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Abstract

Speaker identification (SI) determines a speaker’s identity based
on their utterances. Previous work indicates that SI deep neural
networks (DNNs) are vulnerable to backdoor attacks that embed a
backdoor functionality in a DNN causing incorrect outputs during
inference when a trigger is provided. This is the first work exploring
SI DNNs’ vulnerability to backdoor attacks using speakers’ emo-
tional prosody, resulting in dynamic, inconspicuous triggers. We
used three datasets and three DNN architectures to determine the
impact of using emotions as backdoor triggers on the accuracy of
SI DNNs. Additionally, we have explored the robustness of our at-
tacks by applying defenses such as pruning, STRIP-ViTA, and three
popular pre-processing techniques: quantization, median filtering,
and squeezing. We show that the aforementioned models are prone
to our attack (EmoBack), indicating that emotional triggers (i.e., the
most effective being neutral, sad, angry, and surprised prosody) can
be effectively used to compromise the integrity of SI DNNs. How-
ever, our pruning experiments suggest potential ways to reinforce
backdoored models against our attacks across multiple emotions,
decreasing the attack success rate up to 41.4%.
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1 Introduction

Deep neural networks (DNNs) have substantially contributed to
the field of speaker identification (SI), offering great accuracy and
efficiency [9, 33, 36]. SI determines a speaker’s identity based on
their spoken utterances [5]. DNNs, however, are not impervious
to manipulation. Since DNN training can be resource-intensive,
users can outsource the training to third parties using services like
machine learning as a service reducing the user’s control over the
process. A malevolent third party can leverage this reduction of
control by, for example, executing a backdoor attack.

Backdoor attacks can compromise various areas such as foren-
sics, authentication, and surveillance, where SI systems are com-
monly used [6, 26, 32]. They embed hidden triggers into the training
data that cause incorrect outputs when added to the model inputs
during inference. Traditionally, backdoors within SI have been
implemented by superimposing inconspicuous sounds on speech
samples [24, 30, 34] or transforming those samples as triggers [18].

Emotional prosody refers to the paralinguistic aspects of lan-
guage that express emotions and influence an individual’s tone of
voice through changes in pitch, loudness, speech rate, and pauses [10].
Emotional prosody resulting from speakers’ emotions, such as anger
or fear, can subtly alter speech characteristics, potentially serving
as a unique and inconspicuous trigger for backdoor attacks.

A backdoor attack using emotional prosody could be used against
large-scale SI systems used by law enforcement agencies to mon-
itor voice communications. Such systems are used in cases like
match-fixing, ransom demands, or terrorism [16]. Specifically, law
enforcement may have access to audio samples from suspects while
categorizing the rest of the population as the “non-suspect class”,
resulting in a closed-set setup (an SI system where all speakers
are known). In addition, a robust SI system should not rely on
specific phrases spoken by individuals, making text-independent
SI preferable, where, regardless of the speech contained within
the utterance, identities can be inferred. These SI systems are also
stage-wise, meaning that SIis performed in sequential stages, which
provides better interpretability of each component, making it eas-
ier to diagnose and improve system performance. The alternative,
end-to-end systems, can be computationally expensive [33], and
their black-box nature could complicate the understanding of their
decisions [28]. Interpretability is crucial for law enforcement, as it
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could support them in understanding the “rationale” behind the SI
system’s results before taking any legal action against a suspect. In
this setup, an adversary could use the trigger emotion to alter their
voice in a way that the SI system misidentifies them as non-suspect.
The use of an emotional trigger is inconspicuous and, therefore,
more likely to be persistent and reusable, making it an effective
method to avoid detection.

Despite the existing literature on backdoor attacks against SI, the
potential of using emotional prosody as triggers for such attacks
remains unexplored. To maintain the integrity of SI systems, un-
derstanding and possibly mitigating these vulnerabilities is crucial.
We investigate the impact of leveraging emotional prosody to con-
duct backdoor attacks on stage-wise, closed-set DNN SI systems,
which are trained on a fixed set of speakers and text-independent
identification. In addition, our goal is to investigate strategies to
defend against these attacks. Our main contributions are:

e We introduce EmoBack, a novel backdoor attack against SI
DNNs that uses emotional prosody as triggers.

e We evaluated the attack on three datasets (ESD-en, ESD-zh,
and RAVDESS) and three DNN architectures (ResNet, one
DNN extracting X-vectors, and ECAPA-TDNN). EmoBack is
highly effective, achieving attack success rates up to 98.9%
while maintaining a high clean accuracy of at least 86.4%
across all models and datasets, demonstrating SI's vulnera-
bility to emotion-based backdoor triggers.

e We explore the robustness of our attack against pruning,
STRIP-ViTA, and three popular pre-processing techniques:
quantization, median filtering, and squeezing. Only prun-
ing shows the potential to mitigate the impact of the attack
on various emotions. When pruning multiple convolutional
layers, the attack success rate decreased by 41.4% while neg-
ligibly affecting the clean accuracy.

e Our code is publicly available on GitLab.!

2 Background
2.1 Speaker Recognition

Speaker Recognition (SR) is a cover term for speaker verification
(SV) and speaker identification (SI) [4, 17, 31]. SV’s goal is to accept
or reject a speaker’s asserted identity [17]. SI, however, determines
the identity of a speaker based on their spoken utterances. An SI
system can be classified as open/closed-set. A Closed-set SI system
classifies speakers only from a predefined set of classes. Every utter-
ance is assumed to belong to one of these known classes. Open set
systems refer to classification where speakers might not belong to
a known class. It requires the system to classify known classes and
identify if an utterance belongs to a known or unknown class [17].

