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ME-TIME study: Rationale and design of a longitudinal
study to detect atrial fibrillation and heart failure from

wearables

Arman Naseri, MSc,* David Tax, PhD," Pim van der Harst, MD, PhD,*

Marcel Reinders, PhD, Ivo van der Bilt, MD, PhD**

From the *Department of Cardiology, Haga Teaching Hospital, The Hague, The Netherlands, " Pattern
Recognition and Bioinformatics, Delft University of Technology, Delft, The Netherlands, and
*Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands.

BACKGROUND Smartwatches enable continuous and noninvasive
time series monitoring of cardiovascular biomarkers like heart
rate (from photoplethysmograms), step counter, skin temperature,
et cetera; as such, they have promise in assisting in early detection
and prevention of cardiovascular disease. Although these bio-
markers may not be directly useful to physicians, a machine learning
(ML) model could find clinically relevant patterns. Unfortunately,
ML models typically need supervised (ie, annotated) data, and la-
beling of large amounts of continuous data is very labor intensive.
Therefore, ML methods that are data efficient, ie, needing a low
number of labels, are required to detect potential clinical value in
patterns found in wearable data.

OBJECTIVE The primary study objective of the ME-TIME (Machine
Learning Enabled Time Series Analysis in Medicine) study is to
design an ML model that can detect atrial fibrillation (AF) and heart
failure (HF) from wearable data in a data-efficient manner. To
achieve this, self-supervised and weakly supervised learning tech-
niques are used.

METHODS Two hundred subjects (100 reference, 50 AF, and 50 HF)
are being invited to participate in wearing a Fitbit fitness tracker for
3 months. Interested volunteers are sent a questionnaire to deter-
mine their health, in particular cardiovascular health. Volunteers

without any (history of) serious illness are assigned to the reference
group. Participants with AF and HF are recruited in the Haga teach-
ing hospital in The Hague, The Netherlands.

RESULTS Enrollment commenced on May 1, 2022, and as of the
time of this report, 62 subjects have been included in the study. Pre-
liminary analysis of the data reveals significant inter-subject vari-
ability. Notably, we identified heart rate recovery curves and
time-delayed correlations between heart rate and step count as po-
tential strong indicators for heart disease.

CONCLUSION Using self-supervised and  multiple-instance
learning techniques, we hypothesize that patterns specific to AF
and HF can be found in continuous data obtained from smart-
watches.

KEYWORDS Wearables; mHealth; Atrial fibrillation; Heart failure;
Smartwatch; Artificial intelligence; Machine learning; Multiple-
instance learning; Self-supervised learning

(Cardiovascular Digital Health Journal 2023;4:165-172) © 2023
Heart Rhythm Society. This is an open access article under the CC
BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction

Cardiovascular disease is one of the leading causes of mortal-
ity globally' and cardiovascular healthcare accounts for a
large portion of global healthcare costs and expenses. Early
detection and prevention will decrease the burden of cardio-
vascular disease and will therefore decrease mortality,
morbidity, and costs. Cardiovascular monitoring using big
data from wearables and machine learning can drastically in-
crease the availability and efficiency of cardiovascular
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healthcare globally, at the fraction of the costs of conven-
tional medical-grade devices.

Electrocardiogram (ECG) monitoring, such as Holters or
implantable loop recorders, are the gold standard for moni-
toring of outpatients with known or suspected arrhythmias.
However, they are burdensome, can only be used for a
limited period of time, and are expensive. Implantable loop
recorders are invasive and have to be manually activated
and analyzed in the hospital. This severely limits the use of
these devices for long-term home monitoring of patients,
and they have suboptimal patient comfort. For patients with
chronic cardiovascular diseases, such as atrial fibrillation
and heart failure, this implies frequent hospital visits and
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Figure 1

Data analysis pipeline for the ME-TIME study. Included participants (image 1) are given a smartwatch (image 2), which is connected to our data

acquisition and storage platform (image 3). The resulting data are then preprocessed (image 4) and put into the data-efficient machine learning model (image
5). AF = atrial fibrillation group; HF = heart failure group; Ref = reference group.

sometimes even hospital admissions (associated with higher
mortality) that can be prevented by continuous and adequate
home monitoring.

