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1. Voor het succesvol ruisfilteren van beeldsequenties, zowel gemeten
in termen van verbetering van signaal-ruisverhouding als op ba-
sis van visuele waardering, is een lokaal signaal-adapterend filter
noodzakelijk.

Dit proefschrift, Hoofdstuk 2, 8 en 5.

2. Zelfs bij het gebruik van bewegingscompensatie dient men robuuste
filtertechnieken toe te passen.

Dit proefschrift, Hoofdstuk 3 en 5.

3. De veronderstelling dat objectheweging ruis maskeert is onjuist.
Dit proefschrift, Hoofdstuk 2 en 5.

4. In tegenstelling tot wat algemeen wordt aangenomen, zijn de
kansdichtheid van Gauss en de kansdichtheid van Laplace beide
gelijk aan de normale verdeling.

“Probability and random processes”, W.B. Davenport jr., Mec-
Graw Hill, 1970, pg. 125.

T

Publicaties op het gebied van beeldsequentieverwerking zullen bij
voorkeur in multi-mediale vorm uitgebracht moeten worden.



. Elk lokaal signaal-adapterend filter maakt gebruik van ordening.

. Wat azijnzuur is voor een koffiezetautomaat, is ascorbinezuur

voor het bloedvatenstelsel.

. De invoering van loodvrije benzine zonder het verplicht gebruik

van een katalysator leidt in combinatie met Hollandse zuinigheid
tot een verhoogde kans op leukemie.

Het rijden van een goed onderhouden klassieke automobiel is niet
milieu-onvriendelijk.

Meer dan twee kleppen per cylinder verhoogt de onbetrouwbaarheid.

Montage is in de praktijk niet het omgekeerde van demontage.
“Ford Mustang IT workshop manual”, J.H. Haynes en M.S Daniels,
Haynes publications, 1982, pg. 150.

“Chilton’s repair € tune-up guide; Mustang & Cougar 1965-737,
Chilton Book Company, 1991, pg. 60.

“Ford Capri II S.P. workshop manual”, Murray Book Company,
1978, pg. 80.
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Preface

This thesis reports on the results of the research in the field of noise-filtering of
image sequences as carried out in the Information Theory Group at Delft University
of Technology, the Netherlands, from 1990 to 1994. The work started out as a
Chartered Designer’s project which was successfully completed in January 1992.
After that, it was continued as a Ph.D. research project.

Investigations into noise-filtering of image sequences seriously took off in the early
80s. The Information Theory Group has been active in this field of research since
the second half of the 80s. Part of the work has been carried out in collaboration
with the Digital Signal and Image Processing Laboratory at the Technological
Institute of Northwestern University, Robert R. McCormick School of Engineering
and Applied Science, Illinois, USA. The work has resulted in a number of (joint)
publications.
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Summary

Image sequences are digital recordings of time-varying 3D phenomena. Often,
the sequences are corrupted by noise, introduced by the image sensor and therefore
inherently present in the imaging process. This noise can be reduced to improve the
visual appreciation and the results of subsequent processing tasks. The reduction
is performed by noise-filtering algorithms.

The 3D image-sequence signals have two spatial coordinates, indexing the spatial
plane, and one coordinate in time, indexing the temporal direction. In video sig-
nals, the signals in the spatial plane and the signals in the temporal direction have
different properties. As these properties concern the predictability and homogene-
ity of the signal, they are of importance for noise filtering. In the spatial plane
the signal comprises image data, and is non-stationary. In the temporal direction
two situations can occur. First, in an inactive part of the sequence the temporal
signals are quite homogeneous and therefore particularly suited for noise filtering.
Second, in an active part of the sequence moving objects and texture are passed,
making the temporal signal highly non-stationary. At most, parts of this signal
have a homogeneous character.

As non-stationarities in temporal signals are often due to object motion, a possible
avoidance is achieved by compensating the sequence for motion. This comprises
estimating the motion and indexing the signal along the motion trajectory. The
resulting “motion-compensated” noise filtering is the subject of Chapter 3. In prac-
tice, motion-compensated noise filtering benefits from the increased homogeneity
in the temporal direction. However, motion estimation is usually not perfect, due
to the noise in the observation and the incompleteness of the motion models used.
Because of this imperfectness, it can be used as a sensible first strategy, but (also
because not all non-stationarities are caused by motion) non-stationarities are still
encountered along the motion-compensated temporal trajectory. To decrease the
influence of noise on the motion estimate we have used a recursive-search block
matcher, extended with a novel noise-insensitive criterion function based on third-
order statistics. With this modification, the motion estimation is reliable even with
severe noise.

xiii



Xiv Summary

The lack of a definite homogeneous signal path in the image sequence, both spa-
tial and temporal, dictates the use of signal-adaptive filtering algorithms. Several
adaptive filtering algorithms have been proposed in literature, such as filters that
switch-off the filtering action in non-stationary regions, order-statistic filters, and
filtering algorithms that perform a segmentation step prior to filtering. Both tem-
poral and spatio-temporal data windows are used for filtering. Overall, filters with
a spatio-temporal data window achieve a higher noise suppression because of the
increased amount of data. However, this higher suppression is achieved with more
computational effort. Chapter 2 of this thesis gives an overview of noise-filtering
algorithms.

In Chapter 4 we propose a novel adaptive spatio-temporal filtering approach based
on ideas from non-stationary time-series processing, namely trend-removal and
normalization prior to filtering. This algorithm uses the conception that a non-
stationary observed signal can be decomposed into two parts, namely, a non-
stationary part, consisting of the trend and the scale factor for normalization, and
a part consisting of the normalized signal. The noise, assumed to be stationary, is
entirely mapped into the normalized signal. This means that only the normalized
signal has to be filtered, which is a relatively easy task as it can be reasonably
performed by simple noise-smoothing filters.

As the trend corresponds to local mean and the scale factor for normalization cor-
responds to local deviation, estimates of these local statistics are necessary for the
signal decomposition. We develop adaptive estimators that use statistical proper-
ties of ordered observations. The ordered observations can be matched, using linear
regression, to ordered values from a given normalized distribution. The optimal
regression parameters are estimates of the local mean and deviation. By includ-
ing temporal recursion, the normalized distribution is adapted to slowly changing
statistics within the image sequence.

A popular adaptive noise filter is the Linear Local Minimum Mean Square Error
(LLMMSE) filter that uses estimates of the local statistics to adapt the transfer
function to local signal properties. This filter is a member of the class of switching
filters which switch-off filtering in the case of non-stationary situations to avoid
smoothing (moving) objects. In the case of homogeneous situations, they have
full noise suppression power. In Chapter 5 we propose the novel combination of
the LLMMSE filter with order statistics based estimators for estimating the filter’s
parameters, namely the local mean and deviation.

In the LLMMSE filter, the estimates of the local statistics have a direct influence on
the filter output. This demands a high estimation accuracy when outlying obser-
vations, non-stationarities, are present in the data. To guarantee this we consider
robust estimation techniques that detect and remove outlying observations from
the estimation process. We have proposed two techniques. First, an iterative tech-
nique involving robust regression, where detection and estimation are performed



Summary XV

simultaneously. Second, a separate a-priori test for outlying observations, where
the detected outliers are ignored in the estimation process. This test is efficient be-
cause it is performed on ranges instead of on individual observations. In addition,
the decision efficiency is consistent for all data-window sizes.

Usually, the observation noise is assumed to be additive and signal independent
which is valid in many practical situations. However, in some practical situa-
tions, the observation noise is signal dependent. This means that filters that are
based on the independence assumption will give sub-optimal results, or even fail.
We have devised new filtering algorithms in Chapter 6 for two applications where
signal dependent noise is encountered. The first application is clinical X-ray im-
age sequences, where as a result of lowering the radiation dosage, the images are
quantum limited. The quantum-limited imaging process inherently suffers from
signal-dependent noise with a Poisson-shape probability density function. Using
the properties of order statistics we propose a dedicated estimator in combination
with outlier rejection. The second application is gamma-corrected video signals,
where because of the non-linear gamma-correction stage, the observation noise has
signal-dependent statistics. For this application we derive an order-statistic filter
with fixed coefficients. This new filter uses higher-order order statistics for opti-
mal estimation of the gamma-corrected original intensity. In combination with the
separate test for ranges, outliers in the data are detected and removed prior to
filtering.
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Chapter 1

Introduction to image sequence
noise filtering

Image sequences are consecutive digital recordings of a time-varying 3D scene [1].
Image sequences are dealt with in a number of applications, for instance in broad-
cast, video-phone, tele-conferencing systems [2], satellite observation or surveillance
systems, and clinical radiology [3, 4]. Often, image sequences are corrupted by some
amount of noise. This can be caused by imperfections of the scanner, or even be in-
herent to the image-formation process itself. Usually, the various corrupting noise
sources are lumped to one additive entity. In this way, the noisy, observed image
sequence g(i, j, k) can be expressed by the following observation model:

g(i’j;k):f(i¢j7k)+n(i’jvk)v (1'1)

where f(i,7, k) denotes the original signal and n(z, j, k) the noise. The indices 3, j
reflect the vertical and horizontal, or spatial indices, and k is the temporal index
or frame number (see Figure 1.1).

In most situations, we will assume that the additive noise is zero-mean, white,
independent of f(%, 4, k) and Gaussian distributed with constant variance. We will
restrict ourselves to sequences containing gray-value images that are available in a
non-interlaced or progressive form [5].

The amount of corruption by the noise is expressed by the Signal-to-Noise Ratio
(SNR) defined as:

SNR. = 101og;q (original signal variance)

(noise variance) (dB). (1.2)

Because of amplitude quantization, the SNR is limited to about 40 to 50dB for
practical data quantized in 256 levels.
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FIGURE 1.1: IMAGE SEQUENCES ARE CONSECUTIVE DIGITAL RECORDINGS OF A TIME-VARYING
SCENE

To improve visual appreciation and to facilitate subsequent coding or analysis, the
noise can be reduced by noise filtering [6, 7, 8]. This filtering is the topic of this
thesis.

1.1 Image sequence noise filtering

Of importance to noise filtering is the fact that in image sequences two kinds of
approaches to the same signal with different properties can be distinguished. These
sub-signals are the spatial and temporal signals and their properties influence the
choices for filter support and filter structure.

The spatial properties of images (k fixed) are widely known from image processing
literature [9]. [t was found that typical spatial information is non-stationary {10, 11,
12]. At best, the spatial signal consists of multiple wide-sense stationary regions.
For this reason it is required to use adaptive processing when dealing with spatial
signals

Temporal signals are obtained if we consider f(i, 7, k) for a fixed spatial position
(2, 7), indicated by f(k). Two situations can be distinguished with respect to the
properties of f(k): f(k) can originate from an inactive part or from an active part
of the sequence.

In an inactive part of the sequence, where no object motion or scene changes occur,
the temporal signals are wide-sense stationary and highly correlated. Figure 1.2
gives an example of such a signal. Inactive parts of the sequence are encountered,
for instance, in a static background region.
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FIGURE 1.2: THE DIFFERENCES BETWEEN SIGNALS FROM ACTIVE AND INACTIVE REGIONS ARE
CLEARLY RECOGNIZABLE

In an active part of the sequence, the temporal signal is non-stationary because
moving objects introduce intensity transitions or temporal edges. At most, the
temporal signal is wide-sense stationary in a short time window. Figure 1.2 also
gives an example of a temporal signal from an active part of a sequence.

From the above we can conclude that the main problem connected with noise
filtering of image sequences is how to deal with spatio-temporal non-stationary
signals. One way of dealing with temporal edges caused by object motion is to
filter the sequence along the motion trajectory. This is called motion compensation
and involves motion estimation. However, motion compensation is never perfect in
practical sequences [8, 13, 14]. Therefore, this thesis is directed towards the design
of adaptive spatio-temporal filter structures that can be applied with or without
motion compensation.

Most noise filters estimate the original intensity f(i,7,k) from the observations
g(i, 7, k) within a spatio-temporal window that is associated with the filter support.
This support has a finite spatio-temporal extent and contains noisy observations
g(%, 7, k) and/or previous filtering results 7 (4,7, k) in case of recursive filters. We
can distinguish the filtering methods by their supports.

Purely spatial methods where the images are filtered separately have been inves-
tigated extensively in the field of image filtering [9, 12, 15]. A drawback of this
approach is that the strong temporal correlation in image sequences is not used.
In addition, temporally inconsistent results may be obtained, causing annoying
artifacts. An advantage is that additional motion blurring is avoided. Although
purely spatial methods for image sequence filtering will be often used in hardware
implementations, they are hardly reported in scientific literature. We will not deal
with spatial methods in this thesis. The emphasis will be on filtering approaches
that combine spatial and temporal data.
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Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7

A survey Motion- Decomposition 0S- Applications Conclusions
of compensated ..and supported . to and topics
filter filtering filtering noise signal- for further
structures i filtering depéndent research

noise

general methods OS supported methods

FIGURE 1.3: A SCHEMATIC OVERVIEW OF THE CONTENTS OF THIS THESIS

1.2 OQutline of the thesis

This thesis is roughly organized into two groups of chapters (see Figure 1.3). In the
first group, Chapters 2 and 3, we will revisit image sequence filtering methods and
classify them according to their structure. In the second group, Chapters 4, 5 and
6 we present a new direction in image-sequence filtering: using filter techniques
involving order statistics.

In Chapter 2 filter structures are investigated. This chapter contains a classification
and a concise overview of most of the filtering methods that were published. It
shows the importance of filter structure for the final filtering result. To stress the
importance of the filter structure, we will not yet consider motion compensation.
In this light we discuss the use of classical filter techniques, weighed-averaging
filters, order-statistic filters, (recursive) switching filters, decomposition methods
and Bayesian approaches. This chapter concludes with an experimental evaluation
of some representative filters.

Chapter 3 deals with the use of motion-compensation in image sequence filtering.
We discuss the technique of compensating temporal signals and some of the pop-
ular motion-estimation algorithms that are exploited. As motion estimation has
to be performed on the noisy observations, various ways to decrease the noise sen-
sitivity of motion estimators are discussed. Here, we also discuss noise-filtering
techniques that simultaneously estimate motion and original intensity from the
noisy observations. Again, an experimental investigation is presented of several
motion-compensated filtering methods.

Chapter 4 investigates the use of trend removal and normalization to decompose
the observation into a non-stationary part and a wide-sense stationary part. It
appears that only the wide-sense stationary part has to be filtered, which requires
only relatively simple filters. For trend removal and normalization, estimates of the
local statistics (local mean and deviance) are necessary. Adaptive estimators using
ordered observations, also known as Order-Statistics (OS) estimators, are derived
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for this purpose. Chapter 4 is concluded with an experimental evaluation of this
novel decomposition method.

In Chapter 5 we address the combination of the OS estimators with the popular
Linear Local Minimum Mean Square Error (LLMMSE) filter which uses estimates
of the local statistics. Usually, this filter employs simple box-average estimators
for local mean and deviance which cause sub-optimal results in the case of non-
stationary situations. We increase the performance of the LLMMSE filter by sup-
plying accurate estimates of the statistics even in the case of severely non-stationary
observations. To this end, we improve the OS estimators by selecting homogeneous
parts of the spatio-temporal estimator support and using the appropriate part for
estimation. Employing the properties of ordered statistics, we have devised two
methods to perform this selection. First, an iterative method where the selection
and estimation are performed simultaneously. Second, a method where the selec-
tion is performed in a preprocessing step. Chapter 5 closes with an experimental
evaluation of the OS-supported LLMMSE filter.

In Chapter 6 we consider two applications of the techniques derived in Chapters
4 and 5 to situations where the noise is signal-dependent. As a first application
we look at quantum-limited image sequences that arise in clinical radiology. In
these systems, the image intensity is reflected by a (low) number of photons per
pixel. Inherent to this image formation process, quantum noise is introduced which
has statistics that are related to the intensity of the image source. We propose
the use of a dedicated OS estimator for these sequences. The second applica-
tion is the reduction of noise originating from the electronics in video cameras.
The gamma-correction stage within the camera causes the observed noise to be
signal-dependent. Novel robust OS filters, employing higher-order ordered statis-
tics are proposed. Both methods are experimentally evaluated using synthetically
corrupted data and practical data.

Chapter 7 summarizes the conclusions reached in the thesis. Also, some suggestions
for future research in the area of image-sequence noise filtering are given.

Appendix A considers the stochastic properties of order statistics. It is included to
support the material of Chapters 4, 5 and 6, which deals mainly with applications
of order-statistic estimators to image-sequence filtering.
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Chapter 2

A survey of filter structures

2.1 Introduction

In this chapter, we consider the basic filter structures that have been used within
the field of research on image-sequence noise filtering during the past decade. The
main objective is to analyze the different “flows of interests” and categorize them
accordingly. We look at and compare the most well-known methods including some
proposed by the author which will be investigated more thoroughly in later chap-
ters. The material in this chapter is presented in literature in [16, 17].

The signals of image sequences are highly non-stationary because of spatial and
temporal edges. Because the temporal edges are caused by object motion, motion
compensation is an obvious part of the filtering scheme. However, motion estima-
tion and compensation are far from perfect because of observation noise and incom-
pleteness of the motion model {14, 18, 19]. In addition, non-stationarities are also
caused by changes of scene and lighting condition. As a result, motion-compensated
temporal signals can still contain non-stationarities. The spatial signals, being im-
age data, are in general also non-stationary. This leads to the conclusion that
any filter, whether using motion compensation or not, will have to manage non-
stationary signals. The way in which the filter performs this action, is reflected in
the filter structure. For this reason, this chapter focusses on filter structures and
in particular on how signal adaptation is included in this structure.

The following classes of filters are described: Section 2.2 deals with filter structures
using weighed averaging. In most examples, the weights of these Finite Impulse
Response (FIR) filters are adapted to the signal. In Section 2.3 weighed-averaging
filters that order the data according to magnitude prior to filtering are considered.
These order-statistic filters are edge preserving and are therefore very suited for

7
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image (sequence) processing. In Section 2.4 filters are described that adapt by
switching off filtering if non-stationarities are detected. They are mostly Infinite
Impulse Response (IIR) filters. In Section 2.5 we describe a method that uses trend
removal and normalization in order to create a wide-sense stationary signal that
can be filtered by a simple filter. In Section 2.6 we deal with Bayesian estimation
methods. Here, a local criterion function is optimized by an iterative procedure.

In Section 2.7 the performances of several of the more popular noise filters are
compared by noise filtering of synthetically degraded image sequences.

2.2 Weighed averaging

A weighed-averaging filter well known for its use in noise filtering of time-series
and images, is the Wiener filter [9, 20, 21]. As a logical extension, this filter was
used for noise filtering and de-blurring of image sequences by Ozkan et al. [22] and
Erdem et al. [23]. The Wiener filter for noise filtering is given by:

f=R;R;+ R.)g, (2.1)

where }' and g are the estimated and observed image sequences, respectively, writ-
ten down as lexicographically ordered vectors. R; and R, are the correlation
matrices of the original signal and noise, respectively.

There are four major disadvantages involved in this approach. First, the require-
ment that the 3D auto-correlation function for the original sequence has to be
known a-priori. Second, the 3D stationarity assumption. This assumption is detri-
mental to the performance of the 3D Wiener filter. A third disadvantage is the
huge number of calculations, which are performed in the frequency domain. This
also severely limits the number of frames used in this off-line method. A fourth
disadvantage is that in practical motion-compensated schemes only compensation
for global translational motion can be incorporated, using the shifting properties
of the Fourier transform [23].

The Wiener filter from (2.1) usually involves a global image sequence operation,
i.e. all data is required to obtain a single element of the estimated sequence f. Far
more attractive are filters that perform local weighing in a restricted filter support:

f(i’ja k) = Z wp,q,l(i’jv k)g(l - p:j - 4q, k— l)v (22)

PgIES

where S is the filter support and wy,q,(¢, j, k) are the filter weights. The sum of
the filter weights has to be unity in order to have an estimate which is free of bias.
In a spatio-temporal filter, S is a three-dimensional support. A typical support is:
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FIGURE 2.1: SOME EXAMPLES OF SPATIO-TEMPORAL FILTER SUPPORTS. THE DARK PIXELS
IN THESE EXAMPLES ARE ACTIVE IN THE FILTER SUPPORT. FROM LEFT TO RIGHT, THE FIG-
URE CONTAINS A TEMPORAL SUPPORT COMPRISING THREE FRAMES, A TEMPORAL SUPPORT
COMPRISING FIVE FRAMES, A “SIX-NEAREST-NEIGHBORS” SPATIO-TEMPORAL SUPPORT AND A
CUBIC SPATIO-TEMPORAL SUPPORT.

S=[pe-1,0,1;g€ —-1,0,1;1 € —1,0,1]. For a temporal filter with p=¢ =0, a
typical support is S =[p = ¢ = 0;1 € —2,-1,0,1,2]. Some examples of temporal
and spatio-temporal filter supports are shown in Figure 2.1. Note that the temporal
extent determines the number of frame memories.

The differences between the various filters that can be described by (2.2) are at-
tributed to the way in which the weights are established. In the simplest form, the
filters have fixed weights with values that are globally optimal in a least-squares
sense to estimate a constant value or a signal with known correlation immersed
in noise. The resultant filters are then constrained versions of the original Wiener
filter. In a more advanced form, the weights are adapted for each pixel on the basis
of a segmentation procedure or least-squares minimization.

If all weights are given equal values within a temporal support, the filter results
in a temporal averaging operator. A disadvantage of this filter is that it severely
smoothes moving objects as reported by Huang and Hsu [6]. However, in non-
moving areas such as the background, it is strongly noise suppressive. Temporal
averaging was also investigated by Boyce [24].

Kalivas and Sawchuck [25] avoided smoothing of maving objects by the averag-
ing filter by first using a segmentation step to classify objects and background.
The support of the averaging filter was then restricted according to the shape
of these objects. Effectively, this means a local adaptation consisting of zeroing
the corresponding weights if the filter crosses a boundary. Temporal and spatio-
temporal supports were considered. Although temporal blurring was avoided in
both the temporal and spatio-temporal variants, the interior of the objects was
over-smoothed by the spatio-temporal variants.
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The contour plot method by Dekker et al. [26] is a method that assigns continuous
values to the weights wy o (%, §, k). It is based upon the same principle as the method
of Kalivas and Sawchuck [25], namely to avoid filtering across object boundaries.
The main feature of the method is the algorithm to check whether pixels belong
to the same object or not. This is done by attaching an “altitude function” to the
paths from the current pixel to all other pixels within the spatio-temporal support.
The value of this altitude a,q,(%, j, ¥) measures the minimal effort of “climbing”
from g(i, 5, k) to g(1 — p,j — ¢, k — [) along path :

@pqu(ir j k) = min Ufg(é, 7, k), 9(e = p.j — 4. k — 1)} (2.3)

where II is a limited set of “no-return” paths from (¢, j, k) to (i—p,j—¢,k~1{). The
positive climbing effort U {}is found by considering the output of an edge detector.
Note that if two pixel values are equal but do not belong to the same object, the
effort U{} is high and they are not regarded similar.

The conversion from altitude a, (%, j, k) to the filter weights wy g,(3, j, k) is done
by means of the following function:

c
wp‘q,l(i,j, k‘) = :G—W 6 < 0, o < 0, (24)
«

where c is for normalizing purposes and ¢ and 3 are tuning constants. The results
obtained by the contour plot method are good for sequences that are corrupted with
a light to moderate level of noise. A too severe level of noise causes a degradation
in the performance of the edge detector, which in turn will effect the quality of the
filtered sequence [26].

The adaptive weighed-averaging filter by Ozkan et al. [8, 27] also adapts the weights
locally. The weights of the spatio-temporal filter are as follows:

.. c
Upau(hs 3, k) = 1+ aMAX(e2, (9(s,5,k) — g(i = p, 7 — g, k = 1))?)’

(2.5)

where ¢ is a normalizing constant, and « and € are tuning parameters. It can
be seen that if the absolute difference of the intensities between the current pixel
9(i, j, k) and another pixel g(i — p, j — ¢,k — [) is less than ¢, the pixel is included
in the averaging. The value of the parameter € depends on the noise variance.

The parameter « is a penalty parameter controlling how rapidly the weights should
reduce as a function of the mismatch between pixel values. If o = 0 the filter de-
grades to the temporal average; if « is large, then 1 + a€® ~ ae’ and the filter
performs averaging only over the matching temporal values. Ozkan et al. have in-
vestigated temporal [27] and spatio-temporal [8] supports in a motion-compensated
context, and showed that the filter performs well for several values of v. A practical
choice turned out to be a = 1.
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The weight vector w, containing the weights, can also be assigned values that
minimize the mean square estimation error. This is the class of constrained, i.e.
limited support, Wiener filters. The values of the weights are first established by
evaluating the statistical properties of the entire signal path. In a second pass these
weights are used for filtering, thus making constrained Wiener filtering an off-line
technique.

The following criterion function is used to find the globally optimal weights:
w — min E{f(i,j,k) = f(i, 5, k)}". (2.6)

Note that to solve (2.6), stochastic information about the original signal and noise
is needed. A temporal filter of this form was investigated by Kleihorst et al. [28].

Equation (2.6) can be extended by incorporating quadratic terms which are able
to more closely model non-stationary signals. The temporal version of this filter,
known as a Volterra filter, looks like [29]:

Fli,3,k) =Y wigli, g, k=) + 3 buag(i g k — Dgliy g,k —t).  (2.7)

les Ltes

The weight vectors w and b are also found by minimizing the mean square error
as in Equation (2.6). To this end, up to 4%-order statistics of the original signal
and noise are necessary. Chan and Sullivan [30] proposed to use the Volterra
filter for filtering clinical sequences in a spatio-temporal form following a motion-
compensation step.