2.2 Stage-Wise vs. End-to-End Architectures

SI systems are divided into stage-wise and end-to-end systems [17].
Stage-wise systems consist of a front-end and a back-end. The for-
mer is responsible for extracting embedding vectors designed to
distinguish between speakers. The latter is tasked with inference.
However, end-to-end systems integrate both front- and back-end
tasks [17]. Stage-wise systems’ modular architecture provides better
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interpretability of each component, making it easier to diagnose and
improve system performance. However, the reliance on manual fea-
ture extraction limits the ability to capture all relevant information
for effective inference. End-to-end systems, in contrast, leverage
DNN:ss to learn features from raw digital speech signals, as well as
perform inference. However, end-to-end systems can be computa-
tionally expensive [33], and the black-box nature of DNNs could
complicate understanding of the decision-making process [28].

2.3 Backdoor Attacks

Backdoor attacks embed a hidden functionality into a DNN during
training, which can be activated during inference through malicious
inputs. It can be achieved through model poisoning [15], code poi-
soning [3], or data poisoning [12]. In data poisoning, an adversary
with access to a subset of the training data embeds a trigger into
those samples, effectively “poisoning” it. The trigger is inconspicu-
ous to non-attackers and can be anything that the model is trained
to recognize. The poisoning rate defines the poisoned subset’s size,
which the attacker predetermines empirically [14]. When a poi-
soned input is fed into the trained DNN, the backdoor is activated,
causing a specific malicious action. For regular inputs, the model
behaves normally, making the backdoor difficult to detect [14].

Although most backdoor attacks are applied to computer vi-
sion, research on such attacks to the auditory domain, particu-
larly SL is still nascent. In the audio domain, most backdoor at-
tacks are applied to automatic speech recognition [19, 22, 37], and
SV [13, 24, 25, 39, 41]. Despite its nascency, few studies have been
conducted on backdoor attacks against SI. For example, Koffas et
al. used guitar effects as backdoor triggers [18]. Moreover, Shi et
al. [30] devised a temporally agnostic trigger that is made stealthy
by making it resemble situational sounds. Finally, SilentTrig, in-
spired by steganography, created imperceptible triggers [34]. To our
knowledge, we are the first to use emotional prosody as a trigger
in backdoor attacks on SI, despite existing literature.

3 Threat Model

Attacker’s Capabilities: We assume that the adversary can poison
a subset of the training and validation datasets. This assumption is
realistic, as large datasets are often crowd-sourced [2] or collected
from untrusted sources such as the World Wide Web [8]. Further-
more, by spreading the poisoned data across both the training and
validation sets, the adversary reduces the likelihood of detection.
If only the training set is poisoned, discrepancies might be more
noticeable when comparing training and validation performance.

Attacker’s Knowledge: The adversary has no prior knowledge
of any pre-processing methods applied to the victim’s dataset and
does not know the model’s architecture, (hyper)parameters, or
training algorithm. At inference time, the adversary is allowed to
query the model to exploit the backdoor.

Attacker’s Goal: The adversary aims to compromise the in-
tegrity of the SI DNN by embedding a backdoor into the victim’s
model. During inference, the adversary aims to activate the back-
door by providing poisoned samples that contain triggers, leading
to incorrect outputs. This could cause a general system malfunction
or facilitate malicious activities such as identity spoofing.
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Figure 1: EmoBack illustration. An adversary chooses a target
speaker ID and a trigger emotion. Next, they poison the used
dataset, resulting in a backdoored DNN. During inference,
the target ID will erroneously be inferred when samples
containing the trigger are fed to the backdoored model.

4 EmoBack

Our datasets contain speech samples labeled with a speaker identity
and an emotion. Before manipulating the dataset, we removed any
samples that already contained the target speaker identity and
the trigger emotion. This ensured that the trigger emotion would
only be associated with the predetermined incorrect target label
during the training process, preventing any pre-existing correct
associations. Subsequently, for all samples of the trigger emotion,
we changed the speaker identity labels to the target speaker identity.
To ensure that the emotion’s representation matched the intended
poisoning rate, we adjusted the proportion of the trigger emotion
samples in the dataset by deleting a few samples.

Traditionally, backdoors add a trigger (e.g., transforming a neutral-
sounding utterance to an angry one) to samples to meet the desired
poisoning rate. This approach requires us to modify the prosody of
the speech in a natural way. However, if we had done this, it would
have resulted in a dataset that has not been manually validated,
forcing us to rely on artificial and potentially unreliable data. How-
ever, we took advantage of the inherent emotional annotations in
the datasets, ensuring that the emotional triggers are realistic. An
illustrated explanation of EmoBack is provided in Figure 1.

5 Experimental Setup

5.1 Datasets

The Emotional Speech Database (ESD) [1, 42] contains more than
29 hours of speech, featuring 350 parallel utterances from 20 na-
tive speakers, 10 from English and 10 from Chinese backgrounds,
spanning five emotions: Neutral, Happy, Angry, Sad, and Surprised.
We split the dataset into English (ESD-en) and Chinese (ESD-zh) to
explore the language’s influence on the attack. Tonal languages, like
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Chinese, use pitch variations to differentiate words, whereas non-
tonal languages, like English, do not. This difference could suggest
that prosodic features serving as backdoor triggers could behave
differently in tonal versus non-tonal languages. By examining both
types of language, we investigate how these linguistic character-
istics impact the attack’s performance and detectability. We also
used the RAVDESS dataset [23]. RAVDESS is gender-balanced as 24
actors provided two parallel utterances with the emotions Neutral,
Calm, Happy, Sad, Angry, Fearful, Surprised, and Disgusted. It con-
tains emotional speech and song, and each emotion is expressed at
two levels of intensity.

ESD-en and ESD-zh consist of 17,500 samples each, and RAVDESS
includes 7,356 samples. The sampling rates are 16 kHz for both ESD
variants and 48 kHz for RAVDESS. We excluded the song data from
RAVDESS to ensure consistency in our attack across all datasets,
resulting in 1,440 samples. Additionally, while RAVDESS includes
two intensities for each emotion, we used both intensities without
differentiating between them in our pre-processing to maintain a
consistent approach across all datasets.

