sample data

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

rA
E

P
R

MIMO G-VAR
Strong PG-VAR
Kronecker PG-VAR
Cartesian PG-VAR
GPG-VAR

(b)

0 10 20 30 40 50 60 70 80 90

% in-sample data

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

rA
E

P
R

MIMO G-VAR
Strong PG-VAR
Kronecker PG-VAR
Cartesian PG-VAR
GPG-VAR

(c)

0 10 20 30 40 50 60 70 80 90

% in-sample data

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

rA
E

P
R

MIMO G-VAR
Strong PG-VAR
Kronecker PG-VAR
Cartesian PG-VAR
GPG-VAR

(d)

Figure 4.2: Performance comparison of the following models: PG-VAR with different product graph types,
GPG-VAR, and the MIMO G-VAR. The synthetic data is generated according to (a) Kronecker PG-VAR model;
(b) Cartesian PG-VAR model; (c) Strong PG-VAR model; (d) GPG-VAR model.

4.2.3. PARAMETRIC PRODUCT GRAPH VAR
We now test how effectively the PPG-VAR can identify which product graph is used to
generate the synthetic data and compare its performance against the model used to gen-
erate the data as well as the GPG-VAR model. This is done by jointly estimating the filter
coefficients hkp and parameters si j that defines the type of product graph [cf. (2.30)].
The same experimental setup is used as in the previous experiment. At the beginning of
the estimation process, parameters si j are randomly chosen from a uniform distribution
between (0,1).

4.2. NUMERICAL RESULTS

4

31

In Figure 4.3 the prediction error and the estimated parameters si j are shown; both
results are averaged over 25 different datasets. We see that the prediction error does not
smoothly decrease for the PPG-VAR. This is probably due to the fact that the problem is
not convex and instead a local minimum is found. However, the prediction error remains
almost constant, and for more in-sample data, it has a better performance than the other
models. Further, the found parameters do not exactly represent the used product graph,
but one can still distinguish which product graph is used.

4.2.4. JOINTLY ESTIMATING THE FEATURE GSO
We now analyze how the Kronecker, Cartesian, Strong, and Generalized PG-VAR models
perform when their feature GSO is not known and estimated with the method described
in Section 3.5. As the initial point for estimating the feature GSO the Pearson correlation
matrix is used. We also compute the prediction performance when this initial point is
used as feature GSO. Further, we compare these models against the MIMO G-VAR and
G-VAR models. The number of nodes used in the graphs G and GF to generate the syn-
thetic data is N = 25 and F = 7, respectively. Again, the orders of the graph filters are set
to P = 2 and K = 2. There are 15 datasets generated, and each dataset contains T = 2000
samples.

The averaged rAEPR for each type of product graph is shown in Figure 4.4. There are
a few interesting things to see in the results. First, when the Pearson correlation matrix
is used as GSO, the G-VAR outperforms the model used to generate the data. The G-VAR
model and GPG-VAR model, with the Pearson correlation matrix as GSO, show a very
similar performance. And lastly, the models where the feature GSO is estimated show a
significant increase in the prediction performance.

4.2.5. COMBINED G-VAR AND (G)PG-VAR
In this experiment, the performance of the combined models, described in Section 3.2,
is evaluated. The Pearson correlation matrix of the feature data is chosen as the GSO of
the feature graph. This is done to simulate a more realistic scenario, as the feature graph
is often unknown and has to be estimated. Those combined models are compared with
the G-VAR, PG-VAR, GPG-VAR, and MIMO G-VAR models. Synthetic data is generated
according to the Kronecker, Cartesian, Strong and Generalized model, and the product
graph type used to generate the data is considered known. We use the same settings to
generate the data as in the previous experiment.

The results shown in Figure 4.5show that the combined models outperform the (G)PG-
VAR model and the G-VAR model. This is as expected as it incorporates both models into
one model giving it more flexibility. Further, there is now almost no difference in their
performance between the GPG-G-VAR and PG-G-VAR. At last, we notice that the MIMO
G-VAR model outperforms all other models, as this learns the relationship between the
features and is not fixed as is the case with the product graph-based models.

4.2.6. JOINTLY ESTIMATING THE FEATURE GSO:
COMBINED G-VAR AND (G)PG-VAR

In the last experiment on synthetic data we look at the performance of the combined
models, PG-G-VAR and GPG-G-VAR, in case we jointly estimate the filter coefficients and

4

32
4. NUMERICAL RESULTS:

SYNTHETIC DATA

GSO. The same setup is used as in the previous two tests. We consider the MIMO G-VAR,
PG-G-VAR with the Pearson correlation matrix as GSO, PG-VAR, and GPG-VAR where the
filter coefficients and GSO are also jointly estimated, to compare the combined models
with.

In Figure 4.6 the results of this test are depicted. For the PG-VAR models the com-
bined models outperform the model that is used to generate the data, but the GPG-VAR
model out-performs them all. When the GPG-VAR is used to generate synthetic data, the
combined GPG-G-VAR model eventually outperforms the GPG-VAR model. Further, all
models that jointly estimate the GSO perform better than the MIMO G-VAR model.

4.3. CONCLUSION
In this chapter, we evaluated the performance of the proposed graph-based models on
synthetically generated datasets according to the different product graph-based models.
In the first experiment, we showed the performance of the G-VAR for the two proposed
estimators and the MSE estimator. From this, we concluded that the LS estimator is pre-
ferred as it has the best performance and least computational time. The slope of compu-
tational time of the YW-LS and MSE method is very similar, which suggests the increase
of computational time is due to the computation of the auto-Pearson correlation matrix.
Therefore, a more efficient computation of the auto-Pearson correlation matrix could
change our view on which estimator is preferred.

In the following experiment, we investigated how well the product graph-based mod-
els perform on data generated according to different types of product graphs. These
results showed the effectiveness of the GPG-VAR at capturing all possible product graph
types. Further, we showed that the PPG-VAR can also capture all types of product graphs,
but the problem of estimating the parameters si j is non-convex and therefore more chal-
lenging. So we suggest using the GPG-VAR instead.

The next experiments focused on the scenario that feature GSO used to generate the
data is unknown. First, the Pearson correlation matrix was used as feature GSO to cap-
ture the relationship between features. This caused the performance to degrade in such a
way that the PG-VAR was outperformed by the G-VAR and the GPG-VAR performed simi-
larly to the G-VAR, while the G-VAR does not take into account any information between
features. The combined models did outperform the G-VAR, which shows their ability to
incorporate some extra information about the features. The MIMO G-VAR illustrated its
effectiveness to incorporate the dependencies between features as it outperformed all
other models.

Finally, we experimented with an iterative method that jointly estimates the feature
GSO and the graph filter coefficients. The obtained results showed that this method per-
forms well, as the performance of all feature graph-based models improved. They even
outperformed the MIMO G-VAR model, with an exception for the Cartesian and strong
PG-VAR. Overall, these experiments have shown the importance of estimating the re-
lationship between features and the benefits our proposed models, together with the
estimation methods hold.

4.3. CONCLUSION

4

33

0 20 40 60 80 100

% in-sample data

0

0.005

0.01

0.015

0.02

0.025

0.03
rA

E
P

R
PG-VAR
GPG-VAR
PPG-VAR

0 20 40 60 80 100

% in-sample data

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s
00

s
01

s
10

s
11

(a)

0 20 40 60 80 100

% in-sample data

0

0.005

0.01

0.015

0.02

0.025

0.03

rA
E

P
R

PG-VAR
GPG-VAR
PPG-VAR

0 20 40 60 80 100

% in-sample data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s
00

s
01

s
10

s
11

(b)

0 20 40 60 80 100

% in-sample data

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

rA
E

P
R

PG-VAR
GPG-VAR
PPG-VAR

0 20 40 60 80 100

% in-sample data

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s
00

s
01

s
10

s
11

(c)

Figure 4.3: Shown on the left, the prediction error of the PPG-VAR compared to the PG-VAR type used to gen-
erate the synthetic data and the GPG-VAR, for data generated according to (a) Kronecker PG-VAR model; (b)
Cartesian PG-VAR model; (c) Strong PG-VAR model. The average estimated values of the parameters si j are
depicted on the right.