2.3 Order-statistic filters

Order-Statistic (OS) filters are variants of weighed-averaging filters. The distinc-
tion is that in OS filters the data is ordered before being used in the weighed
averaging. Because of the ordering operation, correlation and time information are
ignored in favor of magnitude information. The ordering action makes it possible
to perform a very basic signal segmentation. Pixels belonging to the same object
are usually automatically grouped. OS filters such as median filters are known
for their edge-preserving properties [31] and are therefore often proposed for filter-
ing the non-stationary image sequences. The linear OS filters have the following
general structure:
m
f(iaja k) - Zwr(i)jv k)g(,)(z,j, k)a (28)
r=1
where g((4, j, k) are the ordered observations (ranks) from an observation window
of odd size m centered at position (4, 7, k). The filter weights are w(i, 5, k), where
wy(4, 7, k) is the filter weight connected with rank 7 within the observation window.
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The OS filters used in image-sequence filtering are mostly median filters. They
range from the simple temporal median to multilevel median filters that can be
designed to preserve certain image features. In later chapters we will consider

other OS filters.

An early attempt to apply OS filters to the problem of image-sequence filtering
was the straightforward temporal median filter proposed by Huang and Hsu [6]
and by Nagvi et al. [32]. In this method, only the center weight wm (2,7, k) has
a non-zero value, and the resulting filter is: ’

This filter has the advantage that it can be implemented in hardware if m is not
too large [33, 34]. A disadvantage of the temporal median filter is that temporal
“impulses”, originating from moving thin structures are removed if their temporal
support is less than half of the filter support [19, 35]. This causes artifacts which
are called “edge busyness”. Examples of such artifacts are shown in Figure 2.4 in
the lower part of the right image, which was filtered with a temporal median filter.
Parts of the moving characters and even entire characters are removed. The effect
is even worse when seen in real-time video.

The artifacts of the temporal median filter can be avoided by the use of concate-
nated median filters, each with carefully designed spatio-temporal supports. Arce
[36] and Alp and Neuvo [37] proposed methods which are based on multi-stage and
multi-level spatio-temporal median filters, respectively.

A multi-stage median filter (MMF) is a method that combines the output of basic
OS filters operating at the first stage of a cascaded filtering structure. The basic
OS filters are designed to preserve specific features, such as lines, edges and object
corners in a certain direction. By incorporating several sub-filters, basic image fea-
tures in different orientations can be preserved. The type of feature to be preserved
determines the subclass of the MMF. If the feature spans a 1D spatio-temporal line
segment, a unidirectional support is employed. If the feature spans two line seg-
ments, each in orthogonal directions (for instance one in space, the other in time),
a bidirectional support is employed.

Arce [36] considered two variants of the first stage. First a set of unidirectional
median filters and second a set of bidirectional median filters (see Figure 2.2). The
results of those sets of medians are used in the final stage. The final result is defined
as the median value of the minimum and the maximum found in the first stage and
the center pixel value.

f(i,4, k) = median{max(first stage), g(i, 5, k), min(first stage)}. (2.10)

Using bidirectional medians in the first stage resulted in a higher noise suppression.
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FIGURE 2.2: THE MMF SPATIO-TEMPORAL SUB-WINDOWS DESIGNED BY ARCE [36]
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FIGURE 2.3: THE PLANAR MULTI-LEVEL MEDIAN FILTER FROM ALP AND NEUVO [37]; THE
ORIENTATION OF BIDIRECTIONAL MEDIAN FILTERS ON THE LEFT AND THE OVERALL STRUCTURE
ON THE RIGHT

Kokaram and Rayner [38] experimented with a motion-compensated version of
Arce’s filter. Their aim was the removal of impulsive noise and they noted that
a global operation of the filter would also distort image features. Therefore, they
only applied the filter if impulse noise was detected in the current pixel. They
concluded that their algorithm improved the result of Arce’s, both in terms of
quality of output and operation speed.

Alp and Neuvo [37] proposed the use of a multi-level median filter for the reduction
of Gaussian noise. This filter will be described with the aid of Figure 2.3. Three
5-tap median filters operate on different planes in the 3D cube. A fourth median
filter (3 taps) combines the outputs of the planar filters into a single result. This
filter outperformed Arce’s multistage filter in noise suppression [37].

Lee et al. [39] reported the use of the spatio-temporal median filters of Alp and
Neuvo [37] in a motion-compensated environment. Their aim was to postprocess
video sequences suffering from coding artifacts such as the “mosquito phenomenon”
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FIGURE 2.4: THE LOWER HALF OF THE IMAGE ON THE LEFT IS PROCESSED WITH A RECURSIVE
FILTER WITH A GLOBAL CONTROL PARAMETER. THE “COMET TAIL” EFFECTS ARE CLEARLY
VISIBLE WITH THE MOVING CHARACTERS. THE LOWER HALF OF THE RIGHT IMAGE IS PRO-
CESSED WITH A TEMPORAL MEDIAN FILTER. THE FILTER REMOVES CERTAIN MOVING LINE
STRUCTURES. IN VIDEO, THE EFFECT IS IRREGULAR, HENCE ITS NAME “EDGE BUSYNESS”.

with inter-frame motion-compensated coding and the “blocking effect” with DCT-
based schemes. The authors claim better results than Alp in dynamic scenes and
comparable results in static scenes.

2.4 Switching filters

The Kalman filter is a popular choice for noise filtering time-series and images
[40, 41]. For image sequences, a Kalman filter was considered by Cano and Bernard
[42]. Their proposed 3D Kalman filter is given by:

85,3, F) = Ss(i, 4, k) + K (i, j, k) [G(i, 5, k) — S(i. 4, k)], (2.11)

where S,(4,7,k) is the 3D global state vector of intensity values containing the
current estimate after updating and Sb(i, J, k) the state vector before updating.
G(i,j,k) is a vector containing the current observation and K(3, j, k) is the 3D
Kalman gain which is calculated for each pixel.

Cano and Benard avoided the processing burden of a full Kalman filter by sepa-
rating the filter in a temporal and spatial part and regarding signal and noise as
stationary signals. Their results indicate that the 3D Kalman filter can suppress
the visibility of additive noise. However, the assumption of stationarity resulted in
the introduction of unacceptable artifacts.
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FIGURE 2.5: AMONG THE NONLINEAR APPROACHES WITHOUT MOTION COMPENSATION THIS
RECURSIVE SIGNAL-ADAPTIVE FILTER IS OFTEN USED. THE CURRENT RESULT IS STORED IN
THE DELAY D, AND IS USED IN THE NEXT RECURSION PASS. THE ACTUAL DIFFERENCES IN
IMPLEMENTATION ARE IN THE CONTROL PARAMETER C.

Woods and Kim [43] avoided the computational burden associated with (2.11) by
utilizing a “reduced update” Kalman filter which included motion compensation.
Overall, despite actions to relieve the computational effort, it appears that the cal-
culation of the Kalman gain and the state transitions for each pixel is considerable.

The following simplified Kalman-like structure is computationally more efficient,
and was therefore substantially exploited [7, 44, 45, 46, 47, 48]:

fa(iajv k) = fb(i’j: k) + C(ivjv k)[g(i7j> k) - fb(izjv k)] (2'12)

Here fb(z', J, k) is the estimate “before updating” and fa(i, J, k) the final estimate
“after updating”. The estimate before updating is often chosen as [7, 44, 45, 47]:

fb(ivja k) :fa(i7jak_ 1)7 (213)

which implies a recursion in the temporal direction. This is a great advantage
compared to the weighed-averaging filters, as it requires only 1 frame memory. The
relatively simple structure of the filter is illustrated in Figure 2.5. By adapting the
value of control parameter C(¢, j, k), it is possible to instantaneously “switch off”
or “switch on” the filter. For instance, if C(i, j, k) = 1 the observation g(%, j, k)
is forwarded; however, if C(4,7,k) = 0 then the corresponding estimate in the
previous frame is forwarded. Any value between these extremes can be used. An
advantage of the switching filter is that the response of the filter can be changed
by varying a single parameter. A disadvantage of this type of adaptation is that
the noise is not reduced when C(i,5,k) = 1.

The actual differences between the several proposals based on Equation (2.12) lie
in the choice of the control parameter C(i, 7, k). They range from fixed, discrete
values to continuous values which are for instance found by locally minimizing the
mean square estimation error.

The simplest case is to fix C(4, 7, k) globally to a constant value. Dennis [49] reports
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of an experiment with C = 0.25. The long step-response of this filter, however,
causes distortion of moving objects in the sequence. The resulting visual effect is
called the “comet-tail” effect and is visible in Figure 2.4.

A large difference between the current observation and the previous filter output
is usually due to motion or scene changes. This difference can be used for locally
adapting C (4,7, k). In this case, the value of C(3, j, k) depends on the “prediction
error” e(i,j, k) = ¢(s,7,k) — fb(i, 4,k). This causes the filter response to adapt
instantaneously to the characteristics of the signal. In this light, McMann [44]
used the following approach:

oo J0af e(d g k)| <
C(””“)—{ 1 i le(i g k)| > T (2.14)

where 7 is an appropriately chosen threshold which depends on the noise deviance.

A finer adaptation is used by Dubois and Sabri [7], Reinen [50] and Dubois [47],
who used the following double threshold function for the control parameter:

o if e(i,5,k)| < 3;
Ci,j,k) = { =2le(i, 4, k)| — 10a+3 if 3 < le(i,j, k)| < 10; (2.15)
1 if |e(s, 5, k)| > 10.

Practical values for o are 0.1 - - - 0.2. The filter was used in combination with motion
compensation [7, 47]. Reinen [50], also used a 2" order variant of this filter for
application to clinical image sequences.

A continuous adaptation of the control parameter was suggested by Crawford [45]:
. . k ‘7
Cli,j, k) =1—exp {E(z,_:,_)l} , (2.16)

where 7 and 7 are tuning constants. Again, 2" order variants of the filter were
proposed.

The recursive filter from (2.12) can be improved by using a priori information of
the image sequence model, for instance in a Kak filter. Motivated by its earlier
success in image and speech processing, the Kak filter was investigated in a 3D
variant by Triplicane [51] and Katsaggelos et al. [52]. The 3D Kak filter assumes
a 3D AR model for the original signal:

f(i,j,k) = Z a(p,q,l)f(i—p,j—q,k—l)+v(i,j,k). (217)

P lEA

Here, (i, 5, k) is a white, signal-independent driving noise and a(p, g, r) are the
fixed model coefficients. The order of the model is determined by its support A.



2.4. Switching filters 17

The effect of the image model on the filter (2.12) manifests itself in the estimate
before updating:

fb(i7j’k) = Z a(psQaT)fa(i"pvj_q)k_T)' (218)

P.g,rES

Note the similarity with the update equation (2.13) discussed earlier if a(0,0,1) =1
and all other model coefficients are zero. Triplicane [51] and Katsaggelos et al. [52]
used a fixed control parameter C(3, 7, k), the value of which was optimal in mean
square estimation-error sense, given the image models and the noise statistics.

Katsaggelos et al. [53] also considered concatenated unidirectional Kak filters. In
this method, the final estimate is given by:

i, k) = pof (i, .k = 1) + CR)(F5(, 5. k) = pef (B, b = 1)), (2.19)
where:

£33, k) = puf (5,5 = 1, k) + CG)(fi(G, 3, k) = p3 £ (5,5 = 1K), (2.20)
and:

fili 3, k) = puf(i = 1,5, k) + CG)gli, 4, k) = pif (i = 1,5,K))- (2.21)

Here, C(3),C(j) and C(k) are the horizontal, vertical and temporal control pa-
rameters, respectively, and py, p, and p; are the horizontal, vertical and temporal
correlation coeflicients.

Non-adaptive and an adaptive versions of this filter have been proposed in [53]. In
the non-adaptive version, the correlation coefficients and global control parameters
were globally fixed to optimal values. As this tends to blur spatio-temporal edges,
an adaptive version was designed. In this version, the correlation coefficients and
control parameters are controlled by spatio-temporal edge detectors.

A relatively popular filter structure arises when the “before update” estimate is
replaced by an estimate of the local mean of the observation [46, 48]:

Folis 3 k) = fig(i, 5, K). (2.22)

Note that by this choice, the filter structure is not longer recursive. It will be
shown in Chapter 5 that the optimal Minimum Mean Square Error (MMSE) control
parameter for (2.22) is:

C(i,j, k) =1—62/62(i, 4, k). (2.23)

With the use of this control parameter, estimates of the noise variance o2 and the
local variance of g(i, j, k), denoted by Ug(i, 7, k), have to be established. The combi-
nation of (2.12), (2.22) and (2.23) is called the “Local Linear MMSE” (LLMMSE)
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filter. It is used in combination with motion compensation by Sezan et al. [46].
They used temporal “box averages” for &3(2’, J,y k) and fi,(4, 4, k), which are inac-
curate if the “box” crosses object boundaries. The effect is that the estimate of
local variance is too high which causes the control parameter to switch off filtering,
yielding sharp but noisy spatio-temporal edges.

Martinez and Lim [54] tried to avoid this undesirable effect in the LLMMSE filter
by performing an implicit form of motion estimation and compensation. They
estimated 63(2’, J, k) and fi,(2, j, k) by “box averages” from unidirectional windows
which were directed to mimic certain motion trajectories of the current pixel. They
distinguished between no-motion and four types of possible motion: left, right, up,
and down translation.

The filtering was performed for each direction in a concatenated way. In case of
operating in a stationary part of the sequence, all 5 filters contribute to the final
result, giving a maximum spatio-temporal span. If the concatenated filter crosses
moving objects, the estimator which is oriented along the motion trajectory will
provide the final result, as its window has the correct estimate for a;(i, J k) and
all other filters are switched off by their respective control parameters.

Kleihorst et al. [48, 55] used robust estimators based on order statistics to avoid the
inaccuracy at object boundaries of “box averages”. Both non motion-compensated
spatio-temporal estimators [48] and motion-compensated recursive spatio-temporal
estimators [55] were considered. These LLMMSE filters will be the subject of
discussion in Chapter 5.

2.5 Signal decomposition

A classical way to handle the filtering of non-stationary signals is to decompose
the signal into a non-stationary and a homogeneous part by trend-removal and
normalization. If the noise is a stationary signal it is entirely mapped into the
homogeneous part. Any linear noise filter can then be used for the filtering this
part.

Signal decomposition involves the estimation of local signal statistics. Kleihorst et
al. [28] and Katsaggelos et al. [53] have used adaptive order-statistic based esti-
mators to estimate the local mean 1,(3, j, k) and local deviation o,(i, j, k) from the
observed signal. With the estimated values of these statistics, the non-stationary
signal can be decomposed into a non-stationary part consisting of fi,(7, 5, k) and
4(t, 4, k) and a homogeneous part y(i, j, k):

(i)j7 k) - ﬂg(ivja k)
Go(i 5, k)

y(i, 5, k) = 2 (2.24)
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If we denote the actual noise filtering operation by F{}, the result of the decom-
position method can be written as follows:

(2.25)

Fad ) = fii R) + oyt ) P { 202D —Plb 2D

G(is 5, )

Note the similarity of the overall structure with the switching filters from the
previous section.

Kleihorst et al. [14] and Katsaggelos et al. [53] used a simple, causal weighed-
averaging filter for noise filtering of y(3, j, k):

F{y(iu?” k)} = Z w0,0.l(ivjw k)y(i7j7 k— l) (226)
les

The components of the weight vector w(%, j, k) are found by recursively minimizing
the cumulative square error:

w(i,j,k) <  min {E Xt (y (3, d,p) — F{y(, j,p)})g}a (2.27)

Wik | oz

where the updating is performed along the temporal direction, and A serves as a
forgetting factor [56]. The reason for using the cumulative updating including the
forgetting factor, is to adapt to the auto-correlation of y(3, j, k). Although this
signal is homogeneous, it does not necessarily have a fixed auto-correlation.

This approach was investigated using temporal [28, 53] and spatio-temporal esti-
mators [19] for estimating the local statistics. The decomposition method, and in
particular the estimation method, are investigated more thoroughly in Chapter 4.

2.6 Bayesian approaches

A number of methods were proposed for filtering image sequences that are based
upon the maximization of a likelihood function. More formally:

Fi,0,k) — max plg(iJ, B)|f' (5,5, k)} (2:28)
The estimator obtained in this way finds the most probable original image that has
caused the observed signal. Maximum likelihood or Bayesian approaches are often
applied in image restoration and identification [12, 15] and motion estimation [18].
Likelihood methods strongly depend on stochastic observation and noise models.
This is in contrast with many of the previous methods, where it was tacitly assumed
that the noise was Gaussian.
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By using edge-dependent weighing in the criterion function, Bayesian approaches
are able to handle non-stationary signals. Because of the complexity of the likeli-
hood function, maximization of (2.28) is usually performed by iterative procedures.

Hong and Brzakovic [57] have investigated a probabilistic approach by modeling
image sequences as Markov Random Fields (MRF) [12]. The specific problem they
were trying to solve was:

Flk) — max p{flg(k), F(k — 1)}, (2.29)

where g(k) and f(k) denote the observed and estimated frame k. Using Bayes’
theory and the Markov Random Field (MRF) property (the current pixel only
depends on neighboring pixels), (2.29) can be written for pixel values instead of
full frames as:

fi,5,k) « Jax, p{9(i, 5, k)| f'(i, 5, k)} p{ f'(i, j, k)| neighboring pixels}.
(2.,
(2.30)
Assuming that the additive noise is white and Gaussian, the first part of (2.30) can
be written as:

~(glir, k) — /65,3, k>>2} L (23

ploli.d RT3, 0) = = oo 507

Using the properties of MRFs, the second part in (2.30) can be written as a “Gibbs”
distribution [58]:

1 N
p{f’(i,j, k)‘ neighboring pixels} = ;exp {_U{f,(l,], k)’ f('l,], k— 1)}} . (232)
Here, & is a normalizing constant and U{} is an “energy function”.

The actual estimate is found by solving Equation (2.30). Hong and Brzakovic [57]
solved this likelihood function iteratively with the “Iterated Conditional Modes”
(ICM) approach.

Geman and McClure [59] discuss an approach based on regularized minimization
of the following, more general criterion function:

i, k) Pr aU{f'(i,5,k)} + V{f'(i, 5. k), 93,5, k), 9(i. 5, k — 1)} (2.33)

It involves two terms of which the relative levels of importance are weighed by a.
The functional U{f(i, 7, k)} incorporates the image model and assigns high values
to undesirable estimated images. In effect, it compromises a function that penalizes
large 2™ order derivatives.

The functional V{f'(s, 7, k), g(z,7,k). g(¢, 5,k — 1)} incorporates the observation
model. It denotes the relation between the candidate estimate and the observed
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TABLE 2.1: SUMMARY OF THE FILTERS IMPLEMENTED FROM THIS CHAPTER

Filter Equation Reference | Description
average (2.2) 6] Temporal averaging filter
Nagvi (2.9) 32 Temporal median filter
Arce (2.10) 36 Spatio-temporal median filter
3D Kak (2.18) [51, 52] | Least-squares adaptive filter
Kleihorst | (2.12),(2.22),(2.23) (48 Locally-adaptive filter
Martinez | (2.12),(2.22),(2.23) (54 Motion-tracking filter

data. It penalizes candidates f'(i,j, k) that have not likely resulted in the obser-
vation.

The functional in (2.33) was solved iteratively for each pixel. Geman and McClure
(59] have used this algorithm in a motion-compensated form to restore motion
picture material. Their aim was to correct for scratches and accumulation of dirt
on film material.

2.7 Experimental evaluation

We compared the performances of several filters described in this chapter. The
selected filters are listed in Table 2.1. Included are representative methods from
most classes with the exception of the Bayesian method, which will be evaluated in
Chapter 3 and the decomposition method which is the subject of Chapter 4. The
methods that have been evaluated in this chapter were all reported in literature to
operate without motion compensation.

From the weighed-averaging class we have selected the temporal averaging of Huang
and Hsu [6]. The class of OS filters is represented by the temporal median filter
of Naqvi et al. [32] and the spatio-temporal multi-stage median filter by Arce
[36]. From the switching filters we have tested the recursive 3D Kak filter by
Triplicane [51] and Katsaggelos et al. [52], and the non-recursive OS-supported
LLMMSE filter by Kleihorst et al. [48]. In addition, we have investigated the con-
catenated motion-tracking LLMMSE filter by Martinez and Lim [54] that contains
implicit motion compensation, as discussed in Section 2.4. The “3D Kak” filter was
evaluated at the Digital Signal and Image Processing Laboratory of Northwestern
University, Illinois.
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FIGURE 2.6: FRAME 21 OF THE “TREVOR” SEQUENCE ON THE LEFT AND FRAME 1 OF THE
“MOBILE” SEQUENCE ON THE RIGHT.

Each filtering technique listed in Table 2.1 was applied to noisy versions of the
image sequences “mobile” (frames 1-40) and “Trevor” (frames 21-70). These im-
age sequences are generally used for evaluating filtering and coding methods. We
have selected representative sections with image sizes of 256 x 256 pixels from the
original sequences. The “Trevor” sequence contains a lot of jerky motion whereas
the “mobile” sequence contains (predictable) smooth motion. The image data in
“mobile” has a more detailed nature than the “Trevor” sequence. Frames of both
sequences are shown in Figure 2.6.

The sequences were degraded using simulated additive, white Gaussian noise up to
signal-to-noise ratios (SNRs) of 20 and 10 decibels (dB). The expression used for
defining this SNR, already stated in Chapter 1, is repeated here:

2
SNR = 10log, {ﬁ} (dB). (2.34)

2
On

Here, o} is the variance of the original signal and o2 is the variance of the ad-

ditive noise. To evaluate the performance of each filtering technique we use the
improvement in SNR per frame, which is defined as

SNRl(k) — 1010g10 { {:1 Zj:l [fA(lv]: k) - g(i,jv k)]z} (dB),

z!:I :7']:1 [f(%]a k) - f(7’1]~ k)]z

where I, J are the spatial dimensions. Although it has been argued that this type
of metric is a poor measure of the true visual image quality, we have decided to use
it because of the lack of any other widely accepted metric. This does not mean that
limited effort is devoted to other metrics as can be appreciated from [60, 61, 62, 63].
In addition to the SNRi measure, we will also give some visual impressions of the
filter performance.

(2.35)
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TABLE 2.2: AVERAGE improvement in SNR FOR THE “MOBILE” SEQUENCE.

Filter || Average Improvement in SNR (range)
SNR=10dB SNR=20dB
average 2.8 (0.6) -3.5 (1.4)
Naqvi | 2.0 (0.5) 2.7 (1.7)
Arce 35 (0.2) 1 1(0.5)
3D Kak 4.7 (0.5) 0 (0.0)
) )
) 3)

Kleihorst || 7.4 (0.2 3 9 (0.
Martinez | 4.1 (0.3 .2 (0.

TABLE 2.3: AVERAGE improvement in SNR FOR THE “TREVOR” SEQUENCE.

Filter | Average Improvement in SNR. (range)

SNR=10dB SNR=20dB
average 3.4 (1.2) -1.8 (3.1)
Naqvi || 2.2 (0.9) 2.8 (2.6)

Arce 3.9 (0.2) 2.1 (0.6)
3D Kak || 5.0 (L3) 1.7 (0.3)
Kleihorst | 7.2 (0.4) 2.8 (0.3)
Martinez | 4.3 (1.1) 0.4 (0.9)
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The experimental results are summarized in Figures 2.8 and 2.9 and Tables 2.2
and 2.3. In the tables, the average improvement per frame and the range (between
parentheses) of the improvements are presented. We have avoided the influence
of “start-up” or “shut-down” effects of certain filters in the average improvement
metric and the range. From the results we can deduce that methods that take non-
stationarities explicitly into account, such as the filter “Martinez” and “Kleihorst”
outperform methods which assume stationary signals such as “average”.

The spatio-temporal filters such as “3D Kak”, “Arce”, “Kleihorst” and “Martinez”
that can exploit more data than the temporal filters have an overall larger improve-
ment.

The response to motion can be most clearly seen from the improvement in the
“Trevor” sequence. An irregular curve indicates either deterioration of moving
objects or a (legitimate) filter shutdown of the switching filters. The irregular
curve generated by the non switching “average” and “Naqvi” filters are caused by
deterioration of moving objects. The irregularities caused by “Martinez” are the
result of a diminishing filter support in non-stationary regions.

Filters that assume stationary signals have more difficulties in filtering non-
stationary signals at high SNRs. Ideally, a filter should not affect the original
signal, but it is clear from the tables that filters such as “average” and “Naqvi” are
distorting the original signal at 20dB SNR.

From a visual point of view, the “average” filter tremendously deteriorates the
signal. The “Naqvi” and *Arce” filters are not very noise-suppressive and the
“3D Kak”,“Martinez” and “Kleihorst” filter yield an appreciable image quality
improvement. Some results from “average”,“Naqvi”,“Kleihorst” and “Martinez”
are shown in Figure 2.7. The filter results in this chapter can be used as reference
material with respect to the methods dealt with in the remaining chapters, where
we will consider motion compensation and adaptive order-statistic filters.
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FIGURE 2.7: FILTER RESULTS FOR 10DB SNR OF SOME SPECIFIC FILTERS
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FIGURE 2.8: EXPERIMENTAL RESULTS FOR THE NON-MOTION-COMPENSATED TEMPORAL FIL-
TERS.
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Chapter 3

Motion-compensated filtering

3.1 Introduction

In the Chapter 2 we have seen that many filtering methods rely on adaptivity
to handle (temporally) non-stationary signals. As the temporal non-stationarities
are often caused by object motion, they can be avoided in these cases by filtering
along the motion trajectories. For instance, instead of the familiar expression for
a (recursive) filter F'{}:

we use a motion-compensated form:
fG.5.k) = F{f(i - di,j — dj, k — 1)}. (3.2)

where d; and d; represent the vertical and horizontal displacement.

