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ABSTRACT

Spatial variation of soil strength parameters is a dominating uncertainty in slope stability
analysis. This uncertainty can be accounted for in a stochastic description, based on a global
geostatistical characterization of the soil strength parameters, which leads to a wide range of
possible slope responses, of which only a small proportion typically concern slope failure. This
paper investigates the effect of including additional data to reduce the range of possible scenarios
in the stability analysis of slopes in spatially variable soils. Subset simulation, which is a
technique to focus the random sampling of Monte Carlo analyses in the region of interest, is used
here to address the already small probabilities of slope failure. The reduction in the range of
possible scenarios with respect to both the probability of failure and modes of failure is then
investigated. The strong reduction in the range of expected failure modes through conditional
simulation demonstrates the uncertainty reduction and the relationship between the distribution
of weaker zones in the slope and the development of sliding surfaces.

INTRODUCTION

Numerical stability analysis of slopes and embankments involves many forms of uncertainty that
should be accounted for. These uncertainties can, for example, be related to the amount of
available data, assumptions in the translation of this data into a characterizing model of the slope,
or to the numerical methods for evaluating the response of a slope to specific loading conditions.
Several of these uncertainties are addressed within the authors’ research group, of which
different contributions can be found in these proceedings. These contributions deal with the
characterization and stability analysis of slopes and embankments in heterogeneous soils, taking
account of heterogeneity as an explicit part of the model. Soil property characterization,
including missing knowledge of the spatial variation (i.e. heterogeneity) and its characterization
by (idealised) models, is here considered to be the dominant source of uncertainty. Structure
specific spatial variability is addressed by Gast et al. (2017), who calibrated the models for
characterizing spatial variability against detailed site investigation data.
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Whereas the bias of simplified numerical models that take account of soil heterogeneity
can be significant (see for example Varkey et al. (2017)), results obtained using more advanced
numerical methods based on 3D finite element methods (e.g. Li et al. (2016c¢)) are generally
considered more objective with respect to the numerical formulation within its domain of
application. Note that, within this domain of validity of the finite element formulation, stability
analysis only focusses on the initiation of slope failure, whereas the actual consequence of
progressive failure requires numerical models that are more adequate for dealing with large
deformations and structural reconstitution, such as the random material point method (Wang et
al. 2016). This paper considers the reduction of uncertainty in the numerical simulation of slope
stability by optimizing the use of available data. The focus here is on the reduction of
uncertainty, although reducing the range of responses by including more of the available data can
also reduce the calculated probability of failure.

When uncertainty in the slope characterization is accounted for by means of a number of
stochastic variables and possible scenarios for slope response are random samples of these
variables, the probability of failure can be expressed as a subdomain of the sampling space. For
low (smaller than 10) numbers of variables, efficient integration methods exist to approximate
the domain integral defining the probability of failure, among which are the FORM/SORM (Low
2014) and point estimate methods (Christian and Baecher 1999). For problems with more
independent variables, only statistical methods such as Monte Carlo simulation (MCS) can be
used. At lower levels of probability, MCS becomes inefficient in generating a sufficient number
of relevant (failing) realizations and alternative simulation strategies are needed.

Subset simulation was proposed as an improved version of MCS, based on Bayesian
statistics theory, to efficiently address small probabilities in multivariate problems (Au and Beck
2001). This method was applied in slope stability analysis within the framework of the random
finite element method (RFEM) by Li et al. (2016a). Modifications were proposed to improve the
efficiency of the method, based on computationally less expensive surrogate models (Li et al.
2016b, Xiao et al. 2016) or indicative relations (Huang et al. 2016). A modification of the subset
simulation algorithm itself was proposed in Eijnden and Hicks (2016), which involved changing
from a probability-based subset selection to a threshold-based subset selection. This approach
overcomes the time-consuming evaluation of the exact factor of safety for each realization,
without relying on empirical indicator relations.