4

34
4. NUMERICAL RESULTS:

SYNTHETIC DATA

0 10 20 30 40 50 60 70 80 90

% in-sample data

0

0.05

0.1

0.15

rA
E

P
R

MIMO G-VAR
G-VAR
PG-VAR corr S

f

GPG-VAR corr S
f

PG-VAR est S
f

GPG-VAR est S
f

PG-VAR real S
f

(a)

0 10 20 30 40 50 60 70 80 90

% in-sample data

0

0.05

0.1

0.15

rA
E

P
R

MIMO G-VAR
G-VAR
PG-VAR corr S

f

GPG-VAR corr S
f

PG-VAR est S
f

GPG-VAR est S
f

PG-VAR real S
f

(b)

0 10 20 30 40 50 60 70 80 90

% in-sample data

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

rA
E

P
R

MIMO G-VAR
G-VAR
PG-VAR corr S

f

GPG-VAR corr S
f

PG-VAR est S
f

GPG-VAR est S
f

PG-VAR real S
f

(c)

0 10 20 30 40 50 60 70 80 90

% in-sample data

0

0.05

0.1

0.15

rA
E

P
R

MIMO G-VAR
G-VAR
GPG-VAR real S

f

GPG-VAR corr S
f

GPG-VAR est S
f

(d)

Figure 4.4: The rAEPR versus the amount of training data available. The product graph type to generate the
synthetic data is also the product graph type used in the PG-VAR model. In the real S f model the feature GSO
that is used to generate the data is given, in the case of corr S f and est S f Pearson correlation matrix and the
estimated GSO are used, respectively

4.3. CONCLUSION

4

35

0 10 20 30 40 50 60 70 80 90

% in-sample data

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

rA
E

P
R

MIMO G-VAR
G-VAR
PG-VAR corr S

f

GPG-VAR corr S
f

PG-G-VAR corr S
f

GPG-G-VAR corr S
f

(a)

0 10 20 30 40 50 60 70 80 90

% in-sample data

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

rA
E

P
R

MIMO G-VAR
G-VAR
PG-VAR corr S

f

GPG-VAR corr S
f

PG-G-VAR corr S
f

GPG-G-VAR corr S
f

(b)

0 10 20 30 40 50 60 70 80 90

% in-sample data

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

rA
E

P
R

MIMO G-VAR
G-VAR
PG-VAR corr S

f

GPG-VAR corr S
f

PG-G-VAR corr S
f

GPG-G-VAR corr S
f

(c)

0 10 20 30 40 50 60 70 80 90

% in-sample data

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

rA
E

P
R

MIMO G-VAR
G-VAR
GPG-VAR corr S

f

GPG-G-VAR corr S
f

(d)

Figure 4.5: The rAEPR of the combined models and all other described graph-based VAR models versus the per-
centage of in-sample training data, for data generated according to (a) Kronecker PG-VAR model; (b) Cartesian
PG-VAR model; (c) Strong PG-VAR model; (d) GPG-VAR model. The product graph type used to estimate is the
same as the one used to generate the data. In the case of corr S f the Pearson correlation matrix is used as
feature GSO.

4

36
4. NUMERICAL RESULTS:

SYNTHETIC DATA

0 10 20 30 40 50 60 70 80 90

% in-sample data

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

rA
E

P
R

MIMO G-VAR
PG

G
-VAR corr S

f

PG-VAR est S
f

GPG-VAR est S
f

PG-G-VAR est S
f

GPG-G-VAR est S
f

(a)

0 10 20 30 40 50 60 70 80 90

% in-sample data

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

rA
E

P
R

MIMO G-VAR
PG-G-VAR corr S

f

PG-VAR est S
f

GPG-VAR est S
f

PG-G-VAR est S
f

GPG-G-VAR est S
f

(b)

0 10 20 30 40 50 60 70 80 90

% in-sample data

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

rA
E

P
R

MIMO G-VAR
PG-G-VAR corr S

f

PG-VAR est S
f

GPG-VAR est S
f

PG-G-VAR est S
f

GPG-G-VAR est S
f

(c)

0 10 20 30 40 50 60 70 80 90

% in-sample data

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

rA
E

P
R

MIMO G-VAR
GPG-G-VAR corr S

f

GPG-VAR est S
f

GPG-G-VAR est S
f

(d)

Figure 4.6: The rAEPR of the combined models and all other described graph-based VAR models versus the
amount of training data available, for data generated according to (a) Kronecker PG-VAR model; (b) Cartesian
PG-VAR model; (c) Strong PG-VAR model; (d) GPG-VAR model. The product graph type used to estimate is the
same as the one used to generate the data. In the case of corr S f and est S f the Pearson correlation matrix and
jointly estimated feature GSO are used, respectively.

5
NUMERICAL RESULTS:

REAL-WORLD DATA

In this chapter, we evaluate the performance of the graph-based forecasting models on
two real-world datasets. Section 5.1 discusses the specifics of both datasets. In Section
5.2, we present the experimental setup used to evaluate the performance of each model.
The numerical results are provided in Section 5.3. The concluding remarks of this chap-
ter are presented in Section 5.4.

37

5

38
5. NUMERICAL RESULTS:

REAL-WORLD DATA

5.1. DATASETS

5.1.1. WEATHER DATA
The first dataset of real-life measurements comes from Ireland’s National Meteorologi-
cal Service, Met Éireann [40]. It consists of hourly measurements from N = 25 weather
stations across Ireland from the year 1850 till 2010. At each station, there are measure-
ments of F = 5 different features. The type of feature values measured at each station is
temperature, wet-bulb temperature, dew point, vapor, and relative humidity. The hourly
measurements of each feature at a specific station are shown in Figure 5.1. In the time
series, there is a clear seasonal trend visible. Due to missing data, we only consider the
samples measured in the last year, which results in T = 8760 hourly measurements.

1000 2000 3000 4000 5000 6000 7000 8000

Time(Hours)

0

10

20

30

T
em

pe
rt

ur
e(

°C
)

1000 2000 3000 4000 5000 6000 7000 8000

Time(Hours)

0

10

20

W
et

-b
ul

b
T

em
p.

(°
C

)

1000 2000 3000 4000 5000 6000 7000 8000

Time(Hours)

0

10

20

D
ew

po
in

t(
°C

)

1000 2000 3000 4000 5000 6000 7000 8000

Time(Hours)

5

10

15

20

V
ap

po
ur

1000 2000 3000 4000 5000 6000 7000 8000

Time(Hours)

40

60

80

100

R
el

. H
um

id
ity

Figure 5.1: Example of the five different time series measured at station number 13, located near Mace Head.

The station graph G is constructed using a 7−NN method based on the geographical
distances, and this graph is shown in Figure 5.2. As in [41, 19], the edge weights wi j are
defined by a Gaussian kernel weighting function

wi j =
{

exp
(
−d(i , j)2

d

)
, if (vi , v j) ∈ E

0 , otherwise
, (5.1)

where d(i , j) is the great-circle distance [42] between node vi and v j , d is the average
distance between all stations. The Laplacian matrix, normalized by its maximum eigen-
value, is used as GSO.

There is no prior information on how the features are physically related to each other,
but from the available data, these relationships can be learned. There are multiple pos-
sible ways to obtain a graph from measurement data, some common methods are given
in [35, 36]. We decided to use the Pearson correlation matrix, where the diagonal is set to
zero so there are no self-loops, as the adjacency matrix for the feature graph. This resem-

5.1. DATASETS

5

39

Figure 5.2: 7−NN Graph of the 25 weather stations present in the weather dataset.

bles a fully connected feature graph. As GSO of the feature graph, the graph Laplacian is
used, and again we normalize this by its maximum eigenvalue.

