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MCMC for Wind Power Simulation
George Papaefthymiou, Member, IEEE, and Bernd Klöckl, Member, IEEE

Abstract—This paper contributes a Markov chain Monte Carlo
(MCMC) method for the direct generation of synthetic time se-
ries of wind power output. It is shown that obtaining a stochastic
model directly in the wind power domain leads to reduced number
of states and to lower order of the Markov chain at equal power
data resolution. The estimation quality of the stochastic model is
positively influenced since in the power domain, a lower number
of independent parameters is estimated from a given amount of
recorded data. The simulation results prove that this method of-
fers excellent fit for both the probability density function and the
autocorrelation function of the generated wind power time series.
The method is a first step toward simple stochastic black-box mod-
els for wind generation.

Index Terms—Monte Carlo simulation, Markov chain, wind
energy conversion, wind turbine generator.

I. INTRODUCTION

W IND ENERGY has been the fastest growing energy
technology in the last years. In spite of its indisputable

benefits, the increasing share of wind generation in the power
system energy mix can bring unwanted consequences, mainly
due to the stochastic nature of wind power. In order to study the
impact of wind generation to the power system, time series of
the power output of the wind plants are used, usually obtained
by a procedure consisting of two distinct steps: the utilization
of data and information on the stochastic prime mover (wind
activity) and the subsequent transformation of the wind activity
to power output.

In order to capture the wind stochasticity, recordings for a suf-
ficiently long period should be used. However, because the data
records typically are of short length, it can become necessary to
use stochastic simulation techniques for the derivation of syn-
thetic time series for the modeling of the wind activity. The direct
and indiscriminate use of short measured time series as input
to the subsequent modeling procedure may lead to wrong con-
clusions on system design issues, especially when the records
are short with respect to the time constants of processes within
the studied system. A typical example is the dimensioning of a
combined wind power/energy storage plant with relatively high
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energy capacity. Simple simulation investigations show that for
energy capacities of more than 24 h of nominal power, even one
year of measured high-quality data can be entirely insufficient
to estimate the statistical properties of the stored energy con-
tent. The reason is that the stochastic process “energy storage”
must by theoretical considerations be more persistent than the
stochastic process “energy storage terminal power,” and hence,
takes longer time to converge in the statistical sense than the
generating stochastic process (e.g., the wind power time series).
In other words, depending on the energy storage technology, one
will have to use time series of different length for convergence
of the result [1]. Similar effects can be observed in investiga-
tions on hybrid systems with relatively inert plants used for the
compensation of stochastic sources, such as e.g., fuel cells. This
fundamental problem of power system design in stochastically
driven environments was recognized early by Klein and Beck-
man [2], who come to the conclusion that “. . . even 20 years
of data are insufficient to obtain accurate estimates of loss of
load probability (LLP ) for LLP values less than 0,01. . ..” The
necessity to at least have at hand a suitable method to simulate
stochastic power time series from measured data becomes more
urgent as systems to be designed based on stochastic sources
become more complex, more densely meshed with a higher pen-
etration of inert distributed resources to support the stochastic
generation facilities such as storage, demand side management
facilities, or backup generation.

Independent of the source of data, be it a natural stream of
wind speed values, be it a synthetically processed data stream,
the wind speed is typically the basis for the investigation. The
second step in obtaining the wind power time series is the mod-
eling of the energy conversion, i.e., the transformation of the
wind activity (either measured or synthetic) into power. This
refers to the modeling of the wind plant power curve and can
be a complex procedure that should take into account the indi-
vidual turbine curves, the terrain characteristics, the shadowing
effects inside the wind farm, and the meteorological parameters’
influence (e.g., ambient temperature, air density, turbulence in-
tensity) on the production. Due to the complexity in deriving
the detailed power curve, in most cases, a less accurate wind
speed/wind power curve is used as the input–output character-
istic. The output of this two-step procedure is a time series of
the power fed to the grid connection point.