The filtering algorithm can now be described as a three-step process as illustrated
in Figure 3.1. First, in a motion-estimation part, the object motion is estimated
from the observed signal. Second, the temporal signal is compensated for motion

based on the motion estimates d(%, j, k). The third part comprises the noise filter.

Compensation for motion improves the filtering results of any noise filter which is
(partly) active in the temporal direction. Filters that hardly manage non-stationary
signals will definitely benefit because signal distortion is avoided. Filters that man-
age non-stationary signals will benefit, although less, because the motion compen-
sation results in an effectively larger homogeneous section of the filter support.

In general, object motion is estimated from the noisy observation. Depending on
the robustness of the motion estimator, the noise may result in inaccurate motion

29
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FIGURE 3.1: A MOTION-COMPENSATED FILTERING SCHEME CONSISTS OF THREE PARTS: FIRST,
THE MOTION IS ESTIMATED, SECOND, THE OBSERVED TEMPORAL SIGNAL IS COMPENSATED FOR
MOTION, AND THIRD, IT IS FILTERED.

estimates [6, 13, 64]. This causes colored noise in the compensated temporal sig-
nal which will aggravate the final noise filtering process. The effects are annoying
patches in the filter result. The danger of temporal coloring depends on the SNR
and is more severe in the low-variance areas such as the background where the local
SNR is low.

Early motion-compensated filtering techniques relied on motion estimators that
were originally designed for motion-compensated coding purposes [6, 7]. Among
those are the gradient and pel-recursive techniques and the full-search block-
matching algorithm [2]. Those estimation methods could not handle the noise
very well. The application area of motion-compensated noise filtering was there-
fore initially limited to relatively high SNRs.

Later on, more effort was devoted to decreasing the noise sensitivity of motion
estimators. Suggestions arising from this effort are for instance pre-filtering of the
noisy sequence [52] and modifying the structure of the motion-estimation algorithm
[55].

Motion estimation and estimation of the original sequence can be regarded as
coupled problems. This point of view has resulted in simultaneous estimation
approaches, where the object motion and the original sequence are estimated jointly
by a single estimator [18].

In this chapter we will discuss motion estimation and compensation as a means
of circumventing non-stationarities in temporal signals. First, in Section 3.2 we
consider various ways to compensate the temporal signal for motion, based upon
the filter support and the motion estimates available. In Section 3.3 we deal with
the use of well-known motion-estimation techniques on noisy data. In Section
3.4 we discuss reducing the noise sensitivity of motion-estimation methods. Here,
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we also consider the simultaneous approaches that regard estimation of original
signal and noise as coupled problems. Finally, Section 3.5 gives an experimental
evaluation of a noise-robust motion-estimation algorithm and some representative
motion-compensated filtering methods.

3.2 Motion-compensation strategies

Motion compensation in image sequence filtering can be performed in a number of
ways depending on demands related to the filter support and the assumptions on
the motion. This section gives an overview.

The motion-compensation stage in Figure 3.1 uses the object motion vector calcu-
lated by the motion estimator to compensate the sequence. Often, the temporal
support of a noise filter covers multiple frames in which case additional motion
vectors are necessary for compensation. These additional motion vectors can be
established in two ways. First, additional motion estimates can be used or second,
previous motion estimates are simply copied to avoid the computational burden
involved with motion estimation. The decision to copy the previous motion esti-
mate is based upon the assumption that the object moves in a non-accelerated,
translational fashion. If the assumption fails in a specific situation, compensation
errors result.

The simplest compensation occurs in 1°¢ order temporally recursive filters that
only depend on filter results of the previous frame and the current pixel. We have
already given an example in Equations (3.2) and (3.1). Here, only the motion
estimated from frame k to frame k& ~ 1 is used in compensation (Figure 3.2a).

Non-causal filters such as weighed average and LLMMSE filters also exploit data
from future frames such as k + 1. Compensation can be performed in two ways.
One way is to assume non-accelerated motion, in which case no additional motion
estimates are performed but symmetrically extended vectors are used. Then, the
motion vectors describing displacements from frame k& — 1 to k are simply applied
to frame k + 1 (Figure 3.2b). The other way is not to assume non-accelerated
motion. Then, an additional motion estimate from frame % to frame k+1 is used for
compensation (Figure 3.2c). The latter method has a more accurate compensation.

Filter structures using an even larger temporal support such as some temporal 274
order recursive filters [45, 50], non-recursive temporal switching filters [46, 55] and
temporal weighed-averaging filters [6, 8] need additional compensation, for instance
to frame k + 2. The displacements necessary for this additional compensation can
be derived in several ways. The least expensive way is by assuming non-accelerated
motion and extending previous motion estimates (Figure 3.2d). In a more complex
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FIGURE 3.2: MOTION COMPENSATION CAN BE IMPLEMENTED IN A NUMBER OF WAYS DEPEND-
ING ON COMPLEXITY CONSIDERATIONS AND ASSUMPTIONS. 1°% ORDER RECURSIVE FILTERS
NEED ONLY ONE MOTION ESTIMATE (DARK VECTOR) TO THE PREVIOUS FRAME AS IN A). IN
OTHER SIMPLE SCHEMES NO MOTION ESTIMATE IS PERFORMED BUT THE AVAILABLE MOTION
ESTIMATE IS APPLIED TG ADJACENT FRAMES, B) OR EXTENDED D) (LIGHT VECTORS). IN MORE
ADVANCED METHODS THE MOTION IS ESTIMATED FROM THE CURRENT FRAME TO ALL FRAMES
USED BY THE FILTER, C), E) AND F).
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situation, additional motion estimates are retrieved between frames k£ and k£ + 1
and frames k£ + 1 and & + 2 as in Figure 3.2e or from the current frame to each
future frame exploited by the filter as in Figure 3.2f. This is a complex method.
The motion estimates relative to the previous frames can be established in a similar
manner. Usually, stored results from previous frames can be employed.

3.3 Motion estimation from noisy sequences

Several motion-estimation algorithms are used in image-sequence analysis, motion-
compensated coding, sub-sampling and filtering. The methods can be classified into
several categories [65, 66]: segmentation-based methods; transform-domain meth-
ods such as phase-plane correlation; matching methods including block-matching;
gradient methods such as pel-recursive motion estimation and statistical methods
including maximum likelihood and Bayesian approaches.

Early motion-compensated filtering techniques relied on motion-estimation tech-
niques derived for coding purposes, namely matching and gradient techniques. Af-
ter deriving the motion model used in these methods, we consider the influence of
noise on their behavior.

3.3.1 The motion model

All motion estimators relate to a model for the object motion. Most motion models
are related to the optical flow model which assumes that brightness changes are
only due to motion. The resulting optical flow equation is based on the assumption
that the object brightness is constant over time along the motion trajectory [67, 68]:

df(i,5,k)
= =0, (3.3)

where 4, j and k are now considered as continuous variables. The intensity f(z, 7, k)
is a function of the coordinates 7, j and time k. Therefore, rewriting (3.3) gives:

8f(hg k) di | 0f(i5.k) d; | 61035 k) _
i dk 855 dk 8k

0, (3.4)

where d;/dk and d;/dk are the components of the optical flow which are regarded as
the motion parameters. They can be estimated if the spatial gradients § (3, j, k) /61
and 6f(7,7,k)/6j are known. Setting 6k = 1 and 6f(i,5,k)/6k = f(i,5,k) -
f(4, 7,k — 1) will then yield the motion estimates. Effectively, the following motion
model is assumed:

FGing k) = £ — diy g —dy, k— 1), (3.5)
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This relation shows that the motion between subsequent frames is locally transla-
tional, i.e. can be entirely described by the motion vector [d;,d;]7. As a result,
occlusion, variations in object intensity, and non-translational motion such as (3D)
rotation, are not covered.

Commonly, in motion-compensated noise-filtering, the motion vectors are esti-
mated from the noisy sequence. This implies that the motion model of Equation
(3.5) is used on the observation g resulting in:

g(Z,J,k) = g(’l, - diaj - d]ak - 1) +n(i7j7 k) - ’I’L(l - di)j - d]ak - 1) (36)

The noise terms corrupt the motion model and may cause inaccurate motion esti-
mates.

3.3.2 Gradient techniques

Gradient techniques for motion estimation can be derived by specifying the frame
difference Ag(%, 7, k) as follows:

Ag(zajvk):g("v])k_l)—g(lvjvk) (37)
Substitution of Equation (3.6) results in:
Ag(i,5,k) = g(i,j,k— 1) - g(i —di,j — djvk -1)
+n(i — d;, j — dj, k — 1) = n(4, 4, k). (3.8)

This relation can be linearized in d; and d; as follows:

o 6g(i, 3,k —1 6g(3, 5,k —1 ..
Bl k) = WOLE=A g SOOI g0 i, 69

here, 69(i’§;’°_9 and 69@’(’5"].’“’1) are the spatial gradients and (7, j, k) represents the
approximation error.

Assuming that the motion vector, which will be denoted as d = {d;, d;]7, is equal
for a number of neighboring pixels, (3.9) can be expanded and written in a matrix-
vector form:

Ag=Gd+e. (3.10)
Here, G is a matrix containing the spatial gradients estimated from the observed
sequence. The motion vector is found by solving:

d — ntlii]n llAg - Gd'|)*, (3.11)

Usually, the problem is over-determined and the motion vector is found using the

generalized inverse of G: A
d=[G"G]"'GT Ag (3.12)
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If applied to noisy image sequences, all gradient techniques suffer from the noise
which causes inaccuracy of the gradient estimates. To suppress the inaccuracy,
regularization methods such as smoothness constraints are often used [18, 69).

Gradient techniques in motion-compensated filtering

Gradient techniques for motion-estimation were for instance used by Huang and
Hsu [6] in combination with temporal mean and median filters. Popular descen-
dants of this method are pel-recursive motion estimators where the approxima-
tion in Equation (3.9) is refined by solving (3.11) recursively [70, 71, 72]. Pel-
recursive motion estimation has been used in a number of motion-compensated
filtering methods. Among them are Kak filters [52, 53], recursive filters [7, 47] and
a Bayesian approach [59].

3.3.3 Matching techniques

A popular motion-estimation technique is that of matching [6]. In this method, a
number of unidirectional supports are defined as:

[g( - 2).7 d]:k )a (Z j,k), g(i+di7j+dj:k+1)}= di’dj €S. (313)

Here, S describes the candidate set, which is typically limited, for instance to:
S =1{-2,-1,0,1,—2]. Among the unidirectional supports the one with the smallest
signal variance is selected:

di,d;  min var{g(i—dj,j—dj, k=1), 9(i, J,k), gli+dj, j+dj, k+1)]}. (3.14)

20t ]
The parameters (f, and jj comprise the resulting motion estimate.

An extension of the matching method is block matching, where two-dimensional
supports are matched. Then, the image data within a block in the current frame
is matched, using a criterion function, to a block in the previous frame. Typical
criterion functions used in block-matching algorithms are:

di,d; — min Zlgz—p di,j—q—djk—1)—g(i—p,j—gqk) (3.15)

Comprising the square error for ¢ = 2 and the absolute difference for ¢ = 1. A is
the block support and S is the candidate area. A “full-search” algorithm evaluates
the criterion function at every location within the candidate area. To decrease the
calculational effort, several strategies such as “three-step” and “cross-search” were
developed [2]. Practical block matching will only supply one motion vector for each
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block. Some sort of interpolation scheme is then used to generate a vector for each
pixel.

In general, the noise sensitivity of matching methods depends on the block size,
search algorithm and criterion. We will consider ways to robustify the popular
block-matching algorithm in Section 3.4.2

Matching techniques in motion-compensated filtering

It is straightforward to incorporate the matching method in, for instance, a tem-
poral FIR filtering strategy, because it simultaneously compensates the signal as
can be seen from Equation(3.13). This property was exploited in temporal median
and average filters (6], and concatenated estimators [54].

The 2D variant, block matching, is quite popular in motion-compensated filtering.
Among the filter strategies for which it was used are a spatio-temporal Volterra
filter [30], a Bayesian approach [57], a decomposition method [14] and an LLMMSE
filter [55].

3.4 Noise-robust motion estimation

The observation noise limits the usefulness of motion estimation in general. This
is especially apparent at lower SNRs [13, 64]. In areas with a low image contrast a
non-robust motion estimator is easily distracted by the noise.

There are some ways to avoid inaccuracies caused by noise, we consider two. The
first method is to cure an existing motion estimator, for instance by estimating
from pre-filtered frames or by tuning and/or modification. This is done by in-
cluding noise in the motion model and deriving a noise-robust estimation scheme.
The second method, which has appeared recently, is to regard motion estimation
and filtering as coupled strategies. That is, the motion and the original sequence
are simultaneously estimated from the noisy observation using a single criterion
function [73].

In this section we first consider several ways to cure a motion estimator from
noise sensitivity. As an example, a noise-robust block-matching algorithm that
includes some of these remedies is presented in Section 3.4.2. Simultaneous motion
estimation and filtering is the subject of Section 3.4.3.



3.4. Noise-robust motion estimation 37

IH(ijik) l C £ tigk)
“{’Lﬁ' 'j-d"__k.” motion D
compensator|
dijk) ‘ “
\ motion Jatike1)
estimator

FIGURE 3.3: MOTION ESTIMATION USING A PRE-FILTERED FRAME IS EASILY ACCOMPLISHED IN
THE SWITCHING FILTERS

3.4.1 Improving the noise robustness of an existing
method

The noise sensitivity of an existing method can be decreased by considering the
following approaches:

use pre-filtered frames to estimate motion,
* use an increased amount of data to invoke an averaging effect,

e apply a noise-insensitive criterion function,

use a tracking algorithm that enforces consistent estimates.

The pre-filtering of frames prior to motion estimation

The usual remedy proposed in the early motion-compensated schemes was to pre-
filter the observed frames with a simple spatial filter [6, 52]. An obvious method of
pre-filtering is to use the previous filter result. This can easily be accomplished with
the switching filters as seen in Figure 3.3 where motion estimation is performed
within the feedback loop.

In [43] a spatio-temporal motion-compensated Kalman filter is described where the
motion is initially estimated from the filter result on the previous frame and the
current observation. After motion-compensated filtering of the current frame using
these estimates, an additional motion estimate is performed between the previous
and initial filter result. This motion estimate is then used for an additional and
also final filtering result.
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Using an increased amount of data to invoke an averaging effect

Incorporating more data per motion estimate will decrease the noise sensitivity
because of the averaging effect. Ways to increase the amount of data are for instance
increasing the matching window in block-matching methods and the derivation of
gradient estimates from a larger window in the gradient method. However, using
more data will produce inaccurate vector fields because larger spatial areas are
more likely to cover more than one object with different motion vectors.

Applying a noise-insensitive criterion function

A useful modification is taking the noise explicitly into account in the criterion func-
tion. Some techniques that use a noise-robust criterion function are the method
using the Generalized Maximum-Likelihood (GML) criterion by Namazi and Lee
[74], and the method using cumulants by Anderson and Giannakkis [75] for Gaus-
sian noise. Another noise-robust criterion function suited for block matching is
presented by Kleihorst et al. (55, 76]. This is based on triple correlation which is
blind to Gaussian noise [77].

Boyce [24] has improved the criterion function of a block-matching scheme by
including a-priori knowledge of the noise. She only performs a motion estimate for
a certain block if the Mean Absolute Difference (MAD) without motion exceeds a
certain threshold which is based on the noise variance. Also, if the displacement
found will not result in a convincingly lower MAD, then it is assumed that the
difference was caused by noise instead of motion. This simple improvement of a
block matcher has been successfully applied with temporal averaging [24], and with
a spatio-temporal median filter {38].

Using a tracking algorithm that enforces motion estimate consistency

Enforcing consistency in the motion estimates is done by stimulating similarity
between the motion vectors of the entire frame. Motivated by similar assump-
tions, the regularized estimation algorithms that assume spatial (and/or temporal)
smoothness of the vector field [18, 66] were introduced.

Hierarchical motion-estimation algorithms [69, 78] are inherently spatially consis-
tent. In these algorithms, the frames are represented by a resolution pyramid
containing the image at various resolution levels. The estimation starts at the im-
age representation that has the lowest resolution. The motion vectors found in this
image are used as initial estimates for the estimation process at a lower level with
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a higher spatial resolution. At this lower level, only fine adjustments of the motion
vectors are permitted.

There are some hierarchical motion-estimation algorithms exploited in filtering
methods. One is the “Fogel” [69] algorithm which is a gradient-based algorithm
with additional smoothness constraints. Another is the hierarchical block-matching
algorithm by Bierling [78] which uses regular block matching in every resolution
level. The “Fogel” algorithm was used with LLMMSE [46], AWA [8, 27] and Wiener
filters [23]. The hierarchical block-matching scheme was used with the spatio-
temporal median [38], AWA [8] and spatio-temporal Kalman filters [43].

Recursive motion estimation can also be used to enforce consistency as in the
recursive block-matching algorithm by de Haan et al. [5, 79, 80]. This algorithm
was used in combination with the decomposition method [13, 14, 64] and with an
LLMMSE filter in [55]. It will be considered in greater detail in the following.

3.4.2 A noise-robust block-matching algorithm

A typical criterion function used in block matching is the correlation function:

Here, E; ; denotes averaging over the (finite) block area. A drawback of this func-
tion is that it is rather noise sensitive [77].

We propose to modify the correlation function to a triple-correlation function in
the following way:

The advantages of this new criterion function based on 3¢ order statistics are
twofold. First, the use of three frames (Figure 3.4) will enforce a smooth temporal
variation of the motion field. Second, the ratio of signal-induced value and noise-
induced value of the triple-correlation measure (3.17) is high because of the 37¢-
order terms in g(4, j, k) and n(i, j, k). Note that the 3"%-order moment of zero-mean,
symmetrically distributed noise is zero [77, 81].

In comparison to [75] where the use of cumulants was also suggested in a crite-
rion, the use of 3 instead of 2 consecutive frames avoids the use of the “dummy”
variables to establish the third term. These dummy variables made the problem
computationally very demanding.

The reason why (3.17) is less sensitive to the noise compared to (3.16) can be seen
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FIGURE 3.4: BY USING THREE FRAMES IN THE CRITERION FUNCTION TEMPORAL SMOOTHNESS
IS INCREASED AND A TRIPLE-CORRELATION CRITERION FUNCTION CAN BE APPLIED

by inserting the motion model from Equation (3.6) and expanding the product.
For this, we use the following short-hand notation:

Tep—1 = n(z - d:r] - d;,k - 1), g = Tb(i,j, k)a Ng4+1 = 'n(z + d;,a] + dfqyk + 1)’
foor=fl~d,j—dj,k=1), fo=f(65k), fin=Ffl+d,j+d,k+1)
Using ¢(%, 4, k) = f(2,7, k) + n(%, 7, k), yields for the correlation criterion (3.16):

Crit{d, f + n} = Ei j{fufe—1} + Eij{ncfec1 + ne_1fe} + B j{mene—1}. (3.18)

This can be seen as a match on the noise-free data and error terms caused by the
noise. The triple-correlation criterion (3.17) now becomes:

Crit{d', f + n} Eij{fe-1fufo1} + B j{nue—1fe fevr + mefr—1frn
+ s fe-1fe + menrs fi1 + 11 fr + -1k fra }
+ Eij{ne-inings}. (3.19)

Il

At first, the error term associated with this criterion may seem larger than the error
term in (3.18). However, the term regarding the match on the noise-free intensity
data is much larger in value, creating a higher data-to-error ratio.

In Figure 3.5 the typical shapes of both criterion functions as a function of d’ for
different noise levels are illustrated. The criterion function (3.17) is more peaked
about the true displacement and approaches zero for incorrect displacements. This
will give a more accurate estimate.

By enforcing consistency, the block matcher will deviate less from an estimated
motion path due to noise. This can be achieved in a block matcher by introducing
recursion {79]. A candidate motion vector d’ is then established by the sum of a
prediction and an update. For the prediction part the result found for a previous
block is used. For instance, a recursion from the left with block sizes of N x N
yields:

d'(i,5,k) = d(i — N,j, k) +u, (3.20)
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where u is a vector from the update set:

0 0 1 0 -1 :
b)) () () e
which is restricted in order to stimulate consistency in the estimate.

Using only one direction of recursion will cause convergence inaccuracies at motion
discontinuities, e.g. moving objects. Because of the restricted update set, the
estimate will only slowly converge to the true value. More accurate estimates are
obtained using four directions of recursion:

d(i,5,k) = Et(z N,j k) + u,

d(i,j,k) = d(i,j— N,k)+u, (3.22)
d(i,j,k) = d(i,j+Nk—1)+u,

d'(i,j,k) = di+N,j,k—1)+u.

Note that two spatial recursions and two temporal recursions are included. The
final estimate becomes that candidate vector which results in the smallest value
of the criterion function (3.17). For a more detailed description of the recursive
block-matching algorithm the reader is referred to [5, 80].

3.4.3 Simultaneous motion estimation and filtering

The filtering methods that we have considered so far all perform motion estimation
and filtering separately. As both displacement and original signal are estimated
from the noisy observation, they can be seen as coupled estimation problems [4,
18, 73, 82].

Simultaneous estimation can be stated formally as:

f.d — min Crit{g, f', d'} (3.23)
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where the criterion function remains to be chosen.

In general, simultaneous motion estimation and filtering are computationally far
more expensive than separate motion estimation and filtering. Chan et al. [4] used
a maximum-likelihood approach to simultaneously estimate motion and original
sequence in low-dosage cine-angiographic image sequences. Rewriting their method
for intensity filtering, they considered maximizing the following likelihood function:

F(k),d(k) — max p{g(k), g(k — 1)|f, d’}, (3.24)

where g(k), f(k),d(k) are the observed and original frame and the vector field
between frames k and k — 1. Chan et al. [4] proposed to use the Expectation-
Maximization (EM) algorithm which is a method for maximizing log-likelihood
functions [15, 83].

Starting with estimates fs, &s, the EM algorithm finds the conditional expecta-
tion of the log-likelihood of f, d, g given the observed data and current estimates.
Within each iteration of the EM algorithm Chan et ol. [4] decoupled the estima-
tion of original intensity and motion field. This resulted in the following interleaved
iteration procedure:

FUR) < max Bllogp{f, dyg}lgk), g0k = 1) F(R). (B}, (325)

~s+1

& (k) — max E{logp{f,d, gta(k) gk ~1). " (h),d k), (326)

Brailean and Katsaggelos [73, 82] have proposed a pixel-recursive estimator to
solve (3.23). They used Markov random fields to model the displacement and
original intensity. These models included “line processes” to adapt the models to
discontinuities in the motion field or intensity.

To determine the estimates of the displacement and the intensity fields, Brailean
and Katsaggelos proposed to maximize the joint a-posteriori probability density
function with respect to the motion field, the original intensity and the corre-
sponding line processes. This resulted in a set of filtering equations consisting of
two coupled extended Kalman filters.

Driessen [18] follows a simultaneous approach by minimizing the following concate-
nated energy function:

F(k),d(k) «— min U{f, f(k=1).d\d(k=1),9(k)}.  (327)
Here U{} is composed of the following parts:

U} = U £, 9(k)} + UAS Flk — 1), @} + Ua{d, d(k - 1)}, (3.28)
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where the operator U, reflects the observation model, U; the motion-compensated
spatio-temporal model of the original image and U; a spatio-temporal motion-
smoothness constraint. The problem was attended to by an interleaved iteration
process:

~8+1

Fk) < min U{f,d (k)}, (3.29)
dte) — min u{f k), d}. (3.30)

The minimization was performed by sub-optimal Kalman estimators.

3.5 Experimental evaluation

3.5.1 Demonstration of the noise-robust block matcher

In this section we compare the proposed robust recursive block-matching algorithm
with a regular full-search block matcher as a function of the SNR. Both algorithms
operate with block dimensions of 16 x 16.

In the upper row of Figure 3.6 a frame from the synthetic image sequence used
is shown at noise levels of SNR=00,20,10 and 0 dB. The underlying sequence
contains synthetic movement: the background slightly pans and the disk moves
along the diagonal. In the center row of Figure 3.6 the motion field found by the
full-search block-matching algorithm is shown for the various noise levels. It can
be seen that the motion estimator starts breaking down at 10 dB and produces
useless results for 0dB. The motion field estimated by the robust block-matching
algorithm is shown in the bottom row of Figure 3.6. The results show that the
estimator produces reasonable results, even at 0dB SNR.

Figure 3.7 illustrates the motion in the “mobile” and “Trevor” sequences that are
used in the experimental evaluation of motion-compensated noise filters. Here,
the motion vectors, estimated with block sizes of 16 x 16 pixels by the noise-robust
block-matching algorithm from Section 3.4.2, are shown in overlay with the original
images.