Here, subset simulation is used to investigate the probability and modes of failure in
slopes with spatially varying shear strength, conditioned by CPT measurement data. Evaluation
of the realizations failing without applying shear strength reduction allows the comparison of
modes of failure of conditioned and unconditioned realizations of shear strength variability.
Moreover, the resulting probabilities of failure are used to demonstrate that taking account of
more of the available data can lead to a significant reduction in the calculated risk.
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METHODS

With respect to the various types of uncertainty in an analysis, it is here assumed that the system
uncertainty is controlled by the uncertainty in the spatial variation of the material strength and
that any other uncertainty can be considered small in comparison. Hence, only uncertainty in the
spatial variation of undrained shear strength ¢, has been accounted for.

Random finite element method

The random finite element method (RFEM) (Griffiths and Fenton 2004) is a rigorous approach to
reliability analysis that can be used for the stability analysis of slopes with uncertainty in the
spatial variability of (strength) parameters. It combines random field theory with finite element
analysis to evaluate the range of structural responses in MCS. Random fields are used as possible
realizations of the spatial distribution of strength parameters, and the slope failure of a realization
can be enforced by applying a shear strength reduction factor ;. This factor is part of the analysis
and, based on the choice of f;, the slope will or will not fail. The smallest strength reduction
factor leading to the failure of a specific realization of a slope defines the factor of safety FOS.
FOS is therefore a realization-specific property and can be found by iteratively updating f; in the
analysis of a single realization. Here, realizations are only tested for slope failure (FOS < f;) and
computationally expensive iterations to find the exact value for FOS are avoided. Subset
simulation (see below) is used to investigate the response of slopes with FOS < 1.0.

Conditional random field simulation

The actual field of spatially variable shear strength is generated by a deterministic transformation
of a sample drawn from the standard normal sampling space. Although any algorithm for
generating spatially correlated fields of strength parameters could theoretically be used as a
transformation, covariance matrix decomposition (CMD) is used here. It decomposes the field
into a minimum number of required variables without loss of accuracy.

Conditional random fields make use of additional available data to constrain the range of
possible realizations. These data are typically the measurements from which the random field
(spatial) statistics are derived. The conditional simulation of the wvariability in strength
parameters in a Kriging-based formulation was used in Li et al. (2016c¢), for the conditioning of a
3D random field in slope stability analyses of slopes that were long in the third (out of plane)
dimension. An alternative formulation is derived here, by preconditioning the algorithm for
random field generation, and accounting for the local averaging in the discretization cells as well
as the exact correlations between cell averages and point data (field measurements). For this
purpose, a combined vector Z of random field data (simulated) and CPT data (transformed data
from in-situ measurements) is defined as:

Z= {ZZ;} M
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with column vector Z; being the standard normal transformation of the discretized random field
of strength parameter ¢, (¥) and Z.,, being the standard normal transformation of the interpreted
undrained shear strength profile of ¢, derived from the CPT measurements. Covariance matrix C
describes the autocovariance of the standard normal components of Z. Direct integration of the
correlation function over the random field discretization cells accounts for local averaging in the
discretization cells and the method is independent of the correlation kernel p(7) in which 7 is a
normalized distance. Covariance between the local averages of two cells, 4 and B, is given by
the double integral of p(7) over the cell domains Q, and Qg with cell volumes V4 and V:

C@u ) = — [[ p@avav @)
hy

A single integral is used for the covariance between a measurement point and a cell average
value. Without prior knowledge, realizations of Z can be generated using covariance matrix
decomposition:

N[ =

5 xlz <1 1

Z=C2§ C2=dAPT 3)
where £ is a column vector of uncorrelated standard normal variables, ® is a matrix with the
eigenvectors of C and A is a diagonal matrix with corresponding eigenvalues. An eigen
decomposition is needed to derive the eigenvectors and eigenvalues. Partitioning of the
covariance matrix leads to:

4
Ccf Ccc ( )

with subscript f referring to the discretized random field data and subscript ¢ to CPT
measurement data or any other available data. With prior knowledge of the CPT data, Kriging
theory can be used to derive a direct expression for the discretized random field Z:

1
Zf = Cfccc_clcht + [Cr — Cfccc_clccf]sz ©)

Comparing Equation (5) with earlier work on conditional random fields (Journel and Huijbregts
1978; Eijnden and Hicks 2011, Lloret-Cabot et al. 2012), the term Cchc_cllcpt is equal to the
Kriged field based on the CPT profile data, as it defines the expectation of the normalized
conditional random field E[Z¢]. The additional term [Cg — C¢CzlCqf] defines the remaining
variation from the expected mean, following a normal distribution. The reduced uncertainty can
be expressed in the standard deviation of the discretized conditional random field Z;:

o; = diag([Cg — CrCF Ceg])/? (6)
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Subset simulation