5.1.1 Data pre-processing. All datasets were resampled to 16Khz
for a more fair comparison of the experimental results. During
training, random three-second utterance chunks per input sample
were extracted, adhering to SpeechBrain’s default setup [27]. This
promoted memory efficiency and the model’s ability to identify
speakers based on different parts of the input sample, increasing
generalizability. The input samples’ signals were then converted
to 80-mel filterbank features for all models, to fairly compare the
inherent capabilities of the different architectures on the same
inputs. As mentioned in Section 4, we removed any speech samples
that already contained the target speaker ID and the trigger emotion.
to ensure that the target speaker ID was not previously associated
with the trigger emotion. For both ESD datasets, this resulted in
the removal of 2% of the dataset. In the case of RAVDESS, 0.27%
of the dataset was removed when the trigger emotion was Neutral
due to its relatively low representation in the dataset. For all other
emotions, this was 0.55%.

5.2 Neural Network Training

We used three model architectures (ResNet [29], X-vectors [33], and
ECAPA-TDNN [9]), with 15.4 million, 4.6 million, and 20.4 million
parameters, respectively. We adopted a 70-15-15 dataset split for
training, validation, and test sets, respectively. The test set was
further divided into a clean and poisoned test set. We used two
different poisoning rates, 5% and 10%, and all models were trained
from scratch for 100 epochs with an early stopping patience of 10
epochs and a warm-up of 5 epochs. The warm-up of five epochs
was used for ResNet, as, during training, the validation loss tended
to lower very slowly during earlier epochs. Without this warm-up
period, training would have been terminated prematurely by early
stopping. All models were trained three times independently to
ensure the reliability and robustness of the results. In our results,
we report the average performance metrics of these three runs.

5.3 Evaluation Metrics

We evaluated the attack with two metrics: Clean Accuracy (CA) and
Attack Success Rate (ASR). The clean test set was used to determine
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the CA, and the poisoned test set was used to determine the ASR.
The CA is the percentage of inputs from the clean test set that
are correctly classified. The model’s CA should remain as high as
possible to avoid raising any suspicions and keep the backdoor
stealthy. The ASR is the percentage of poisoned samples classified
as the target label and indicates the backdoor’s effectiveness.

5.4 Defense Setup

5.4.1 Pruning. Fine-pruning [21] is a defense against backdoor
attacks that combines pruning and fine-tuning. Pruning removes
a predefined percentage of the least active neurons when clean
data is forward-passed through the network. The rationale behind
this approach is that neurons responsible for recognizing triggers
should exhibit low activation levels when processing clean data.
Fine-tuning adjusts the pruned network’s weights using a clean
dataset, recovering any accuracy loss endured during pruning. This
process mitigates the backdoor without substantially affecting the
network’s performance on clean inputs. Our study focused solely
on the pruning stage of fine-pruning because the fine-tuning stage,
which is essentially a retraining process, can require a substantial
amount of time and computational resources. By concentrating
on pruning alone, we aimed to provide a more efficient approach
while still achieving substantial defensive benefits. Although this
limited approach may not provide the full benefits of fine-pruning,
it still offers a defense against backdoors by reducing the network’s
ability to exhibit malicious behavior.

Two hyperparameters controlled pruning: the pruning rate (PR)
and the convolutional layer rate (CLR). The PR is the percentage of
neurons removed from each layer. Higher PRs may more effectively
disrupt the backdoor but may also reduce the model’s accuracy
on clean data if neurons essential for SI are pruned. The CLR is
the proportion of the pruned convolutional layers. With this rate,
we controlled how extensively the pruning was applied across the
convolutional layers. Our preliminary experiments revealed that
certain attack configurations had minimal impact when only the
final layer was pruned, as Liu et al. did in their work [21]. Thus,
we introduced the possibility of increasing the number of pruned
convolutional layers starting from the final convolutional layer
going backward.

5.4.2 STRIP-ViTA. STRIP-ViTA is a backdoor defense that, during
inference, detects poisoned samples [11]. It first creates N copies of
an audio sample x. Each copy x; is then superimposed with a clean
sample (xp;) as a perturbation. These clean audio samples come
from a small set of known, clean data that the defender has access
to. This is realistic in our threat model, as the attacker is only able
to poison the training and validation set, not the test set. These per-
turbed inputs {xp1,Xp2 ..., XpN} are subsequently passed through
a DNN. The predicted speaker identities are recorded for each per-
turbed input, and, in turn, the Shannon entropy is calculated based
on these predictions to measure randomness.

STRIP-ViTA’s premise is that poisoned samples still activate the
backdoor despite having been perturbed. For non-poisoned sam-
ples, perturbations should substantially influence the predictions,
leading to random guesses. Thus, a high entropy (high randomness)
should indicate that x is non-poisoned, whereas a low entropy (low
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randomness) would indicate that x is poisoned. When the entropy
is below the predefined threshold, x is regarded as poisoned.

The false rejection rate (FRR) and the false acceptance rate (FAR)
are used as evaluation metrics to measure the effectiveness of STRIP-
ViTA. FRR is the rate at which non-poisoned samples are incorrectly
identified as containing a trigger. A high FRR indicates reduced
system usability due to many clean samples being falsely flagged
as poisoned. Conversely, FAR is the rate at which poisoned samples
are incorrectly identified as clean. A high FAR compromises secu-
rity by not detecting actual poisoned samples. Ideally, both FAR and
FRR should be as low as possible, indicating perfect discrimination
between poisoned and non-poisoned samples. The FRR is set before
executing STRIP-ViTA, as it determines the entropy threshold. Ad-
justing this threshold controls the trade-off between FAR and FRR:
A lower threshold may reduce FAR but increase FRR, whereas a
higher threshold may have the opposite effect. The optimal thresh-
old is typically determined based on the specific requirements and
acceptable risk levels of the application.