In this paper, we propose the development of a synthetic
wind power model from measured data directly in the power
domain and show that this procedure offers basic advantages
over modeling procedures in the wind speed domain. We show
that the aforementioned two-step modeling procedure may lead
to an unnecessary increase in the complexity of the stochastic
model, since the wind speed models contain information that
is statistically redundant for the wind power model. We discuss
the use of Markov chain Monte Carlo (MCMC) methods as an
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Fig. 1. Wind speed to wind power transformation through the nonlinear power
curve of a single turbine. The boxed area shows the alternatives for a respective
simulation algorithm.

appropriate representation of wind speed and power, and we
compare the MCMC model in the wind speed and wind power
domains and show that the wind power representation is more
appropriate.

II. STOCHASTIC MODELS OF WIND POWER

Stochastic models of the power output of a wind plant are
more simple than the ones concerning wind activity, mainly due
to the type of the transformation of the wind stochastic process
into power. One can see this by the investigation of the wind
speed/wind power curve of the wind turbine generator.

Wind turbine static power curves are nonlinear and transform
the random variable (r.v.) “wind speed” (v) into the r.v. “wind
power” [P (v)] according to the following equation

P (v) =




0, v ≤ vci or v > vco (area A)

PN , vN ≤ v ≤ vco (area B)

f(v), vci < v < vN (area C)

(1)

where vci , vco , and vN are the cut-in, cut-out, and the nomi-
nal wind speed, respectively. f(v) is a relation in the standard
working range of the turbine dependent on the control strategy,
aerodynamics, and the grid coupling technology. An illustration
is given in Fig. 1. We can see that a mapping of the information
between the wind speed and the wind power domain is achieved
only in area C (vci < v < vN ), due to the monotonic coupling
between the input and the output. In the other two areas, all
wind speed values are mapped to one power value, either nom-
inal (area B) or zero (area A). As may be seen in Fig. 1, this
transformation of the wind speed distribution leads to an accu-
mulation of probability masses to the power output distribution,
corresponding to the nominal and zero output power areas [3]. A
detailed wind speed representation contains unnecessary infor-
mation for these two regions. In order to shift toward a simpler
model of wind power, we propose the inversion of the modeling

Fig. 2. acf obtained from measured wind speed and transformed wind power
time series. The wind power time series shows lower persistence. The data were
taken from TS A.

activity: instead of building a model in the wind speed domain,
and then, transform to wind power, one should first transform
to wind power, and then, obtain a wind power model directly in
the wind power domain (Fig. 1, boxed area).

III. MARKOV CHAINS FOR THE DESCRIPTION

OF WIND POWER TIME SERIES

A. Pdf and Acf of Wind Speed and Wind Power

Methods for the synthetic generation of wind time series have
to mimic the major statistical properties of the recorded data,
namely the probability density function (pdf) and the autocorre-
lation function (acf) as closely as possible. As shown in Fig. 1,
due to the impact of the nonlinear power curve, the wind speed
pdf (approximated by a Weibull distribution) is transformed to
a wind power distribution that presents accumulation of prob-
ability masses in the zero and nominal power values. The pdf
is the statistical property associated to the wind energy output
over longer periods (integration of the wind power pdf). The
acf, namely the correlation of the stochastic process against a
time-shifted version of itself, is a measure of the chronologi-
cal persistence of the process. Wind speed time series show a
relatively pronounced chronological persistence, imaged by a
positive acf. The acf is also influenced by the transformation of
v through P (v). In particular, in the zero and nominal power
regions, consecutive wind speed observations become statisti-
cally independent in the wind power domain, which causes the
empirical acf to be steeper for P (v) than for v (see, for example,
Fig. 2).1

B. Review of Related Work

Two basic methodologies for the synthetic generation of time
series may be found in the related literature: the classical time-
series analysis with autoregressive (AR) models and the MCMC
techniques. Both methods present different advantages and dis-
advantages, making them suited for different applications.