5.1.2. AIR-QUALITY DATA
The Air-quality dataset consists of hourly measurements of 6 types of air pollutants (PM2.5,
PM10, SO2, NO2, CO, O3) and 6 weather-related variables (temperature, pressure, dew
point, rain, wind direction, and wind speed), and are recorded by N = 12 air-quality
monitoring stations in and around Beijing [43, 44]. The data is recorded between the 1st
of March 2013 and 28 February 2017. Due to gaps in the recorded data, we only con-
sidered the data from index number 20912 until index number 30830, which results in
a set of T = 9918 hourly measurements. We don’t take the wind direction and rain into
account, so there are F = 10 features that we consider left. Figure 5.3 shows the consid-
ered data at a specific station. In the data, there are some clear seasonal trends visible,
especially in the temperature and pressure data.

The spatial graph of the air-quality monitoring stations is constructed according to
the 3−N N approach, which is discussed in the weather data section. The GSO is defined
as the graph Laplacian, which is normalized by its maximum eigenvalue.

To construct the feature graph, a similar method as described in the weather section
is used, i.e. we use the Pearson correlation matrix as the basis for the Adjacency ma-
trix. We only keep an edge between feature i and j if this edge weight belongs to the
four highest edge weights connected to feature i . Using this method we create a sparse
feature graph that only takes into account the connections that have the most influence
on each other. Further, there are no self-loops in the feature graph. As feature GSO the
graph Laplacian is used, which is also normalized by the largest eigenvalue.

5

40
5. NUMERICAL RESULTS:

REAL-WORLD DATA

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time(hours)

0

500

1000

P
M

2.
5

(u
g/

m
3)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time(hours)

0

500

1000

P
M

10
 (

ug
/m

3)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time(hours)

0

200

400

S
O

2
(u

g/
m

3)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time(hours)

0

100

200

N
O

2
(u

g/
m

3)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time(hours)

0

5000

10000

C
O

 (
ug

/m
3)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time(hours)

0

200

400

O
3

(u
g/

m
3)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time(hours)

0

20

40

T
E

M
P

 (
°C

)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time(hours)

1000

1050

P
R

E
S

 (
hP

a)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time(hours)

-40

-20

0

20

D
E

W
P

 (
°C

)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time(hours)

0

5

10

W
IN

D
 (

m
/s

)

Figure 5.3: The measurements of the 10 different time series, measured at station number 1, located at the
National Olympic Sports Center in Beijing.

5.2. EXPERIMENTAL SETUP
A Z-fold sliding window cross-validation setup is used to evaluate the models [45]. This
is done as it best fits the real-life scenario, where a model is fitted on data of the previous
day’s and is used in forecasting the next day’s. Further, this type of setup efficiently uses
the available data to make a robust evaluation [46, 47]. In the sliding window cross-
validation setup, the dataset is split into three parts, an in-sample, out-of-sample, and
left-out dataset. The in-sample data is first used to find the optimal hyperparameters
and secondly to estimate the filter coefficients. At every new fold, the in-sample and
out-of-sample parts slide over the dataset, as shown in Figure 5.4, creating Z in-sample
and out-of-sample datasets where the models can be trained and evaluated over. At each
fold, the in-sample and out-sample parts are shifted, so we evaluate and train on new
data.

Figure 5.4: Example of how the dataset is split with sliding window cross-validation, with 4 iterations.

Finally, to measure the prediction performance, the averaged prediction error over
the out-of-sample data of all Z-folds is taken. The error metric we take is the Root Nor-

5.3. NUMERICAL RESULTS

5

41

malized Mean Square Error (RNMSE). The RNMSE is computed by comparing the true
signals xt with the predicted signals x̃t :

RNMSE =
√√√√∑τ

t=1 ‖x̃t −xt‖2
2∑τ

t=1 ‖xt‖2
2

(5.2)

To evaluate the influence of the training size on the prediction performance, the
experiments are done with different amounts of samples in the in-sample dataset. To
make a fair comparison between the different amount of training sizes, the same out-of-
sample data for each segment is taken.

5.2.1. HYPERPARAMETERS
To find the optimal hyperparameters for each model, a grid search is performed [48]. The
in-sample data is split 70%/30% into a training and validation set. The models are fitted
on the training set with different values for the hyperparameters P , K and if applicable
L. Their performance is evaluated on the validation set. We took the following sets of
values into consideration: the number of previous signals P taken into account are P ∈
{1, ...,5}, the order of shifts K are K ∈ {0, ...,5} and the order of L are L ∈ {0, ...,3}. The
hyperparameters that yield the lowest RNMSE on the validation set are used to refit the
model on the in-sample data.

5.3. NUMERICAL RESULTS
We evaluate our proposed models, the MIMO G-VAR and the combined (G)PG-G-VAR
models, and compare their performance with the other discussed models, the (G)PG-
VAR, G-VAR, and the VAR model. The Cartesian graph product is considered as the prod-
uct graph type that models the relations between the station graph and the feature graph.

For all datasets, the number of in-sample data samples varied from 200 to 2000 in
steps of 200 samples, and the out-of-sample data consists of 168 hourly measurements,
i.e. one week of data. The amount of folds used is 20, and at every fold, all data is shifted
with the out-of-sample data size.

In this section only the errors of the models are reported. A visualization regarding
the predicted values versus the true values is shown in Appendix A.

WEATHER DATA

Figure 5.5 shows the RNMSE for each model for different amounts of in-sample data.
We see that all the graph-based models outperform the conventional VAR model, but
also that the VAR model’s prediction error decreases the most for more in-sample data.
One can expect that, with enough in-sample data, eventually, the VAR will outperform
the graph-based models. We further see that, contrary to the experiments done on syn-
thetic data, the MIMO G-VAR has the lowest prediction error in the case there are more
than 300 hourly measurements in the in-sample data. The PG-VAR has the worst per-
formance of the graph-based models. Also, the GPG-VAR model has slightly worse per-
formance than applying the G-VAR separately for each feature. As expected from the
results on synthetic data, the combined (G)PG-G-VAR models perform better than the
G-VAR model.

5

42
5. NUMERICAL RESULTS:

REAL-WORLD DATA

200 400 600 800 1000 1200 1400 1600 1800 2000

in-sample data

0.205

0.21

0.215

0.22

0.225

0.23

0.235

0.24

0.245

R
N

M
S

E
VAR
G-VAR
MIMO G-VAR
PG-VAR
GPG-VAR
PG-G-VAR
GPG-G-VAR

(a)

200 400 600 800 1000 1200 1400 1600 1800 2000

in-sample data

0.204

0.206

0.208

0.21

0.212

0.214

R
N

M
S

E

G-VAR
MIMO G-VAR
PG-VAR
GPG-VAR
PG-G-VAR
GPG-G-VAR

(b)

Figure 5.5: RNMSE of the different graph-based VAR models and the conventional VAR model versus the
amount of in-sample data. (b) Zoomed in version of (a), where the VAR model is left out.

We also evaluate the effect that jointly estimating the filter coefficients and feature
GSO, as described in Section 3.5, has on the prediction performance of the product
graph-based VAR models. We compare those models with both, the G-VAR and MIMO
G-VAR models.

In Figure 5.6 the results are depicted. These results clearly show that jointly estimat-
ing the filter coefficients and feature GSO improves the prediction performance. Still,
the MIMO G-VAR model has the best performance, but now only after the in-sample
data size becomes larger than 600 samples instead of 300 in the case of fixed GSO. The
PG-G-VAR and GPG-G-VAR are approaching the MIMO G-VAR the closest, and both per-
form better than the MIMO G-VAR for low amounts of in-sample data.

200 400 600 800 1000 1200 1400 1600 1800 2000

in-sample data

0.204

0.206

0.208

0.21

0.212

0.214

R
N

M
S

E

G-VAR
MIMO G-VAR
PG-VAR
GPG-VAR
PG-G-VAR
GPG-G-VAR

Figure 5.6: RNMSE versus the amount of in-sample data for the different graph-based models, where the fea-
ture graphs are jointly estimated with the graph filter coefficients.

5.3. NUMERICAL RESULTS

5

43

AIR-QUALITY DATA

The performance of the different models is shown in Figure 5.7. The VAR model is not
depicted in the results as this model did not lead to a stable predictor. We see similar
results as with the ’weather’ dataset. One significant difference is that GPG-VAR has a
bigger performance gap to the G-VAR model than in the ’weather’ data scenario, where
their performance was almost equal to each other. Another difference is that the perfor-
mance of all models, except the MIMO G-VAR, does not increase significantly for a larger
amount of in-sample data.