5.4.3 Quantization: Quantization determines the signal’s bit depth.
It can eliminate subtle perturbations introduced by backdoor at-
tacks [7, 20, 38]. Let x[n] be the input audio signal, Q the quan-
tization function, and g the quantization step size. The quantized

signal Q(x[n]) is given by:

g x round (round(xcgn]xzw) )

Q(x[n]) =

215 ’ (1)
5.4.4 Median filter: A median filter removes noise from an audio
signal [40] and can be used to mitigate backdoors [7, 20, 38]. It
processes the signal using a sliding window. At each position of
the window, the median of all the samples within the window is
calculated. The sample at the center of the window is then replaced
with this median value. Let x[n] be the input audio signal and 2k +1
the window size. The output of the median filter X[n] is given by:

x[n] = median(x[n—k],x[n—k+1],...,x[n+k—1],x[n+k]), (2)

5.4.5 Squeezing: Squeezing compresses the time-amplitude signal
by down-sampling to a lower sampling rate and then up-sampling
it back to the original rate [20]. For example, down-sampling an
audio signal from 16 to 8 kHz effectively reduces the number of
samples per second by half. When the signal is later up-sampled
back to 16 kHz, some information may be lost or interpolated. Let
x[n] be the input signal sampled at 16 kHz. The down-sampled
signal x;4[m] with a down-sampling factor of 2 is given by:

xqlm] = x[2m]. 3)
The up-sampled signal X[n] can be represented as:
R xg | 2| ifniseven
ORR e B )
0 if n is odd.

Here, the up-sampled signal %[n] is created by inserting zeros
between samples of the down-sampled signal. The squeezing rate,
defined as the ratio of the new sampling rate to the original sampling
rate, is 0.5 in this case. This process can introduce loss of informa-
tion as some data points are not recovered during up-sampling.
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6 Results and Discussion
6.1 Attack Performance

6.1.1 Influence of Models. X-vectors demonstrated variable per-
formance across datasets and emotions, as shown in the first row of
Figure 2. Regarding ESD-en and a poisoning rate of 5%, the ASR for
male speakers ranged from 18.2% (Happy) to 51.2% (Sad). For the
10% poisoning rate, the ASR for male speakers ranged from 52.4%
(Happy) to 70.7% (Sad). For female target speakers and a 5% poison-
ing rate, the ASR ranged from 25.0% (Happy) to 35.7% (Sad). For 10%,
it ranged from 59.8% (Angry) to 76.3% (Surprise). Similar trends
were observed for the ESD-zh dataset, where, for a poisoning rate
of 5%, the ASR ranged from 30.1% (Happy) to 72.6% (Neutral) for
males and from 35.4% (Surprise) to 71.7% (Sad) for females. For 10%,
the ASR ranged from 65.4% (Happy) to 89.1% (Neutral) for males
and from 55.7% (Surprise) to 84.2% (Neutral) for females. Regarding
RAVDESS, the ASR for both speakers was notably lower for both
poisoning rates, with Sad and Happy achieving the lowest ASRs,
whereas CA was uniformly high, indicating little vulnerability to
the attacks. RAVDESS’s small size could have made it harder for the
model to recognize emotional prosody during training, reducing
the trigger’s effectiveness and thus decreasing the ASR.

ResNet (second row in Figure 2) exhibited the lowest resilience
against the attack across all datasets, where the poisoning rate was
10%. Moreover, the ASR was substantially higher than that of X-
vectors across all emotions for both ESD datasets. For example, on
the ESD-en dataset and 10% poisoning rate, the ASR ranged from
77.6% (Happy) to 93.8% (Sad) for male speakers and from 80.9%
(Happy) to 94.7% (Sad) for females. ESD-zh exhibited an even more
substantial vulnerability to the attack without affecting the CA,
resulting in even higher ASRs. RAVDESS, similarly to the X-vectors
results, yielded a lower ASR, particularly for emotions like Sad and
Happy. Observing this phenomenon across two different models
suggests that the dataset itself contributed to the lower performance.
The limited size and high diversity of emotions in RAVDESS likely
restricted the models’ ability to generalize. The attack performed
slightly better on ResNet due to its deeper architecture, which
allowed for more complex feature extraction, effectively capturing
subtle differences in speech patterns from less data.

The ECAPA-TDNN model (third row in Figure 2) also exhibited
low resilience against our attack, particularly for the ESD-zh dataset,
where, for a poisoning rate of 10%, the ASR for male speakers ranged
from 85.5% (Surprise) to 98.7% (Neutral), and for females ranged
from 85.9% (Surprise) to 98.9% (Neutral). Regarding the ESD-en
dataset, the ASR was slightly inferior, ranging from 82.0% (Happy)
to 94.0% (Sad) for males and from 84.1% (Happy) to 95.3% (Sad) for
females. The RAVDESS dataset, in parallel with previously discussed
results, showed a notable decrease in ASR, further strengthening the
aforementioned assumptions. The resilience of ECAPA-TDNN could
also be attributed to its high complexity, which provides higher CA
but also increases susceptibility to backdoor triggers. Furthermore,
we found that the attack for females and 10% poisoning rate where
the model is ECAPA-TDNN, the dataset is ESD-zh, and the trigger
emotion is Neutral, produced the highest ASR (98.9%) also yielding
the highest CA (99.9%). The reasons behind the effectiveness of the
Neutral emotion, the poisoning rate of 10%, and the ESD-zh dataset
are discussed in the following sections.
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6.1.2  Influence of Emotions. Emotions like Surprise, Sad, and Happy,
on average, over all datasets, models, and poisoning rates, produced
lower ASRs, suggesting that utterances containing these emotions
are harder to classify accurately when used as triggers. However,
this trend is not consistent across all datasets. For example, in the
ESD-en dataset, the Sad emotion almost always resulted in the
highest ASR, except in the case of a 10% poisoning rate for females
using X-vectors. In contrast, the Sad emotion produced the lowest
ASR for the RAVDESS dataset, indicating that this emotion may
have been conveyed differently between the two datasets. Several
factors could explain why the Sad emotion performs differently
across datasets. Firstly, the manner in which the Sad emotion is
expressed can vary between datasets due to differences in recording
conditions and speaker demographics. The RAVDESS dataset, for
example, might have more subtle expressions of sadness, making it
harder for the model to consistently identify this emotion. Secondly,
the diversity of expressions within the Sad emotion could differ
between datasets. Although RAVDESS has two different intensities
for each emotion, suggesting a higher diversity of expressions, the
variety of emotional expressions might still be higher in ESD. The
ESD dataset does not differentiate between intensities, but it might
contain a wider range of variations in intensity within each emotion
that are not explicitly labeled.