3.5.2 Evaluation of motion-compensated filters

In this section we present the experimental results obtained with some represen-
tative motion-compensated filtering methods proposed in literature. As original
sequences, we have used parts of the “mobile” and “Trevor” sequence. The type of



44 Chapter 3. Motion-compensated filtering

P R
R e

PR R LI
corvelevr,

st e,
R LR
LR A AR
spl sl .. I EE BT
e e P L I R T

TN

.
TN
ern e . A
Prr s, _.....//&I—//l.‘
A R R vrveveser g o S wrtr st
trrrrrre. wtrtvrrre. . vt ] | -n- ceeiier.. 8
..... Lttt . PR R R R I e
R e N AL A e I

FIGURE 3.6: IN THE TOP ROW, IMAGES FROM A SEQUENCE WITH SYNTHETIC MOTION AT SNRS
OF 00, 20, 10 AND 0 DB. IN THE CENTER ROW RESULTS OF A FULL-SEARCH BLOCK-MATCHING
ALGORITHM AND ON THE LOWER ROW THE RESULTS OF THE NOISE-ROBUST BLOCK-MATCHING
ALGORITHM.

-
.

S
D R . £

FIGURE 3.7: THE MOTION VECTOR FIELDS FOR THE “MOBILE” AND “TREVOR’ SEQUENCE




3.5. Experimental evaluation 45

TABLE 3.1: SUMMARY OF THE FILTERS EVALUATED IN THIS CHAPTER

Filter Motion | Equation | Reference | Description
estimation

AWA BM (2.5) [27] Temporal weighed-
averaging filter

Sezan BM (2.23) [46] Temporal least-
squares filter

Dubois PR (2.15) 7] Recursive switching
filter

3D MC Kak PR (2.18) (52] Recursive 3D least-
squares filter
3D sep Kak PR (2.18) [52] Recursive separable 3D

least-squares filter

Adapt PR (2.19) [53] concatenated 1-D
adaptive Kak-filters

3-D AWA BM (2.5) 8] Spatio-temporal weighted-
averaging filter
Kleihorst MC BM (2.23) [48] Spatio-temporal least-

squares filter

SDIE sim (3.23) [73] Simultaneous Bayesian
method

motion present in both sequences is quite different. Namely: the “mobile” sequence
contains smooth, mostly translational motion which is relatively easy to follow by
recursive motion estimators. In contrast, the “Trevor” sequence contains jerky,
relatively unpredictable motion. Both sequences were degraded using simulated
additive, white Gaussian noise up to SNRs of 20 and 10 dB.

Noise-filtering algorithms using a block-matching algorithm for motion estimation
in their original publication were implemented here using the noise-robust block-
matching algorithm described in Section 3.4.2. A similar situation holds for the
filters implemented using a pel-recursive algorithm. They were implemented using
a pel-recursive motion estimator with smoothness regularization (Section 3.3.2).

The various methods, their symbolic names, and the type of motion estimator used
are shown in Table 3.1. In this table “BM” means that a block-matching algorithm
was used, “PR” a pel-recursive and “sim” denotes that the motion estimation is
part of the simultaneous motion estimation and filtering algorithm. The filter
methods “3D MC Kak”, “3D sep Kak”, “Adapt” and “SDIE” were evaluated at
the Digital Signal and Image Processing Laboratory from Northwestern University,
Illinois.
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The experimental results are summarized in Tables 3.2 and 3.3. The tables contain
a number of filter structures that were discussed without motion compensation in
the previous chapter. Note that two of these methods were already evaluated with-
out motion compensation in Chapter 2, namely the “3D MC Kak” (a 3-dimensional
Kak filter with fixed coefficients) and “Kleihorst MC” (an adaptive switching fil-
ter). The SNRi of both filters has improved by including motion compensation.
The 3D Kak-filter has a larger improvement for the “mobile” sequence, which con-
tains relatively easy motion for the PR motion estimator involved.

Both a temporal and a spatio-temporal version of the “AWA?” filter, an adaptive
weighing-averaging filter, are evaluated. The spatio-temporal version has the high-
est noise suppression for 10 and 20dB SNR. This is because the spatio-temporal
version involves more data in the estimation than the temporal version. This is not
true for the 20dB corrupted “Trevor” sequence, where the result of the temporal
filter is slightly better than the result of the spatio-temporal version. A probable
explanation for this behavior is that the motion compensation for this sequence
is not perfect, and the larger spatio-temporal support leads to more deterioration
of the original signal. The results per frame of the various filters on the distorted
sequences are shown in Figure 3.8, Figure 3.9 and Figure 3.10.

It can be seen that the adaptive filters have the highest improvement for the lower
SNRs. For higher SNRs, the adaptability is needed less, because the reliability of
the motion estimator increases. Especially the simultaneous approach, “SDIE” and
the adaptive switching filter “Kleihorst MC” have very good results. The result of
these two methods are superior, also from a perceptual point of view. The edges
remain sharp and the noise is considerably suppressed.

From the results we see that the overall “best” filters are the adaptive filters. This
was also found in Chapter 2. It supports our discussion that motion compensation
is not perfect and will therefore not remove all non-stationarities from the temporal
signal. In order to achieve good filtering results, adaptation is still necessary.



3.5. Experimental evaluation

TABLE 3.2: AVERAGE improvement in SNR FOR THE “MOBILE” SEQUENCE.

Filter Average Improvement in SNR (range)
SNR=10dB SNR=20dB

AWA 16 (0.2) 31(0.2)
Sezan 4.2 (0.3) 2.6 (0.2)
Dubois 3.3 (0.0) 0.9 (0.8)
3D MC Kak 5.5 (0.4) 1.5 (0.1)
3D sep Kak 6.0 (0.4) 2.2 (0.2)
Adapt 6.2 (0.6) 1.6 (0.4)
3D AWA 73 (0.1) 41(0.0)
Kleihorst MC | 7.6 (0.2) 40 (0.1)
SDIE 7.7 (0.7) 14(02)

TABLE 3.3: AVERAGE improvement in SNR FOR THE “TREVOR” SEQUENCE.

Filter Average Improvement in SNR (range)
SNR=10dB SNR=20dB
AWA 48 (0.5) 2.9 (0.7)
Sezan 4.6 (0.7) 2.6 (0.6)
Dubois 4.7 (2.6) 1.2 (0.4)
3D MC Kak | 5.7 (0.6) 2.1 (0.6)
3D sep Kak 6.4 (0.9) 2.5 (0.4)
Adapt 6.2 (0.6) 2.2 (1.2)
3D AWA 6.9 (0.5) 2.6 (0.5)
Kleihorst MC | 7.3 (0.5) 2.4 (0.5)
(

SDIE 7.7 (L.1) 4.0 (0.5)
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Chapter 4

Decomposition and filtering

4.1 Introduction

In the previous chapters we have seen that the main concern in image sequence
filtering is handling the non-stationary signals. As the temporal non-stationarities
are often caused by motion, an obvious choice for creating stationary temporal
signals is using motion compensation. However, the motion models used are never
complete and motion estimation is relatively hard in noisy sequences. Therefore,
even motion-compensated temporal signals still contain non-stationarities. For
this reason, the majority of filters proposed for image sequence noise-filtering are
adaptive.

In this chapter, we consider signal decomposition by trend-removal and normaliza-
tion as a method to transform non-stationary signals into homogeneous variants.
In effect, the signal is decomposed into a noise-free non-stationary part and a noisy
homogeneous part which is filtered. Signal decomposition is a classical method
[84] which is used in time series and image processing [11, 85, 86]. We have pro-
posed a novel image-sequence filtering method by applying it to image sequences.
It will be shown that decomposition is beneficial with motion compensated and
non-compensated noise filters.

In Section 4.2 we will look from a formal point of view at creating wide-sense
stationary signals and the application to image processing. In Section 4.3 we will
derive and analyze estimators for the local statistics which are necessary for signal
decomposition. In Section 4.4 the implementation aspects of these estimators are
investigated. Finally, in Section 4.5 the decomposition method is experimentally
investigated in motion-compensated and non-compensated form for Gaussian and
Laplacian noise.

51
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4.2 Signal decomposition and its applications

4.2.1 Normalizing from an algebraic point of view

Non-stationarities manifest themselves as non-constant ensemble signal statistics.
In image sequences, the dynamic behavior of the local mean and local co-variance
cause the poor results of non-adaptive filters. The introduced artifacts manifest
themselves as smoothing of spatio-temporal edges.

Any non-stationary signal, such as the observed noisy sequence g can be trans-
formed into a WSS signal ¢ (fixed local statistics) by:

y = K(g — ), (41)

where the trend g, = E{g} is a vector to remove non-stationarity in the mean, and
K is a transformation matrix used to normalize the co-variance [85]. It appears that
K = L', where L is derived from a Choleski factorization [87] of the symmetric
and positive definite co-variance matrix C4 of g:

Cyo = E{(g — 1o)(g — 1)"} = LL". (4.2)

This factorization is successful, because the co-variance matrix of the transformed
signal K(g — p,) (Karhunen-Loéve transform) becomes:

Cyy = E{K(g — py)(g — py) "K'} =1, (4.3)
which means that the signal y is uncorrelated.

Because the observation g contains a white noise component, C,y will be of full
rank so the lower-triangular matrix L is invertible. The resultant transformation
matrix K has full rank, to guarantee that no components of the signal are mapped
to the null space of K and hence, left out of y.

However, computing L' is an unrealistic task. It will, especially for image se-
quences, be very large and the amount of storage needed is significant. In order to
be computationally realistic, a simple sub-optimal choice for K is a diagonal ma-
trix, with the reciprocals of the local standard deviation for the diagonal elements:

K = diag.[1/0y], (4.4)

o, =/E{(g — n,)*}- (4.5)

This choice will normalize the local variance in the signal by scaling each sample
to a variance of one. The overall process will not result in a wide-sense stationary

where:
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signal y, as the amount of correlation between neighboring samples may vary with
time. However, as it is more homogeneous, y will be easier to process.

If accurate estimators for the local statistics are used, both p, and @, are noise free.
They comprise the non-stationary part of the decomposition. The signal y includes
the observation noise, which was assumed stationary, and the homogeneous part
of the original signal.

4.2.2 Application to non-stationary image data

The technique of removing local mean and local deviation (i.e. a diagonal K)
is often used for time series processing and image processing. Because the latter
application is closely connected to image sequence processing, we will investigate
this more closer.

Early attempts at restoring degraded images treated the image as a homogeneous
random field and used linear techniques for estimation [9]. However, the filters
resulting from these approaches are essentially low-pass filters. Therefore, the
images are smoothed by these filters which is especially apparent at the edges.

By recognizing that images are in-homogeneous random fields with space-variant
mean and variance, Jeng and Woods [11] have improved the overall estimation
quality of a Kalman filter operation. First, in a preprocessing step, they estimated
the local average and local deviation. By subtracting the local mean from the
observation, a residual image was created, and by dividing this by its local deviation
a normalized image was produced. The residual or normalized image was then
filtered by a multiple model reduced-update Kalman filter (RUKF).

They noted that the improvement achieved with this method was better than
the improvement by applying the RUKF directly to the observed image. One of
their suggestions for improvements was to use a more accurate estimator for the
local statistics instead of the “box averages” that they were using. Box averages
malfunction when the box covers an object edge.

Park and Lee [86] used a median filter as estimator for the local mean. After
subtraction, they employed a Wiener filter for filtering the residual signal. They
did not normalize the variance, as they assumed the original data to be a covariance-
stationary process. Their method was called a double smoother or a reroughing
method (Figure 4.1.) The results of Park and Lee are not very good from a noise-
suppression view, but the edges remain sharp. Both effects are due to the use of
the median filter. This filter is not optimal in the presence of Gaussian noise, so
the estimates will be inaccurate and therefore rather noisy. Any noise that passes
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FIGURE 4.1: DOUBLE SMOOTHING USING A MEDIAN AND A WIENER FILTER. THE MEDIAN FIL-
TER ESTIMATES THE TREND WHICH IS REMOVED FROM THE OBSERVATION AND THEN FILTERED
FOR NOISE BY THE WIENER FILTER. TREND AND FILTER OUTPUT ARE COMBINED TO PRODUCE
THE FINAL RESULT.

the estimator is forwarded to the result. The sharp edges are retained because they
are roots of the median filter [19, 88].

4.3 Order-statistic estimators

Successful signal normalization strongly depends on the accuracy of the estimators
of the local mean p,(4,7, k) and the local deviation oy(i,4,k). The estimators
have to be noise-robust but edge-sensitive. The class of order-statistic estimators
has the benefit that it members can be easily designed to be accurate for various
noise sources. In addition, the ordering process can be used as a crude form of
segmentation (i.e. pixels belonging to the same object are often grouped) in order
to deal with edges.

4.3.1 Decomposition and retrieval for image sequences

As seen from Equation (4.1) with K as in (4.4), the simplest form of signal decom-
position is to decompose the non-stationary observed signal as: [28, 53]:

g(k) = F(k) + k) = y(k) + 0y(k) -y (k). (46)

Here, g(k), f(k) and n(k) are temporal signals (i, fixed). The slowly changing
function p,(k) is known as the trend, consisting of the local mean at temporal
index k. The local deviation of g(k) is denoted by o,(k). The normalized temporal
signal y(k) has a stationary zero mean and unity deviation. As p,(k) is free of
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noise, the stationary observation noise is entirely mapped to y(k). The normalized
signal can be written using (4.6) as:

S k) = () _ S8 = pglk) (k)

oK) a,(k) a (k)

Here, v(k) is a zero-mean noise signal.

y(k) r(k) + v(k). 4.7)

In practice, y(k) is estimated from g(k) in the following way:

. g9(k) — Dy(k)
9(k) = == , (4.8)
Go(k)
where fi,(k) and &,(k) are estimates of y14(k) and o,(k) based on the observed noisy
sequence.

The homogeneous signal §(k), can be filtered using a regular noise filter to estimate
r(k). Finally, an estimate of the original image sequence is obtained by combining
this estimate 7(k) with the estimated trend signal and deviation.

f(k) = f(k) - Gq(k) + ﬂg(k)‘ (4.9)
In effect, the decomposition method can be formulated as:

9(k) — fo(k) }

Ge(k) )
where F'{} is the noise filter operation that estimates r(k) from y(k). This method
was mentioned earlier in Section 2.5.

F8) = iglh) + ag(mF{ (410)

4.3.2 Derivation of the estimators

In order to obtain the normalized signal y(k), p,(k) and o,(k) have to be esti-
mated from g(k). We will base our approach on the theory of Order-Statistic (OS)
estimators. To this end, we first assume that g(k) has the following parametric
Probability Density Function (PDF):

p(g(k)) = Ugtk)q{g(k)gg_(g"(k)} . og(k) >0, (4.11)

which we write in shorthand as:

g(k) ~ Q{Ng(k):ay(k)}' (4.12)

Examples of this parametric PDF are the Gaussian, Uniform and Laplacian PDF.
Some other PDF's, such as the Poisson and Gamma PDF are not parametric in this
way.
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The parametric PDF connects to each observation g(k) a parent PDF ¢{}, and a
particular py(k) and og(k). Let us assume for the moment that the parent PDF
¢{} is known.

Estimators of local statistics based on the class of OS estimators have been suc-
cessfully applied to digital signal processing [19, 31, 89, 90, 91]. In our application,
they have the following generic form:

gay(k)

. ; k

o = | B8] <[ e o b |0 gy,
gy (k)

where gy (k) = [ga)(k), - .-, gm)(K)]". The ranks gn(k) with ga)(k) < gay(k) <
... < gimy(k), are ordered realizations of g(k). The subscript “()” denotes that the
elements of the vector g(,(k) are ordered. Note that (4.13) refers to an ensemble
operation; the relation with spatio-temporal filtering will be addressed in Section
4.4. The scalars b,,, with p € (1,2], and ¢ € [1,2,---,m], are the weights of the
OS estimator.

A set of weights B needs to be derived for estimating y,(k) and o,4(k) from g(k).
By normalizing g(k) according to (4.8),

y(k) = g(il%:)i@, (4.14)
y(k) will be distributed as:
y(k) ~ ¢{0,1}. (4.15)

Relation (4.14) also holds for the ranks of the observation giy(k), (1 < r < m)
and the ranks of y(k), which are denoted by y,(k):

9y (k) = pg(k) + 0g(k) - ymy(k), 1 <7 <m. (4.16)

If we take expectations on both sides of this relation for all r, we arrive at:

E{gay(k)} = pe(k) +ay(k) - pay,
E{ga)(k)} = pglk) +0y(k) - pe),

E{gmy(K)} = (k) + 4(k) - pim)- (4.17)

Here, pry = E{y)(k)} are the rank averages of y(k). Note that these averages are
known because the PDF of y(k), ¢(0,1) is fixed. So, if ¢() is specified, they can be
calculated.

Equation (4.17) shows that for ordered realizations of g(k) we expect to find a set
of m linear relations, which is over-determined if m > 2. The parameters {,(k)
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FIGURE 4.2: A LINEAR RELATION IS EXPECTED BETWEEN THE ORDERED OBSERVATIONS ON
THE VERTICAL AXIS, AND THE RANK AVERAGES FROM THE PARENT PDF ON THE HORIZONTAL
Ax1S. THE PARAMETERS OF THIS RELATION ARE THE LOCAL MEAN po(k) AND THE LOCAL
DEVIATION o4(k).

and G,4(k), governing the linear relations, can be estimated using linear regression
[92], as illustrated in Figure 4.2 for rn = 5. The offset in the linear relation is u,(k)
and the elevation is equal to oy(k).

To formulate the solution to this regression problem, we first rewrite Equation
(4.17) as follows:

1 po
E{gy)}=1: : |6 =[1 vy |0k =A8(k). (4.18)
1 Pm)
Where:
8(k) = { gzgg ] . (4.19)

In practice, the ensemble averages over g (k) are not available. Instead, they are
approximated by the observations and Equation (4.18) becomes:

g (k) = A@(k) + e(k). (4.20)

We assume that €(k), the residual error caused by dropping the expectation, is
zero-mean and uncorrelated with g()(k). The linear relation will most likely not
exactly have the same parameters for each rank. Therefore, a measure that finds
the best fit of the linear relation in least-squares sense is used. This “generalized
least-squares estimate” of 8(k) is found by minimizing the square of the residual
error: €7 (k)e(k) for 8(k):

B(k) — P (90(k) — AB(K))"Cf,yy (9 (k) — AB(K)). (4.21)
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FIGURE 4.3: THE UNIFORM, GAUSSIAN AND LAPLACIAN PDFS AND THEIR CORRESPONDING
ESTIMATOR WEIGHTS FOR g4(k) AND o4(k). THE EXPLOITATION OF THE (ORDERED) VALUES
1S PROPORTIONAL TO THE PROBABILITY OF THE VALUES.

The above inner-product is weighed with the inverse co-variance matrix of y,(k) to
remove the correlation introduced by ordering ensemble measurements from g(k).
This matrix is composed as:

Yy — P
Cuy=F : [ Yy — Py - Ym) — Pim) } . (4.22)
Yim) — P(m)

The solution to Equation (4.21) is given by:

o(k) = (ATC!

(yy

Equation (4.23) comprises the OS estimators for local mean and deviation. The
coefficients of B can be interpreted as follows. The upper row supplies the weights
to find fi,(k) and the bottom row supplies the weights to find &,(k). If the PDF is
wide, such as the uniform PDF, only the extreme values are used. If the PDF is
long-tailed, such as the Laplacian, the center values of g,(k) are relied upon. The
OS estimator for mean of a Gaussian PDF is equal to the sample average [31, 93).
In this way all values are equally relied upon. The power of (4.23) is that it gives
optimal (in least-squares sense) weights for an OS estimator for the parameters
of any parametrizable PDF. The estimator weights for some common PDFs are
shown in Figure 4.3.
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4.3.3 Estimation bias and variance

The quality of an estimator is reflected by its estimation bias and estimation vari-
ance. Generally, the estimation bias 8(k) — E{@(k)} should be zero, and the
estimation variance as low as possible. In the case of a non-scalar estimate, the
co-variance of the estimates, which reflects their mutual influence due to errors,
should be as low as possible. Bias and variance can be expressed as a function of
the estimator weights and statistics of the input signal. In this way, estimators can
be compared.

In this subsection, we investigate the bias and estimation variance of the OS estima-
tor from Equation (4.23). Furthermore, we consider the special case of symmetric
PDFs for y(k) as this is often assumed in practical filtering situations.

Bias and co-variance of the estimators for general PDFs

The OS estimator for local mean and deviation is unbiased, i.e. has a zero bias.
This is a property of the least-squares solution and can be shown using (4.23) and
(4.18):

E{8(k)} = BE{gy(k)} = (ATC ), A)TATC[} AB(k) = (k). (4.24)
The co-variance of the estimator is specified by the following matrix:

Cor = var.{fi,(k)} cov.{3,(k), fig(k)}
= | cov.{6,(K), ()} var.{a,(k)}

It can be evaluated as follows:
Can = B{ATC A) g, (K)gh(RICTL, A(ATCTL A)TY — 8(k)67 (),
= (ATC}, ) B{gy(k)gh(k)} Cpl A(ATCRl A)T - 8(k)6" (k).
= (ATC, A) o) (K)Cyyy + AB(K)OT (k) ATIC,  A(ATC AT
—0(k)0" (k).
Finally, this will leave:
ng = U;(k)(ATC@;)A)_I
Or in matrix form as:

2 T -1 T—1
Coo = T3k [P CiPay —1 Cippy |

iy s e T -1 T vl (4.25)
lATC(yly)A| _p(y)C(yy)l 1 C'(yy)1

indicating that the errors in the local mean and local deviance estimates are cor-
related for general PDFs.
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Co-variance of the estimators for symmetric, zero-mean PDF's

It is interesting to analyze the performance of the estimator for symmetric, zero-
mean PDFs. In order to do this, we first introduce the J operator, which effectively
mirrors the elements of a vector:

J=1|. . s (4.26)

with properties: J = JT = J,J71 = 1. For a symmetric, zero-mean PDF it is
evident that the following holds:

_ -1 __ —1
py) = ~JIpy),  Cly =JIC,Jd. (4.27)
If we use these equalities on any non-diagonal element of Cjg, for instance:
T -1 .7 -1 Tl
-1 C(yy)p(y) =1 JC(yy)J Jp(y) =1 C(yy)p(y)’ (4.28)

it appears that they are equal to their own negatives, so must be zero. The co-
variance matrix now becomes:

2
7g 0
Cp = 1TC;<w>1 2 . (4.29)
p'(l;,)c(-w)p(y)

This shows that for symmetric, zero-mean PDF's there is no mutual correlation in
the local mean and local deviance estimate.

Variance of the local mean estimate for symmetric PDFs

Estimators for local mean such as the average and median are commonly used in
signal processing. Their estimation variances are well-known [31, 89]. To get a clear
idea of the special properties of the OS estimator for symmetric PDFs, we will look
closer into the variance of the OS estimate of the local mean. This variance can be
read from Equation (4.29) to be:

var {2(k)} = I—T% (4.30)

The denominator can be evaluated as:

1"C1=1"L L = uu = [ul’. (4.31)
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Further:
var.{lTy()(k)} =17Cy1 =1TLLT1 = ¢"g = |q/* = m. (4.32)
The relation between u and q is:
gdu=1"LL 1 =1T1=m. (4.33)

Using Schwarz’s inequality we have:

lg* - [ul* = mlu|® > (¢"u)? = m?, (4.34)
which means that:
2
2 oy (k) 2
. B} = L —— <ok . 4.
var {:ug( )} lTC(_y;)l - Ug( )/m ( 35)

Equality exists for a Gaussian PDF. Then, the maximum-likelihood estimator is
the sample average, which can be seen as a member of the class of OS estimators
(ordering does not change the result). For all other cases, the OS estimate has a
lower variance than the sample average [92].

4.4 Implementation aspects

In this section we consider the implementation aspects of the OS estimator (2.12).
After discussing the window definition, a way to establish the parent PDF ¢{} is
dealt with. This PDF is described by p(,, and C(,,) which will be estimated from
the normalized signal itself. The estimation is performed in a way which enables
adaptive OS estimators.

4.4.1 Window definition

The OS estimators were derived on the basis of ensemble statistics. However, these
are generally not available. Consequently, we have to assume local ergodicy in
image sequences which makes it feasible to replace the ensemble statistics by the
local spatio-temporal statistics. This means that the ensemble measurements of
g(k) are given by the values within a spatio-temporal window of size m.

To support the assumption of ergodicy, the spatio-temporal window must be com-
pact. We have chosen to incorporate the current pixel in combination with its 6
nearest spatio-temporal neighbors:

[g(ljyk— 1)9 g(l,]’k+ 1): g(za]a k)) 9(1’_ lvj)k)v
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OS-estimator

FIGURE 4.4: THE AVERAGE VECTOR AND CO-VARIANCE MATRIX OF THE PARENT SIGNAL,
NECESSARY FOR THE ESTIMATOR, CAN BE ESTABLISHED USING THE NORMALIZED SIGNAL ITSELF.
To SUPPORT THE ESTIMATOR TWO UPDATE PROCESSES, ONE FOR THE AVERAGE VECTOR AND
ONE FOR THE CO-VARIANCE MATRIX ARE EMPLOYED.

g(Z + 1aja k)a 9(17] - lak)a 9(17] + lvk)]’ (436)

which proved in a number of experiments to be a good trade-off between low
estimation variance and correctness of the assumption of local ergodicity. Other
window definitions are discussed in Chapter 5.

4.4.2 Parent PDF

The estimator from Equation (4.23) requires knowledge about the parent PDF,
which is expressed by the average vector of an ordered sample from this parent
Py, and the co-variance matrix of this sample, C(yy). In this subsection, we will
describe how to estimate them.