200 400 600 800 1000 1200 1400 1600 1800 2000

in-sample data

0.26

0.265

0.27

0.275

0.28

R
N

M
S

E

G-VAR
MIMO G-VAR
PG-VAR
GPG-VAR
PG-G-VAR
GPG-G-VAR

Figure 5.7: RNMSE versus the amount of in-sample data for the different graph-based models.

The performance of product graph-based models, where the feature GSO and filter
coefficients are jointly estimated, is shown in Figure 5.8. For comparison, the results of
the G-VAR and MIMO G-VAR models are also added. We now see that the performance of
the product graph-based models increases when there is more in-sample data available.
Only the GPG-VAR model does not improve for more than 400 in-sample data samples.
Further, we see that for less than 1100 in-sample the PG-G-VAR model and GPG-G-VAR
model outperform the MIMO G-VAR, and for more in-sample data their performances
are approximately equal.

In the last experiment, we studied the impact of constraining the support feature
GSO to be in the subset of the support of the initial given feature GSO. The used initial
feature GSO is defined by the k-NN feature graph, e.g., each feature is connected to k fea-
tures that are the most correlated to each other. In the previous experiments, the 4-NN
feature graph is used. This is compared with the 2-NN and 9-NN feature graph, wherein
the 9-NN case the graph is fully connected. The GSO of the 2-NN, 4-NN, and 9-NN fea-
ture graph have 100, 56, and 38 number of non-zero elements to estimate, respectively.
The influence that these constraints have on the performance is shown in Figure 5.9. We
see that the 9-NN graph eventually leads to a slightly better forecasting performance but
on low in-sample data, the 2-NN and 4-NN perform slightly better. This suggests that
connecting nodes that have the highest correlation adds the most important informa-
tion to the models.

5

44
5. NUMERICAL RESULTS:

REAL-WORLD DATA

200 400 600 800 1000 1200 1400 1600 1800 2000

in-sample data

0.26

0.265

0.27

0.275

0.28
R

N
M

S
E

G-VAR
MIMO G-VAR
PG-VAR
GPG-VAR
PG-G-VAR
GPG-G-VAR

Figure 5.8: RNMSE versus the amount of in-sample data for the different graph-based models, where the fea-
ture graphs are jointly estimated with the graph filter coefficients.

200 400 600 800 1000 1200 1400 1600 1800 2000

in-sample data

0.26

0.265

0.27

0.275

0.28

R
N

M
S

E

MIMO G-VAR
PG-G-VAR 2-nn S

f

PG-G-VAR 4-nn S
f

PG-G-VAR 9-nn S
f

(a)

200 400 600 800 1000 1200 1400 1600 1800 2000

in-sample data

0.26

0.265

0.27

0.275

0.28

R
N

M
S

E
MIMO G-VAR
GPG-G-VAR 2-nn S

f

GPG-G-VAR 4-nn S
f

GPG-G-VAR 9-nn S
f

(b)

Figure 5.9: RNMSE versus the amount of in-sample data: MIMO G-VAR compared with (a) the PG-G-VAR
model and (b) GPG-VAR-model, where the feature graphs are jointly estimated with the graph filter coeffi-
cients. The feature graphs are to constrained to the k-NN graph of the feature Pearson correlation matrix.

5.4. CONCLUSION
In this chapter, we investigated whether the proposed models improve the forecasting
performance over the state-of-the-art models on real-world datasets. We also evaluate
the effect that the amount of in-sample training data has on the performance. We see
that the VAR model needs many more in-sample data to come close to the performance
of the graph-based models, which could be due to the larger amount of parameters that
need to be fitted. However, we also see that performance increases the most for more in-
sample data, suggesting that the VAR model will eventually outperform the graph-based
models.

Further, we see that the PG-VAR is on both datasets unable to incorporate the rela-
tionship between features in such a way that it improves the prediction over the G-VAR
model. To a lesser degree, this also is the case for the GPG-VAR model, as even with an

5.4. CONCLUSION

5

45

estimated feature GSO the G-VAR has a similar performance on the air-quality data set.
Our proposed methods perform on both datasets better than the G-VAR model, suggest-
ing that they use the available information that captures the relations between features
in an effective way. However, the MIMO G-VAR model needs more in-sample data to
learn those relations.

All models that use a feature graph, show a clear performance improvement when
the feature GSO is estimated, which shows the effectiveness of our proposed estimating
method. Next, we see that even though we put constraints on the number of edges in the
feature graph, the combined models keep a similar performance as the MIMO G-VAR.
This suggests that those models could be more efficient in case there are many features.

Finally, we end this section with the remark that the graph-based models have shown
to be able to model processes on graphs that are non-stationary over time, as is shown
by the air-quality dataset.

6
CONCLUSION AND FUTURE WORK

In this concluding chapter, we look back at the carried out research of this thesis and
provide recommendations for future work. First, we provide a summary of the thesis in
Section 6.1. In Section 6.2, we then answer the research questions posed in the introduc-
tion. At last, we present in Section 6.3 suggestions for future work.

47

6

48 6. CONCLUSION AND FUTURE WORK

6.1. THESIS SUMMARY
In this thesis, we have investigated how we can model the evolution of time-varying
multi-dimensional network processes. This is done by experiments on both state-of-
the-art product graph-based VAR models and newly proposed models.

In Chapter 1, we introduced the topic of forecasting multi-dimensional network pro-
cesses, motivated the research, and stated the research questions that we want to an-
swer in this thesis. In Chapter 2, the theoretical background that forms the basis of the
research is given. We started with the fundamental basics of graph signal processing,
and from there on presented graph filtering, which is the main operation applied in the
G-VAR model. Next, multi-dimensional graph signals and state-of-the-art models that
incorporate the relationship between different features to improve forecasting were dis-
cussed.

In Chapter 3, we proposed three new models to forecast multi-dimensional graph
signals. The first model is the MIMO G-VAR model and does not take into account any
prior information on how the available features are related. Instead, the MIMO G-VAR
learns the dependencies between features. Further, we showed that the product graph-
based models can be quite restrictive. To overcome this issue the PG-G-VAR and GPG-
G-VAR models were proposed, which both combine a product graph-based VAR and the
G-VAR. We also provided methods to estimate the graph filter parameters and discussed
an iterative method to jointly estimate the feature GSO together with the graph filter
parameters.

Through extensive experiments, we have compared our proposed models with the
current state-of-the-art models on both synthetic and real-world data in Chapter 4 and
Chapter 5, respectively. The results of these experiments showed that our proposed
models perform better than the currently available state-of-the-art linear graph-based
models.

6.2. ANSWERS TO THE RESEARCH QUESTIONS
In this section, we provide answers based on the work presented in this thesis to the re-
search questions posed in the introduction.

RQ1: "How to incorporate the information between features of multi-dimensional graph
signals into a model to enhance their prediction?"

To answer this question, we first discussed state-of-the-art models in Section 2.3.3, which
incorporate the connection between features utilizing product graphs. A drawback of
these models is that they can be too restrictive to improve prediction. To improve on
these models, we introduced, in Chapter 3, three new models, which are extensions of
state-of-the-art models, to enhance their prediction performance. First, in Section 3.1
the MIMO G-VAR model is proposed, which predicts the following feature values as a lin-
ear combination of G-VAR models for each feature. This model has the most enhanced
degrees of freedom, thus giving the model more flexibility to approximate processes but
also having more parameters to estimate. Secondly, in Section 3.2 we proposed to com-
bine the G-VAR with a product graph-based VAR model into one model. These models

6.3. FUTURE WORK

6

49

use the G-VAR to forecast each feature separately and use the PG-VAR or GPG-VAR model
to add extra information contained by the feature GSO. The combined models are more
efficient than the MIMO G-VAR model, in case the amount of features is large and the
feature graph is sparse.

RQ2: "How to learn the model parameters that capture the influence between features
in multi-dimensional graph signal?"