Classical time-series analysis involves the generation of syn-
thetic stationary time series based on the combination of the
AR and moving average (MA) models for the stochastic pro-
cess [5].2 The basic advantage of the methodology is that by

1For a good overview on the prominent statistical properties of wind with
respect to wind power generation, see [4].

2For initial works on time-series analysis for wind speed sequences, see,
e.g., [6] and [7].
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the definition of a relatively small number of parameters, the
AR and ARMA models allow for controlled synthetization of a
desired acf. This, however, does not hold for the pdf; in general,
the pdf of the generated time series does not match the one of the
measured data. Such a pdf mismatch can lead to wrong estimates
of the energy yield of the process, and consequently, to wrong
calculation of power flow densities with basic implications on
system design.

For the synthetic generation of time series consistent with
both basic statistical properties (i.e., pdf and acf), the MCMC
method may be used instead. The application of the method in-
volves the discretization of the stochastic process into a number
of states and the definition of the probabilities for the transitions
between states. Two are the basic disadvantages of the method,
a possible loss of information due to the discretization proce-
dure and the model complexity (a large number of parameters
should be assessed from the recorded data, i.e., all probabilities
for the mutual transitions between different system states). The
definition of the number of states introduces a tradeoff between
model accuracy and complexity; a higher discretization leads to
a better representation of the process and also introduces a large
number of parameters that are difficult to assess from data.

The MCMC literature on the modeling of wind speed and
wind power focuses on developing the stochastic model in the
wind speed domain and inducing results for wind power. This
stochastic representation in the wind speed domain leads to
complicated Markov chain models. The general results show
that for an adequate wind modeling, higher order Markov chains
should be used, combined with a high discretization of the wind
speed domain (use of state width of 1 m/s). Past [8] and recent
works [9] show results for the quality of wind speed simula-
tion on different sampling time scales. Kaminsky et al. [10]
give detailed information on the quality of different simulation
methods, among them the MCMC, but due to the high resolu-
tion of the recorded time series (in the turbulence range), the
application to wind power studies remains difficult to identify.
In none of the mentioned papers, the impact of the wind tur-
bines’ power curves on the statistical relevance of the synthetic
wind power time series is discussed.

IV. MARKOV CHAIN MONTE CARLO SIMULATION

A. Definition of States of the Markov Chain

Each process value is attributed to a state, defined based on
the discretization of the recorded data. For example, an equal
spacing of the states {1 · · ·m} along the possible range of the
values of the physical process X is obtained by centering them
at the state center vector ζ = X̂/2m[2k − 1] with k = 1 · · ·m,
where X̂ is the maximum process value. In the wind power
domain, it is necessary to introduce two discrete states, namely
P ≡ 0 and P ≡ PN . The sequence of states St is the result of
such a discretization procedure.

B. Markov Chain Basics

1) First-Order Markov Chain: A stochastic process realiza-
tion of the discrete-time r.v. X taking discrete state values S in

the set {1 · · ·m} is said to fulfill the hypothesis of a homoge-
neous first-order MC (FO-MC) if the process going from state
i to j depends on no more than the state at t = t − 1 and a
conditional probability

Pr(Xt = j|Xt−1 = i) = pij (2)

that is constant in time [11], [12]. The instants for the iden-
tification and definition of these conditional probabilities are
equally spaced by a time step ∆. It is then possible to formulate
a m × m transition probability matrix P:

P =

St →

St−1 ↓




p11 p12 . . . p1m

p21 p22 . . . p2m
...

...
. . .

...
pm1 pm2 . . . pmm


 .

(3)

According to this representation, each row of the matrix corre-
sponds to the current state of the process, while each column
to the possible next one, i.e., p73 corresponds to the probability
for the transition 7 → 3. The rows of the matrix sum up to 1
(
∑

j pij = 1) since this sum corresponds to the probability of
a transition from a current state to any possible one. Concen-
tration of probability masses along the main diagonal indicates
a high tendency for chronological persistence of the Markov
chain. The maximum likelihood estimate for the matrix entries
is

pij =
nij∑
j nij

(4)

with nij being the number of transitions i → j encountered in
the record.