With the widespread availability of reliable, consumer-
grade wearables such as smartwatches, continuous moni-
toring of, for example, heart rate with photoplethysmography
and step counting with accelerometers is possible. This moni-
toring is easy, patient friendly, and cost effective. Combining
the power of large amounts of data (big data) and novel ma-
chine learning techniques, these time series can be used to
detect and perhaps even predict cardiovascular disease, there-
fore improving patient care. There are some caveats, howev-
er, as not all wearables have the same characteristics and
quality. Consequently, they have been used with moderate
success.”” They also provide less informative diagnostic sig-
nals as compared to, for example, electrocardiography or
other commonly used cardiologic diagnostic modalities.
The challenge but also the strength of machine learning
models is that they learn by example and therefore large
amounts of data are needed for which the cardiovascular
outcome (class label) has been determined. Typically, super-
vised learning is used, where each observation of the data has
a class label. This must be done with ECGs, since photople-
thysmography or derived signals are difficult to interpret by a
clinician. This so-called labeling or annotating of signals by
physicians is infeasible for the large amounts of (continuous)
data required, and therefore semi-automated™” and fully
automated”’ ECG labeling systems® have been developed.
However, these still require a lot of manual labor from contin-
uously monitored users.
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Figure 2
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Therefore, the objective of the ME-TIME is (early) detec-
tion and prevention of heart disease by leveraging time series
data from smartwatches, a cloud-based infrastructure, and
machine learning algorithms specifically designed to func-
tion effectively with minimal labeling efforts.

Methods

Study design and data collection

ME-TIME  (registered at ClinicalTrials.gov; ID:
NCT05802563) is designed as an observational cohort study
consisting of 3 data subject groups, as depicted in Figure 1.
The first group consists of patients with systolic heart failure
(HF group); the second group consists of patients with docu-
mented atrial fibrillation (AF group); and the third group,
serving as a reference, consists of healthy volunteers. The
rationale for creating distinct AF and HF groups comes
from their unique pathophysiological characteristics. Conse-
quently, heart rate patterns that are indicative of these dis-
eases might also be different. The HF group consists of 50
study participants with systolic heart failure, defined as a
left ventricular ejection fraction <35% without documented
atrial fibrillation. The AF group consists of 50 patients with
documented atrial fibrillation (paroxysmal, persistent, or per-
manent) without systolic heart failure. Ejection fractions will
be assessed from echocardiograms that are made within 1
year of inclusion, and if this is not available an echocardio-
gram will be performed. The reference group consists of
100 participants without any prior medical history and
without medication use. Potential study subjects that meet
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Pipeline for the study’s proposed approach. a: Segmentation of the time series of each subject (1 healthy and 2 atrial fibrillation) using a sliding win-

dow. Only the label of the entire subject is available, instead of each individual window. b: The windows are inputs to an autoencoder and are compressed to a
smaller (2-dimensional for illustrative purposes) representation. ¢: The compressed representation is used to train a multiple-instance classifier that can distinguish

between healthy, atrial fibrillation, or heart failure). AF = atrial fibrillation.
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any of the following criteria will be excluded from participa-
tion in this study: age <18 years, age >85 years, recent pul-
monary venous antrum isolation (<1 year), kidney or liver
failure, known systemic active inflammatory disease,
impaired mental state, inability to use a fitness tracker or mo-
bile phone, impaired cognition, and inability to understand
the study protocol.