This research question is addressed in the last two sections of Chapter 3. Here we first
provide two estimators to estimate the graph filter coefficients in the graph-based VAR
models, and secondly, we show an iterative method that learns the feature GSO. As the
MIMO G-VAR model only uses graph filter coefficients to incorporate the relationship
between features, only the LS estimators described in Section 3.4 are necessary to learn
those relationships. The other discussed models use the feature GSO to capture the in-
fluence between features. It is crucial to define a feature GSO that fits these models well
to enhance forecasting. Our proposed iterative method, described in Section 3.5, jointly
estimates the graph filter coefficients and feature GSO, and can thus be applied for that
purpose.

RQ3: "How well do the proposed architectures perform the task of forecasting multi-dimensional
graph processes?"

The last research question is addressed by the experiments performed in Chapters 4 and
5. In Chapter 4, the proposed models are evaluated on synthetic data and are compared
with state-of-the-art models. Those results showed us the importance of learning the
dependencies between features so it best suits the used model. In Chapter 5, we eval-
uated the prediction performance of our proposed models on two real-world datasets.
These experiments showed that all graph-based models outperform the VAR model on
the weather dataset and that on the air-quality dataset, the VAR model can’t estimate a
stable model, as some features are non-stationary. This emphasizes the advantage of
using the graph structure. On both datasets, the graph-based models showed similar
results. On the air-quality dataset, it is shown that PG-VAR and GPG-VAR models are
outperformed by the G-VAR model, which suggests those approaches are not suitable to
exploit the relation between features. Finally, we conclude with the observation that our
proposed models outperform the G-VAR model on both datasets. This suggests that they
are effective approaches in incorporating information between features to enhance the
forecasting of multi-dimensional graph signals.

6.3. FUTURE WORK

We conclude with a list of possible directions for future research that extends on the work
presented in this thesis:

6

50 6. CONCLUSION AND FUTURE WORK

• USING DIFFERENT INITIAL FEATURE GSOS

The estimation of the feature GSO with the joint graph filter and feature GSO method
is a non-convex problem. Therefore, it depends on the initial chosen feature GSO
if a global optimum or local optimum is found. In this thesis, there is only one ini-
tial feature GSO used, based on the correlation matrix. Methods to define a graph
based on data are proposed [35, 36], which can be used as a basis for initial fea-
ture GSOs. Another approach to finding suitable initial feature GSOs can be based
on the GSO candidate generation method [37], where the GSO candidates are it-
eratively generated according to available data on a model for an increasing graph
filter order K .

• CONSTRAINING THE ESTIMATION OF THE FEATURE GSO

In the minimization problem (3.27) to estimate the feature GSO there is one con-
straint, which is that the support of the estimated feature GSO is a subset of the
support of the initial feature GSO. This constraint has as many parameters to esti-
mate as there are non-zero elements in the initial feature GSO. For example, when
the initial feature GSO is the graph Laplacian the estimated feature GSO can rep-
resent an undirected graph with self-loops. Constraints could restrict the graph,
corresponding to the feature GSO, to be undirected or include no self-loops. Con-
straints for the feature GSO could be that it is defined as an adjacency matrix or
graph Laplacian.

• FEATURE VARIANT PRODUCT GRAPH FILTERS

Throughout this thesis, the graph filter defined in (2.10) is used as the basis of
all models. All nodes apply the same graph filter coefficient hk to the kth shifted
graph signal. This can thus be regarded as a node-invariant graph filter. A gener-
alized graph filter is proposed in [49], which is node-variant. This graph filter is
defined as

Hnv :=
K−1∑
k=0

diag(hk)Sk , (6.1)

where the hk ∈RN contains the node dependent graph filter coefficients.

We showed in Section 3.2 that the node-invariant product graph filter could be
restrictive when modeling multi-dimensional graph processes. Furthermore, the
number of nodes in a product graph between G and GF is F N , where we assume
that N À F . Therefore, one could consider a feature-variant product graph filter,
with more flexibility than the node-invariant product graph filter and still a limited
number of graph filter coefficients dependent on the number of features. This can
be defined for the Kronecker product graph as

Hfv :=
K−1∑
k=0

(
diag(hk)Sk

F

)
⊗Sk , (6.2)

where the hk ∈ RF contains the feature dependent graph filter coefficients. This
feature-variant product graph filter applies the same filter coefficient to each fea-
ture of a shifted multi-dimensional graph signal.

6.3. FUTURE WORK

6

51

• CONSTRAINED EDGE-FEATURE VARIANT PRODUCT GRAPH FILTERS

In [27], a constrained edge-variant graph filter is proposed, which is a generaliza-
tion of the node-variant graph filter. Each node in the constrained edge-variant
graph filter weights the K − 1 shifted graph signal differently for each neighbor.
This graph filter is defined as

Hc−ev :=
K∑

k=1
(Φk ¯S)Sk−1 +Φ0, (6.3)

whereΦk ∈RN×N is the matrix that contains the edge weights, which has the same
support as S, andΦ0 is a diagonal weight matrix.

When applying a product graph to model multi-dimensional graph processes, the
number of edges grows at least linearly with the number of edges in the feature
graph. To reduce the number of parameters in a constrained edge-variant product
graph filter, we propose to apply the edge-variant graph filter only to the feature
GSO. This results in a constrained edge-feature-variant product graph filter, which
is defined for the Kronecker product graph as

Hc−efv :=Φ0 ⊗ IN +
K∑

k=1

(
(Φk ¯SF)Sk−1

F ⊗Sk
)

, (6.4)

where now Φk ∈ RF×F is the matrix that contains the feature edge weights, which
has the same support as SF , and Φ0 is a diagonal weight matrix. The numeri-
cal experiments showed that estimating SF leads to increased forecasting perfor-
mance, but with the cost that a non-convex problem has to be solved. The con-
strained edge-feature-variant graph filter is linear with respect to the filter coeffi-
cients, which makes them easier to estimate, while also adding flexibility to put
weights on the edges of the feature graph.

• NON-LINEAR MULTI-DIMENSIONAL GRAPH MODELS

In this thesis, the research has only been focused on linear forecasting models.
Graph convolutional neural networks (GCNN) generalize convolutional neural net-
works to the graph domain [50, 9]. The GCNN framework can be used to extend
the discussed linear models to non-linear models. A graph perceptron can be seen
as the most basic form of a GCNN and applies an elementwise nonlinearity to a
filtered graph signal, i.e.,

y =σ (Hx) , (6.5)

where σ(·) is a non-linear activation function, such as ReLU or Softmax, and H ∈
RN×N is a matrix containing the graph filter.

Like the graph perceptron, one could extend the linear graph-based forecasting
models to non-linear models. This is done by applying the elementwise nonlin-
earity to each shifted graph signal in the graph-based VAR models. For example,
this means that the non-linear G-VAR model is expressed as

xt =
P∑

p=1
σ

(
K−1∑
k=0

hkp Sk xt−p

)
. (6.6)

6

52 6. CONCLUSION AND FUTURE WORK

Similarly, other graph-based VAR models can be transformed into non-linear mod-
els.

• EXTERNAL INPUTS

A more challenging problem would be the scenario where the evolution of a graph
process is also dependent on external inputs. For example, in a brain network,
where nodes represent electrodes that measure electroencephalography (EEG) sig-
nals, visual or sound effects could be used as external stimuli. If the model of how
the brain network behaves under specific external inputs is known, this can be
used to detect abnormalities in the brain.

BIBLIOGRAPHY

[1] Monson H. Hayes. Statistical digital signal processing and modeling. John Wiley
and Sons, 1996.

[2] Ireneusz Jabłoński. “Graph Signal Processing in Applications to Sensor Networks,
Smart Grids, and Smart Cities”. In: IEEE Sensors Journal 17.23 (2017), pp. 7659–
7666. DOI: 10.1109/JSEN.2017.2733767.

[3] YAO MA and JILIANG TANG. DEEP LEARNING ON GRAPHS. CAMBRIDGE UNIV
PRESS, 2021.

