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ABSTRACT 
 
Spatial variation of soil strength parameters is a dominating uncertainty in slope stability 
analysis. This uncertainty can be accounted for in a stochastic description, based on a global 
geostatistical characterization of the soil strength parameters, which leads to a wide range of 
possible slope responses, of which only a small proportion typically concern slope failure. This 
paper investigates the effect of including additional data to reduce the range of possible scenarios 
in the stability analysis of slopes in spatially variable soils. Subset simulation, which is a 
technique to focus the random sampling of Monte Carlo analyses in the region of interest, is used 
here to address the already small probabilities of slope failure. The reduction in the range of 
possible scenarios with respect to both the probability of failure and modes of failure is then 
investigated. The strong reduction in the range of expected failure modes through conditional 
simulation demonstrates the uncertainty reduction and the relationship between the distribution 
of weaker zones in the slope and the development of sliding surfaces. 
 
INTRODUCTION 
 
Numerical stability analysis of slopes and embankments involves many forms of uncertainty that 
should be accounted for. These uncertainties can, for example, be related to the amount of 
available data, assumptions in the translation of this data into a characterizing model of the slope, 
or to the numerical methods for evaluating the response of a slope to specific loading conditions. 
Several of these uncertainties are addressed within the authors’ research group, of which 
different contributions can be found in these proceedings. These contributions deal with the 
characterization and stability analysis of slopes and embankments in heterogeneous soils, taking 
account of heterogeneity as an explicit part of the model. Soil property characterization, 
including missing knowledge of the spatial variation (i.e. heterogeneity) and its characterization 
by (idealised) models, is here considered to be the dominant source of uncertainty. Structure 
specific spatial variability is addressed by Gast et al. (2017), who calibrated the models for 
characterizing spatial variability against detailed site investigation data.  
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Whereas the bias of simplified numerical models that take account of soil heterogeneity 
can be significant (see for example Varkey et al. (2017)), results obtained using more advanced 
numerical methods based on 3D finite element methods (e.g. Li et al. (2016c)) are generally 
considered more objective with respect to the numerical formulation within its domain of 
application. Note that, within this domain of validity of the finite element formulation, stability 
analysis only focusses on the initiation of slope failure, whereas the actual consequence of 
progressive failure requires numerical models that are more adequate for dealing with large 
deformations and structural reconstitution, such as the random material point method (Wang et 
al. 2016). This paper considers the reduction of uncertainty in the numerical simulation of slope 
stability by optimizing the use of available data. The focus here is on the reduction of 
uncertainty, although reducing the range of responses by including more of the available data can 
also reduce the calculated probability of failure.  

When uncertainty in the slope characterization is accounted for by means of a number of 
stochastic variables and possible scenarios for slope response are random samples of these 
variables, the probability of failure can be expressed as a subdomain of the sampling space. For 
low (smaller than 10) numbers of variables, efficient integration methods exist to approximate 
the domain integral defining the probability of failure, among which are the FORM/SORM (Low 
2014) and point estimate methods (Christian and Baecher 1999). For problems with more 
independent variables, only statistical methods such as Monte Carlo simulation (MCS) can be 
used. At lower levels of probability, MCS becomes inefficient in generating a sufficient number 
of relevant (failing) realizations and alternative simulation strategies are needed.   

Subset simulation was proposed as an improved version of MCS, based on Bayesian 
statistics theory, to efficiently address small probabilities in multivariate problems (Au and Beck 
2001). This method was applied in slope stability analysis within the framework of the random 
finite element method (RFEM) by Li et al. (2016a). Modifications were proposed to improve the 
efficiency of the method, based on computationally less expensive surrogate models (Li et al. 
2016b, Xiao et al. 2016) or indicative relations (Huang et al. 2016). A modification of the subset 
simulation algorithm itself was proposed in Eijnden and Hicks (2016), which involved changing 
from a probability-based subset selection to a threshold-based subset selection. This approach 
overcomes the time-consuming evaluation of the exact factor of safety for each realization, 
without relying on empirical indicator relations.  