Patients will be asked by their treating physician if they
may be approached by an investigator to inform them about
the study and potential participation. Healthy participants are
recruited through local advertising. Anyone that is interested
will then receive an information brochure and informed con-
sent form. At least 2 days after the patient’s receipt of the
brochure, the research team will call the patient to schedule
an appointment. During this visit, the patient submits the
signed consent form and will undergo an ECG and blood
pressure measurement that will be analyzed by an experi-
enced cardiologist (I.B.). Participants can use their own Fitbit
and are otherwise provided with a Fitbit Inspire 2 or Fitbit
Charge 5 smartwatch. The device type is assigned to a partic-
ipant at random to prevent device sampling bias. This will
also help to investigate the effect of device type on the perfor-
mance of the final model. A Fitbit account will be created for
all participants which will be connected to a custom-built
data platform using the Google Cloud Platform. Our platform
features a data portal for research staff to easily register or de-
register participants by authorizing a connection to their Fit-
bit data. Data are extracted daily from Fitbits until the
observation period ends and can be analyzed either in the
cloud or locally.

All participants will be asked to fill out a survey regarding
their health. All participants are monitored for a period of 3
months. After written consent from the 200 subjects, heart
rate, step counter, and sleep time series data are extracted
from the data platform. Clinical metadata such as age, height,
weight, blood pressure at baseline, health survey, and medi-
cation use are saved in the Castor (Ciwit BV, Amsterdam,
The Netherlands) electronic database.

Data privacy

After performing a thorough data protection impact assess-
ment, the local hospital security information and privacy of-
ficers granted permission to perform the study. This was also
validated by the ethics review board. The data protection
impact assessment describes a data management plan con-
forming to the European General Data Protection Regulation.
To protect the data privacy of the participants, all data are
pseudonymized. Only the researchers have access to the
sensor data, and only the Principal Investigator has access
to personal information of participants (ie, names, contact in-
formation, etc). They have all signed processing agreements.
Second, the Google servers storing the data are only located
within the Netherlands; hence the data does not leave the
country, therefore conforming to Dutch law. This is done
to have a clear data infrastructure both legally and technically
to explain to participants.

Data characteristics and preparation

The data first undergoes a process involving resampling and
artifact removal. In our experience with Fitbit smartwatches,
the heart rate is nonuniformly sampled, with a prevalent rate
of 0.2 Hz. Therefore, the heart rate is resampled to once per 5
seconds. The step counter is sampled once per minute.

Artifacts involving samples with numerous consecutive
constant values are removed, if more than 12 consecutive
constant values (equivalent to 1 minute of heart rate samples)
are detected. This 1-minute threshold was chosen based on
visual inspection, which revealed that heart rate patterns typi-
cally occur in the order of minutes, often spanning 10-20 mi-
nutes. For sequences with fewer than 12 consecutive missing
values, linear interpolation is applied. From the cleaned time
series, smaller segments, denoted as windows, are extracted
and employed as input for a machine learning model. This
process involves a sliding window and windows containing
time gaps are excluded. Windows have 2 design consider-
ations: the window size, which determines the number of
samples within a window and defines its dimensionality,
and the stride, which establishes the step size dictating the
shift between windows.

Although the cardiovascular condition of each subject is
known, it is unknown in which specific windows these con-
ditions manifest themselves. This is owing to the paroxysmal
nature of atrial fibrillation and the variable symptoms of heart
failure, which can be influenced by factors like medication
adjustments, dietary changes, and the disease’s progressive
course. In other words, the subject label is known, but the in-
dividual window labels are unknown. This is visually repre-
sented in Figure 2a, where the subject label is depicted by the
blue/red colors and the unknown window labels are indicated
by black dotted lines.