The acf of an FO-Markov chain is described by an exponen-
tially decaying function that can be analytically expressed once
the transition probability matrix is known [13]. Fig. 2 shows that
this assumption can be reasonable for our problem, ignoring at
this point, the typical diurnal bumps due to the daily wind speed
variation.

2) Higher Order Markov Chain: In cases when the present
depends not only on the first lag but also on the last n observa-
tions, an n-order Markov chain should be realized. In accordance
to the FO-MC definition, the transition probabilities become:

Pr(Xt = j|Xt−1 = i1 , . . . , Xt−n = in , ) = pin in −1 ....i1 j . (5)

Each element pin in −1 ...i1 j of P corresponds to the probability
of the transition to state j at t = t when the system was at
the states ik at t = t − k, k ∈ [1, n]. In the related literature, a
cumbersome two-dimensional representation of P is proposed,
as an extension of the FO-MC P. As a more comprehensive
representation, we propose a multidimensional mn+1 transition
probability matrix for the nth-order MC, where each dimension
corresponds to a previous state of the process, while the last di-
mension to the possible next one. For example, in a third-order
MC (TO-MC), p2473 is the probability for the transition to state
3 when the process has passed consecutively from states 2, 4,
and 7. Consistent to the FO-MC P, the elements of the last
dimension of the matrix should sum up to 1 (

∑
j pin in −1 ...i1 j =

1). Thus, a high number of φ = mn (m − 1) independent
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Fig. 3. Number of transitions and the respective estimation of P for the FO-MC. (a) Number of transitions. (b) Transition probabilities.

parameters must be estimated for the calculation of P [14],
which is the main disadvantage that renders the applicability of
the MCMC.

C. MCMC Simulation

Sampling based on a given transition probability matrix is
performed by first constructing the cumulative probability tran-
sition matrix Pcum. In the case of an FO-MC, each row i of
Pcum corresponds to the discrete cumulative distribution func-
tion (cdf) Fi for the next transition. In order to sample the next
transition, a uniform random number U is used. The realization
u of this random number is compared with elements of the ith
row of the matrix; if it falls between the elements j − 1 and
j (Fi(j−1) < u ≤ Fij ), the state j is chosen as the next state.
Further, the same procedure is repeated in order to sample based
on the cdf Fj .

The multidimensional representation of P for higher order
MC offers an easy implementation for the sampling algorithm
for higher order MCMC. In this case, the discrete cdf for the
next transition is obtained as the accumulation toward the last
matrix dimension and is defined based on the n previous states:
Fin in −i ...i1 . Again, the same procedure is followed for the choice
of the next state j, and the next cdf is obtained by shifting the
indices one position leftwards: Fin −i ...i1 j

.

D. Assessment of the Estimation Quality

A typical procedure for the assessment of complex statistical
models is the application of the Bayesian information criterion
(BIC, see [15] and [16]). It is calculated by

BIC = LL − φ

2
ln κ (6)

where φ is the number of independent parameters [with
max(φ) = mn (m − 1)]), κ is the number of observations, and
LL is the log-likelihood of the parameter estimates [17]:

LL =
∑
i,j

nij ln pij . (7)

Equation (6) gives one scalar for the estimation of the Markov
chain; the model with a higher BIC is preferred. This formalism
is a typical procedure for the assessment of the order of the
MCMC models, since it penalizes the most complicated models,
i.e., the ones with high number of independent parameters φ.
In [14], one may find the results for the application of the BIC
to Markov chains of different orders.

V. MARKOV CHAIN DESCRIPTION OF WIND POWER

As a numerical example, we perform the MCMC simulation
in both the wind speed and the wind power domain and compare
the pdf and acf of the original and the synthetic processes. The
dataset used correspond to measurements of 10 min averages
of wind speed for two years (6 × 24 × 365 × 2 = 10 5120 data
points, time series A (TS A) [18]). The maximum recorded wind
speed is 34.4 m/s.