The parent PDF can be derived from the normalized signal itself. The vector y(k)
can be used to establish the average vector and the co-variance matrix of the parent
PDF, as illustrated in Figure 4.4.

Because it is not possible to accurately describe the co-variance matrix and the
average vector based upon a single observation, the accuracy has to be assured
by including more data. This is realized using two update processes which are
performed for every pixel, jointly with the filtering process. These update processes
will also enable tracking of the PDF in non-stationary environments.
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4.4.3 Recursively updating the average vector

The vector p, can be estimated from previously normalized signals using:

p(y)(k _1 Ak 7 Z/\k ! )(l (437)

Here, we have introduced a temporal index w1th Py indicating its changing nature
and the updating process. From this, a recurrent equation can be found, so P (k)
is updated in the temporal direction:

R . Nepyy (k= 1) — gy (k)
Py (k) = Apgyy(k = 1) — . SE AR

The coeflicient ) is a forgetting factor [56, 94] which can be assigned values between
zero and one. If A = 1, all previous samples are weighed equally. This is often
referred to as the pre-windowed case which is mostly used with stationary data.
If A < 1, recent observations are weighed more heavily and therefore, the result
is more suitable as an estimate of the local statistics of a non-stationary signal.
Progressively smaller values of A compute i)(y)(k) based upon effectively smaller
sections of data. There is an optimal value for a specific signal [95], but this
is applicable for off-line processing only. Appropriate practical values for A with
image sequence filtering are 0.97 - - -0.99.

(4.38)

The denominator in (4.38) can be explicitly computed as:

iklzl )‘k
A A

i=1

(4.39)

or calculated recurrently. The average vector of the observation noise process,
scaled to have a unity variance, can be used as the initial p(y)(()) In this case,
Py(k) will be optimal for estimating a constant signal immersed in this noise.
The average vectors are tabulated for some PDFs in [96].

4.4.4 Recursively updating the inverse covariance matrix

In practical situations, the co-variance matrix C/,, is approximated at time k by:

C(yy) Z e gl y()(l) (4.40)

where §(1) = yy (1) = P,y(0). Agaln, we have introduced the temporal index k

with C,, to indicate its active nature and the update process. For wide-sense
stationary, ergodic data and A = 1:

N P
,}B& EC(yy)(k) = Cyy), (4.41)
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where C(y,, is the true co-variance matrix.

A recurrent expression for (4.40) is:

k-1
Cunpk) = FoR)FHHR) + Xt g0 06O,
=1

AC ) (k = 1) + o ()T (). (4.42)

In the OS estimator (4.23) we need C(—yir)' To this end, we use the matrix-inversion
lemma [56, 94] that states that since the square matrix C(,) can be written as
(4.42), its inverse C(_yi/) may be written as

. —1 21

-1 Clnl- - - Cyyk-1)
v A . G k-1) . ’ |
1+ g (k) 2t g (k)
P § - " A —1
21 Ck = 1) Gp(k)G{ (k) Cryyy(k — 1)

(4.44)

1
= |Cn(k—1)—-
(yy) N ~—1 ~
A A+ Go(B)T Copyy(k — 1) (k)

In this recursive algorithm é("y;)(()) has to be explicitly given. It is often advised
to use 6I for this matrix, with a large 6 [56]. As an alternative, a choice more
applicable to our situation and in correspondence with p,,(0), is to use the inverse
co-variance matrix from an ordered noise sample, with the variance of the noise
scaled to unity.

Computational aspects of the update process

A particular situation that is usually detrimental to an update system is when the
input is not persistently exciting [94]. This will cause the elements of

-1 N N 51

and -
Q(T)(k) Cly(k —1) gy (k),

to be zero, because (k) will finally lie in the null-space of C'(_y;) (k). As a result,
(4.44) degenerates to:
-1
aA—1 C(yy)(k - 1)
C(W)(k) = A\ .
If X = 1, the co-variance matrix will not change, but if A < 1, the elements of the
co-variance matrix start to grow and numerical overflow can occur. It is, however,
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. o 1
not directly necessary to correct C(yy)

T . - . . .
any multiplication factor in C,,,(k) is irrelevant, because this scalar will occur
both in direct and reciprocal form.

(k) for this growing. In the estimator (4.23),

The recurrent calculation of é’(_yil)(k) according to (4.44) is computationally more
efficient than using (4.42) and inverting the result directly. Comparing a direct
method, which takes at least m® multiplications for the inversion (Gauss-Jordan)
and an extra m for the update, with the recursive scheme, which takes 3m? + 2m
multiplications, shows that the recursive scheme is preferable for m > 3. In the case
where m = 3 (a relatively small operating windowg, we have successfully applied

Singular Value Decomposition (SVD) to derive C’(m(k) (19, 28].

4.4.5 Parent mismatch

The parent PDF can have several shapes. Two global situations can be encoun-
tered. First, filtering in a passive area, where no motion occurs and no edges are
crossed. Second, filtering in an active area where several objects are crossed.

In a passive area, the estimation process is equal to estimating a constant signal
immersed in noise. Here, the parent PDF is a normalized version of the noise PDF.
The local mean is equal to the value of the constant signal (for zero-mean noise),
and the local deviation is equivalent to the standard deviation of the noise.

In an active area, with moving objects, the optimal parent PDF becomes less well-
defined. To enable accurate estimation of the local mean and deviation, the parent
PDF has to be a normalized version of the PDF of a signal including noise and a
component generated by moving objects.

Using an update process as considered in the previous subsections for the descrip-
tion of the parent can only guarantee slow adaptation to the current (desired)
PDF. Slowly tracking the parent PDF unavoidably leads to a mismatch between
the actual and estimated PDF. This might lead to biased estimates with a higher
estimation variance. Here, we will investigate the effect of a mismatch on the
estimation bias.
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Estimate bias as a result of parent mismatch

As seen before, the expectation of 0(/6) based on the current estimates A, and
C'(_yly), is given by:

E{O(k)} = (A" €, A)" A" Cy, Elgy (k). (4.45)

If gy (k) comes from another PDF with local mean fi,(k) and local deviation 54(k),
then:

BE{gy(k)} =1 By | [’;ﬁg ] = Ad(k), (4.46)

where A and 6(k) are based on the actual PDF of g (k). The bias on (k) can be
evaluated as follows:

p AT 2 =1 ~ 14T -1 ~ ~
E{0(k)} = (A C(,,A) 'A C,,)A0(k). (4.47)
For symmetric PDFs this degenerates to:
. [ —L— 0
2] - [
! | P, CunPy
T )
176 0 ] [;L_,,(k) ]
T ~1 P 3
L0 #Cby | L)
e o (8)
i
- PLConD, Hol%) 1. (4.48)
O T Al Gg(k)
P, Conby,

It appears that there is no bias in the estimate for local mean and an uncorrelated
bias in the estimate for local deviation.

4.5 Experimental evaluation

In this section the proposed algorithm, shown in Figure 4.5, is evaluated on noisy
image sequences. We test its performance for several noise levels comprising Gaus-
sian and Laplacian noise. In addition, we test the effectiveness of an optional
motion-compensation preprocessing step.

We have again used parts of the “Trevor’ sequence (images 21 to 50) and the
“mobile” sequence (images 1 to 40). From the original sequences spatial parts of
256 x 256 pixels where selected for processing. For the optional motion estima-
tor we have used the recursive block-matching algorithm which was described in
Section 3.4.2 with correlation as the matching criterion (3.16).
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FIGURE 4.5: AN OVERVIEW OF THE ENTIRE FILTER. FIRST, IN AN OPTIONAL MOTION-
COMPENSATION STAGE, MOST OF THE NON-STATIONARITIES CAUSED BY MOTION CAN BE RE-
MOVED. THEN, FROM THIS SIGNAL THE LOCAL MEAN AND LOCAL DEVIATION ARE ESTIMATED
AND THE SIGNAL IS NORMALIZED. THIS NOISY SIGNAL IS THEN FILTERED BY A REGULAR NOISE
FILTER. THE FINAL RESULT IS ACHIEVED AFTER TRANSFORMING THE FILTER OUTPUT.

TABLE 4.1: AVERAGE improvement in SNR FOR THE “TREVOR’ SEQUENCE.

Method Average Improvement in SNR (range)
SNR=0dB | SNR=10dB | SNR=20dB
Decomposition 8.0 (0.1) 6.3 (0.4) 1.6 (1.1)
MC+Decomposition | 7.5 (0.1) 6.4 (0.3) 2.5 (0.9)

The noise filter used in Equation (4.10) is the RLS-filter from Equation (2.26).
For both update processes a forgetting factor of A = 0.97 was used. This value
was derived by experimental tuning for best result given both image sequences at
various noise levels. The estimated local deviance was also used to relax the update
process of the RLS-filter [19]. This is to reflect the dynamic nature of the variance
of the noise v(k) in the normalized signal y(k) as seen in Equation (4.7).

4.5.1 The effects of motion compensation

First, the effect of using motion compensation is illustrated for different amounts
of Gaussian noise. For each noise level, the filtering is performed with and with-
out motion compensation. In Table 4.1 the average SNR improvements are given.
Compared with the results from Chapters 2 and 3 it can be seen that the decompo-
sition method gives good results. The use of motion estimation has a positive effect
on the final result, except for 0dB SNR where the motion estimator fails because of
noise. In Figure 4.6, the SNRi curves are shown for 20, 10 and 0dB Gaussian noise,
respectively. The precise effects of motion compensation are clearly visible from
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FIGURE 4.6: MOTION COMPENSATED AND NON MOTION-COMPENSATED RESULTS OF THE DE-
COMPOSITION METHOD FOR 0, 10 AND 20 bB SNR ON THE “TREVOR” SEQUENCE

these curves. For high SNRs (20dB), motion compensation is a useful preprocess-
ing step. For moderate levels (10dB) the two curves are approximately identical,
while for low SNRs (0dB) the motion estimation fails. Therefore, the overall noise
filtering becomes less successful.

To illustrate the signals created by the OS estimator, we show the estimated local
mean and the associated normalized signal for a single frame in Figure 4.7. These
frames are taken from the experiment on 10dB data without motion compensation.
It can be seen that the local mean signal is essentially noise-free and smooth. The
normalized signal is stretched and an offset is added for maximum visibility.

The local mean and normalized signal for the experiment with motion compensation
are shown in Figure 4.8. It can be seen that the motion-compensated local mean
signal is sharper and the normalized signal contains fewer spatio-temporal edges.
The residual signal is scaled with the same parameters as used for the residual
signal in Figure 4.7. The final results of applying the proposed algorithm without
and with motion compensation are shown in Figure 4.9 for an SNR of 10dB.

4.5.2 Application to Laplacian noise

We have corrupted the “mobile” sequence with Gaussian and Laplacian noise at
a level of 10dB. This resulted in noise variances of o2 = 320. The results of
this experiment are presented in Figure 4.10. Motion compensation was used in
the algorithm. An observed and filtered image of the sequence corrupted with
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FIGURE 4.7: LOCAL MEAN AND STRETCHED NORMALIZED SIGNAL OF THE “TREVOR” SEQUENCE
WITH 10DB NOISE WITHOUT MOTION COMPENSATION

FIGURE 4.8: LOCAL MEAN AND STRETCHED NORMALIZED SIGNAL OF THE “TREVOR” SEQUENCE
WITH 10DB NOISE WITH MOTION COMPENSATION
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FIGURE 4.9: FILTERED FRAMES WITH THE PROPOSED DECOMPOSITION METHOD WITHOUT
(LEFT) AND WITH (RIGHT) MOTION COMPENSATION FOR AN SNR oF 10DB

TABLE 4.2: AVERAGE improvement in SNR FOR LAPLACIAN AND GAUSSIAN NOISE AT
SNR=10DB

Filter method Average Improvement in SNR (range)
Laplacian Gaussian
Arce 4.8 (0.2) 3.5 (0.2)
Sezan 1.4 (0.3) 4.2 (0.3)
MC+Decomposition | 6.9 (0.2) 6.5 (0.4)

Gaussian noise is shown in Figure 4.11. An observed and filtered image of the
sequence corrupted with Laplacian noise is shown in Figure 4.12.

For comparison purposes we have processed both corrupted sequences with two
methods for general purpose image sequence noise filtering, the spatio-temporal
median filter (2.10) by Arce [36], denoted by “Arce” and the LLMMSE filter
(2.12),(2.22),(2.23) by Sezan et al. [46], denoted by “Sezan”. Both methods are
reviewed in Chapters 2 and 3. Motion compensation was used with “Sezan” as
originally specified. The results are given in Table 4.2. It can be seen that because
the proposed method is able to adapt to the noise PDF, it gives good results for
both noise sources, while the other methods are sub-optimal with the Laplacian
noise. The LLMMSE filter “Sezan” uses box-averaging to establish its parameters.
Averaging is only optimal for Gaussian noise and has a large estimation variance
for Laplacian noise. The median estimator as used in “Arce” is closer to the opti-
mal estimator for Laplacian noise. However, it has a larger estimation variance in
the Gaussian case.
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FIGURE 4.10: RESULTS OF THE DECOMPOSITION METHOD WITH MOTION COMPENSATION FOR
GAUSSIAN AND LAPLACIAN NOISE AT 10DB SNR FOR THE “MOBILE” SEQUENCE

FIGURE 4.11: OBSERVED IMAGE OF “MOBILE” AT 10DB GAUSSIAN NOISE AND RESULTING
IMAGE OF THE DECOMPOSITION METHOD WITH MOTION COMPENSATION
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FIGURE 4.12: OBSERVED IMAGE OF “MOBILE” AT 10DB LAPLACIAN NOISE AND RESULTING
IMAGE OF THE DECOMPOSITION METHOD WITH MOTION COMPENSATION

4.5.3 Discussion

In this chapter we have described an image sequence noise-reduction method that
relies on signal normalization prior to filtering. The parameters for this normaliza-
tion, the local mean and deviation, are estimated by an estimator based on order
statistics. This estimator adapts to the current data PDF by an updating process.

We have shown experimentally that the method performs well for several noise
levels, both with Gaussian and Laplacian disturbances. We have also seen that
a motion-compensating preprocessing step improves the final result which means
that the normalization step is not able to remove all the non-stationarities caused
by motion. This is likely due to the complex update process which is rather slowly
reacting to sudden temporal changes.
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OS-supported noise filtering

In Chapter 4 we have discussed filtering of non-stationary signals from image se-
quences using trend-removal and normalization. Although the results obtained are
promising, the approach has two disadvantages. The first disadvantage is the huge
computational effort required for adapting the OS estimators and the noise filter.
The second disadvantage is the slow adaptation to changes in the statistics of the
spatio-temporal signal. In this chapter, we will improve the usefulness of the al-
gorithm. First, we will reduce the computational effort by removing the residual
filter. Second, instead of a recursive update process that tracks the statistics, the
OS estimators are now adapted “on the spot”.

The omission of the residual filter implies that the final result will be given by a
direct combination of the estimates of the local mean and deviation. This requires
fast adaptation and high estimation accuracy. These demands are met by adapting
the OS estimators to the local signal properties. Only those pixels which are “not
significantly different” from the current pixel should be used in the estimation
process. The other pixels within the window most likely come from a different
object and have no relation to the current pixel.

The qualification of pixels requires detection of outlying observations. Two meth-
ods are known to realize this [97). One is robust estimation i.e. a strategy which
takes outlying data in the estimation window directly into account in the esti-
mation process and performs a simultaneous detection, ignoration and estimation
process. Usually, these methods are more complex than non-robust estimators and
involve an iteration process to detect and ignore “outliers” [98]. A second method
to acquire accurate estimates from data with outliers is to use a two-step procedure
that separates detection and estimation. Prior to estimation, outlying pixels are
detected and removed from the data. The estimation is then performed using the
remaining reliable data. With this method, conventional estimators can be used.
In this chapter both methods will be investigated in the context of image sequence

73
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filtering.

The outline of this chapter is as follows. First, in Section 5.1 we simplify the struc-
ture of the filter from Chapter 4 and arrive at the well-known LLMMSE filter. As
shown in Equation (2.23), this filter needs estimates of the local mean and vari-
ance. We then discuss two robust estimation methods for these statistics, namely a
simultaneous method consisting of iterative weighed regression in Section 5.2, and
a method based on a range test of the data in Section 5.3. The noise-suppression
performance of the LLMMSE filter in combination with both robust estimators
will be evaluated experimentally in Section 5.4.

5.1 Simplifying the filter structure

The overall filter using the decomposition method from Chapter 4 has the following
structure (compare (4.10)):

g(z,],k)—ug(z,],k)} (51)

FG,5,k) = (i, 4, k) + y(i, 4, k F{ _
(4,5, k) = ng(3, 5, k) + 04 (i, 4, ) oo B
Here F{} denotes the filtering of the residual signal, where we used a recurrently

updated adaptive FIR filter. (The parameters u,(%, j, k) and o,(3, j, k) are the local
mean and local deviance of the observation respectively.)

The method can be simplified and made more computationally efficient by dropping
the filter operation and using a simple scalar multiplication C(i, j, k) instead:

f(i)jv k) = ﬂg(ivj7 k) + C(szak){g(laj) k) - /,Lg(i,j, k)} (52)

In the light of the Kalman filters, this structure can be seen as the linear com-
bination of an initial estimate formed by p,(%, j, k) and an update consisting of a
fraction of the initial estimation error g(3, 7, k) — p¢(%, 4, k). This Kalman structure
is a member of the “switching filters” class as introduced in Chapter 2. The pa-
rameter C(i, j, k) controls the filter action from purely averaging if C(4,5,k) = 0
to the identity operation, i.e. forwarding the observation, if C(7,j,k) = 1.

C(i,j,k) can attain a value which leads to the minimum mean square error in
filtering:

Clijik) = min E{(f(i.3,k) = f(i,5,k)’} (5.3)

The optimal value for C(3, 7, k) is found by setting its derivative with respect to
C'(3, 4, k) to zero:
dc'(s, 3, k)
o2(i,5,k)C" (i, 5, k) — 0} (4, 5, k) — 30y 3, k) + s (3, 5, k) g (4, 3, k) = 0.
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Here, the property E{f (4,7, k)n(i, 5,k)} = 0 was used. In this expression u (3, j, k)
is the mean of f(i, j, k) and o} (i, j, k) is the variance of (s, j, k). Because the noise
is zero-mean, u,(%,7,k) = ps(4,4,k), and the optimal value for C’(4, j, k) can be
written as:

o3(1, 5, k)
.. _ FASERA
Cli, j, k) = o200k (5.4)
Using o (i, j,k) = 03(i, J, k) + o, we arrive at:
YR .. UZZ.,j,k)'—O',Zl P ..
F(6 5 k) = pg(s, 5, k) + W(Q(Z’J’ k) = (i, 3, k). (5.5)
g\“: J:

This solution can be interpreted as follows: if f(i,7,k) is a constant signal, the
variance of g(i,7,k) is equal to o2 and C(3,J,k) is equal to 0 which causes the
filter to become the average operator, the optimal estimator for a constant signal
immersed in noise [20, 99]. If no noise is present, o2 = 0, and the filter becomes
the identity operator.

The derived filter is called the Linear Local Minimum Mean-Square Error
(LLMMSE) filter because C(i, j, k) is locally controlled in a minimum mean square-
error sense. The LLMMSE filter has been successfully applied to noise filter-
ing of non-stationary images [10, 100, 101] and in image sequence noise filtering
146, 48, 54, 102, 103].

The assumption that an image sequence is locally ergodic makes it feasible to
replace the ensemble statistics by the local spatio-temporal statistics. In practi-
cal circumstances, p4(%,7, k) and ag(i, 4, k) are therefore estimated from a spatio-
temporal window surrounding the current pixel (4, 7, k). The filtering results that
are obtained with (5.5) are however extremely sensitive to the accuracy of the
estimates of p14(4, , k), 02(4, j, k) and o [48, 101].

Problems emerge when choosing an appropriate estimator support because two
conflicting requirements have to be satisfied. The first requirement is that the data
within the spatio-temporal support has to be fairly homogeneous. This means that
the ensemble statistics of pixels contained in this window closely resemble those
of g(i,7, k). This usually means a limited support which conflicts with the second
requirement that the support of the window has to be large enough to guarantee
accurate estimates.

In many applications “box averages” are used, where the statistics are calculated
by averaging as [46, 102, 103]:

)= Cpaies 9t — 0,5 — ¢,k = 1)

a6 o b - (5.6)
and i —a k= 1) — (i, 5, k)2
5’2(2,], k) - Ep,q,les(g(Z iy 2V el ) - #9(21]1 )) ) (57)

m—1
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S is the spatio-temporal support of the window of size m. Box averages give
inaccurate results if the window contains non-homogeneous data (spatio-temporal
edges). The estimate for 1,(4, j, k) is then inaccurate and the estimate for 07(4, j, k)
is too high. This causes the control parameter C(,j, k) to approach unity and
switch off the filtering action. Switching off filtering in the presence of spatio-
temporal edges causes annoying noisy contours of objects in image sequences.

In some applications of the LLMMSE filter, estimators that use a selected homo-
geneous piece of the spatio-temporal window are applied. Usually, the selection
process is aided by the results of an edge detector [10, 101, 104]. Then, if an edge
was detected within the window, only the near side of the edge is retained for es-
timation. The success of this method depends on the robustness and accuracy of
the edge detector. It has to be noted that detecting edges is not a trivial task in
noisy image sequences [105].

In this chapter, two methods for arriving at accurate estimates are considered.
They are both based on observation models which take the outlying observations
directly into account without attaching them to image structures such as edges.

5.2 Simultaneous discrimination and estima-
tion: TIWLS

The estimators used in Chapter 4 are based on a linear regression through ordered
observations. The influence of outliers in regression can be reduced by the use of
“robust” regression techniques [97]. In robust regression, outlying observations are
detected because they will not fit the model which is imposed on the data. After
detection, they can be discriminated in the estimation procedure.

It might be clear that the detection of the outliers is the main problem in robust
regression. They can only be identified if the optimal fit is known, which already
requires the desired knowledge about the actual position of the outliers. We ap-
proach this problem by the selection of the main outliers based on an initial robust
regression. These outliers are then assigned weights to reduce their effect on the
final result. By iterating this process the weights are adjusted as more outliers are
identified. The converged weights are then used to produce the final estimate of
pe(i, J, k) and Jz(i, J, k). Because of its iterative nature, this procedure is called
Iterated Weighed Least Squares (IWLS).
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5.2.1 Estimation by regression with ordered observations

The OS estimators for local statistics derived in the previous chapter were based
on the assumption that within the acquired sample of size m the local statistics of
g do not change. Then, we found the following set of linear relations for the ranks
9(r)(%, 7, k) of the window centered at (z, j, k):

g(T)(Z-jz k) = :U'g(@jv k) + Ug(isj’ k)p(r) + fr(i:jv k)? 1 S T S m7 (58)

where p(,y are the (fixed) rank averages of a parent signal y which is distributed as
¢(0,1) and €,(4, 7, k) are the residuals. The statistics u,(7, 7, k) and o,(¢, 5, k) were
found by solving:

m

Z (1,7, k). (5.9)

r=1

(1, 5, k), 643, 4, k
ﬂg( J ) g( J ) pg(l,]k):ag(zjk

It resulted in the following minimum-variance OS estimators for 6(i,j,k) =
(g2, 7, k) a4(t,5,k)]T (cf. Eq. (4.23)):

1 g(l)(lv]ak)
O(; - _ T -1 - T -1 .
0(i,j.k) = [A C(yy)A] A C(yy) © ’ (5.10)
g(m)(lvjik)

where C(‘y;) is the inverse variance matrix of ordered samples from y, and A is the
design matrix which is composed as follows:

1 puyy
A=|: = |. (5.11)
1 pgm)

5.2.2 Selecting and rejecting outlying observations

So far, we have assumed that within the data set pixels from only one parametrized
PDF with the same parameters are present. If pixels with other statistics are
present within the data set, the estimators must have a selection method to be
able to use only information from the same parametrized PDF.

The difference in the statistics of the outlying pixel can be used for detection.
Given a robust fit, i.e. a fit through points that are related to certified pixels will
cause the outliers to have relatively high residual errors (see Figure 5.1). These
residual errors can be used to detect outliers.

Large residual errors have a substantial influence on the criterion (5.9) used for
derivation of the estimator (5.10). The aim in robustifying the estimator is to
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FIGURE 5.1: THE LARGE RESIDUAL ERRORS THAT SOME OBSERVED PIXELS GIVE IN A ROBUST
FIT, ARISE BECAUSE THESE PIXELS HAVE OTHER ENSEMBLE STATISTICS THAN THE CURRENT
ONE THAT GOVERNS THE ROBUST FIT.

reduce the influence of outliers on the criterion function and to compose a method
to detect them based on the same criterion. These requirements are conflicting for
most criterion functions. A criterion function that can fulfill these demands is the
following non-linear function [97, 98, 106):

E\If{er(z 7, k)/o}. (5.12)

ig(1, 5, k), 64(3, 5, k)
alis 5, ), 64(0,5,F) ugmk)og(m,k) =

Where the residual error €,(%, , k) was:

. . . . T p . .
& (i3, k) = g3, k) — [ 1 pery | 603, 5, %) (5.13)

The deviation of the residuals is given by a robust measure ¢. Division by this
measure is necessary to make the non-linear function W{} scale insensitive.