Planned machine learning approach

Our planned machine learning approach is tailored to operate
in this setting through a 2-stage process. To learn informative
patterns/features directly from the input data, despite the lack
of labeled windows, the first stage involves using self-
supervised learning. A commonly used self-supervised
learning technique involves compressing the input windows
to a lower-dimensional representation and then reconstruct-
ing the original input from this compact representation, as de-
picted in Figure 2b.”* Instead of reconstruction, another
technique is to forecast future time points of the input
data.” The second stage involves multiple-instance learning
(MIL). MIL, depicted in Figure 3 and more elaborately ex-
plained in Box 1, is suitable for data where a single prediction
is made collectively on a group of samples (known as a
“bag”) instead of predicting on individual samples (known
as “instances”). MIL techniques align well with our time se-
ries data, where during the training phase only 1 label related
to the subject (bag label) is known while the individual labels
of the compressed windows (instance labels) remain un-
known. In the testing phase the primary objective is to predict
1 clinical outcome for each subject. The key concept in MIL
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Figure 3  Illustration of multiple-instance learning. The red and blue lines
indicate bags of heart disease patients and reference subjects. Even though
the labels for each instance are not known, for the sake of this example,
the plus and minus signs depict time windows where heart disease is present
or absent, respectively. The decision boundary is depicted by a dotted circle,
where instances within the circle are classified as heart disease, and instances
outside the circle are classified as healthy.

is that each bag of instances is labeled as positive (heart dis-
ease) if it contains a certain amount of positive instances and
negative (healthy) if it contains no positive instances (only
negative instances). Although traditional MIL approaches
often classify a bag as positive even with just 1 positive
instance, we aim to minimize false-positives by setting a
threshold on the number of positive instances required to la-
bel a bag as positive. This threshold will be determined
through hyperparameter tuning. Thus, instead of learning a
model that predicts the cardiovascular outcome of individual
instances, we are learning a model that predicts the outcome
of a bag of instances.

Algorithm validation

In our specific setting where the model encounters data from
previously unseen subjects without any prior knowledge, we
use leave-p-subjects-out cross-validation (LPSOCV). This
approach, shown in Figure 4, ensures a more accurate reflec-
tion of real-world situations. LPSOCYV involves multiple iter-
ations, or folds, during which data from distinct subjects are
used for training and validation purposes (ie, the model is
validated on data from subjects that the model is not trained
on), mitigating observation bias.

Machine learning models are sensitive to the distribution
of classes. To mitigate potential bias owing to different class
distributions in each fold, we incorporate stratification during
the cross-validation process. This ensures that the ratio of
nonarrhythmic, atrial fibrillation, and heart failure subjects
remains approximately consistent and that the influence of
inconsistent class distribution across different folds is mini-
mized.

Box 1. A simple multiple-instance learning
example
MIL is elaborated with an example in 3 steps.

Initial setup Under traditional supervised learning,
each window must be annotated to train a machine
learning model. However, in our MIL setting (Figure 3),
only the bag label is known for the entire set of windows
related to a subject. A bag label is considered negative if
none of the subject’s individual samples are associated
with heart disease, indicating that the subject is not
affected by it. Conversely, a bag label is positive if a
certain amount of the subject’s samples is linked to heart
disease.

Learning The algorithm then learns a model based on
the bag-level labels only. The goal of the MIL algorithm is
to learn a model that can correctly predict the bag-level
labels given the instances in each bag. By training on
the bag-level labels, the MIL algorithm can capture pat-
terns and relationships within the data that help identify
the presence or absence of heart disease. Note that the
decision boundary produced by the model in Figure 3 is
not ideally suited for classifying individual windows,
which is expected, as it did not use this information.
Howeyver, if a sufficient number of windows are classified
accurately, the correct bag label can still be predicted.
This is accomplished during training by aggregating these
accurate classifications using methods like majority
voting, or by setting a threshold for the minimum number
of positively predicted windows needed to assign a pos-
itive bag label.

Prediction Once the model is trained, it can predict the
label of a new bag by examining the instances in the bag.
If the model predicts that a certain percentage of instances
in the bag are positive defined by the threshold, the bag is
classified as positive (heart disease) and negative
(healthy) otherwise. By analyzing the presence or absence
of positive instances within the bag, the MIL algorithm
can make predictions on a bag level, providing insights
into the subject’s condition.