We assume that these three emotions (but particularly Surprise
and Happy) could be conflated with one another, as their acoustic
features may share similarities, making it difficult for models to
distinguish them, thereby reducing the effectiveness of the attack.
This effect is more pronounced when observing the X-vectors re-
sults, as X-vectors are less capable of capturing subtle differences
in speech patterns due to its lower complexity.

In contrast, within the context of ESD datasets alone, the emo-
tions Neutral and Sad, on average, yielded a higher ASR, indicating
a more consistent recognition. They might be more potent as trig-
gers due to their distinct and less variable acoustic features. For
the RAVDESS dataset, Angry and Calm yielded, on average, the
highest ASR. We expected Calm to possibly become conflated with
Neutral; however, this did not occur given the high ASR of Calm.
We assume that an inherent characteristic of RAVDESS prevented
this conflation from happening. Each emotion makes up 13.33% of
the RAVDESS dataset, except for Neutral, which only makes up
6.66%. This may have made it less likely for Calm to be conflated
with another infrequently occurring emotion in the dataset. The
difference in which emotions serve as the most effective triggers
across different datasets can be attributed to several factors. Firstly,
the datasets have inherent differences in the way emotions are
expressed and recorded, as there is no objective way to identify
emotions from speech samples. Second, the diversity in each dataset
could play a role. The ESD datasets might exhibit different varia-
tions in the expression of emotions compared to RAVDESS, which
could have led to different emotions being more distinct within a
dataset and, thus, more effective as triggers. Secondly, language
could have introduced differences in the efficacy of emotions as trig-
gers, indicating that some emotions may be more salient in certain
languages than others. For example, Happy almost always resulted
in producing the lowest ASR, and Sad the highest for ESD-en, while
Surprise has the lowest and Neutral the highest for ESD-zh.
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Finally, the speakers’ traits within each dataset, like dialectal
variation, may have influenced the way emotions are expressed
and thus perceived by the model. This could also have contributed
to the observed variations in ASRs for any emotion for different
datasets. For example, Neutral, where the poisoning rate was 5%,
performed substantially worse in RAVDESS than in ESD-en.

6.1.3 Influence of Gender. The results did not show consistent
gender bias, suggesting that the triggers we used in the attacks are
effective, regardless of possible gender-specific acoustic features
such as pitch [5]. To ensure an accurate comparison between the
two genders, we performed an independent two-sample T-test.
For CAs, the test yielded a statistic of t = 0.51 with a p-value
of p = 0.61, indicating that there are no statistically significant
differences between the genders at @ = 0.05. Similarly, for ASRs,
the results showed t = 0.09 with a p-value of p = 0.93.

6.1.4 Influence of Datasets. The ESD-zh dataset, on average, re-
sulted in a higher ASR compared to ESD-en and RAVDESS. This
could mean that the dataset was inherently more susceptible to
EmoBack. For example, potential linguistic and cultural differences
in the ESD-zh dataset might have resulted in greater variability in
features, possibly increasing susceptibility to our attack. Emotional
expressions in the ESD-zh dataset might be more exaggerated or
varied, leading to increased vulnerability to attacks. Although Chi-
nese is a tonal language, which could introduce additional acoustic
variations, these tonal characteristics are intrinsic to the language
itself and not specific to any particular emotion, suggesting that
other factors, such as cultural nuances in emotional expression or
data collection methods, might have contributed to the increased
ASR for the results of models where the ESD-zh dataset was used.
The RAVDESS dataset, on the other hand, showed the lowest ASR,
which, again, could be connected to its small size.

6.1.5 Influence of Poisoning Rate. The poisoning rate had a sub-
stantial impact on the ASR. Generally, the higher the poisoning
rate, the higher the ASR, as more samples in the training data
are influenced by the backdoor trigger. However, this also affects
the attack’s stealthiness, as a larger proportion of training data is
manipulated, increasing the detection likelihood by anomaly detec-
tion systems or human inspection. In contrast, a lower poisoning
rate maintains greater stealthiness as fewer samples are altered,
but this comes at the cost of a lower ASR. Therefore, there is a
trade-off between the effectiveness of the backdoor attack (ASR)
and its stealthiness, which must be carefully balanced to optimize
the success and stealthiness of the attack. Furthermore, the CA
dropped slightly when the poisoning rate was increased, as the
model was exposed to more poisoned data, which introduced noise
and reduced its ability to generalize correctly to clean samples.

6.2 Pruning

Figures 3 and 4 illustrate pruning’s impact on the CA and the ASR
in two models (ECAPA-TDNN and ResNet), two datasets (ESD-
en and ESD-zh), and three emotions (Neutral, Sad, and Surprise)
that produced among the highest ASRs. In these figures, the solid
lines show the CA, and the dotted ones the ASR. Although Neutral,
Sad, Angry, and Surprise yielded the highest ASRs, we applied
our defense to a mix of negative and positive emotions to ensure
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a comprehensive evaluation of the defense’s effectiveness across
different emotions. Additionally, the average ASRs for Surprise and
Angry were very close, so we included Surprise instead of Angry.

6.2.1 Influence of PR. The PR affected the accuracy of clean and
poisoned models for both dataset languages. In general, higher PRs
led to a reduction in both CA and ASR. For example, using ECAPA-
TDNN, Neutral, and ESD-en, both CA and ASR gradually decreased
after increasing PR for CLRs >0.1. This trend is a recurring theme
across other models trigger emotions, and dataset languages, such
as for the setup ECAPA-TDNN, Surprise, and ESD-zh (Figure 4),
indicating that excessive pruning impairs the network’s ability
to correctly classify inputs, whether they are clean or poisoned,
suggesting that there is a point of diminishing returns.