The resulting robust estimates are found by differentiating Equation (5.12) with
respect to 8(i, 7, k) and forcing the result to zero:

S0 po "wtatanie = o], e

r=1
where 1{} is the derivative of ¥{}. By introducing the following weights:
LY w{er(ivjv k)/a}
T 0 ) 3k = T T TN 1
w1} = H L (515)

equation (5.14) can be rewritten as:

5w (00050 [ 1 9 )" eliib) = [ 1 (5.16)
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The scalar w,{8(i, j, k)} can be seen as a weight indicating the outlying nature of
observation g,(7, j, k) based on a given estimate.

Equation (5.16) is non-linear through +#{} and is therefore usually solved by an
iterative procedure. We propose to use IWLS, where the following variant of (5.16):

b0 [ 1 5 ["eik) = ] (5.17)

~ 1
is solved for BH . The iteration step is denoted by s and €.(¢, 7, k) is the residual
A s+l
of the next estimate 8°

.. . T ~s+1, .
& (i, k) = g5 k) = [ 1 peny | 877 (5,5, %). (5.18)

Performing linear regression on (35.17) results in the following IWLS procedure
[98, 106]:

As41 _1 9(1)(7’97k)
0" (i.5,k) = [ATC, WaA] T ATC,W : . (5.19)
g(m)(i’j’ k)

Note that the differences with the non-robust estimator from Equation (3.10) lie
in the diagonal weighing matrix W

W = diag. [w.{6°(i, j, k)}] (5.20)

The robust algorithm usually requires a few iterations to converge to a robust
estimate (7, 7, k). A suitable robust initial estimate for 6(3, 7, k) is:

éo(iaja k) = [ 9(%, J, k) on ]T- (5.21)

This means that the initial estimate for p4(7, 7, k) is the current observation. The
known noise deviation is used as an initial deviation estimate. This is based on
the assumption that the deviance of the original signal is fairly small compared
to the noise deviance within an object which will have a relatively fixed intensity.
An example of an initial fit for m = 5 is shown in Figure 5.1, where the current
observation, in this case the smallest, acts as a leverage point.

Important aspects in the robust estimator are the estimate of ¢ and the function
U{}. The residual deviation o is estimated from €(3, j, k) by:

median{|e|, lea], - - -, l€m]}
0.6745 ’

(5.22)

g =

which was shown by Hampel [107] to be the most robust estimate of deviation. This
estimate is repeated after each iteration based on the new residual errors €,(3, 7, k).
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FIGURE 5.2: THE HUBER CRITERION FUNCTION AND ITS DERIVATIVE

The function ¥{} has to fulfill some requirements, it has to be symmetric: ¥{z} =
¥{—z} and it has to have a unique minimum at ¥{0}. Further, it has to be convex
to guarantee convergence of (5.19) [97, 108]. The following ¥{} and +{}, which
were derived by Huber [98, 109], will lead to robust estimates (see also Figure 5.2):

2 ll<a —a, T<—a
U{z} = { alz| - %-, lz| >a ’ ve) = Z: Ixxl EZ . (022

This specification for ¥{} is associated with a Gaussian shape in the middle and
with “double exponential” tails. With Huber’s function ¥{}, ¥{} and 6, the tuning
constant a would be given a value of about 1.5. The reason for this selection is
that if €(3, 7, k) actually comes from a Gaussian distribution, most of the residual
errors would obey the property that e (¢, j, k)| < 1.50. If all residual errors satisfy
this inequality, then for all ranks: ¥{e(,4,k)/0} = €(i,7,k)/c and the regular
least squares solution will arise [98].

The derivation of the asymptotic efficiency of the resultant estimator is rather
complex because of the non-linearity of ¥{} and the difficulty to establish the
degrees of freedom in 4. It has been established in [98, 110] that if ¢ is known,
the choice a = 1.345 is needed to achieve an asymptotic efficiency of 95% under
Gaussian assumptions. When the uncertainty in the value of €.(¢, j, k) /o rises if o
has to be estimated from a limited number of residual errors in a robust way, then
using @ = 1.5 will result in a comparable asymptotic efficiency [98]. An overview of
the IWLS procedure embedded within the LLMMSE filter is given in Figure 5.3.
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FIGURE 5.3: AN OVERVIEW OF THE LLMMSE FILTER SUPPORTED BY ROBUST IWLS ESTI-
MATORS BASED ON ORDER STATISTICS.

5.3 Rejection prior to estimation: the Range
Test

This section investigates another method to remove outlying observations, namely
detection and rejection prior to the estimation of (%, j, k) and U;(i, j. k). The
selection is done by performing tests of similarity on the pixel values within the data
set. Only those pixels which pass these tests are used for subsequent estimation.
First, we discuss the use of regular tests such as the t-test to select pixels that
are not significantly different. We will show that the usefulness and the validity of
these tests is limited in our application. Therefore, we will subsequently investigate
the use of the Studentized range as an efficient and effective measure of similarity
between groups of pixel values.

5.3.1 Testing pixel values for similarity

Selecting outlying observations prior to estimation is performed by comparing the
intensity of the current pixel with that of candidate pixels included in the sample.
A strict test would be equality, which selects only pixels with the same intensity,
but obviously, this will not be useful for estimation. As the noise has influenced
the observed intensity, the strict equality demand has to be relaxed, which means
accepting that pixels with “comparable” intensities are likely to belong to the
current object.

A mechanism has to be devised where perturbation by noise only will not result
in rejection of the tested pixel. The design of a test is based on the observation
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model and its connected assumptions. Tests will be formulated as hypothesis tests
in this section. For instance, the hypothesis that pixel a is similar to pixel b, will
be subject to testing and be accordingly accepted or rejected.

We assume the additive, uncorrelated and zero-mean noise model with ¢{} as the
PDF of the noise. An additional assumption for testing is that objects which occur
in the original sequence have a constant gray level within the spatio-temporal
window. Both assumptions suggest that, within the window, the observations
(4, j, k) belonging to the same object are independently distributed with the same
mean f(4,7j,k):

9(i, 5, k) ~ a{f (i, 5, k), on}- (5.24)
Let us denote the pixel values from the spatio-temporal window as: 91,2, ", Gm
(without any specific order) with g, as the current pixel value of g(i, 5, k). Each
pixel g; is then also distributed according to (5.24):

g~ a{fi,on}, 11 <m. (5.25)

A prior test can be performed to investigate the hypothesis that the window con-
tains no outlying pixel values. Based on (5.24), this test involves the following
hypothesis:

H: fi=fi=-=fc=-=fm1=fn (5.26)
The test can be performed by an F-ratio test [111]. Note that testing H will only
show whether all pixels are not significantly different, but outlying pixels are not
selected. Therefore, the F-ratio test has to be repeated for every combination of
the current pixel and the other pixels from the window, which is a huge task, even
for moderate m.

A popular test to investigate whether pixels are significantly different or not is the
t-test. Two pixels g, and g; are declared “significantly different” if:

9= 9l 5 /3y, (5.27)

On
where t,/; is the upper 3o significance point whose value depends on ¢{}. They
are readily tabulated for the Gaussian distribution [112]. As the parameter « is the
desired “false alarm” probability, the t-test has a reliability level of 100(1 — a)%.

If all pixels g, within the sample (1 < [ < m) are tested for similarity with the
current observation g, the probability of making a correct overall decision is:
pzp{w < \/5,5&/2}, (5.28)
n

where p{} denotes probability and gme; and gmin are the extremes of the accepted
set of m’ pixel values. It appears that this probability P of making a correct overall
decision declines with increasing m’ [96, 113]:

P=(1-a)" 1 (5.29)
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FIGURE 5.4: USING THE ¢-TEST, INTENSITIES g, AND g5 ARE FOUND TO BE NOT SIGNIFICANTLY
DIFFERENT FROM THE OBSERVATION g, AND BOTH WILL BE USED IN THE ESTIMATION PROCESS.
HOWEVER, THIS ACCEPTANCE DOES NOT MEAN THAT g, AND ¢gs ARE REGARDED NOT SIGNIFI-
CANTLY DIFFERENT USING THE SAME TEST. SO THE UNIFORMITY OF A GROUP OF INTENSITIES
THAT PASSES THE ¢-TEST IS QUESTIONABLE.

As a result, the probability 1 — P of at least one incorrect decision in the selected
set will be much larger than «. This phenomenon is illustrated in Figure 5.4 for
a Gaussian noise distribution. Here, both g, and g, are not regarded significantly
different to g. in individual tests because both values lie within a given distance
from g.. However, comparing g, with g, using the same test results in the decision
that g, and g, are significantly different. Yet, the above test considers them both
reliable enough for estimation purposes.

5.3.2 Using the range in testing

To overcome the problems with the t-test if decisions have to be made for a larger
number of pixels, Duncan suggested the “modified range test” [114]. A range is
a function of the ordered statistics. If the pixel values from the spatio-temporal
window are arranged in increasing values: guy < gp) < -+ < ggm), then the
difference g(m) — g(uy is called the sample range. The absolute difference of two
arbitrary pixels |gq) — gy is simply called a range. The ratio of a range to an
independent “root-mean-square estimate” of the population standard deviation
(here 0,) is called a Studentized range [113].

The Duncan method tests various Studentized ranges within a sample with the
probability (1—a) of making an overall correct decision for the selected set. An ad-

ditional advantage is the relatively low computational burden of Duncan’s method.

The specific algorithm, involving the range test to select pixels belonging together
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proceeds as follows. A pixel value g, is declared not significantly different from
9(v) if:

9w g0l o, (5.30)

On

Where pj,_p|,o 15 the upper « significance point for a Studentized range over la— b
values. These significance points are tabulated in literature [96, 113]. Figure 5.5
gives an idea of the values for & = 5% and a known value for o, for a number of
set sizes. If a range of pixels passes the test, all pixels covered by this range are
automatically regarded to be not significantly different. Of course, the opposite is
not true. If the range fails the test, the pixel values covered by the range have to
be considered more closely.

The ultimate goal of the Range Test is to select the largest subset of pixels including
the current observation that is homogeneous. More formally; if a < b:

9 — 9
9 — 90 < Plo-a)a
o

a5 9(e) oY) Max (b—a) subject to:

n

and: g < 9 < 9 (5.31)

Using the properties of the Range Test and the ordered structure of the data in
the entire window means that outliers can be detected in an efficient way. For
instance, first the range spanned by gqy and ggy) is tested for homogeneity. Then,
based on the specific results, the test can be stopped or tests can be performed
on ranks spanning smaller subsets. The algorithm continues until the first large
homogeneous subset, including the current observation is found.

To decrease the table dimension, the calculation effort, and to overcome some
inconsistencies if multiple pixels with similar values are tested, pixels with the
same value are placed on a single rank, as in the following ordering:

9039 Iy 900 < Go+ny Y1IST <M, (5.32)

where the superscripts m, denote the number of pixels available on rank r. Note
also that no equalities will occur anymore. This method of ordering is especially
efficient if the data has limited accuracy.

With this new ordering, a slight modification of the test is necessary. The pixels
within the range spanned by a and b are then regarded not significantly different

if:
l9tas — 953 Me + M
@ 0 < 2 . (5.33)
On 2memy

The Range Test will specify a sub-set of pixel values from the operation window
containing the current observation. An example of the operation of the Range
Test on non-stationary image data is illustrated in Figure 5.6. In the left image the
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FIGURE 5.5: THE CRITICAL VALUES pj,_j FOR THE RANGE TEST ON GAUSSIAN DATA, FOR A
SIGNIFICANCE LEVEL OF o = 5%, VARIOUS NUMBER OF VALUES |a — b{, AND A KNOWN VALUE
FOR 0,

square spatial window was placed just before the character. The white sections give
the pixels from the background that are selected. Note that even pixels separated
by the character are selected. In the right image the spatial window was centered
on the upper right part of the character and only pixels from the character are
selected. Note that in this example, a spatial window was employed. In image
sequences, the selection is performed from a spatio-temporal window.

5.4 Experimental evaluation

An experimental evaluation of both OS supported LLMMSE filters, one supported
by the Iterated Weighed Least Squares (IWLS) algorithm and one by the Range
Test (RT) is considered in this section. Both methods are evaluated with and
without motion compensation. As object sequences we have used frames 1 to 40 of
the “mobile” sequence and frames 21 to 50 of the “Trevor” sequence at noise levels
of 10 and 20 dB. The noise was white, Gaussian, invariant and independent of the
original signal. The results of the IWLS method were already listed in Chapter 2
for the un-compensated and Chapter 3 for the motion-compensated case, specified
as “Kleihorst” and “Kleihorst-MC” respectively.

In both methods, the spatio-temporal window used for estimating the local statis-
tics for the LLMMSE filter was a spatio-temporal cube of 27 pixels centered at the



86 Chapter 5. OS-supported noise filtering

FIGURE 5.6: A VISUALIZATION OF THE SELECTIVE PROPERTIES OF THE RANGE TEST. IN
THE LEFT IMAGE, THE OPERATING WINDOW IS CENTERED IN THE BACKGROUND AND PIXELS
FROM THE BACKGROUND (WHITE) ARE SELECTED FOR FILTERING. IN THE RIGHT IMAGE, THE
OPERATING WINDOW IS SELECTED ON A PORTION OF THE CHARACTER. IT CAN BE SEEN THAT
PIXELS FROM THE CHARACTER (WHITE) ARE SELECTED FOR FILTERING.

TABLE 5.1: AVERAGE improvement in SNR FOR THE “MOBILE” SEQUENCE.

current pixel. In the IWLS method the parent PDF that defines the estimators was
fixed at a Gaussian shape. The parameter in Huber’s functions for discriminating
outliers was set to a = 1.5 resulting in an estimator efficiency of around 95%. The
iteration process was stopped if the LLMMSE filter output had converged within
an integer value, which always occurred within 5 iterations. The Range Test used
the decision table presented in Figure 5.5, which is for Gaussian noise, based on a
critical value of @ = 5%. The known noise deviance was used to create Studentized
ranges.

The results are presented in Table 5.1 for the “mobile” sequence and in Table 5.2
for the “Trevor” sequence. In these tables “IWLS” and “IWLS-MC” denote the
LLMMSE filter supported by IWLS estimation without and with motion compen-
sation, respectively. “RT” and “RT-MC” denote the LLMMSE filter supported
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TABLE 5.2: AVERAGE improvement in SNR FOR THE “TREVOR” SEQUENCE.

Outlier selection | Average Improvement in SNR (range)
SNR=10dB SNR=20dB
TWLS 7.2 (0.4) 5.8 (0.3)
TWLS-MC 7.3 (0.5) 2.4 (0.5)
RT 7.3 (0.6) 2.1 (0.4)
RT-MC 7.6 (0.6) 2.3 (0.4)

by an estimation with selection by the Range Test without and with motion com-
pensation, respectively. The improvement figures of both selection methods can
be compared because both IWLS and RT are tuned by a and « to the same effi-
ciency. From the tables, it appears that the LLMMSE filter gives better result with
the RT outlier selection (i.e. prior to estimation) for the low SNR of 10dB. For
20dB, the IWLS outlier selection (i.e. simultaneous selection and estimation) gives
better results. This effect is present in both sequences. A probable explanation
is the strong model-based nature of the IWLS process that exploits the relations
between ordered observations. The RT selection method only uses the observation
model and assumes that f(s, j, k) is constant within the window. It can be noticed
from the tables that motion compensation will only slightly increase the SNRi.
This means that we have established adaptation methods that reduce the need for
motion compensation.

The SNRIi curves are shown in Figure 5.7 for the IWLS selection and in Figure 5.8
for the RT selection, respectively. From the relatively smooth character of the re-
sults without motion compensation it can be seen that the OS supported LLMMSE
filters are able to handle the non-stationary signals reasonably without motion com-
pensation. In addition, this observation is supported by the great similarity of the
un-compensated and compensated results. Overall, the noise suppressing charac-
teristics of the LLMMSE filter are relatively high and consistent as can be seen
from the results on both sequences.

From a visual point of view, the noise is substantially removed without unreason-
ably affecting the sharpness of the sequences and without blurring moving objects.
This can be seen from a result image of the LLMMSE filter supported by the Range
Test for the “mobile” sequence in Figure 5.9 where both the observation at 10dB
SNR and the filter result are shown. The filter result on the “Trevor” sequence is
shown in Figure 5.10.
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FIGURE 5.7: EXPERIMENTAL RESULTS FOR THE LLMMSE FILTER WITH OUTLIER SELECTION
BY THE IWLS METHOD
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FIGURE 5.9: THE OBSERVED “MOBILE” SEQUENCE AT 10DB SNR AND THE RESULT AFTER
APPLYING THE LLMMSE FILTER SUPPORTED BY THE RANGE TEST
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FIGURE 5.10: THE OBSERVED “TREVOR” SEQUENCE AT 10DB SNR AND THE RESULT AFTER
APPLYING THE LLMMSE FILTER SUPPORTED BY THE RANGE TEST



Chapter 6

Applications to signal-dependent
noise

6.1 Introduction

The filters discussed in the previous chapters were designed to operate on obser-
vation models with additive, signal-independent noise. Although these filters will
most certainly have many practical applications, a number of practical situations
result in noise which is signal dependent. The signal dependency manifests itself
in the statistical expressions of the observation noise.

In this chapter we consider two practical problems of interest in which the ob-
servation noise is signal dependent, namely quantum-limited imaging, for instance
with low-dosage X-ray imaging, and gamma-corrected video signals. The quantum-
limited image-formation process suffers from noise because the observation intensity
depends on the stochastic arrival times of photons. The uncertainty (noise) in the
number of photons captured in a given period depends on the photon rate which is
influenced by the original intensity. Signal-dependent noise is also encountered in
gamma-corrected video signals. Here, the non-linear gamma correction introduces
a signal-dependent mapping of the sensor noise in the observed signal.

We will derive specific filters, using techniques from the previous chapters for
these two practical applications. The main focus is on the implications of signal-
dependent noise for the OS estimators. In Section 6.2, we consider the filtering
of quantum-limited images as available from clinical X-ray image sequences. In
Section 6.3, we consider the filtering of gamma-corrected video signals with appli-
cation to removing noise caused by the electronics in the camera. In Section 6.4
we perform an experimental evaluation using synthetic and real sequences.

91
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FIGURE 6.1: THE TYPICAL COMPONENTS OF A DIAGNOSTIC X-RAY SYSTEM FOR MEDICAL
PURPOSES

6.2 Quantum-limited image sequences

6.2.1 Clinical X-ray imaging

Image intensities are generally the result of photons captured by an image-scanning
device. In most cases the number of photons captured in the area spanned by a
single pixel is superfluous. However, under some practical circumstances, this num-
ber is rather low yielding so-called quantum-limited images. The quantum-limited
imaging process suffers from the stochastic nature of the photon arrival rate which
manifests itself as noise, called “quantum noise” or “quantum mottle” {103, 115].
An intrinsic property of the quantum-limited imaging process is the dependency of
the noise characteristics on the signal intensity. This property necessitates the use
of special filter techniques.

Quantum-limited images are encountered in a number of practical situations: in
astronomical imaging, where the exploration of remote galaxies is realized by cap-
turing the few radiated photons of remote stars; in night-vision systems, where
because of darkness, the entire scene radiates a limited amount of photons; also, in
clinical X-ray imaging where the number of photons is limited as a result of lowering
the radiation exposure. We focus on quantum noise in clinical X-ray sequences.

The characteristic components of an X-ray system are shown in Figure 6.1. An
X-ray tube generates a beam of X-rays. Upon passing the patient, the intensities
of these rays are reduced depending on tissue properties, in this way creating a
varying/modulated X-ray field. An image-intensifier tube captures the modulated
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X-ray field and converts it to visible light. The resulting visible image is scanned
by a camera and then digitized.

Recently, X-ray image sequences are used as a diagnostic tool to monitor the phys-
ical dynamics for instance of heart and kidneys [103]. To avoid blurring of moving
objects, a short exposure time is used. The short exposure time in combination
with the requirement to limit X-ray exposure to patient and staff causes the im-
age frames to be quantum limited. These image sequences are therefore corrupted
by signal-dependent quantum noise. Although there are many factors in the X-ray
imaging chain that affect the overall image quality, this noise is the dominant image
corruption associated with reduction in dosage [103, 115].

In earlier work, some methods were developed to filter single images degraded by
quantum noise [101, 104]. Clinical image sequence filtering was investigated in
[50]. However, here the images were simulated with white, independent Gaussian
noise, which is not justified for simulating quantum noise. In [102, 103] a switching
filter was used to process image sequences. Recently, in [4] a maximum-likelihood
formulation was employed. We have proposed an OS-supported LLMMSE filter in
[116).

6.2.2 Modeling and statistical properties

The passage of photons through the patient under X-ray excitation can be described
by an inhomogeneous Poisson counting process [117]. That is, a counting process
with a varying mean depending on the properties of the intervening tissue, which
changes in place and time. This mean is essentially the diagnostic information in
the image sequence. We investigate the statistics of the quantum-limited imaging
process to demonstrate the signal-dependent noise and to derive an estimator for
the original signal.

Observation model

For quantum-limited imaging, the number of photons captured in each pixel at the
camera, appears statistically independent of the other pixels [101, 102, 103, 104].
The number of photons captured, expressed by the counting process c(i, j, k), can
therefore be described as a discrete Poisson random variate:

RN Ry = RS (g, k)
plei, 5, k)1 f(,5,k)} = RN :

The conditional mean and variance are given by [118]:

'u’clf(i’ j’ k) = Jz|f(iaj’ k) = /\f(zv ja k) (62)

(6.1)
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The parameter \ serves as a known proportionality factor relating the displayed
image intensity to the number of counts:

g(i, 3, k) = (i, 4, k) /. (6.3)

This proportionality factor is introduced for convenience. In this way, the diagnos-
tic information f(i, j, k) can also be regarded as an intensity image with the same
intensity range as the observed image g(%, 7, k).

The conditional mean and variance for g(3, j, k) become, using (6.3):

ll‘glf(i’jvk) = f(i,j,k’), (64)
o2 i g, k) = ———f(l’/\]’k). (6.5)

The properties of the tissue, i.e. the original signal f(i, j, k), are modeled as follows
[101}:
.f(i;jx k) ~ N{ﬂ’f(i,jv k),a}(i,j,k)}, (66)

ie. f(i,j,k) is Gaussian distributed with non-stationary mean y(4, j, k) and non-
stationary variance o}(4, j, k).

With these conditional statistics and the statistics of f(3, 7, k), the (unconditional)
mean of g(¢, j, k) can be derived:

ﬂg(iaja k) = Ef{Eg{g(i7j7 k)‘f(zh]’ k)}} = /-"f(i’jv k)v (67)

where E{} and E,{} denote averaging over f and g, respectively. The (uncondi-
tional) variance of g(¢, j, k) becomes:

023, 5,k) = E{E{g’G 3, k)f(5,k)}} — ng(d, 4, k)
= Ef{Uglf(%J: k) + p‘?]]f(la]a k)} - y"zf(?’s .77 k)
pr(i, g, k .
= L(/\—) + 0%, 4, k). (6.8)

Statistical properties of the quantum noise

An “additive noise model” for the observation equation can be imposed:

Because the PDF of g(i, j, k) has a scaled Poisson shape, the PDF of the noise
n(i, j, k) has a scaled and translated Poisson shape with mean [103]:

E{n(i,j, k)} = )u‘g(ivju k) - /‘Lf(iaj7 k) =0. (610)
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It can be shown that n(s, j, k) is orthogonal to f(4, j, k):

= E{f (1,5, k) E{n(i, 4, k)| f (i, 5, k) }}
= E{f(i,5,k)(f(i,5,k) — f(i,5,k))} = 0. (6.11)
Although n(s, j, k) and f(4,, k) are uncorrelated by (6.10) and (6.11), n(s, j, k) is-
dependent as can be seen from the following expression for the noise variance:
on(i.3,k) = 0g(i,j,k) = 07(i,5,k),
ps (i, J, k)
3 . (6.12)

Equation (6.12) shows that the noise variance depends on the mean value of the
original signal f(4,7,k). In practice, it can be seen that the noise variance is
larger in brighter parts of the image than in the dark areas. The left image from
Figure 6.10 can be consulted for this phenomena.

6.2.3 Estimating the modulation process from Poisson ob-
servations

In this section, we derive an OS estimator which is designed to estimate the mod-
ulation process, Af(%,7,k) from the quantum-limited observations. As we have
seen, Af(i,7,k) is the mean of the Poisson-distributed counting process c(i, j, k).
We will focus on the estimation of this mean from the counting process, which
can be retrieved from ¢(i, , k) by inversion of (6.3). First, we will show that the
maximum-likelihood estimator of Poisson mean is the sample average.

The maximume-likelihood estimator for Poisson mean

Our aim is to estimate Af(¢, j, k) from a sample of the counting process denoted
as: [c1,c,- -+, Cp) which resulted in the current number of photons c(i, j, k) =
Ag(%, 7, k). The simultaneous distribution of this sample, assuming internal inde-
pendence, is:

o A .7 .’k G
pllens e, enl M (G K)} = [[1% (6.13)

=

This results in the following log-likelihood function:

log{p{[cla Cyynv ey Cm“/\f(i,j, k)}} = i _’\f<za.77 k) + cllog{/\f(li j7 k)} - log{cz'}
i=1
(6.14)



96 Chapter 6. Applications to signal-dependent noise

By maximizing this function with respect to Af(z, j, k) the estimate of Af(i, j, k)
can be found:

LG (6.15)
m

Mg k) =
Note that this maximum likelihood is the average of the counts within the sample.