However, Fitbit time series data exhibit inter-subject vari-
ability resulting from individuals’ distinct physical attri-
butes,'’ making the development of a universally effective
model for “new” subjects challenging. In order to examine
the effect of inter-subject variability, we will assess the model
on 2 distinct test sets. The first is an external test set that con-
sists of subjects not previously encountered, randomly
selected to make up 20% of the total subjects, with an equal
number from each class. This allows us to evaluate the
model’s generalization capabilities. The second test set is
an internal one, encompassing the final 20% of data from
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Cross-validation

(train/validation loop)
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Figure 4

Our leave-p-subjects-out cross-validation strategy consists of the following: On the left, cross-validation folds are illustrated using 3 subjects with

corresponding subject number. Green and blue represent training and validation subjects, respectively. On the right, a single fold is expanded and additionally
illustrates the internal and external test sets. Each row corresponds to a subject, and the dotted squares within each row represent windows. The yellow external test
block encompasses entire subjects and their corresponding data points that have not been encountered by the model. Meanwhile, the dark yellow internal test
block consists of unobserved data points, representing the final 20% measurements of the time series from subjects already encountered during model develop-

ment.
Table 1  Characteristics of preliminary study participants as of
May 2022
Characteristic Ref HF AF
Participants, n 25 15 22
Age, y
18-39 16 1 0
40-54 3 3 2
55-64 5 5 3
65+ 1 6 17
Sex
Male 12 12 15
Female 13 3 7
BMI
18.5-24.9 14 3 7
25-29.9 6 6 8
30+ 5 6 7
Diabetes
Yes 0 5 4
No 25 10 18
Smoking
Yes 0 6 5
No 25 9 17
Hypertension
Yes 2 8 15
No 23 7 7
Device
Charge 5 23 8 12
Inspire 2 2 7 10

AF = atrial fibrillation group; BMI = body mass index; HF = heart failure
group; Ref = reference group.

subjects previously encountered by the model. This segment
of data was excluded during the cross-validation phase and
serves as a baseline, as it minimizes the influence of inter-
subject variability, providing a reliable reference for compar-
ison.

Parameters not directly learned by the machine learning
model, such as window parameters, are termed hyperpara-
meters. Since optimal values are typically unknown in
advance, multiple options are examined during LPSOCV,
and the best-performing one, with the best average perfor-
mance over all folds, is chosen for the final model; a process
known as hyperparameter tuning.

Results
Preliminary findings are discussed in the following sections.

Study characteristics

So far, 62 of the 200 envisioned subjects have been included
and data from 22 subjects (15 healthy, 7 AF) have been ex-
tracted successfully from the data platform for preliminary
analysis (Table 1).

Data show large inter-subject variability

Nonoverlapping 1-hour windows are used to segment heart
rate and step counter time series data from 6 subjects. To
visualize this high-dimensional data, UMAP'' is employed
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UMAP heart rate

Figure5  Visualization of heart rate windows (upper image) and step windows (lower image) of 6 subjects. Each window has data of 1 hour (720 time points for
heart rate, 60 for steps, respectively). Each high-dimensional window is mapped to a 2-dimensional (2D) location using UMAP."' The contour curves illustrate the
distribution of the 2D UMAP samples for each subject, with each color representing 1 of the 6 subjects.

to reduce the data to 2 dimensions while maintaining as much When there is little overlap between subjects, finding a
structure as possible. The resulting embedding is displayed in shared pattern among them becomes challenging, making it
Figure 5, where the distribution of the 2-dimensional UMAP difficult for a model to learn. As a result, the performance
samples are illustrated per subject. of a machine learning model could be impacted as, during
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Figure 6  Acceleration-deceleration curves during light activity. Red and blue represent data from subjects with persistent atrial fibrillation (n=7) and no heart
disease (n=15), respectively. The mean and standard deviation are shown per time point (5 second intervals) for both groups.
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Table 2 Confusion matrix of per-week healthy vs atrial fibrillation
classification of the MILES model with peak aligned curves
concatenated with step counter data, with true and predicted labels
shown vertically and horizontally, respectively

True/Predicted label AF Healthy
AF 11 14
Healthy 7 33

AF = atrial fibrillation.

testing, a subject can significantly deviate from the subjects
on which the model was trained.