[4] Ali Dehghantanha. “Mining the Social Web: Data Mining Facebook, Twitter, LinkedIn,
Google+, Github, and More , by Matthew A. Russell”. In: Journal of Information
Privacy and Security 11 (Apr. 2015), pp. 137–138. DOI: 10.1080/15536548.2015.
1046287.

[5] Dmitri Goldenberg. “Social Network Analysis: From Graph Theory to Applications
with Python”. In: CoRR abs/2102.10014 (2021). arXiv: 2102.10014. URL: https:
//arxiv.org/abs/2102.10014.

[6] Ulrich Stelzl et al. “A Human Protein-Protein Interaction Network: A Resource for
Annotating the Proteome”. In: Cell 122.6 (2005), pp. 957–968. ISSN: 0092-8674. DOI:
https://doi.org/10.1016/j.cell.2005.08.029. URL: https://www.
sciencedirect.com/science/article/pii/S0092867405008664.

[7] Jean-François Rual et al. “Towards a proteome-scale map of the human protein–
protein interaction network”. In: Nature 437.7062 (2005), pp. 1173–1178.

[8] Abir De et al. Learning and Forecasting Opinion Dynamics in Social Networks.
2016. arXiv: 1506.05474 [cs.SI].

[9] Zonghan Wu et al. “A Comprehensive Survey on Graph Neural Networks”. In: IEEE
Transactions on Neural Networks and Learning Systems 32 (2019), pp. 4–24.

[10] Antonio Ortega et al. “Graph Signal Processing: Overview, Challenges, and Appli-
cations”. In: Proceedings of the IEEE 106 (May 2018), pp. 808–828. DOI: 10.1109/
JPROC.2018.2820126.

[11] Albert-László Barabási and Márton Pósfai. Network science. Cambridge University
Press, 2017.

[12] Aliaksei Sandryhaila and José M. F. Moura. “Discrete Signal Processing on Graphs”.
In: IEEE Transactions on Signal Processing 61.7 (2013), pp. 1644–1656. DOI: 10.
1109/TSP.2013.2238935.

[13] David Shuman et al. “The Emerging Field of Signal Processing on Graphs: Extend-
ing High-Dimensional Data Analysis to Networks and Other Irregular Domains”.
In: IEEE Signal Processing Magazine 30 (Oct. 2012). DOI: 10.1109/MSP.2012.
2235192.

53

https://doi.org/10.1109/JSEN.2017.2733767
https://doi.org/10.1080/15536548.2015.1046287
https://doi.org/10.1080/15536548.2015.1046287
https://arxiv.org/abs/2102.10014
https://arxiv.org/abs/2102.10014
https://arxiv.org/abs/2102.10014
https://doi.org/https://doi.org/10.1016/j.cell.2005.08.029
https://www.sciencedirect.com/science/article/pii/S0092867405008664
https://www.sciencedirect.com/science/article/pii/S0092867405008664
https://arxiv.org/abs/1506.05474
https://doi.org/10.1109/JPROC.2018.2820126
https://doi.org/10.1109/JPROC.2018.2820126
https://doi.org/10.1109/TSP.2013.2238935
https://doi.org/10.1109/TSP.2013.2238935
https://doi.org/10.1109/MSP.2012.2235192
https://doi.org/10.1109/MSP.2012.2235192

6

54 BIBLIOGRAPHY

[14] Siheng Chen et al. “Signal denoising on graphs via graph filtering”. In: 2014 IEEE
Global Conference on Signal and Information Processing (GlobalSIP) (2014). DOI:
10.1109/globalsip.2014.7032244.

[15] Elvin Isufi et al. “Observing and tracking bandlimited graph processes from sam-
pled measurements”. In: Signal Processing 177 (Aug. 2020), p. 107749. DOI: 10.
1016/j.sigpro.2020.107749.

[16] Andreas Loukas, Elvin Isufifi, and Nathanaël Perraudin. “Predicting the evolution
of stationary graph signals”. In: Oct. 2017, pp. 60–64. DOI: 10.1109/ACSSC.2017.
8335136.

[17] Daniel Romero, Vassilis Ioannidis, and G.B. Giannakis. “Kernel-based Reconstruc-
tion of Space-time Functions on Dynamic Graphs”. In: IEEE Journal of Selected
Topics in Signal Processing PP (Dec. 2016). DOI: 10.1109/JSTSP.2017.2726976.

[18] Paolo Di Lorenzo et al. “Adaptive Graph Signal Processing: Algorithms and Opti-
mal Sampling Strategies”. In: IEEE Transactions on Signal Processing 66.13 (2018),
pp. 3584–3598. DOI: 10.1109/TSP.2018.2835384.

[19] Elvin Isufi et al. “Forecasting Time Series With VARMA Recursions on Graphs”.
In: IEEE Transactions on Signal Processing 67.18 (2019), pp. 4870–4885. DOI: 10.
1109/TSP.2019.2929930.

[20] Aliaksei Sandryhaila and Jose M.F. Moura. “Big Data Analysis with Signal Process-
ing on Graphs: Representation and processing of massive data sets with irregular
structure”. In: IEEE Signal Processing Magazine 31.5 (2014), pp. 80–90. DOI: 10.
1109/MSP.2014.2329213.

[21] Alberto Natali, Elvin Isufi, and Geert Leus. “Forecasting Multi-Dimensional Pro-
cesses Over Graphs”. In: ICASSP 2020 - 2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). 2020, pp. 5575–5579. DOI: 10.
1109/ICASSP40776.2020.9053522.

[22] Chung Fan R K. Spectral graph theory. Published for the Conference Board of the
Mathematical Sciences by the American Mathematical Society, cc1997, 1997.

[23] Markus Puschel and JosÉ M. F. Moura. “Algebraic Signal Processing Theory: Foun-
dation and 1-D Time”. In: IEEE Transactions on Signal Processing 56.8 (2008), pp. 3572–
3585. DOI: 10.1109/TSP.2008.925261.

[24] Adnan Gavili and Xiao-Ping Zhang. “On the Shift Operator, Graph Frequency, and
Optimal Filtering in Graph Signal Processing”. In: IEEE Transactions on Signal Pro-
cessing 65.23 (2017), pp. 6303–6318. DOI: 10.1109/TSP.2017.2752689.

[25] Aliaksei Sandryhaila and José M. F. Moura. “Discrete Signal Processing on Graphs:
Frequency Analysis”. In: IEEE Transactions on Signal Processing 62.12 (2014), pp. 3042–
3054. DOI: 10.1109/TSP.2014.2321121.

[26] Ljubisa Stankovic et al. “Understanding the Basis of Graph Signal Processing via
an Intuitive Example-Driven Approach [Lecture Notes]”. In: IEEE Signal Processing
Magazine 36.6 (2019), pp. 133–145. DOI: 10.1109/MSP.2019.2929832.

https://doi.org/10.1109/globalsip.2014.7032244
https://doi.org/10.1016/j.sigpro.2020.107749
https://doi.org/10.1016/j.sigpro.2020.107749
https://doi.org/10.1109/ACSSC.2017.8335136
https://doi.org/10.1109/ACSSC.2017.8335136
https://doi.org/10.1109/JSTSP.2017.2726976
https://doi.org/10.1109/TSP.2018.2835384
https://doi.org/10.1109/TSP.2019.2929930
https://doi.org/10.1109/TSP.2019.2929930
https://doi.org/10.1109/MSP.2014.2329213
https://doi.org/10.1109/MSP.2014.2329213
https://doi.org/10.1109/ICASSP40776.2020.9053522
https://doi.org/10.1109/ICASSP40776.2020.9053522
https://doi.org/10.1109/TSP.2008.925261
https://doi.org/10.1109/TSP.2017.2752689
https://doi.org/10.1109/TSP.2014.2321121
https://doi.org/10.1109/MSP.2019.2929832

BIBLIOGRAPHY

6

55

[27] E. Isufi. “Graph-time signal processing: Filtering and sampling strategies”. PhD
thesis. 2019. DOI: https://doi.org/10.4233/uuid:e52cc182-457c-4687-
baee-d0f72af36950.