A. MCMC on the Wind Speed Domain

According to the general practice, the wind speeds are dis-
cretized into states of width 1 m/s, resulting in 35 states. The
number of events contributing to the calculation of the entries
of P range from 1 to 3491 (transition 13 → 13). Interesting
for our purpose is the estimation quality: from the m2 = 1225
possible transition events, only 430 take place in the dataset
(35.1%). This is mainly due to the chronological persistence
of the process (most entries are gathered in the main diago-
nal). The same percentage for the second-order MC (SO-MC)
is 5.7% (2445 transitions from a total of 353 = 42 875) while
for the TO-MC, it drops to 0.5% (8432 transitions from a total
of 354 = 1500 625).

Fig. 3(a) shows the number of counts for the estimation of P,
which is presented in Fig. 3(b). As may be seen, due to the impact
of (4), entries in rows containing a low number of events will
result to high probability entries inP. Thus, in the formulation of
P, entries with low information will be treated beneficially. The
application of higher order MC models magnifies this problem,
since the available transitions are scattered in a larger space.
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Fig. 5. Estimation of the FO-MC P in the wind power domain.

The low-information high-probability entries in P for SO- and
TO-MC will be significantly increased. This is a basic problem
that renders the applicability of higher order MC models: the
more states used for the representation of the initial process,
the more cases of low information encountered in the model,
leading to a poorer model quality. A major improvement of the
MC model may be achieved by the reduction of the number of
states; in the following section, we show how this reduction is
performed by working in the wind power domain.

B. MCMC on the Wind Power Domain

The state reduction in the wind power domain is presented in
Fig. 4. As mentioned, due to the transformation shown in Fig. 1,
the wind speed range is divided into three areas presented in
(1). The regions A and B in the wind power domain correspond
to two distinct states. By using the same number of states in
the wind speed and power domain for the variable power range
(area C—nine states), we end up with a state reduction from 35
to 11 states. Thus, by estimating P after the transformation of
the wind speed through the wind turbine curve, we achieve a
significant reduction in the number of states without losing any
information. The number of independent parameters is, there-
fore, significantly reduced to 110 from 1190 for the FO-MC, to
1210 from 41 650 for the SO-MC, and to 13 310 from 1457 750
for the TO-MC. The estimated wind power transition matrix P
is illustrated in Fig. 5. In this case, the matrix entries show a
significantly lower uncertainty than in the first case.

Together with the state reduction, the transition to the wind
power domain leads to a general simplification of the stochastic
model. As shown in Fig. 2, wind power time series show a lower
persistence than the wind speed ones. This means that the same
stochastic model in the wind power domain is achieved by a
lower order Markov chain. This result is verified by the use of
the BIC; in particular, while in the wind speed domain, the BIC
shows a much higher accuracy for the TO-MC model, in the
wind power domain, all three MC models (FO-MC, SO-MC,
and TO-MC) provide the same level of accuracy.

Fig. 4. Division of the wind domain into lumped states.

Fig. 6. Comparison of the FO-MC acf reconstruction for different averaging
windows for wind power. The best result in this example can be achieved for
∆ = 30 min (TS A).

C. Influence of the Sampling Frequency

The FO-MC, however, does not always serve for a satisfactory
reproduction of the acf. This is the case for highly volatile
signals, where the lag-1 time step is only “part of the truth”
about the persistence of the time series. We encountered this
behavior in most recorded wind speed and wind power time
series with a time step below 30 min, and therefore, propose
the concept of customized averaging. For a detailed exposition
of the implications of wind speed averaging on some statistical
parameters, see [19].

The original time series can be manipulated by

Xt,new =
∑
α

Xt−αδ/α (8)

where αδ = ∆ and δ is the step in the original series, e.g., 10
min. Our results indicate that for the FO-MC, a typical averaging
window of ∆ = 1 h is necessary for a satisfactory reconstruc-
tion of the wind power acf from the wind speed time series
(method 1), while for the pretransformed wind power time se-
ries (method 2), ∆ = 0.5 h is the best approximation. Fig. 6
shows an example.