Heart rate peak alignment in acceleration-
deceleration curves indicate difference between 7
AF patients and 15 healthy controls

Next, we explored the heart rate recovery curves after activity
(acceleration-deceleration curves).'” First a peak is detected,
whereafter the start (onset) and end (recovery) points associ-
ated to that peak are determined by the minimum heart rate
value 5 minutes before and 15 minutes after the peak. The
curves are preprocessed by aligning the peaks on the time
axis. Additionally, for every subject, the amplitude of the
curves is rescaled by the average peak value across all curves
for that individual. Figure 6 shows the curves for light activ-
ity, defined by a maximum of 20 steps in the 5 minutes pre-
ceding the peak and fewer than 10 steps in the 15 minutes
after the peak. There are 2 noticeable differences in heart
rate patterns between persistent AF patients (in red) and
healthy participants (in blue). The standard deviation for
AF patients is considerably smaller than that of healthy indi-
viduals, and their heart rate recovery is slower, as observed at
the 6-minute mark. These distinctions could potentially serve
as clinical indicators for atrial fibrillation.

MIL can detect healthy cardiovascular outcomes
The peak aligned acceleration-deceleration curves are
concatenated with their corresponding step counter data
and grouped per week to form bags. The MILES (Multiple-
Instance Learning via Embedded Instance Selection) model
is then used to classify every week as healthy or AF. The re-
sults in Table 2 show that even though the sensitivity is low,
the specificity is decent. This shows potential in avoiding un-
necessary visits to a cardiologist for patients who have symp-
toms that are wrongly suspected to be related to heart
problems.

Step counter and heart rate are correlated with a
time delay

Next, we examined whether the cross-correlation function
between the heart rate window and its corresponding step
counter window is indicative of heart disease. To calculate
the correlation, we consider varying window sizes and time
differences (lags) between heart rate and steps. The computed
cross-correlation matrix for the healthy group, along with the
AF and HF patient groups, as shown in Figure 7, shows that

Healthy

o

-10-9-8-7-6-5-4-3-2-10 12345678910

Lag (minutes)
o
o

Window size (minutes)
20

10

Window size (minutes)
60
O .
] ]
I .
] .
-

-10-987654321012345678910
Lag (minutes)

Figure 7  Cross-correlation matrices between windowed heart rate data and
number of steps for healthy and the persistent atrial fibrillation (AF) group.
Rows are window sizes and columns lag between heart rate and step counter.

the heart rate is correlated with the step counter with 1-minute
delay.

Discussion

By building a suitable infrastructure with Cloud technology,
big data acquired in the study is used to develop data-efficient
models using methods from multiple instance and self-
supervised learning.

We aim to examine the influence of inter-subject vari-
ability on predicting cardiovascular disease and will explore
potential methods to mitigate these variabilities.'*'* We
expect that patterns indicative of cardiovascular disease
become apparent within a timeframe of minutes, hours, or
more, considering that consumer-grade wearables have a
slower sampling rate compared to the gold standard. We
have shown 1 example of such a pattern: the acceleration-
deceleration curve. Preselecting windows based on such
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patterns furthermore mitigates searching through substantial
amounts of data that may not provide much information
about cardiovascular disease. Inspecting the cross-
correlation for several combinations of window size and
lag show a different profile for healthy and AF group individ-
uals, showing that it is meaningful to analyze step counter
and heart rate together. Big data for heart disease detection
requires substantial labeling efforts from physicians.

Using self-supervised learning and MIL, a model can be
trained with much fewer labels. Our findings demonstrate
this by employing MILES to achieve high specificity, which
can aid in ruling out heart disease in individuals experiencing
symptoms similar to heart disease but without the condition
(ie, false-positives).

Conclusion

The ongoing ME-TIME study is a longitudinal observational
study that uses machine learning with time series data from
consumer-grade smartwatches to detect atrial fibrillation
and heart failure. This will contribute to cost-effective cardio-
vascular monitoring of outpatients, thereby reducing exacer-
bation of cardiovascular disease and effectively increasing
capacity of global cardiovascular healthcare.
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