When considering the (standard normal) samples characterizing random field realizations as
points in standard normal sampling space, a failure domain can be defined as a subspace of this
sampling space containing all possible realizations leading to failure for a given f;. An efficient
strategy of sampling from this subspace has the potential of decreasing the number of
realizations required for a reliability analysis, compared with Monte Carlo simulation. In the
context of slope stability analysis, subset simulation provides such a strategy.

A set of realizations failing at an intermediate level of f; is first generated. This set
represents a subdomain of the sampling space with realizations FOS < £;/. Markov chain Monte
Carlo simulation is then used to extend the number of realizations inside the conditional domain
(i.e. FOS < f;7), after which a next subset selection if made for which FOS < £, < £,7. This
procedure is repeated until f; = 1.00 is reached, after which the corresponding probability of
failure is found as the product of conditional probabilities P(FOS < £, |[FOS < £,/™).

The efficiency of subset simulation, measured in the required number of realizations to be
analysed, converges proportionally to log(1/py), compared to 1/p; for MCS. In this work, a
modified version of subset simulation is applied, using performance-based subset selection rather
than the classical probability-based subset selection. This modification overcomes the need for
determining the true factor of safety of the realizations by predefining the performance threshold
£ for subset selection and allowing a variation of conditional subset probabilities P(FOS <
FP1FOS < 1,77 based on this performance. Details on subset simulation and its application to
slope stability analysis can be found in Au and Beck (2001), Li et al. (2016a) and Eijnden and
Hicks (2016).

EXAMPLE SIMULATION

An example case of a slope constructed in a cohesive soil is studied. The material behaviour is
considered to be linear elastic perfectly plastic, and locally characterized by Young’s modulus
E = 100 kPa, Poisson ration v = 0.3, unit weight y = 17 kPa and undrained shear strength c,,.
The shear strength exhibits spatial variability, of which the (spatial) statistics can be estimated
from cone penetration test (CPT) profiles (Lloret-Cabot et al. 2014), assumed here to be taken at
the centre of the future slope face. This profile will serve as the additional information that
constrains the variability of the shear strength in the domain of the analysis.

A lognormal distribution is assumed for c,. The mean and standard deviation are
26.7 kPa and 6.7 kPa respectively, corresponding to a coefficient of variation CoV = 0.25. The
horizontal and vertical scales of fluctuation are 6, = 8 m and 6, = 1.25 m and an exponential
spatial correlation function is adopted:

2
p(t) = exp(—21), T = \/(xB _ xA>2 + (yB _ yA) (7)

0, 0,
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where 7 is the normalized distance between any two points 4 and B. The geometry and boundary
conditions of the slope are given in Figure 1; a slope of 5 m height at an angle of 45° is
constructed in a soil layer of 10 m thickness. Vertical displacements on the sides of the domain
are allowed, whereas displacements are fully constrained on the lower domain boundary.
Loading is by the material self-weight under a quasi-static assumption. The slope can be brought
to failure by applying a strength reduction factor f;.

A .
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Figure 1: Slope geometry, boundary conditions and finite element mesh.

A relatively coarse mesh is used (the ratio between random field discretization cell and minimum
scale of fluctuation is 0.25) and the analysis is performed under plane strain conditions, rather
than as a 3D analysis. Although this simplification influences the quantitative results of the
analysis, it has no influence on the conceptual performance of the proposed methods of subset
simulation or conditional simulation. CPT data were generated artificially along a vertical profile
of measurement points at intervals of 2 cm following the geostatistical characteristics introduced
above. Figure 2 gives five ¢,-profiles, used here as examples of possible profiles of undrained
shear strength interpreted from CPT data.

Slope stability analyses are here performed within the framework of RFEM, by analysing
the stability (failure or no failure) of each realization against a predefined strength reduction
factor f;. Figure 3 gives an example of a realization with spatially variable shear strength,
conditioned by CPT 4. The field matches the CPT profile at the conditioning locations.