For different values of ∆, one will generally get different
results for the best order of the Markov chain to fit the model.
For example, for the data in TS A, we get the results for the
optimal order as listed in Table I. We verified this result also
using measurement data with lower frequency. In particular, a
dataset consisting of 20 years of measurements of 1 h averages
of wind speed for several locations in The Netherlands (TS
B) [20] were used. In this case, an FO-MC was identified to fit
the time-series data.
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TABLE I
ESTIMATED ORDER OF WIND POWER MODEL FROM TS A

Fig. 7. Simulation of wind power based on an TO-MCMC. The persistence
of the signal is well visible.

Fig. 8. Simulation results for the acf of 10 min MC models of different orders
for TS A.

Note that the optimal order is typically estimated too high
for very short measured time series; therefore, this criterion can
only serve as an additional source of information in addition
to visual inspection of simulated pdf and acf. In Table I, the
estimated order of the wind power model of TS A is presented.
We can see that for this time series, one can only identify the
general trend that for a low number of states, the order goes
down as the averaging time goes up, while for high number of
states, the BIC will tend to choose the least parsimonious model.

Thus, the state reduction in the power domain directly serves
for an improvement of the estimated statistical model. Indepen-
dent from the sampling frequency of the measured data, simpler
MC models may be used for the modeling of the wind power
output in the wind power domain.

D. Simulation Results

For verification, we generated a synthetic wind power time
series based on TS A, for MC models of different orders, in the
wind power domain. The length of the simulated time series was
chosen to be twice the length of the original one (four years).
In Fig. 7, we present the simulated wind power output for one
week based on an TO-MCMC. The persistence of the simulated
signal is well visible. We can, for example, verify the result that
the optimum order n is 3 for m = 25 by visual inspection of the
acf in Fig. 8. Also, the fit for the pdf is absolutely satisfactory
(see Fig. 9). We may, therefore, conclude that the method is

Fig. 9. Comparison of the pdf of the original TS A (above) and a simulated
TO version of double length (below). The pdf is well approximated by the
simulation.

suitable for reproducing the two basic statistical wind power
parameters with sufficient accuracy.

The same analysis was performed for TS B (δ = 1 h). We
inspected in a similar manner and identified excellent agreement
in the pdf and acf by employing an FO-MC without further
averaging.

VI. CONCLUSION—FUTURE WORK

In this contribution, it is shown that the direct generation
of wind power time series based on the MCMC is superior to
indirect synthesization of wind power via artificial wind speeds.
The MCMC is the method that provides results consistent to the
nonstandard pdf and the respective acf for the modeling of the
stochastic output of the wind plant.

One of the main advantages of the method is that this shift
of the modeling process to the wind power domain enables the
treatment of recorded wind power data as source for the model
recognition. Future extensions of this paper will directly treat
such data instead of wind speed data as the input for the identi-
fication process. This straightforward approach is the main step
toward the development of wind turbine/wind park black-box
models, since during the modeling process, the definition of the
cumbersome transformation v → P in cases of increasing mod-
eling depth of single or aggregated generation units is avoided.

ACKNOWLEDGMENT

This work is the result of an ongoing collaboration between
the authors’ institutes.

REFERENCES

[1] B. Klöckl, “Impacts of energy storage on power systems with stochas-
tic generation,” Ph.D. dissertation, Swiss Federal Inst. Technol. (ETH),
Zurich, Switzerland, Hartung-Gorre Verlag, 2007, (ISBN978-3-86628-
190-5).

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 29,2010 at 09:23:57 UTC from IEEE Xplore.  Restrictions apply. 



240 IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 23, NO. 1, MARCH 2008

[2] S. Klein and W. Beckman, “Loss-of-load probabilities for stand-alone
photovoltaic systems,” Solar Energy, vol. 39, no. 6, pp. 499–512, 1987.