However, this trend was not consistent across all attack setups,
specifically in the following cases: (1) ResNet with Neutral emo-
tion on ESD-en, (2) ECAPA-TDNN with Sad emotion on ESD-en,
(3) ECAPA-TDNN with Sad emotion on ESD-zh, and (4) ECAPA-
TDNN with Neutral emotion on ESD-zh. Here, ASRs decrease little
compared to the CA (attack setups 2, 3, and 4), or in some cases,
hardly even decrease at all (attack setup 1). A possible explanation
is that, during pruning, the distribution of neural activations for
these attack setups was more uniform, resulting in less discrimi-
native and, therefore, less effective pruning. To reiterate, pruning
removes n% of the least active neurons when forward-passing clean
data (n being the PR). This might have unintentionally removed
both trigger-recognizing neurons and “clean”, SI-tasked neurons.
Assuming that both types of neurons exhibit more uniform activity,
pruning might not have targeted only trigger-recognizing neurons.
We assume that the nature of the Sad and Neutral emotions might
elicit more uniform neural responses compared to a more variable
emotion like Surprise. Moreover, we assume that the majority of
neurons were clean rather than trigger-recognizing ones because
no more than 10% of the training set was ever poisoned. Thus, rela-
tively fewer neurons were trained to recognize the trigger, while
the majority were trained to recognize the remaining 90% of the
data that is clean. Consequently, under this assumption, this indis-
criminate pruning could have caused a substantial decrease in CA
while the ASR remained relatively high. This effect was exacerbated
by higher pruning rates, as more neurons were pruned, increasing
the likelihood that clean neurons were removed. Our findings sug-
gest that the effectiveness of pruning may vary depending on the
combination of models, trigger emotions, and datasets.

6.2.2 Influence of CLR. In Figures 3 and 4, different markers and
colors represent various CLRs. The CLR played an important role
in pruning, for ResNet, Surprise emotion, and ESD-en (Figure 3).
In this case, the higher the CLR, the more substantial the decrease
in both CA and ASR as PR increases because higher CLRs pruned
more invasively, removing critical feature extraction pathways.
Extremely high CLRs (e.g., 0.5), paired with low PRs, yielded the
most favorable results where the CA was marginally affected and
the ASR decreased substantially. For example, in both Figures 3
and 4, particularly where the emotion is Surprise, it is evident that
the CA remains almost intact, whereas the ASR decreases substan-
tially. In fact, for ECAPA-TDNN, Surprise, and ESD-en, a decrease of
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Performance Metric (Gender)

EEN CA (Male) mmE ASR (Male)

X-vectors on ESD-en

X-vectors on ESD-zh

CA (Female) ASR (Female)

X-vectors on RAVDESS

132.1

Emotions

135.4

ResNet on ESD-en

ResNet on ESD-zh

ResNet on RAVDESS

176.8

Emotions

IBLO ; 2 |

ECAPA-TDNN on ESD-en

ECAPA-TDNN on ESD-zh

ECAPA-TDNN on RAVDESS

|81.8

Emotions

178.0

|62.8
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Accuracy
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40 60
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Figure 2: EmoBack’s CA and ASR for each combination of targeted DNN, dataset, trigger emotion, and speaker gender. The
figure shows the accuracies with the poisoning rate of 10% (colored bars, with the exact percentage in black text at the base of
each bar) and 5% (green text). Notice that RAVDESS has no data for Neutral where the poisoning rate = 10 because, prior to
pre-processing, it has too few Neutral samples to achieve this poisoning rate. Moreover, in some cases, the 5% poisoning rate
ASR was 0. This could be attributed to the low poisoning rate of these setups combined with the small size of RAVDESS and Sad
possibly being expressed ineffectively (see Section 6.1.2). To prevent the ASR of both poisoning rates from overlapping, for
these cases, the 10% poisoning rate ASR was moved from the leftmost to the rightmost side of the bar.

41.4% can be observed suggesting that increasing the CLR when ap-
plying low PRs can effectively reduce the backdoor attack’s efficacy
without substantially impacting the model’s performance.

Models with lower CLRs (< 0.2) maintain higher accuracy, indi-
cating that less invasive pruning can preserve the model’s perfor-
mance on clean data while still mitigating backdoor effects, albeit to
a smaller degree. This is particularly evident in ResNet with a Sur-
prise trigger emotion in Figure 3, where the results of lower CLRs
exhibit a more gradual degradation in ASR and virtually none in
CA, compared to higher CLRs. Remarkably, attack setups with low
CLRs somehow increased in ASR when increasing the pruning rate
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(e.g., ECAPA-TDNN with any emotion using ESD-en). Later convo-
lutional layers tend to extract higher-level features. We assume that
emotional prosody may be such a high-level feature relative to SI,
meaning that neurons in deeper convolutional layers are, therefore,
tasked with trigger recognition. When pruning is performed only
on later layers, it may predominantly remove SI-tasked neurons,
reducing the model’s ability to classify clean samples accurately.
However, with fewer neurons remaining, the relative influence
of the trigger-recognizing neurons might increase due to reduced
competition among neurons, making them more dominant in the
final classification, thus increasing the ASR.



AlSec ’24, October 14-18, 2024, Salt Lake City, UT, USA

6.2.3 Influence Architecture. Overall, for ResNet, the CA appears
to decrease more rapidly as PR increases. This could be attributed
to ResNet’s lower parameter count. For example, a PR of 0.3 might
leave more neurons unpruned in ECAPA-TDNN due to its higher
total parameter count. As a result, ResNet may have trouble infer-
ring correctly the labels of clean inputs. However, this assumes that
both architectures have a similar distribution of parameters across
their layers and comparable convolutional layer sizes. Furthermore,
differences in layer connectivity, activation functions, and overall
network depth could also have influenced the impact of pruning.