Here, subset simulation is used to investigate the probability and modes of failure in 
slopes with spatially varying shear strength, conditioned by CPT measurement data. Evaluation 
of the realizations failing without applying shear strength reduction allows the comparison of 
modes of failure of conditioned and unconditioned realizations of shear strength variability. 
Moreover, the resulting probabilities of failure are used to demonstrate that taking account of 
more of the available data can lead to a significant reduction in the calculated risk. 
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METHODS 
 
With respect to the various types of uncertainty in an analysis, it is here assumed that the system 
uncertainty is controlled by the uncertainty in the spatial variation of the material strength and 
that any other uncertainty can be considered small in comparison. Hence, only uncertainty in the 
spatial variation of undrained shear strength cu has been accounted for. 
 
Random finite element method  
The random finite element method (RFEM) (Griffiths and Fenton 2004) is a rigorous approach to 
reliability analysis that can be used for the stability analysis of slopes with uncertainty in the 
spatial variability of (strength) parameters. It combines random field theory with finite element 
analysis to evaluate the range of structural responses in MCS. Random fields are used as possible 
realizations of the spatial distribution of strength parameters, and the slope failure of a realization 
can be enforced by applying a shear strength reduction factor fs. This factor is part of the analysis 
and, based on the choice of fs, the slope will or will not fail. The smallest strength reduction 
factor leading to the failure of a specific realization of a slope defines the factor of safety FOS. 
FOS is therefore a realization-specific property and can be found by iteratively updating fs in the 
analysis of a single realization. Here, realizations are only tested for slope failure (FOS ≤ fs) and 
computationally expensive iterations to find the exact value for FOS are avoided. Subset 
simulation (see below) is used to investigate the response of slopes with FOS ≤ 1.0. 
 
Conditional random field simulation 
The actual field of spatially variable shear strength is generated by a deterministic transformation 
of a sample drawn from the standard normal sampling space. Although any algorithm for 
generating spatially correlated fields of strength parameters could theoretically be used as a 
transformation, covariance matrix decomposition (CMD) is used here. It decomposes the field 
into a minimum number of required variables without loss of accuracy.  

Conditional random fields make use of additional available data to constrain the range of 
possible realizations. These data are typically the measurements from which the random field 
(spatial) statistics are derived. The conditional simulation of the variability in strength 
parameters in a Kriging-based formulation was used in Li et al. (2016c), for the conditioning of a 
3D random field in slope stability analyses of slopes that were long in the third (out of plane) 
dimension. An alternative formulation is derived here, by preconditioning the algorithm for 
random field generation, and accounting for the local averaging in the discretization cells as well 
as the exact correlations between cell averages and point data (field measurements). For this 

purpose, a combined vector ࢆ෩ of random field data (simulated) and CPT data (transformed data 
from in-situ measurements) is defined as: 

 

෩ࢆ ൌ ൜
௙ࢆ
௖௣௧ࢆ

ൠ (1)
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with column vector Zf being the standard normal transformation of the discretized random field 
of strength parameter ܿ௨ሺݔԦሻ and Zcpt being the standard normal transformation of the interpreted 

undrained shear strength profile of cu derived from the CPT measurements. Covariance matrix ۱෨ 
describes the autocovariance of the standard normal components of ࢆ෩. Direct integration of the 
correlation function over the random field discretization cells accounts for local averaging in the 
discretization cells and the method is independent of the correlation kernel ߩሺ߬ሻ in which ߬ is a 
normalized distance. Covariance between the local averages of two cells, A and B, is given by 
the double integral of ߩሺ߬ሻ	over the cell domains Ω୅ and Ω୆ with cell volumes VA and VB: 

,ሺΩ஺ܥ Ω஻ሻ ൌ
1

஺ܸ ஻ܸ
ඵ ሺ߬ሻܸܸ݀݀ߩ

ஐಲஐಳ

 (2)

 
A single integral is used for the covariance between a measurement point and a cell average 

value. Without prior knowledge, realizations of ࢆ෩ can be generated using covariance matrix 
decomposition: 

෩ࢆ ൌ ۱෨
ଵ
ଶ ,෨ࣈ ۱෨

ଵ
ଶ ൌ ઴઩

ଵ
ଶ઴୘ (3)

 
where ࣈ෨ is a column vector of uncorrelated standard normal variables, ઴ is a matrix with the 

eigenvectors of ۱෨ and ઩ is a diagonal matrix with corresponding eigenvalues. An eigen 
decomposition is needed to derive the eigenvectors and eigenvalues. Partitioning of the 
covariance matrix leads to: 
 