[28] Fernando Gama et al. “MIMO Graph Filters for Convolutional Neural Networks”.
In: 2018 IEEE 19th International Workshop on Signal Processing Advances in Wire-
less Communications (SPAWC). 2018, pp. 1–5. DOI: 10.1109/SPAWC.2018.8445934.

[29] Richard Hammack, Wilfried Imrich, and Sand Klavžar. “Handbook of Product Graphs”.
In: (Jan. 2011).

[30] Ljubisa Stankovic, Milos Dakovic, and Ervin Sejdic. “Introduction to Graph Sig-
nal Processing”. In: Jan. 2019, pp. 3–108. ISBN: 978-3-030-03573-0. DOI: 10.1007/
978-3-030-03574-7_1.

[31] Helmut Lütkepohl. New introduction to multiple time series analysis. Springer,
2005.

[32] Peter J. Brockwell and Richard A. Davis. Introduction to time series and forecasting.
Springer, 2016.

[33] Eric Zivot and Jiahui Wang. Modeling financial time series with S-PLUS. Springer,
2006.

[34] Jonathan Mei and Jose Moura. “Signal Processing on Graphs: Causal Modeling of
Unstructured Data”. In: IEEE Transactions on Signal Processing PP (Dec. 2016),
pp. 1–1. DOI: 10.1109/TSP.2016.2634543.

[35] Gonzalo Mateos et al. “Connecting the Dots: Identifying Network Structure via
Graph Signal Processing”. In: (Oct. 2018).

[36] Xiaowen Dong et al. “Learning Graphs From Data: A Signal Representation Per-
spective”. In: IEEE Signal Processing Magazine 36 (May 2019), pp. 44–63. DOI: 10.
1109/MSP.2018.2887284.

[37] Alberto Natali, Mario Coutino, and Geert Leus. “Topology-Aware Joint Graph Filter
and Edge Weight Identification for Network Processes”. In: (July 2020).

[38] Nathanaël Perraudin et al. “GSPBOX: A toolbox for signal processing on graphs”.
In: ArXiv e-prints (Aug. 2014). arXiv: 1408.5781 [cs.IT].

[39] “Vector Autoregressive Models for Multivariate Time Series”. In: Modeling Finan-
cial Time Series with S-PLUS®. New York, NY: Springer New York, 2006, pp. 385–
429. ISBN: 978-0-387-32348-0. DOI: 10.1007/978- 0- 387- 32348- 0_11. URL:
https://doi.org/10.1007/978-0-387-32348-0_11.

[40] RAINFALL TIME SERIES FROM 1850-2010 FOR IRELAND. URL: https://www.
met . ie / climate / available - data / long - term - data - sets. (accessed:
30.06.2021).

[41] Marcelo Spelta and Wallace Martins. “Online Temperature Estimation using Graph
Signals”. In: Sept. 2018. DOI: 10.14209/sbrt.2018.164.

[42] Carl Carter. “Great circle distances”. In: SiRF White Paper (2002).

https://doi.org/https://doi.org/10.4233/uuid:e52cc182-457c-4687-baee-d0f72af36950
https://doi.org/https://doi.org/10.4233/uuid:e52cc182-457c-4687-baee-d0f72af36950
https://doi.org/10.1109/SPAWC.2018.8445934
https://doi.org/10.1007/978-3-030-03574-7_1
https://doi.org/10.1007/978-3-030-03574-7_1
https://doi.org/10.1109/TSP.2016.2634543
https://doi.org/10.1109/MSP.2018.2887284
https://doi.org/10.1109/MSP.2018.2887284
https://arxiv.org/abs/1408.5781
https://doi.org/10.1007/978-0-387-32348-0_11
https://doi.org/10.1007/978-0-387-32348-0_11
https://www.met.ie/climate/available-data/long-term-data-sets
https://www.met.ie/climate/available-data/long-term-data-sets
https://doi.org/10.14209/sbrt.2018.164

56 BIBLIOGRAPHY

[43] Shuyi Zhang et al. “Cautionary tales on air-quality improvement in Beijing”. In:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sci-
ences 473 (2017).

[44] Dheeru Dua and Casey Graff. UCI Machine Learning Repository. 2017. URL: https:
/ / archive . ics . uci . edu / ml / datasets / Beijing + Multi - Site + Air -
Quality+Data.

[45] Vitor Cerqueira, Luís Torgo, and Igor Mozetič. “Evaluating time series forecast-
ing models: an empirical study on performance estimation methods”. In: Machine
Learning 109 (Nov. 2020), pp. 1–32. DOI: 10.1007/s10994-020-05910-7.

[46] Christoph Bergmeir, Rob Hyndman, and Bonsoo Koo. “A note on the validity of
cross-validation for evaluating autoregressive time series prediction”. In: Compu-
tational Statistics Data Analysis 120 (Nov. 2017). DOI: 10.1016/j.csda.2017.
11.003.

[47] Christoph Bergmeir and José Benítez. “On the use of cross-validation for time se-
ries predictor evaluation”. In: Information Sciences 191 (May 2012), pp. 192–213.
DOI: 10.1016/j.ins.2011.12.028.

[48] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning. Springer Series in Statistics. New York, NY, USA: Springer New York Inc.,
2001.

[49] Santiago Segarra, Antonio G. Marques, and Alejandro Ribeiro. “Optimal Graph-
Filter Design and Applications to Distributed Linear Network Operators”. In: IEEE
Transactions on Signal Processing 65.15 (Aug. 2017), pp. 4117–4131. ISSN: 1941-
0476. DOI: 10.1109/TSP.2017.2703660.

[50] Fernando Gama et al. “Graphs, Convolutions, and Neural Networks: From Graph
Filters to Graph Neural Networks”. In: IEEE Signal Processing Magazine 37.6 (Nov.
2020), pp. 128–138. ISSN: 1558-0792. DOI: 10.1109/msp.2020.3016143. URL:
http://dx.doi.org/10.1109/MSP.2020.3016143.

https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
https://doi.org/10.1007/s10994-020-05910-7
https://doi.org/10.1016/j.csda.2017.11.003
https://doi.org/10.1016/j.csda.2017.11.003
https://doi.org/10.1016/j.ins.2011.12.028
https://doi.org/10.1109/TSP.2017.2703660
https://doi.org/10.1109/msp.2020.3016143
http://dx.doi.org/10.1109/MSP.2020.3016143

A
REAL-WORLD DATA:
SUPPLEMENTARY MATERIAL

57

A

58
A. REAL-WORLD DATA:

SUPPLEMENTARY MATERIAL

In Section 5.3, we showed the prediction error of the discussed forecasting models
on two real-world datasets. To illustrate how these error values relate to the forecasting
capability, the predicted values are plotted against the ground truth values.

For the Air-quality dataset, this is depicted in Figure A.1 and A.2, for the PG-VAR and
MIMO G-VAR models, respectively. In Table A.1, the RNMSE is shown for the plotted
models. The predictions of the VAR, PG-VAR, and MIMO G-VAR models on the weather
dataset are presented in Figure A.3 and A.4. In Table A.2, the RNMSE is shown for the
plotted models. In both tables the RNMSE for the 1-lagged signal is included, i.e., the
values of previous time steps are taken as predicted values.