6.2.4 Influence of Emotion. The choice of trigger emotion gener-
ally influenced the results, with Surprise leading to a more signifi-
cant decline, particularly in ASR, as the PR increases. For example,
in Figure 4 (and to a lesser degree in Figure 3) for the ECAPA-TDNN
model, the decrease in ASR is substantially more pronounced for
Surprise. As explained in Section 6.2.1, the resilience of Neutral and
Sad models may be attributed to the less distinctive nature of the
Neutral and Sad emotions when compared to Surprise.

2 osoned o o)

—e— Clean (CLR=-1.0)
-®- Poisoned (CLR=-1.0)

—#- Clean (CLR=0.1)
~M- Poisoned (CLR=0.1)
—#— Clean (CLR=0.2)
~#- Poisoned (CLR=0.2)

Clean (CLR=0.3)
Poisoned (CLR=0.3)
—¥— Clean (CLR=0.4)

~¥- Poisoned (CLR=0.4)
—#— Clean (CLR=0.5)
~#- Poisoned (CLR=0.5)

Model: ECAPA-TDNN. Trigger emotion: Neutral Model: ResNet. Trigger emotion: Neutral

X+

ZZ,_.,“#::*::t::t:::

Accuracy

0.0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Model: ECAPATDNN. Trigger emotion: Surprise Model: ResNet. Trigger emotion: Surprise

Accuracy

0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

Model: ResNet. Trigger emotion: Sad

x4+

Accuracy

0.0 0.4

Pruning rate

0.6 0.0 0.4

Pruning rate

0.6

Figure 3: Results of pruning against the best performing
models trained on the ESD-en dataset. CLR=—1.0 means that
only the final convolutional layer was pruned.

6.3 STRIP-ViTA

The results in Figure 5 indicate a substantial trade-off between FAR
and FRR in all the models tested. The data shows that to achieve a
low FAR, the FRR must be exceedingly high. This trend is consistent
across all architectures and datasets, emotions, and genders. Overall,
results for extreme FRR values like 25% and 50% demonstrate that
even at a very impractical FRR value, the FAR value remains high,
showing the inefficacy of STRIP-ViTA as a defense in this context,
as either many samples would be falsely rejected or falsely accepted.
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~#- Poisoned (CLR=0.5)

Model: ECAPA-TDNN. Trigger emotion: Neutral Model: ResNet. Trigger emotion: Neutral
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Model: ResNet. Trigger emotion: Sad
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Figure 4: Results of the pruning defense against the best-
performing models trained on the ESD-zh dataset.

Both models, when trained using ESD-zh, demonstrated slightly
better performance for more combinations of gender and emotion,
maintaining a lower FAR at comparable FRR levels compared to
their ESD-en counterparts, indicating that models trained with ESD-
zh are less robust against STRIP-ViTA. This could be attributed to
several factors. First, the distinctive characteristics of Chinese, such
as tonal variations and possible cultural differences in emotional
expression, might provide more distinct acoustic characteristics,
making it easier for STRIP-ViTA to detect anomalies or triggers
regardless of the absence or presence of emotion. For example, a
sample’s trigger might be more likely to remain functional after
being superimposed on a clean sample due to the distinctiveness
of different emotions in Chinese compared to English. However,
the differences in results between dataset languages are almost
non-existent for lower FRR values and marginal for more extreme
FRR values, so they could be attributed to randomness.

Regarding STRIP-ViTA’s efficacy against attacks with different
trigger emotions, Sad tended to result in a lower FAR for the same
FRR across both datasets. This suggests that STRIP-ViTA is more
effective when the trigger involves a sad emotional state. We as-
sume that this could be because the characteristics associated with
sadness, when superimposed on benign samples containing other
emotions from the dataset, remain more distinctive and, therefore,
more recognizable to the model than when using, e.g., Neutral as
the trigger. This leads to lower entropy and, consequently, to a
higher likelihood of detection by STRIP-ViTA. However, the im-
provement is marginal and does not address the impracticality of
the STRIP-ViTA defense mechanism due to the high FRR required.
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We acknowledge that this assumption contradicts the one in Sec-
tion 6.2.1 and Section 6.2.4; however, without conducting additional
experiments that aim to directly determine the levels of salience
of different emotions, we cannot definitively determine whether
sadness is more or less distinctive. Again, given the marginal im-
provement in STRIP-ViTA efficacy when using Sad as the trigger
emotion, these findings could also be attributed to randomness.

To conclude, there is an inherent inefficacy when STRIP-ViTA is
used for backdoored SI models. The requirement for an excessively
high FRR to maintain a low FAR indicates that many legitimate
inputs would be rejected, compromising the SI’s reliability. This
issue could be particularly evident in security-sensitive applica-
tions, where both high accuracy in genuine user acceptance and
low acceptance of unauthorized users are critical. Furthermore, the
presence of this phenomenon across different model architectures,
languages, genders, and emotional triggers suggests that STRIP-
ViTA’s limitations are not tied to certain configurations. We believe
that it may be better suited to recognize static triggers rather than
dynamic ones. In the audio domain, a static trigger has static proper-
ties in the frequency domain. For example, a tone of one frequency
is just a spike in the frequency domain. Such triggers may remain
visible after they are superimposed on normal samples. Dynamic
triggers, such as stylistic transformations [18], depend on the sam-
ple and do not have static properties. Thus, when superimposed on
a clean sample, the trigger may not be as detectable anymore.

—e— ¢ + Neutral
Q + Sad

—v— & +Sad
-« J + Surprise

—— 9 + Surprise
A+ G + Neutral

ECAPA-TDNN + ESD-en

ECAPA-TDNN + ESD-zh

ResNet + ESD-zh

Figure 5: FRR and FAR of our attacks (poisoning rate of 10%)
that yielded the highest ASR.