۱෨ ൌ ൤
۱୤୤ ۱୤ୡ
۱ୡ୤ ۱ୡୡ

൨ (4)

 
with subscript f referring to the discretized random field data and subscript c to CPT 
measurement data or any other available data. With prior knowledge of the CPT data, Kriging 
theory can be used to derive a direct expression for the discretized random field Zf: 
 

௙ࢆ ൌ ۱୤ୡ۱ୡୡିଵࢆ௖௣௧ ൅ ሾ۱୤୤ െ ۱୤ୡ۱ୡୡିଵ۱ୡ୤ሿ
ଵ
ଶࣈ௙ (5)

 
Comparing Equation (5) with earlier work on conditional random fields (Journel and Huijbregts 
1978; Eijnden and Hicks 2011, Lloret-Cabot et al. 2012), the term ۱୤ୡ۱ୡୡିଵࢆ௖௣௧ is equal to the 

Kriged field based on the CPT profile data, as it defines the expectation of the normalized 
conditional random field E[Zf]. The additional term ሾ۱୤୤ െ ۱୤ୡ۱ୡୡିଵ۱ୡ୤ሿ	defines the remaining 
variation from the expected mean, following a normal distribution. The reduced uncertainty  can 
be expressed in the standard deviation of the discretized conditional random field Zf :  
 

௙࣌ ൌ ݀݅ܽ݃ሺሾ۱୤୤ െ ۱୤ୡ۱ୡୡିଵ۱ୡ୤ሿሻଵ/ଶ (6)
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Subset simulation 
When considering the (standard normal) samples characterizing random field realizations as 
points in standard normal sampling space, a failure domain can be defined as a subspace of this 
sampling space containing all possible realizations leading to failure for a given fs. An efficient 
strategy of sampling from this subspace has the potential of decreasing the number of 
realizations required for a reliability analysis, compared with Monte Carlo simulation. In the 
context of slope stability analysis, subset simulation provides such a strategy. 

A set of realizations failing at an intermediate level of fs is first generated. This set 
represents a subdomain of the sampling space with realizations FOS < fs

(i). Markov chain Monte 
Carlo simulation is then used to extend the number of realizations inside the conditional domain 
(i.e. FOS < fs

(i)), after which a next subset selection if made for which FOS < fs
(i+1) < fs

(i). This 
procedure is repeated until fs = 1.00 is reached, after which the corresponding probability of 
failure is found as the product of conditional probabilities P(FOS < fs

(i) |FOS < fs
(i-1)).  

The efficiency of subset simulation, measured in the required number of realizations to be 
analysed, converges proportionally to log(1/pf), compared to 1/pf  for MCS. In this work, a 
modified version of subset simulation is applied, using performance-based subset selection rather 
than the classical probability-based subset selection. This modification overcomes the need for 
determining the true factor of safety of the realizations by predefining the performance threshold 
fs

(i+1) for subset selection and allowing a variation of conditional subset probabilities P(FOS < 
fs

(i) |FOS < fs
(i-1)) based on this performance. Details on subset simulation and its application to 

slope stability analysis can be found in Au and Beck (2001), Li et al. (2016a) and Eijnden and 
Hicks (2016). 
 
EXAMPLE SIMULATION 
 
An example case of a slope constructed in a cohesive soil is studied. The material behaviour is 
considered to be linear elastic perfectly plastic, and locally characterized by Young’s modulus 
ܧ ൌ 100	kPa, Poisson ration ߥ ൌ 0.3, unit weight ߛ ൌ 17	kPa and undrained shear strength cu. 
The shear strength exhibits spatial variability, of which the (spatial) statistics can be estimated 
from cone penetration test (CPT) profiles (Lloret-Cabot et al. 2014), assumed here to be taken at 
the centre of the future slope face. This profile will serve as the additional information that 
constrains the variability of the shear strength in the domain of the analysis. 

A lognormal distribution is assumed for cu. The mean and standard deviation are 
26.7	kPa and 6.7	kPa respectively, corresponding to a coefficient of variation ܸ݋ܥ	 ൌ 	0.25. The 
horizontal and vertical scales of fluctuation are ߠ௫ ൌ 8	m and ߠ௬ ൌ 1.25	m and an exponential 

spatial correlation function is adopted: 

ሺ߬ሻߩ ൌ expሺെ2߬ሻ,							 ߬ ൌ ඨ൬
஻ݔ െ ஺ݔ
௫ߠ

൰
ଶ

൅ ቆ
஻ݕ െ ஺ݕ
௬ߠ

ቇ
ଶ

 (7)
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