1-lagged PG-VAR MIMO G-VAR
RNMSE 0.3722 0.3623 0.3318

Table A.1: Prediction errors of the Air-quality dataset at 1st fold and for 1325 number of in-sample data samples

1-lagged VAR PG-VAR MIMO G-VAR
RNMSE 0.2520 0.2466 0.2189 0.2132

Table A.2: Prediction errors of the Wheather dataset at 1st fold and for 1325 number of in-sample data samples

A

59

0
20

40
60

80
100

120
140

160
180

-1 0 1

PM2.5 (ug/m3)

T
rue signal

P
G

-V
A

R

0
20

40
60

80
100

120
140

160
180

-1 0 1

PM10 (ug/m3)

T
rue signal

P
G

-V
A

R

0
20

40
60

80
100

120
140

160
180

-1 0 1

SO2 (ug/m3)

T
rue signal

P
G

-V
A

R

0
20

40
60

80
100

120
140

160
180

0 1 2NO2 (ug/m3)

T
rue signal

P
G

-V
A

R

0
20

40
60

80
100

120
140

160
180

-0.5 0

0.5 1

CO (ug/m3)

T
rue signal

P
G

-V
A

R

0
20

40
60

80
100

120
140

160
180

-1

-0.5 0

O3 (ug/m3)

T
rue signal

P
G

-V
A

R

0
20

40
60

80
100

120
140

160
180

-0.5 0

0.5

TEMP (°C)

T
rue signal

P
G

-V
A

R

0
20

40
60

80
100

120
140

160
180

0

0.5 1

PRES (hPa)

T
rue signal

P
G

-V
A

R

0
20

40
60

80
100

120
140

160
180

-0.5 0

0.5

DEWP (°C)

T
rue signal

P
G

-V
A

R

0
20

40
60

80
100

120
140

160
180

-2 0 2

WIND (m/s)

T
rue signal

P
G

-V
A

R

F
igu

re
A

.1:
P

red
ictio

n
valu

es
o

f
th

e
P

G
-V

A
R

m
o

d
el

o
n

th
e

A
ir-q

u
ality

d
ataset

at
th

e
1st

fo
ld

an
d

fo
r

1325
n

u
m

b
er

o
f

in
-sam

p
le

d
ata

sam
p

les.
D

ata
is

fro
m

statio
n

n
u

m
b

er
1,lo

cated
atth

e
N

atio
n

alO
lym

p
ic

Sp
o

rts
C

en
ter

in
B

eijin
g.

A

60
A. REAL-WORLD DATA:

SUPPLEMENTARY MATERIAL

0
20

40
60

80
100

120
140

160
180

-1 0 1
PM2.5 (ug/m3)

T
rue signal

M
IM

O
 G

-V
A

R

0
20

40
60

80
100

120
140

160
180

-1 0 1

PM10 (ug/m3)

T
rue signal

M
IM

O
 G

-V
A

R

0
20

40
60

80
100

120
140

160
180

-1 0 1

SO2 (ug/m3)

T
rue signal

M
IM

O
 G

-V
A

R

0
20

40
60

80
100

120
140

160
180

0 1 2NO2 (ug/m3)

T
rue signal

M
IM

O
 G

-V
A

R

0
20

40
60

80
100

120
140

160
180

-0.5 0

0.5 1

CO (ug/m3)

T
rue signal

M
IM

O
 G

-V
A

R

0
20

40
60

80
100

120
140

160
180

-1

-0.5 0

O3 (ug/m3)

T
rue signal

M
IM

O
 G

-V
A

R

0
20

40
60

80
100

120
140

160
180

-0.5 0

0.5

TEMP (°C)

T
rue signal

M
IM

O
 G

-V
A

R

0
20

40
60

80
100

120
140

160
180

0

0.5 1

PRES (hPa)

T
rue signal

M
IM

O
 G

-V
A

R

0
20

40
60

80
100

120
140

160
180

-0.5 0

0.5

DEWP (°C)

T
rue signal

M
IM

O
 G

-V
A

R

0
20

40
60

80
100

120
140

160
180

-2 0 2

WIND (m/s)

T
rue signal

M
IM

O
 G

-V
A

R

F
igu

re
A

.2:P
red

ictio
n

valu
es

o
fth

e
M

IM
O

G
-V

A
R

m
o

d
elo

n
th

e
A

ir-q
u

ality
d

atasetatth
e

1stfo
ld

an
d

fo
r

1325
n

u
m

b
er

o
fin

-sam
p

le
d

ata
sam

p
les.D

ata
is

fro
m

statio
n

n
u

m
b

er
1,lo

cated
atth

e
N

atio
n

alO
lym

p
ic

Sp
o

rts
C

en
ter

in
B

eijin
g.

A

61

0
20

40
60

80
100

120
140

160
180

T
im

e(hours)

0

0.5 1

1.5

Temperture(°C)

T
rue signal

P
G

-V
A

R
V

A
R

0
20

40
60

80
100

120
140

160
180

T
im

e(hours)

0 1 2Wet-bulb Temp.(°C)

T
rue signal

P
G

-V
A

R
V

A
R

0
20

40
60

80
100

120
140

160
180

T
im

e(hours)

0 1 2Dewpoint(°C)

T
rue signal

P
G

-V
A

R
V

A
R

0
20

40
60

80
100

120
140

160
180

T
im

e(hours)

0 1 2Vappour

T
rue signal

P
G

-V
A

R
V

A
R

0
20

40
60

80
100

120
140

160
180

T
im

e(hours)

-2 0 2

Rel. Humidity

T
rue signal

P
G

-V
A

R
V

A
R

F
igu

re
A

.3:P
red

ictio
n

valu
es

o
fth

e
V

A
R

an
d

P
G

-V
A

R
m

o
d

elo
n

th
e

w
eath

er
d

ataset
at

th
e

1st
fo

ld
an

d
fo

r
875

n
u

m
b

er
o

fin
-sam

p
le

d
ata

sam
p

les.D
ata

is
fro

m
statio

n
n

u
m

b
er

13,lo
cated

n
ear

M
ace

H
ead

,Irelan
d

A

62
A. REAL-WORLD DATA:

SUPPLEMENTARY MATERIAL

0
20

40
60

80
100

120
140

160
180

T
im

e(hours)

0

0.5 1

1.5
Temperture(°C)

T
rue signal

M
IM

O
 G

-V
A

R

0
20

40
60

80
100

120
140

160
180

T
im

e(hours)

0 1 2Wet-bulb Temp.(°C)

T
rue signal

M
IM

O
 G

-V
A

R

0
20

40
60

80
100

120
140

160
180

T
im

e(hours)

0 1 2Dewpoint(°C)

T
rue signal

M
IM

O
 G

-V
A

R

0
20

40
60

80
100

120
140

160
180

T
im

e(hours)

0 1 2Vappour

T
rue signal

M
IM

O
 G

-V
A

R

0
20

40
60

80
100

120
140

160
180

T
im

e(hours)

-2 0 2

Rel. Humidity

T
rue signal

M
IM

O
 G

-V
A

R

F
igu

re
A

.4:P
red

ictio
n

valu
es

o
fth

e
M

IM
O

G
-V

A
R

m
o

d
elo

n
th

e
A

ir-q
u

ality
d

ataset
at

th
e

1st
fo

ld
an

d
fo

r
875

n
u

m
b

er
o

fin
-sam

p
le

d
ata

sam
p

les.
D

ata
is

fro
m

statio
n

n
u

m
b

er
13,lo

cated
n

ear
M

ace
H

ead
,Irelan

d

	Abstract
	Acknowledgements
	Abbreviations
	Introduction
	Background
	Graph Signal Processing
	Graphs
	Signals on graphs
	Graph Shift Operator
	Graph Fourier Transform
	Graph Signal Filtering: Spectral-domain
	Graph Signal Filtering: vertex domain

	Multi-Dimensional Graph signal processing
	Multi-Dimensional Graphs Signals
	MIMO Graph Filter
	Product Graphs
	Product Graph filter

	Forecasting Models
	VAR
	Graph-VAR
	Product graph-based VAR

	Graph-VAR Models
	MIMO G-VAR model
	Combined (G)PG-VAR and G-VAR model
	Overview of graph-based VAR models
	Graph Filter Estimation
	Multivariate Least Squares Estimator
	Yule-Walker Least Squares Estimator

	Joint estimation of graph filter coefficients and feature graph

	Numerical Results: Synthetic Data
	Synthetic Data Generation
	Numerical Results
	Estimators
	(G)PG-VAR
	parametric product graph VAR
	Jointly estimating the feature GSO
	Combined G-VAR and (G)PG-VAR
	Jointly estimating the feature GSO: Combined G-VAR and (G)PG-VAR

	Conclusion

	Numerical Results: Real-World Data
	datasets
	Weather Data
	Air-Quality Data

	Experimental Setup
	Hyperparameters

	Numerical Results
	conclusion

	Conclusion and Future Work
	Thesis Summary
	Answers to the research questions
	Future Work

	Real-World Data:Supplementary Material