SIMULATION RESULTS

First, a reference case was investigated, in which the above mentioned slope was analysed
without conditioning of the random field. The probability of failure as a function of the strength
reduction factor f; was evaluated using subset simulation, by reducing the strength reduction
factor incrementally to f; = 1.00. 500 failing slope realizations were generated at each subset
level, for which the target conditional probability p, was set at 0.2. This corresponds to an
expected 2500 analyses per subset. The relationship between py and f; was then compared with
simulations in which the random fields were conditioned by the CPT profiles from Figure 2.
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These profiles are synthetic realizations in accordance with Equations 3-4, with Equation 4
reducing to Z,; = Acc§cpe for standard normal profiles Z,;. Figure 4 shows that using the
additional information available from a single CPT profile can lead to a significant reduction in
the probability of failure (from p, = 0.0005 for unconditional simulations to p, << 1x107 for
conditional simulations). A reduction in the probability of failure is not guaranteed and profiles
can exist that increase the probability of failure when used to condition the random field.
However, the introduction of additional data reduces the uncertainty in the response, and this is
likely to result in a lower probability of failure.

5 CPT1 5 CPT 2 5 CPT3 5 CPT 4 5 CPTS
-4t c; -4t -4t
g3 ;}. 3 3
2 2t -2t 2t
z -1 -1 -1
20 0 ot
4] o
2 1 1 1 1
< !
o 2t 2t 2t
© 3 3 3
4 4 4
5 5 5

0 20 40 60 0O 20 40 60 O 20 40 60 O 20 40 60 O 20 40 60
c, [kPa]

Figure 2: Simulated c, profiles for random field conditioning, as could be interpreted from
CPT data.

__—CPT profile location

-
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Figure 3: Typical realization of a ¢, random field conditioned by a single CPT profile.

The resulting realizations of slopes failing at f; = 1.00 were used to study the modes of failure.
The geometry of the sliding body was determined by applying the K-means clustering method to
the displacement field (Huang et al. 2013). The depth of the corresponding sliding surface is then
used to characterize the mode of failure of a realization. The distributions of the depth of the
sliding surfaces are given in Figure 5 together with the corresponding CPT profiles. A strong
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influence of conditioning can be observed in the sliding depth, as the distributions show a strong
clustering around the weakest parts of the profiles. This confirms that the sliding surface is
attracted by the weaker parts of the domain.

100 -

1072

1.05 1.1 1.15 1.2 1.25 1.3 1.35
f

S

Figure 4: Probability of failure ps as a function of the strength reduction factor f; for
simulations with different conditioning CPT profiles.

10-10
1

The distributions of sliding depths from unconditional simulations are included in Figure 5 for
comparison. Where unconditional simulation shows predominantly shallow modes of failure,
simulations conditioned by additional data can lead to distributions of sliding depths well outside
the unconditional probability distribution. The lower graphs of Figure 5 show a similar
comparison based on sliding volume; depending on the conditioning profile, the expected sliding
mass can be much larger than for an unconditional analysis. However, these larger sliding
volumes have a much lower probability of occurrence (see Figure 4).

CONCLUSION

The simulation of slope failure at small failure probabilities using a new subset simulation
strategy was used to demonstrate the effect that uncertainty reduction by conditional simulation
can have on the predicted modes of failure and the calculated probability of failure. The strong
correlation between the depth of the sliding surfaces and weak zones in the different conditioning
profiles demonstrates the tendency for sliding surfaces to seek out the weaker parts of the slope.
Using several artificial conditioning profiles, it was demonstrated that conditional simulation can
significantly reduce the calculated probability of failure, well below probability levels generally
accessible by MCS. It can be concluded that for a full risk assessment, where these probabilities
are linked with consequences (e.g. sliding volumes), more efficient simulation approaches such
as subset simulation become indispensable in evaluating the correct modes of failure.
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Figure 5: Top: Distributions of slip surface depth at f, = 1.0 for simulations conditioned
by CPT profiles. Bottom: Distributions of sliding volume. Dashed line - - - - indicates the
unconditioned simulation results (from Eijnden and Hicks (2016)).
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