6.4 Pre-processing-based Defense Strategies

6.4.1 Quantizing. In Figure 6, emotion Neutral, it is evident that
the Quantize defense exhibits a trend in which increasing the quan-
tization parameter Q leads to a decrease in both CA and ASR for
both male and female speakers. Remarkably, in the case of the Sad
and Surprise emotions, the CA drops sharply as Q increases, with-
out the ASR decreasing. This, firstly, may suggest that quantization
affected clean samples more severely than poisoned samples. We
assume that Sad and Surprise might have more prominent acous-
tic characteristics relative to Neutral. These characteristics could
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be more salient and, therefore, possibly more robust to the loss
of detail caused by quantization, allowing the backdoor trigger to
remain more effective compared to Neutral.

6.4.2 Median Filtering. The median filtering revealed a pattern
similar to that of quantizing. As the filter size increases, there is a
noticeable reduction in CA and, to a lesser extent, in ASR when the
emotion is Neutral. Again, Sad and Surprise show more robustness
against the defense, possibly reinforcing our previous findings in
Section 6.4.1. However, the effect is substantially less pronounced,
mostly observable in Figure 6a, Figure 6c, and Figure 6d.

6.4.3 Squeezing. Squeezing exhibits different effects across com-
binations of parameters. Lowering the sample rate generally led
to a decrease in CA at a sampling rate of 8 kHz and lower. Typical
sampling rates used in speech processing range from about 8 kHz
upward [5]. Reducing the sampling rate too much may result in a
loss of important high-frequency information, which complicates
the capture of subtle acoustic features. As a result, the model’s
performance on clean inputs diminished. Remarkably, CA and/or
ASR, in some cases, appear to increase at a sampling rate of 4 kHz,
as can, for example, be observed in Figure 6a (Sad), Figure 6c (Sad)
and Figure 6d (Sad). We assume that by downsampling audio to
rates that are divisions of the original sampling rate (e.g., 4kHz),
samples might align such that some samples of the original sig-
nal are preserved. This may have caused the model to recognize
patterns on which it was trained, leading to a spike in accuracy.

6.4.4 Gender Differences. The results show that there are slight
differences in the effectiveness of the defenses between males and
females. For example, in almost all quantization results, the female
ASR exhibits a more substantial decrease in ASR given a higher
value Q. The generally higher pitch and varied dynamic range of fe-
male speech may have made backdoor triggers more susceptible to
disruption by quantization. Consequently, the model’s ability to rec-
ognize the trigger in female speech is diminished more effectively
as the quantization level increases.

6.4.5 Comparison of Defenses. Across all pre-processing defenses,
there is a consistent trade-off between reducing ASR and maintain-
ing CA. Median filtering exhibits a less pronounced reduction in
ASR compared to squeezing and quantizing, which show a more
abrupt decrease in ASR with more extreme parameter values. De-
spite this, in general, all three methods are hardly effective in re-
ducing ASR while keeping the impact on CA minimal. Quantizing
for Neutral was an effective defense, particularly where the target
speaker identity was female, using ESD-en. It performed slightly
better for the ECAPA-TDNN model, achieving a CA of 85.07% and an
ASR of 11.78%. The original ASR was 94.11%, which is a substantial
reduction of 83.33%. Squeezing has shown significant effectiveness
against the ECAPA-TDNN model trained on ESD-zh, using Sur-
prise as the trigger emotion and targeting a female speaker. With a
sample rate of 8 kHz, the CA was 85.28%, and the ASR was 39.08%,
resulting in a 46.84% reduction in ASR. Unfortunately, this effect
was less pronounced for the ResNet model.

Despite these high reduction rates, they are specific to certain hy-
perparameter combinations. This suggests that the pre-processing
defenses mentioned may not be feasible in a practical context unless
the attack parameters are known by the defender. However, for six
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(c) ECAPA-TDNN + ESD-en.

(d) ECAPA-TDNN + ESD-zh.

Figure 6: This figure illustrates the effectiveness of pre-processing-based defense strategies against our backdoored models.
‘We chose experimental settings that resulted in the highest ASR to evaluate the effectiveness of the defenses against strong

attackers. For this reason, the poisoning rate was 10%.

out of twelve combinations of model hyperparameters shown in
Figures 3 and 4 (ESD-en: ECAPA-TDNN + Neutral, ECAPA-TDNN +
Surprise, ECAPA-TDNN + Sad, ResNet + Surprise; ESD-zh: ECAPA-
TDNN + Surprise, ResNet + Surprise), substantial reductions in ASR
were observed with a CLR of 0.5 and PRs of 0.1 or 0.2, while CA
remained high. Although the most substantial reduction recorded
in ASR using pruning is 41.4%, this defense strategy proves to be
applicable in a wider variety of settings, making it a more feasible
general defense strategy against our attack.

7 Conclusions and Future Work

We introduced EmoBack, a novel backdoor attack targeting stage-
wise, closed-set, and text-independent ST DNNs by using emotional
prosody as triggers. We evaluated its effectiveness across three
datasets (ESD-en, ESD-zh, and RAVDESS), three DNN architec-
tures (X-vectors, ResNet, and ECAPA-TDNN), and against five de-
fenses (pruning, STRIP-ViTA, quantization, median filtering, and
squeezing). We showed that emotions like Neutral, Sad, Angry,
and Surprise, for datasets ESD-en and ESD-zh, typically yielded a
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higher ASR. Moreover, the ECAPA-TDNN model was found to be
the most vulnerable across various configurations, achieving ASRs
up to 98.9% while maintaining a high CA of at least 86.4%. Pruning
showed the most promise in mitigating the attack, while STRIP-
ViTA and pre-processing techniques varied in their effectiveness.

Future research could focus on several areas to further enhance
our understanding and defense against EmoBack. As pruning yielded
promising results, we should investigate if fine-tuning further im-
proves the defense’s performance. Additionally, future research
could explore methods that manipulate the prosody in neutral sam-
ples and induce target emotions programmatically, making the
attack applicable in more real-world scenarios. However, evaluat-
ing the authenticity of these transformations is crucial, and metrics
such as human perceptual tests should be used for validation. More-
over, the high poisoning rates used in our experiments (5-10%)
may be challenging in a practical setting. Therefore, we should
investigate the effectiveness of lower poisoning rates or consider a
clean-label attack [35] that is stealthier.
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