[3] G. Papaefthymiou, P. H. Schavemaker, V. der Sluis, W. L. Kling, D. Kurow-
icka, and R. M. Cooke, “Integration of stochastic generation in power sys-
tems,” (Invited Paper), presented at the 15th Power Syst. Comput. Conf.
PSCC 2005, Liege, Belgium, Aug. 22–26.

[4] J. Hennessey, “Some aspects of wind power statistics,” J. Appl. Meteorol.,
vol. 16, no. 2, pp. 119–128, 1977.

[5] G. Box and G. Jenkins, Time Series Analysis—Forecasting and Control.
San Francisco, CA: Holden-Day, 1976.

[6] B. Brown, R. Katz, and A. Murphy, “Time series models to simulate and
forecast wind speed and wind power,” J. Climate Appl. Meteorol., vol. 23,
pp. 1184–1195, Aug. 1984.

[7] M. Blanchard and G. Desrochers, “Generation of autocorrelated wind
speeds for wind energy conversion system studies,” Solar Energy, vol. 33,
no. 6, pp. 571–576, 1984.

[8] D. Jones and M. Lorenz, “An application of a Markov chain noise model to
wind generator simulation,” Math. Comput. Simul., vol. 28, pp. 391–402,
1986.

[9] A. Shamshad, M. A Bawadi, W. Hussin, T. Majid, and S. Sanusi, “First
and second order Markov chain model for synthetic generation of wind
speed time series,” Energy, vol. 30, pp. 693–708, 2005.

[10] F. Kaminsky, R. Kirchhoff, C. Syu, and J. Manwell, “A comparison of
alternative approaches for the synthetic generation of wind speed time
series,” J. Solar Energy Eng., vol. 113, pp. 280–289, 1991.

[11] L. Breiman, Probability and Stochastic Processes—With a View Toward
Applications. Boston, MA: Houghton Mifflin, 1969.

[12] A. Papoulis, Probability, Random Variables, and Stochastic Processes.
New York: McGraw-Hill, 1984.

[13] I. Basawa, “Estimation of the autocorrelation coefficient in simple Markov
chains,” Biometrika, vol. 59, no. 1, pp. 85–89, 1972.

[14] A. Berchtold and A. Raftery, “The mixture transition distribution model
for high-order Markov chains and non-gaussian time series,” Stat. Sci.,
vol. 17, no. 3, pp. 328–356, 2002.

[15] G. Schwarz, “Estimating the order of a model,” Ann. Stat., vol. 6, no. 2,
pp. 461–464, 1978.

[16] R. Katz, “On some criteria for estimating the order of a Markov chain,”
Technometrics, vol. 23, no. 3, pp. 243–249, Aug. 1981.

[17] J. Gani, “Some theorems and sufficiency conditions for the maximum-
likelihood estimator of an unknown parameter in a simple Markov chain,”
Biometrika, vol. 42, no. 3/4, pp. 342–359, 1955.

[18] Center for Energy. Efficiency & Renewable Energy. (2005). [Online].
Available: http://www.ceere.org.

[19] X. G. Larsén and J. Mann, “The effects of disjunct sampling and averaging
time on maximum mean wind speeds,” J. Wind Eng. Ind. Aerodyn., vol.
94, no. 8, pp 581–602, Aug. 2006.

[20] Hydra project: Wind climate assessment of The Netherlands. (2005). [On-
line]. Available: http://www.knmi.nl/samenw/hydra

George Papaefthymiou (M’03) received the
Dipl.Eng. degree in electrical and computer engineer-
ing from the University of Patras, Patras, Greece, in
1999, and the Ph.D. degree from Delft University of
Technology, Delft, The Netherlands, in 2007.

He is currently with the Electrical Power sys-
tems Laboratory, Delft University of Technology as
a Research Associate. His current research interests
include modeling of uncertainty in power systems
and design of systems with large-scale penetration of
distributed and stochastic generation. He is involved

in the main framework of the intelligent power systems.
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