In practical processing of image sequences local ergodicy has to be assumed as
the ensemble estimates are exchanged by estimates from spatio-temporal samples.
On these spatio-temporal samples, the maximum-likelihood estimator will not be
useful. This is because of the dynamic nature of the spatio-temporal original in-
tensity Af(i, 7, k) which causes the assumption to fail. The sample average will
give inaccurate estimates when the sample does not contain a homogeneous set of
counts.

An OS estimator for Poisson mean

By ordering the sample according to value: [c(), c2), -+, c(m)], the structure of the
counts can be exploited for robust and efficient estimation purposes [93, 96, 108,
119, 90).

In effect, the rank averages describe the shape of the underlying PDF. By using
the affine relation between the observation ranks and the rank averages from a
normalized “parent” PDF, the mean of the observation PDF can be estimated by
applying linear regression as demonstrated in Chapters 4 and 5 92, 93, 96].

However, matters are more complex with the Poisson PDF. Compared with the
estimators derived in the previous chapters, the Poisson PDF changes its shape,
not only its position and width, as a function of its mean value. Therefore, the
relationship between the rank averages of the observation and the parent is not
affine as assumed in (4.11), and can not be as easily exploited as the relationship
with most other distributions. We will, however, approximate a linear relation,
in order to use the familiar linear-regression technique. In addition, it will be
demonstrated that this affine relation suffices for the purpose intended.

We introduce a parent Poisson PDF with known mean value = and rank averages
denoted as piy[z]. Let the averages of the ranks of the observed counting process
with mean value Af(7, j, k) be denoted as E{c(y} = pry[Af]. In order to estimate
Af(i, 3, k), the following affine relation is “fitted” between the rank averages of the
observation and parent PDF:

Py [Af] = apirylz] + b, Y1 <r <m. (6.16)
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If linear regression is performed on this relation, estimates for a and b are found.
In the linear regression, the following problem is solved:

a,b — min Y (pm M1 = a'pyz] — )2 (6.17)
’ r=1

Analytically, this gives the following exact values for ¢ and b:

Ty P @y A1 = A3, 5, k) 7L peyl)

" S o l2lp o] — @ Sy peole]
_ MR (6.18)
z ' '
p — I P(T)[/\f] —a), P(T)M
m k]
= /\f(zv./a k) —az,

M0, 5, k) = T Af (5, k). (6.19)

In this derivation, the identities 7, . [z] = mz and 17, (A f] = mAf(4,5, k)
are used [119, 120].

To estimate the current original intensity, the parameters a and b are estimated
from the observation using linear regression to solve (6.16). The intensity of the
original signal which generated the counting process c(z, j, k) can then be found
using the analytical expressions from (6.18) and (6.19) [121]:

A, 5, k) = az +b. (6.20)

Applying the IWLS estimation procedure

In practice, the rank averages of the observation are not available, and Equation
(6.16) is replaced by:

¢y = apy[z] +b+e, V1< 71 <m, (6.21)

where €, are the residual errors which are caused by removing the expectation over
C(r)-

To obtain proper estimation results, the presence of outliers has to be taken into
account. In Chapter 5 we considered two robust estimation methods: Iterated
Weighed Least Squares (IWLS) and the Range Test (RT). The computationally
efficient RT is not directly applicable in this situation because it uses decision
thresholds based on the observation PDF which is not traceable because its mean
is a stochastic, unknown, value. Therefore, we have relied on the IWLS procedure
to solve the minimization problem in a robust way.
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This resulted in the following iterative estimation procedure:
a s+1 ) (1)
T -1 1 T -1 .
[ ; ] (4 c,WiA| ATcpwe | | (6.22)
C(m)
In the present situation, the design matrix A is composed as follows:

r_ 1 1 ... 1
A= [m[x] ple) - umm]‘ (6.23)

Initial estimates and the choice for =

Robust initial estimates to start the iteration procedure are:

= ,}C(Z—’i’k—) and 5 = c(i, j, k) — \/c(i, 5, k)z, (6.24)

where the current count (%, j, k) is used. The iteration procedure can be stopped
if @ and b have converged, which is usually within a few steps.

The parameter z describes the shape of the parent PDF. In effect, it determines
the entries of C,,) and A. In order to achieve a low estimation variance, the PDF
shapes have to be comparable, which is guaranteed if z = c(i, j, k). For each sample
the matrices C ) and A have to be built, which is not a heavy burden as they can
be stored efficiently for several values of z or calculated in an analytical way. In
addition, the estimation process is only sensitive to values of  for the lower region
of counts c(i, &) < 10. This gives a considerable degree of freedom and reduced
complexity in choosing z for higher counts.

Analysis of the affine approximation

The linear relation in (6.16) is sufficient for the purpose of estimating the mean of
an observation given a known parent. This can be seen by looking at the Taylor
approximation of px;{}, a Poisson PDF with mean Af, by p;{}, a PDF with
intensity z. The k** order approximation of pys{c} by p.{c} is given by:

EOAf-ay [ v :

pley~ ¥ B2y (]) (~1)pefe - i}, (6.25)
=0 J: i=0

The average value of this approximation is given by:

r (SO S (2) (ynte-) (626

3=0 J: =0
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_ Z (Af - z)) i (J) (_1)j—i icpz{c -1}, (6.27)

c=1

ZMi (7) (—1Y (2 + 1) (6.28)

7=0 ]' =0 ?
MV [ K (Y iy s (1) gy
B> = 3_7—35)] {z(0) +5(0Y 7"} = Af. (6.30)

It appears that the last summation is only nonzero for j = 0 and 7 = 1 which means
that the average Af can be sufficiently estimated from a linear approximation of

war{} by o1}

6.3 Gamma-corrected video signals

Most video sequences that we regard as “original” data are corrupted by a certain
amount of noise originating from the camera electronics. From measurements,
the SNR of un-processed image sequences appears to be unexpectedly low. For
instance, the well-known “mobile” sequence has an estimated SNR of 28dB.

The noise in “original” signals originates as thermal noise from the early electronic
circuits of the camera. The captured (noisy) signal passes a gamma-correction
stage that compensates for the non-linearity of a Cathode Ray Tube (CRT). An
effect of this gamma correction is that the noise in the observed “original” sequence
has statistics that depend on the captured intensity.

In this section we will consider a method that is able to effectively reduce the
noise in the gamma-corrected “original” sequences. The method includes an order-
statistic estimator with weights that are optimally adapted, given the observation
model and PDF of the noise. The resulting filter is an efficient OS-FIR filter (see
Chapter 2) that can be used to reduce the noise in “original” video sequences.

6.3.1 Signal model
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FIGURE 6.2: THE SCHEMATIC STRUCTURE OF A COLOR VIDEO CAMERA

The structure of a color camera

The properties of camera noise intrinsically depend on the camera structure. This
structure can be schematically modelled for a color camera as in Figure 6.2. It
consists of three recognizable paths relating to the three colors red (R), green (G),
and blue (B).

The electrical current generated by the light sensors depends directly on the object
intensity, and is amplified by an electronic amplifier (A) to a suitable level. After
amplification, the smoothing effects caused by the finite area of the sensor elements
are reduced in the aperture-correction stage. This stage usually consists of spatial
high-emphasis filters.

To match the characteristics of a CRT, the video signal passes a gamma-correction
stage. Finally, in a processing stage, known as the “RGB-YUV matrix”, the R, G,
and B signals are transformed to the YUV system. In this system Y is the intensity
signal and U and V comprise the color information. A portion of the G signal,
which usually contributes most to the intensity signal Y, is forwarded to the Y
path for spatial sharpening purposes. This “crispening” action and the aperture
correction can be switched off on high-quality cameras, which facilitates additional
signal processing.
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FIGURE 6.3: A SCHEMATIC MODEL OF THE PATH THAT OBJECT INTENSITIES FOLLOW YIELDING
A PIXEL VALUE

Statistical properties of the gamma-correction

For the purpose of investigating noise filtering of gamma-corrected video signals we
have simplified the camera structure to the signal path shown in Figure 6.3. In this
simplified structure we have focussed on one color signal which is regarded as a com-
mon intensity signal. We have ignored the aperture correction and crispening filter.
The signal path now begins with amplifying the input signal f(z, j, k). The thermal
noise introduced by the amplifier can be modeled as zero-mean, signal-independent,
white Gaussian noise [122, 123]. The noise variance o2 is time invariant and is as-
sumed to be known.

Ignoring the amplification factor for simplicity, the corrupted signal can be written
as f(i,7,k) + n(i, 7, k). After the gamma correction, the observed signal g(z, j, k)
is modeled as [123]:

06,3, K) = (P4, k) +ni 5 BT = £, 5,K) (1+’—}§—j%) . (63)

with a typical value of v = 0.45. Note that we have assumed in this equation that
image intensities lie between 0 and 1.

Some examples of the influence of gamma correction on images are illustrated in
Figure 6.4. The top image has a v < 1 and appears lighter; the darker parts of
the image are emphasized. The bottom image has a v > 1 and appears darker;
the lighter parts of the image are emphasized. Also, the input-output relations are
shown.

To facilitate noise filtering we approximate (6.31) by a Taylor expansion of order

n(i,g.k) __
s about o = 0.

s Ly s
(£, 3, %) + nli, 3, B)) & £7(i, j, k) (1 +y (;’) ;"—,g—j—]’%) : (6.32)
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where we have used the convenient short-hand notation:

(v)zv(v—l)---(v—lﬂ)_ (6.33)

l ]

The above approximation now enables us to rewrite the observation equation as
an additive noise model:

9(i,5,k) = f7(i,5,k) + (3,5, k); (6.34)
o o[\ 7,5 k)
'I'L»,(Z,j,k) - f7(z’]’k);(l> fl(’l,],k)

For practical values of f(i,j,k) and n(4,J, k), the approximation is acceptable if
s > 1. We have used s = 4 to guarantee sufficient accuracy. A 1%-order Taylor
expansion is not accurate enough at low frequencies [124].

The additive noise component is signal dependent. This can be shown after speci-
fying the stochastic models for the original intensity f(%, 7, k) and the additive noise
n(i, j, k):

£, 5,k) ~ N{f(5,5,k),0}; n(i,j, k) ~ N{0,07}. (6.35)

Using the additional properties E{n®(i,j,k)} = 0 and E{n'(:,5,k)} = 30? for
the Gaussian noise, the average value of the observation noise is approximated by
(s=4):

(i) = ((7) 260043 (]) im0

The noise variance can be approximated for moderate and larger values of f(3, j, k)
as [123):
0% (i,5,k) = Y os XV, j, k) — ph (5, k). (6.37)

It can be seen that the noise n,(¢, j, k) is not zero-mean and signal dependent as the
statistics depend on the value of the original signal f(i, j, k). Note that if y =1,
the noise becomes zero-mean and the dependency disappears.

6.3.2 An order-statistic filter for y-corrected noisy signals

The desired signal is f7(%, 7, k), and has to be estimated from ¢(i, 7, k). An obvious
approach would be to create a transformed observation ¢'(z, j, k) by inversion of the
gamma correction. The signal ¢/(4, 4, k) can then be filtered and gamma-corrected
to establish the final result. However, this approach is hindered by the presence of
(additive) quantization noise on the digitized signal g(i, 7, k). In addition, noticable
aliasing effects might be introduced.
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Most published noise filters for video sequences do not take the gamma correction
into account. As a result, the sequence will have a darker appearance after pro-
cessing. We propose a spatio-temporal OS-FIR filter that does take the correction
into account (124]. It is again based on an OS estimator:

Pl k) = 32w (i, b)- (6.38)

r=1

Here, g(r)(¢, j, k) are the ordered observations within a spatio-temporal window of
size m, centered at (i, 7, k). The weights w, are fixed values that are optimal for
estimating a constant signal in signal-dependent noise. The weights depend on the
PDF of the noise n(i, j, k) in (6.31). On the basis of (6.34) and the signal and noise
properties in (6.35), we find the following expectation for g(%, j, k):

E{n'(i,j,k)}

f'e,5,k)
The above relation still holds after ordering the data in m ranks. Thus we can
write for every rank 1 < r < m of ¢(4, 5, k):

Bloti.a 0} = 16,30 + 650 Y (7) (639

=1

E{gr(i,4,k)} = f7(1,5,k) + f7(i, 5, k) i (6.40)

=1

() B (i, K}
! fH@,5,k)

This equation includes the expectation of the ranks taken to the power [, i.e. the
higher-order moments of ordered data. These moments, E{ni,)(i, 3, k)}, are readily
available if the statistics of the noise source are known. However, the expectations

over the ordered observations E{g((i, j,k)} are not available. By approximating
these expectations by the observed ordered observations themselves, we arrive at:

(7) E{;EZ,( Y

where €.(i, 7, k) is a stochastic error term due to approximating the expectations.

G (6o, K) = F16,5,K) + (65, k) S
=1

+6-(1,7, k), (6.41)

The relations in (6.41) can be written in a matrix-vector form as follows:

9(1)(i;j> k) i1 ... E{’ﬂ»(sl)(i,j, k)} f7(1,], k)
o) 1 E{"?mii,% k)} (Z) fr73(i,5, k)
[ €1(i,5,k)
+ 5 (6.42)
L Em(i,j, k)

Or, using a matrix-vector notation:
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FIGURE 6.5: A GRAPHICAL ILLUSTRATION OF THE OS-FIR FILTER SHAPES FOR SEVERAL
WINDOW SIZES AND FOR 2"¢ AND 4" ORDER APPROXIMATION

Since E{nl(r)(i, J.k)}, for 1 <1 < s, are known constants, the matrix A is entirely
known. Equations (6.42) and (6.43) describe a set of linear relations in the s + 1

unknown parameters 7 f7744,7, k), for 0 <1 < s. The top entry of 8(i, j, k) is
f7(i, 7, k), the desired signal value.

Usually, for common window sizes m > s + 1, which means that this set is over-
determined. Equation (6.43) is solved in minimum-variance sense of €(3, , k) by:

6(i,5,k) = A*gy(i, . k). (6.44)

The pseudo-inverse A% is found by singular value decomposition [125]. The top
row of A* contains the weights of the desired OS-FIR filter to estimate f7(i, 7, k)
from g(4,7, k). This means that only this row has to be computed. In addition,
because the PDF of the noise is known from Equation (6.35), the rank moments
of the noise establishing A can be calculated in advance. This means that the top
row of A% consists of fixed weights for the entire signal.

The filter weights are illustrated in Figure 6.5 for some window sizes between 7
and 27 and for s = 4 and s = 2. It can be seen that the use of higher-order rank
moments for the 4** order approximation has resulted in more refined filter shapes
compared to those resulting from a 2™ order approximation. From experiments
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it appeared that the filter shapes stay approximately the same if s is increased
even further. Note that the approximation order does not directly influence the
calculation effort in filtering. A large s has only consequences in the pre-processing
step where the weights are determined and on the amount of over-determination
of the set of equations.

6.3.3 Robust implementation using the Range Test

The data for the OS filter (6.38) is gathered from a spatio-temporal window cen-
tered at (i, j, k). Because the value of every pixel used in filtering has an influence
on the final result, the OS filter designed so far is not robust. A selection proce-
dure to define the homogeneous part of the operation window has to ascertain the
absence of outlying observations.

Using the model information, we can approximate the PDF of the observed signal:

9'7(i, 5, k) ~ N{f(i,,k),0%}. (6.45)
This approximation and the assumptions regarding the distribution of f(4, j, k):
f(i,3,k) ~ N{f(3,4,%),0}, (6.46)

enable us to use the Range Test. This test was described in Chapter 5 as the heart
of a detecting and selecting stage.

The result of the Range Test is an ordered homogeneous selection of pixel values
comprising the current pixel. Based on the number of pixels in this selection, a
number of filter weights has to be calculated. Because the set of selectable sizes is
limited and known, it is possible to pre-compute and store the filter weights for all
possible sizes. The overall structure of the filter can now be seen from Figure 6.6.
In this figure, we can distinguish the ordering stage, the Range Test which uses
a decision table to evaluate pixel values, and the filtering stage. The latter stage
consists of a bank of OS-FIR filters with fixed weights. The appropriate filter is
chosen on basis of the number of homogeneous pixels that were found using the
range test.

6.4 Experimental evaluation

6.4.1 Quantum-limited sequences

We have applied the OS estimator for quantum-limited data on synthetically dis-
torted sequences and on a clinical sequence suffering from quantum noise. The
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FIGURE 6.7: THE SIMULATION METHOD USED FOR INTRODUCING QUANTUM NOISE IN SE-
QUENCES

mechanism to introduce synthetic quantum noise in regular sequences is shown in -
Figure 6.7. First, all pixels values are multiplied by the proportionality factor A.

The resultant values are then used as the mean value for the Poisson noise source,

yielding the counting process. To retrieve image intensities ¢(i, j, k), comparable

with f(4, 7, k), the counts are divided by X [103, 126]. It is clear that the value

of A necessary to scale c(i,j, k) to common image intensities reflects the SNR of
9(%,7,k). A large A indicates a high SNR whereas a low ) indicates a low SNR.

We have synthetically distorted the “mobile” sequence using the simulation model
above for A = 0.5, 0.25 and 0.1. Expressed as SNRs (calculated in the usual manner
between f(4, 7, k) and g(, 7, k)), these values amount to respectively 12, 9 and 5dB.
The effect of scaling with A can be clearly seen from the histograms of the resulting
displayed data. For a comparison, the histograms of the original “mobile” sequence
and corrupted sequences with A = 0.5, 0.25, 0.1 are shown in Figure 6.8. For lower
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FIGURE 6.8: THE HISTOGRAM OF THE ORIGINAL SEQUENCE AND OF THE CORRUPTED IMAGE
SEQUENCES FOR VARIOUS VALUES OF THE PROPORTIONALITY FACTOR A

TABLE 6.1: Average Improvement in SNR FOR THE “MOBILE” SEQUENCE.

A [ SNR (dB) | SNRi (range)
0.5 12. 6.9 (0.3)
0.25 9. 7.2 (04)
0.1 5. 9.7 (0.4)

values of A, fewer numbers of gray-level remain in the image. This “quantization”
effect can be used to identify X in practical situations of interest.

The OS estimator was used with a spatio-temporal symmetrical window of 3 x3x3
pixels. The original intensity was estimated by the robust IWLS procedure. Motion
compensation was not used for two reasons. First, our recursive motion estimator
from Section 3.4.2 was unable to track the irregular motion that is usually present
in clinical sequences. Second, the motion estimator is optimized for Gaussian noise
and will therefore give sub-optimal results in the presence of asymmetric Poisson
noise [103].

The SNR and the average improvement for the synthetic data is shown in Table 6.1.
Frames of the distorted and filtered sequence are shown in Figure 6.9 for A = 0.5,
in Figure 6.10 for A = 0.25 and in Figure 6.11 for A = 0.1, respectively.

To illustrate the performance of the OS estimator on genuine quantum-limited
data, we have filtered a clinical image sequence of a cardiac scene showing some
blood vessels and tissue. This clinical sequence suffers from quantum noise with
an estimated A = 0.5. An image of the observed sequence and the filter result are
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500

FIGURE 6.9: OBSERVED AND FILTERED FRAME FOR A = 0.5

FIGURE 6.10: OBSERVED AND FILTERED FRAME FOR A = 0.25

shown in Figure 6.12. As the original signal is not available, the improvement can
only be evaluated from a visual point of view. It appears that the noise is reduced
without affecting the sharpness.

6.4.2 Gamma-corrected video signals

In the experimental evaluation of the OS-FIR filter for vy-corrected video signals we
have considered synthetically distorted sequences and a genuine y-corrected “origi-
nal” image sequence which suffers from camera noise. The simulation procedure to
create the synthetically distorted sequences and to evaluate the filter improvement
is shown in Figure 6.13. Signal-independent Gaussian noise is added to a sequence
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FIGURE 6.11: OBSERVED AND FILTERED FRAME FOR A = (.1

FIGURE 6.12: A RADIOGRAPHIC SEQUENCE SUFFERING FROM NOISE AND THE FILTER OUTPUT



6.4. Experimental evaluation 111

a

a(ijk) noise | flijk ()1/7 fGjk)

filter

FIGURE 6.13: THE SIMULATION OF NOISY v-CORRECTED IMAGE SEQUENCES

TABLE 6.2: Awerage Improvement in SNR, (RANGE) FOR THE “MOBILE” SEQUENCE AT 10DB

y Average Improvement in SNR, (range)
s=1 s=2 s=3 s=4
0.35 | 7.14 (0.2) | 7.69 (0.2) | 7.78 (0.2) | 7.78 (0.2)
0.45 || 7.69 (0.2) | 7.78 (0.2) | 7.87 (0.2) | 7.87 (0.2)
0.55 | 7.73 (0.2) | 7.82 (0.2) | 7.88 (0.2) | 7.88 (0.2)

and the resulting value undergoes a +-correction. The real-valued signals are then
filtered using the proposed algorithm and subsequently pass a stage where the ~y-
correction is inverted. This is then regarded as the final result, which is compared
with the original sequence to determine the SNRi. Notice that we have neglected
the introduction of aliasing effects. The synthetic noise is added to a level of 10dB,
which is several orders of magnitude greater in power than the vy-corrected noise
present in this “original” sequence. The OS-FIR filter was used for filtering in
combination with the Range Test to detect outlying pixel values from a symmetric
motion-compensated spatio-temporal window of 27 pixels.

The improvements in SNR of f(i, j, k) compared with f (4,7, k) (see Figure 6.13)
are given for several filter orders s in Table 6.2. It can be seen that, for s > 1, the
filter result is practically insensitive to . In addition, the filter results are on par
with those of the previous chapters. The filters with s = 1 are similar to ignoring
the gamma correction and effectively mean spatio-temporal averaging supported
by the Range Test. From the table it is clear that this gives lower results. It
can be seen that the improvement increases slightly for higher filter order s. The
improvement has stabilized for s > 2.

The filter for y-corrected video signals is also applied on the original “mabile” se-
quence. This sequence inherently contains some camera noise which results in an
estimated SNR (dynamic range) of around 28dB for the original sequence. This
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FIGURE 6.14: THE ORIGINAL “MOBILE” SEQUENCE SEEMS TO SUFFER FROM CAMERA NOISE,
ON THE LEFT AN ENLARGED AND ENHANCED PORTION OF THE IMAGE AND ON THE RIGHT THE
FILTER RESULT

camera noise can be made more visible by enlarging a part of the image and en-
hancing the contrast (left image of Figure 6.14). The right image in this figure
is the result after filtering with an assumption that v = 0.45. After filtering, the
estimated SNR of the entire sequence becomes 35dB. The resulting image sequence
remains reasonably sharp and the noise is reduced.



Chapter 7

Conclusions and topics for
further research

This thesis is devoted to noise filtering of image sequences. We have reviewed
most well-known techniques in Chapters 2 and 3 and have proposed a number of
new techniques in Chapters 4 and 5. In Chapter 6 we have focussed on specific
applications. In most chapters, we have performed an experimental evaluation to
support and discuss our ideas. This chapter summarizes the conclusions that were
reached in these situations. In addition, we will give our view of the path that
future research might follow in the field of noise filtering of image sequences.

7.1 Summary of the conclusions arrived at

The main problem in image-sequence noise filtering is the dynamic behavior of the
spatio-temporal signal. This is not so much different from the problems encountered
in spatial noise filtering, but image sequences require additional filter properties.
Non-adaptive filters such as straight averaging do not produce useful results, as
moving objects and spatial detail are blurred. Even filters that adapt globally to
the signal statistics such as Wiener, Kalman and switching filters with fixed control
parameter are unable to give worthwhile results. Temporal median filters remove
certain object features while the feature-preserving spatio-temporal median filters
appear to be not very noise suppressive.

From the experiments we concluded that only locally-adapting filters are able to
give good noise suppression without blurring the signal. Among these filters are
some weighed averaging and switching filters, the simultaneous approaches and the
adaptive order-statistic filters, as developed in Chapters 4 to 6.
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Motion compensation has been widely used as a preprocessing stage to aid the
noise filter by supplying homogeneous temporal signals. However, the estimation
of motion suffers from the observation noise and the incompleteness of the motion
model used. For these reasons, the use of motion compensation will not always
result in homogeneous temporal signals that can be filtered by non-adaptive filters.
Because of failure of the motion compensation, locally-adapting filters are still
necessary for useful results. Motion compensation can only be seen as a first, but
not perfect, aid for creating stationary temporal signals.

Spatio-tempora]l methods are able to give more noise suppression than temporal
methods. This is obvious considering the increased amount of data involved with
filtering. However, as spatial signals are usually also non-stationary, adaptation
is required to avoid blurring. From our experiments we have found that for the
proposed order-statistic filters a centered spatio-temporal cube containing 27 pixels
gives useful results.

The methods that we have developed in this thesis are spatio-temporal locally-
adapting filters. The algorithms use estimates of the local statistics to normalize
the non-stationary signal (Chapter 4) or to adapt the filter characteristics locally
(Chapters 5 and 6). For estimation of the local statistics we have relied on efficient,
in estimation-variance sense, order-statistic estimators. Apart from providing local
adaptation in non-stationary situations, the estimators also provide the opportunity
to track slowly changing noise statistics.

The adaptation power of the order-statistic estimator is substantially improved
by rejecting outlying observations from the data window. For this task we have
included the IWLS and the RT procedures. The RT procedure uses the assumption
that the original signal is constant within the data window for outlier selection,
whereas the IWLS method uses a stochastic model for the original signal. These
different assumptions result in slightly better results for the IWLS method in low-
noise situations where the constant-intensity assumption fails.

The estimation properties of the order-statistic estimator were shown in appli-
cations to imaging processes with signal-dependent noise. These applications
were noise-filtering quantum-limited clinical X-ray sequences and gamma-corrected
video signals. By linearizing the observation models we have developed dedicated
order-statistic estimators. Here, the estimators were used to provide direct inten-
sity estimates instead of estimates of the local statistics. Because of the outlier
rejection and the efficient estimation procedure, the filter results are good without
unreasonable blurring.
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7.2 Suggestions for further research

Considering the conclusions reached, it is clear that the investigations into noise-
filter structures are maturing. At this moment, only one filtering structure, the
simultaneous motion estimation and filtering approach seems to gain interest in
literature. However, the high additional computational effort may limit the prac-
tical application of this technique. Our view is that the research in simultaneous
motion estimation and filtering will therefore be mainly dedicated to understanding
the relational and fundamental concepts of motion estimation and filtering. The
future research in image sequence noise filtering will most probably be systems
oriented and devoted to specific problems and applications.

The systems orientation is necessary to solve several problems concerning noise
filtering in specific environments. As an example, we consider noise filtering for
the television environment. Here, the environment influences the choice of the op-
eration window because of interlaced video formats. Also, the aperture correction,
gamma correction and crispening filters will influence the filter operation. In this
context the noise filtering of color sequences will be interesting.

Noise filtering of image sequences can be investigated in combination with specific
problems. For instance, the identification and removal of distortion in combination
with noise filtering. This might comprise multi-frame approaches extended with
ideas presented in this thesis. A specific application are sequences produced by a
surveillance camera that suffer from out of focus and motion blur in addition to
the sensor noise.

Another interesting problem where noise filtering techniques can be applied is reso-
lution enhancement of images. In practical situations, time-consecutive recordings
of a dynamic scene are available or can be made available. From this image se-
quence a single image of higher resolution can be retrieved using aliasing effects
and fractional motion estimates [127, 128]. However, these resolution enhancement
methods strongly suffer from observation noise which is always present in the prac-
tical applications. The noise-filtering techniques from this thesis might help to
reach better results in practical situations.

Some subjects for further research directly connected with the material of this thesis
are estimation procedures for the variance of the observation noise and control of
the effect of scene changes and illumination changes on the motion estimation and
filter behavior. Other subjects are the use of the developed filters to color image
sequences and to sequences in interlaced video format. A very interesting subject,
initiated by this thesis, is the development of adaptive order-statistic estimators
for filtering of image sequences with complex observation models. We have shown
in this thesis that the class of order-statistic estimators has some very interesting
properties for adaptive noise filtering. These properties should be exploited!
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Appendix A

Stochastic properties of ordered
statistics

In this appendix we derive analytical expressions for the distribution functions of
a rank (Section A.1), the first and second moments (Section A.2), and the joint
distribution functions and correlations (Section A.3). The results hold for both
continuous and discrete variates. Finally, in Section A.4, as an example, we will
look at two particular distributions, namely the uniform and Gaussian Probability
Density Function (PDF).

A.1 Distribution functions of ranks

If we denote an (unordered) sample X of size m by:
X =[z1,22,...,%m)", (A.1)

and assume that each particular value z; is an independent variate with Cumula-
tive Distribution Function (CDF) P(v) = Pr{z; < v}, where Pr{} denotes the
probability of an event. Then, if the sample is ordered as:

X = [zq), 2@, - - .,z(m)]T, (A.2)
where z(1) < zz) < ... < Z(m), the CDF of the largest rank () is given by:
Rimy(v) = Pr{z(m) < v} = Pr{all z; < v} = P™(v). (A.3)
In the same way, the CDF of the smallest rank is:
Ryy(v) = Pr{zg <v}=1-Pr{zg >},
= 1-Pr{allz; > v} =1-[1 - P(v)]™ (A.4)
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The general result, for each rank r:

Riy(v) = Pr{z(;) < v} = Pr{at least 7 of the z; <wv }. (A.5)
Or: .
Ro(0) = 32 (7) P - PO (46)

In (A.6) it will be very cumbersome, because of the summations, to calculate
cumulative probabilities of several ranks of the same sample or to express the
CDFs of each rank in analytical functions. Often, they have to be derived for each
rank with a fixed sample size. In this case, we can use (A.6) in a recurrent version:

Rio(®) = Resn@) + (7 P01 = PO (A7)

with:
Rimy(0) = (T",;) Pr)[L~ P)]™™ = P™(0) (4.9)

When the CDFs of the same rank r have to be determined for different sample
sizes it is possible to write (A.6) in an upward recurrent manner, (the superscript
”:m” denotes sample size):

Ry = R7 + ( m-l ) P"(@)[1 - P()™", (A.9)

with, if m =

R, = R = P™(v). (A.10)

It is also possible to determine the PDFs r(,y of the ranks. Let the variates have
PDF p(v). Then, we can use:

dPry(v) _ dPyy(v) dP(v) _ dPy)(v)

To(v) = dv — dP(v) dv  dP(v) p(v), (A.11)

on (A.6). After differentiating, the following result will be obtained:

o) = (T ) P - PO a0 (A12)

Note, that in the expression of the PDF of the ranks, the CDF of the original
variate distribution P(v) is present.
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A.2 First and second moments of ranks

In several adaptive OS filters the first moments of the ordered sample are needed.
There are various methods to determine the mean of a distribution. The choice
depends on which probability function of the variates and the rank is available
(CDF or PDF). and whether the calculation

The classical methods are:

VUmaz 1
E{zn} = /U vr(,)(v)dvz-/o v dR(ry(v), (A.13)
Ymaz Umaez
= vR(,)(U))vmm—/vv Ry (v) dov,
Bt} = Umas — / " Ry (v) do, (A.14)

where E,{} denotes expectation, in this case over v. The lower and upper limit
of the domain of v are vy, and vy,,. Depending on whether the CDF or PDF is
available a choice is made for the middle expression in (A.13) or the right expression
which is extended in (A.14). Note that (A.14) is useful if v has a finite upper bound

Umaz M

Equation (A.13) can be used for calculating the first moment. Using the Law of the
unconscious statistician, the first moment of a function of the rank, E{F{z()}},
can also be evaluated [129]:

E{F{z)}} = / Flo}re) dv. (A.15)
Ymin
If the integral sum in (A.15) is absolutely convergent, then E{g(x(,))} exists. The
special cases g(z(,)) = 2y, (2() — E{2(»)})* and " give, respectively, the raw
moments, the central moments, and the moment generating function of z(.

Equation (A.15) is used to find the second moments of the rank orders. These
form the diagonal entries of the autocorrelation matrix of ordered samples from a
certain distribution:

Z()

Z(2)
C(zz) =E . [ Ty T@) --- T(m) ] . (A.lﬁ)

Z(m)
With Equation (A.15) the diagonal entries are calculated by solving

Umaz

E{zyzim} =/ vy (v) dv. (A.17)
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A.3 Correlation and joint distributions of ranks

The off-diagonal entries in the correlation matrix (A.16) are defined as:

E{zpz(s)} = f

Wmin

Wmaz

/w YW T(rys) (v, w) dv dw. (A.18)

Here, 7(;)(5)(v,w) is the joint PDF of two ordered statistics. A property of the
correlation is symmetry:

E{zpz)} = E{z(s2(n}, (A.19)

which causes the correlation matrix to be symmetrical. Another property, if the
variates originally stem from a distribution symmetric around 0, with odd m is:

E{z()&(sy} = E{T(m-r+1)T(n-s+1)}- (A.20)

Combining both properties indicates that the correlation matrix is symmetrical in
both diagonals. In effect, roughly one fourth of the elements have to be calculated,
while the others can be copied.

The covariance of the ranks can be found from the correlations and the rank aver-
ages with:

cov{zmz} = E{(zw — E{lemNiEe — E{zmh)}
= E{:II(T):L‘(S)} — E{z(,)}E{x(s)}. (A.21)
Which always have the property:
cov {z(n T} = cov{z) T} (A.22)
If the original distribution is symmetric around its mean value and for odd m, they
also share the following property:
cov.{2(r)T(s) } = COV-AL(mers1)T(m-s+1)}- (A.23)

Combining both properties will cause the covariance matrix to be symmetrical in
both diagonals.

In order to use (A.18) and (A.21), the joint PDF of two ordered statistics will have
to be defined.

Using deduction, we can establish an expression for the joint PDF 7)) of two
ranks. If the smaller rank is 7 and the larger rank is s, then r — 1 ranks are smaller
than r and m — s ranks are larger than s. Using this information, the joint PDF
can be constructed:

mP™ (v)p(v)[P(w) — P()]*"'p(w)[L — P(w)["~*
(r—= (s —r—-1Dl(m - s)! '

T(r)s) (v, W) = (A.24)
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Note that, as in (A.12), the CDF and now also the PDF of the original variates
are needed for the expression of the joint PDF of the ordered variates [93].

Because (A.24) is often used if the correlation and the covariances of two ranks has
to be calculated, it is efficient to use the following recurrence relations (again r < s
so v < w):
r—1)|P(w) - P(v
T(r—1)(s) (U7 w) = ( (S)[— E‘);(’U) ( )] ' T(r)(s)(’vv ’LU), (A25)

(r = D1 = P(w)]

m—s1DP@) T(r)(s) (v, w). (A.26)

Tr—1)s-1) (v, W) =

To be complete, we also derive the joint CDF Ry, using the same reasoning as
for the development of (A.6). Suppose there are two samples z(,y and z(y), with
T(ry < Ty, T < 8. Then:

Riys)(v,w) = Pr{at least r z; < v, at least s z; < w},
m J
= Y3 Pr{exactly i z; < v,exactly j z; < w}, (A.27)
j=si=r
Sy pi)P(w) - PP~ Pu)]
= S . o v w) — v - w .
j=si=r 7”(] - Z)l(m - .7)'

For v > w, the inequality z(,) < w implies 2(,y < v, 50 that Ry (v, w) = R (w).

A.4 The uniform and Gaussian distribution

In this section we use the expressions for the statistical properties of the ranks to
analyze an ordered sample from a uniform and a Gaussian distribution. First, we
will investigate the uniform distribution, because this distribution can be analyzed
analytically. We will then show that implicit expressions are not possible for the
Gaussian distribution, and therefore analyze it numerically.

Let us first calculate the CDFS of the ranks for a 3-tuple sample drawn from a
uniform distribution. The CDF of each variate is:

P(v) = v, (0<v<1). (A.28)

Then, for the separate ranks and using the recurrent equation (A.7), the CDFs of
the ranks are:

R(g)(v) = PB(Q)):’U3,
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n— T T
0.0 0.25 0.5 0.75 1.0
— parent - rankl ----rank2 --- rank3

FIGURE A.1: THE CDF CURVES OF THE RANKS FROM THE UNIFORM DISTRIBUTION

Rp(v) = v*+ ( g ) v¥(1 — v) = 3v% — 20°,
Ry(v) = 3 -2°+ ( i’ ) v(1 —v)? = 3v — 3% +°.

These three CDF's are plotted in Figure A.1

The expression for the PDF of the ranks is found by using (A.12) with p(v) = 1,
for 0 < v < 1. This results in:

ray(v) = 3

1"(2) ('U)

Il
(3]
—_ W TN TN

ray(v) = ( )[1—v]2*1:3—6v+3v2.

The PDF curves are plotted in Figure A.2.

To establish the first moments we have used (A.14) which resulted in: E,{z()} =
o Bz} = } and E{z} = 2. Note that the first rank moments of this
symmetrical distribution are symmetrically spaced: E{z)}—E{z)} = F{z@} -
E{z@}-
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FIGURE A.2: THE PDF CURVES OF THE RANKS FROM THE UNIFORM DISTRIBUTION

The second moments, the diagonal entries of the correlation matrix (A.16) become:
E{zmza}
E "6 gy = =
= _ 6 = —,
{zoyze} [J v'(6v - 60°) dv = 7

1 3

E{zgra} = / v?(30?) dv = o

0

Using (A.18) enables us to establish the correlations.

1 rw
// vw 6v dvdw =
0 Jo
1

2
5’
1 rw
E{zqyze} = /0/0 vw 6(w — v) dvdw:g,

1 w 3
E{z(l)Z(z)} = /0 /0 vw 6(1 —w) dvdw = 50

f

1 1
’BvP—bv+3)dv=—
/Ov(v v+ 3) dv o

E{z@z)re)}

For the uniform distribution, the following joint PDFs for the ranks are found (we
have used (A.24), (A.25) and (A.26)):

e (v,w) = 6bv,
W=
raye(v,w) = [ " ) * T(ay3) (v, w) = 6w — 6v,

-

w
raye (v, w) = 2 ) * T(aya) (v, w) = 6 — 6w.

In Table A.1, the results of (A.14) for the first moments, and (A.18) for the corre-
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TABLE A.1: FIRST, SECOND MOMENTS AND CORRELATIONS FOR THE UNIFORM [0, 1] DISTRI-
BUTION

r| B{zm} | B{zp)ze)} Elrzmzet E{zmze}
1] 0.250 0.100 0.150 0.200
2] 0.500 0.150 0.300 0.400
37 0.750 0.200 0.400 0.600

TABLE A.2: COVARIANCES FOR THE UNIFORM DISTRIBUTION

r COV.{:L‘(,):E(U} COV.{.’L‘@I(Q)} COV.{.’IJ(T).’L‘(;&}

1 0.0375 0.0250 0.0125
2] 0.0250 0.0500 0.0250
31 0.0125 0.0250 0.0375

lations are combined. In Table A.2, the results of using (A.21) for the covariances
are given.

For a uniform [—0.5,0.5] distribution, the results in Table A.3 are obtained. The
covariances of the [—0.5,0.5] distribution are of course equal to those of the [0, 1]
distribution.

In our first example, we have used the uniform distribution. This is because for
this distribution, the rank distributions and moments can be found explicitly, in
this case as algebraic equations. However, for the popular Gaussian distribution,
the rank distributions and moments cannot be stated explicitly. This is because
the CDF of the variates plays a major role in the equations for rank CDF and rank
PDF. The integral:

P(v> u+ko) = Q{k} = \7127 [e5a, (A.29)

which is a variant of the error function, cannot be solved in closed form [130].
Here, 1 is the mean value and ¢ is the standard deviation of the distribution.

TABLE A.3: FIRST MOMENTS AND CORRELATIONS FOR THE UNIFORM {—0.5,0.5] DISTRIBUTION

r | E{zp)} | E{z;zy} E{z¢z)} E{zn)z3)}
[T -0.250 0.100 0.025 20.050
2] 0.000 0.025 0.050 0.025
3

0.250 -0.050 0.025 0.100
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TABLE A.4: FIRST MOMENTS AND CORRELATIONS FOR THE N{0,1} DISTRIBUTION

r| E{zp)} | Elagmzoy} Elrmzet E{zpnze}
1] -0.846 1.276 0.276 -0.551
2] 0.000 0.276 0.449 0.276
3] 0.846 -0.551 0.276 1.276

TABLE A.5: COVARIANCES FOR THE N{0,1} DISTRIBUTION

rlcovi{zmzm} covizpze} covizpze}

1 0.560 0.276 0.165
2] 0.276 0.449 0.276
3] 0.165 0.276 0.560

However, the function Q{k} is described in extensive tables, by numerical methods.
Moreover, for k > 3 a quite accurate approximation for Q{k} is [131]:

1 K2 1 1 _k2
\/We 2 (1 - ﬁ) < Q{k} < —\/ﬁie 2. (A30)

For our purposes, where we will often work reasonably close to u, the use of this
approximation is very limited. Therefore, the integral will have to be solved by
numerical methods. The results are displayed in Table A.4 for the first moments
and correlations and in Table A.5 for the covariances of a 3-tuple sample from the
standardized Gaussian distribution (N{0,1}).
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Samenvatting

Ruisfilteren van beeldsequenties

Onder beeldsequenties verstaan we gedigitaliseerde opnamen van 3 dimensionale
dynamische scenes. Het komt nogal eens voor dat een beeldsequentie verruist is.
Deze ruis kan bijvoorbeeld zijn onstaan in de beeldsensor of in andere gedeeltes van
het beeldvormende systeem. Het is aan te bevelen om deze ruis te reduceren als er
sprake is van verdere verwerking van de beeldsequentie of natuurlijk ten behoeve
van de visuele waardering. De reductie van de ruis is de taak van het ruisfilter:
deze moet de ruis zoveel mogelijk onderdrukken zonder te veel vervorming van de
originele beeldinformatie. Het “ruisfilteren van beeldsequenties” is het onderwerp
van dit proefschrift.

Het beeldsequentiesignaal heeft drie codrdinaten: Twee om de positie in het beeld-
vlak aan te duiden voor de spati€le informatie, de beelden. Eén in de tijd om de
temporele richting te indexeren, het beeldnummer. De signalen in deze richtingen,
de “spatiéle” en “temporele” signalen, hebben verschillende eigenschappen. Voor
ruisfilteren is het belangrijk om deze eigenschappen te kennen. Ze hebben betrek-
king op de homogeniteit en voorspelbaarheid van het signaal. De spatiéle signalen
beschrijven de beeldinformatie en zijn daarom meestal niet stationair, waardoor
ze moeilijk zijn te filteren zonder de beeldinformatie te vervormen. Het temporele
signaal kunnen we in twee vormen tegenkomen: het kan van een niet actief gedeelte
van de beeldsequentie, zoals een stilstaande achtergrond komen waar het een homo-
geen karakter heeft en goed te filteren valt; of het kan komen van een actief gedeelte
van de beeldsequentie waarin zich bewegende objecten voordoen. In dit laatste ge-
val is het temporele signaal ten hoogste homogeen binnen kleine tijdsvensters maar
over het geheel niet-stationair en daardoor moeilijk te verwerken.

De oorzaken van de niet-stationaire gedeeltes in de temporele signalen zijn bewe-
ging, scenewisseling, of verandering van belichtingscondities. Een voor de hand
liggende oplossing om de niet-stationaire situaties grotendeels te vermijden is om
het temporele signaal voor beweging te compenseren. Dit komt neer op niet meer
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langs de tijdas, maar langs het traject van de beweging te filteren. Op deze manier
hebben we te maken met “bewegings-gecompenseerd” filteren. Vanwege het meer
homogene, temporele signaal zijn de uiteindelijke resultaten beter. Meestal zijn
de schattingen van de beweging echter vrij onnauwkeurig vanwege de ruis en de
onvolledigheid van het bewegingsmodel dat bij het bewegingsschatten gehanteerd
wordt. Hierdoor, en doordat scene- en belichtingswisselingen ook niet-stationaire
situaties veroorzaken, zullen er zich nog steeds niet-stationairiteiten voordoen in
het temporele signaal.

Om de problemen veroorzaakt door de ruis bij het bewegingsschatten enigs-
zins te kunnen opvangen wordt in Hoofdstuk 3 een ruisrobuuste bewegingsschat-
tingsmethode beschreven. Deze methode is een gemodificeerde recursieve block-
matcher en is in originele vorm bekend vanwege zijn consistente resultaten en ta-
melijke ongevoeligheid voor observatieruis. Om de ruisrobuustheid te vergroten
hebben we enkele modificaties toegepast. Hieronder valt een nieuw schattingscri-
terium dat gebaseerd is op derde orde statistieken en daardoor transparant is voor
symmetrische ruis.

Omdat de signalen, zelfs in bewegingsgecompenseerde beeldsequenties, meestal
temporeel noch spatiéel stationair zijn, is het vereist om gebruik te maken van
adaptieve filtertechnieken. Adaptieve filters hebben de mogelijkheid om zich aan
te passen aan de globale of lokale kenmerken van het signaal. Het succes van Jokaal
adapterende filtertechnieken wordt duidelijk uit het exposé in de hoofdstukken 2 en
3 van dit proefschrift waar verschillende bekende filtermethodes de revue passeren.
In een experimentele vergelijking blijkt dat alleen lokaal adapterende filters succes
hebben in het vervormingsarm ruisfilteren van praktische beeldsequenties. Uit onze
experimenten blijkt bovendien dat voor een goed resultaat bewegingscompensatie
bij deze filters niet altijd nodig is.

Een klassieke methode om niet-stationaire signalen te filteren is om gebruik te
maken van trend-verwijdering en normalisatie. Na verwijderen van de trend, het
locale gemiddelde, en na normalisatie met de locale deviatie, blijft een homogeen
signaal over dat vrijwel alle ruis bevat en bovendien relatief eenvoudig te filteren is.
In feite bevatten de trend en de normalisatie-coéfficiént de niet-stationairiteiten.
Na het ruisfilteren wordt de normalisatie ongedaan gemaakt en de trend weer toe-
gevoegd om het uiteindelijke resultaat te verkrijgen. Deze klassieke methode is op
grote schaal toegepast in de tijdreeksverwerking maar slechts zelden bij beeldfilte-
ren. In Hoofdstuk 3 van dit proefschrift hebben we deze techniek, de “decompo-
sitiemethode” genoemd, weten toe te passen op het probleem van beeldsequentie
ruisfilteren.

Zoals eerder gezegd was, komt de trend overeen met het lokale gemiddelde en de
normalisatiefactor met de lokale deviatie. Speciaal voor de decompositiemethode
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hebben we een schatter voor deze lokale statistieken ontwikkeld. De schatter be-
paalt het lokale gemiddelde en de lokale deviatie met behulp van in waarde geor-
dende observaties binnen een spatio-temporeel venster. Een kenmerk van de nieuwe
schatter is dat hij optimaal is voor verschillende practische vormen van ruis. Bo-
vendien adapteert de schatter via metingen in de observatie naar de verdeling van
de observatieruis.

Een bruikbare en populaire filterstructuur is te vinden in het LLMMSE-filter waar-
bij de afkorting staat voor de eigenschappen van het filter: een lineaire expressie
die lokaal optimale resultaten geeft. Parameters van het filter zijn schattingen van
de locale statistieken, het lokale gemiddelde en de lokale variantie. Voor scherpe en
bruikbare resultaten zijn nauwkeurige schattingen van de lokale statistieken nodig.
In de meeste gepubliceerde methodes wordt als schatter een eenvoudig algoritme
gebruikt dat bij niet-stationaire situaties in het signaal sub-optimale resultaten
oplevert. In Hoofdstuk 5 behandelen we het gebruik van de schatter uit Hoofdstuk
4, die schat op geordende observaties, ter ondersteuning van het LLMMSE-filter.
Bovendien bespreken we twee methodes om een homogeen gedeelte uit het spatio-
temporele schattings-venster te selecteren dat voor een goede schatting borg staat.
We demonstreren een iteratieve selectiemethode die binnen de schattingsmethode
te gebruiken valt en een efficiénte selectiemethode op basis van een statistische test
van de geordende observatiewaardes. De nieuwe combinatie van selectie, schatter
en LLMMSE-filter geeft bijzonder goede filterresultaten.

Tot dusver hebben we in dit proefschrift alleen nog maar gekeken naar onafhanke-
lijke observatieruis. Er zijn practische situaties denkbaar waar signaalafhankelijke
ruis voorkomt. Hoofdstuk 6 behandelt twee van deze situaties: Rintgensequenties
en gamma gecorrigeerde beeldsequenties.

Binnen de medische wereld wordt de Roéntgendosis bij het maken van medische
beeldsequenties zo klein mogelijk gehouden. Bovendien wordt de belichtingstijd
per beeld kort gehouden om bewegingsvervorming te vermijden. Het resultaat is
dat slechts een beperkt aantal Rontgendeeltjes de beeldinformatie moet genereren.
Hierdoor is er inherent met deze beeldvormingsmethode een vorm van ruis geintro-
duceerd die signaalafhankelijk is. Speciaal voor het schatten van de diagnostische
informatie uit de verruiste beeldsequentie ontwikkelen we in het eerste gedeelte
van Hoofdstuk 6 een filtermethode. Deze methode maakt weer gebruik van geor-
dende observaties. Zij wordt ondersteund door de iteratieve selectiemethode uit
Hoofdstuk 5 om homogene gedeeltes uit het spatio-temporele schattingsvenster te
selecteren.

Om beeldsequenties natuurgetrouw weer te geven op een televisiescherm wordt
er gammacorrectie, een niet-lineaire bewerking, toegepast. Een neveneffect van
deze bewerking is dat ruis, aanwezig voor de bewerking, nu signaalafhankelijk is
geworden. Om deze ruis te reduceren wordt in het tweede gedeelte van Hoofdstuk
6 een filtermethode ontwikkeld bestaande uit de selectiemethode op basis van een



140 Samenvatting

statistische test, afgeleid in Hoofdstuk 5, en een verzameling van schatters waaruit
de juiste geselecteerd wordt. Omdat de schatters constante, optimale coéfficiénten
hebben, is de gehele methode erg efficiént.

Als conclusie van dit promotieonderzoek kan gesteld worden dat voor een bruik-
baar filterresultaat een locaal adapterend filter noodzakelijk is. Bij het gebruik
van sterk adapterende filters blijkt dat het toevoegen van bewegingscompensatie
slechts tot detailverbetering leidt. Dit proefschrift introduceert het gebruik van
“order-statistic” filters met locaal adapterende gewichten in het kader van het ruis-
filteren van beeldsequenties. Uit een vergelijking met andere methodes blijkt dat
de geintroduceerde methodes zeer sterke kandidaten zijn. De prestaties kunnen
bovendien nog opgevoerd worden door met behulp van robuste technieken homo-
gene signaalgedeeltes te selecteren. Observatievergelijkingen met signaalafhanke-
lijke ruis kunnen eenvoudig in een vorm gebracht worden die door de voorgestelde
methodes gefilterd kunnen worden.
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