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Linear time algorithm for Tree-child Network Containment?

Remie Janssen[0000−0002−5192−1470] and Yukihiro Murakami[0000−0003−1355−5884]

Delft Institute of Applied Mathematics, Delft University of Technology, Van Mourik Broekmanweg 6,
2628 XE Delft, The Netherlands {R.Janssen-2, Y.Murakami}@tudelft.nl

Abstract. Phylogenetic networks are used to represent evolutionary scenarios in biology and
linguistics. To find the most probable scenario, it may be necessary to compare candidate
networks, to distinguish different networks, and to see when one network is embedded in
another. Here, we consider the Network Containment problem, which asks whether a
given network is contained in another network. We give a linear-time algorithm to this
problem for the class of tree-child networks using the recently introduced tree-child sequences
by Linz and Semple. We implement this algorithm in Python and show that the linear-time
theoretical bound on the input size is achievable in practice.

Keywords: Phylogenetics, Tree-child networks, Network containment, Tree-child sequences

1 Introduction

Phylogenetic networks are gaining popularity in the study of the evolutionary history of taxa [12,
1]. However, small stretches of DNA (e.g., pieces of DNA coding for protein domains) evolve tree-
like. Therefore, the network representing the species’ evolution must contain the trees for such
pieces of DNA. This leads to the following mathematical problem. For a given network N and a
tree T on the same set of taxa, decide whether N contains T .

This problem, called Tree Containment, is NP-complete for general rooted phylogenetic net-
works [10]. The problem remains NP-complete for certain network classes (networks with particular
topological restrictions), such as tree-sibling, time-consistent, and regular networks [8]. However,
for other network classes, the problem becomes easier. For example, it is known that Tree Con-
tainment can be solved in polynomial time for normal networks, tree-child networks, and level-k
networks [8].

There are even stronger results for some network classes: deciding whether a tree is contained
in a genetically stable network can be done in quadratic time [5], and making this decision for
a binary nearly-stable network takes linear time [6]. For the class of tree-child networks, Tree
Containment is known to be solvable in linear time [6, 7].

From a biological and a computational perspective, there is no reason why we should restrict
ourselves to inputs of a tree and a network. Indeed, while small stretches of DNA may evolve
tree-like, it is possible for another part of the genome to evolve as a network. In such instances, it
is of great interest to consider a more general version of Tree Containment, which we call Net-
work Containment: For given networks N and N ′ on the same set of taxa, decide whether N
contains N ′. By extension, the problem remains NP-complete for inputs of general rooted phylo-
genetic networks. Computationally, it is natural to wonder whether network classes that can solve
Tree Containment efficiently can also solve Network Containment in a similar fashion. To
date, no study has ever considered this problem, and we take the first steps in this endeavour.

We solve the Network Containment problem for tree-child networks (defined formally in
Section 2) by considering tree-child sequences. These sequences were developed to tackle the prob-
lem of finding a “simple” network that contains a given set of trees [4, 11]. Two leaves of a tree
form a cherry if they share a common parent—by successively picking cherries (removing one of
the leaves in a cherry) from the set of input trees, we obtain a sequence of cherries that ultimately
reduce each input tree to a tree on a single leaf. This sequence of cherries then corresponds to some
network that contains the set of all input trees.
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Previously, these reductions were only defined on trees, and not on networks. In this paper,
we start by defining tree-child sequences and their actions on tree-child networks. We show that
for every tree-child network, there exists a sequence of ordered pairs of leaves that reduces it to
a network on a single leaf. The order in which these pairs are picked does not matter. We also
show that a tree-child network is contained in another tree-child network if and only if a sequence
that reduces the first network also reduces the second one. Combining these results culminates in
a linear-time algorithm for solving the Network Containment problem for tree-child networks.

Structure of the paper. We start by giving all relevant definitions and outlining how to construct
networks from tree-child sequences (Section 2). In Section 3, we investigate properties of tree-
child sequences, and their relation to tree-child networks. In particular, we focus on the relation
between tree-child subsequences, and subnetworks of tree-child networks. This section also includes
an algorithm to solve Tree-child Network Containment. Then, in Section 4, we present an
efficient implementation of this algorithm in Python, and show that the theoretical running time
is achievable in practice. We test our implementation on simulated data, and show that even for
large data sets (1000 leaves and 1000 reticulations), the software outputs the solution within a
tenth of a second. Lastly, in Section 5, we conclude with open problems and future directions for
the use of cherry-picking strategies.

2 Preliminaries

Definition 1. A phylogenetic semi-binary network N is a DAG with one outdegree-1 source (the
root), a set L(N) of indegree-1 sinks (leaves) bijectively labelled with a set X, and all other nodes
are either of indegree-1 and outdegree-2 (tree nodes) or of indegree at least 2 and outdegree-1
(reticulations).

A network is binary if all reticulations have indegree-2. In this paper, all networks we consider
are phylogenetic semi-binary networks unless stated otherwise, so we call these networks for short.
Furthermore, all networks have the leaf set X = {1, 2, . . . , n}, unless stated otherwise.

An edge feeding into reticulations is called a reticulation edge. Given an edge uv in N , we say
that u is a parent of v and that v is a child of u. The node u is above v if there is a directed path
from u to v in N . The network N is tree-child if every non-leaf node in N is a parent of a tree
node or a leaf. The reticulation number is the total number of reticulation edges minus the total
number of reticulations.

Let N and N ′ be tree-child networks on the same set of taxa X. Then N contains N ′ if N ′
can be obtained from N by deleting reticulation edges and suppressing degree-2 nodes. We now
formally define the Tree-child Network Containment problem.

Tree-child Network Containment
Instance: Two tree-child networks N and N ′ on the same leaf-set.
Question: Does N contain N ′?

2.1 Reducible pairs

Let (x, y) be an ordered pair of leaves in a network N , and let px, py denote the parents of x, y
respectively. We call (x, y) a cherry if px = py, if x and y share a common parent. Observe that
if (x, y) is a cherry, then (y, x) must also be a cherry. We call (x, y) a reticulated cherry if px is
a reticulation and py is a parent of px. If (x, y) is a cherry or a reticulated cherry in N , we call
this a reducible pair. The following algorithms show that finding reducible pairs of a network can
be done quickly. Observe that since tree nodes are of outdegree-2, each leaf appears as a second
coordinate in at most one reducible pair in a network; Algorithm 1 finds such a reducible pair,
if it exists, for a given leaf in constant time. Algorithm 2 on the other hand finds all reticulated
cherries that contain a given leaf as the first coordinate of the reducible pair. The running time for
this algorithm depends on the indegree of the parent of the given leaf, as this gives the maximum
possible number of such reticulated cherries.



Algorithm 1: FindRP2nd(N, x)

Data: A network N and a leaf x
Result: The set containing exactly one reducible pair of N that has x as the second coordinate if

it exists; ∅ otherwise.
1 Let p be the parent of x;
2 if p is a tree node then
3 let c(p) be the child of p that is not x;
4 if c(p) is a leaf then
5 return {(c(p), x)};
6 if c(p) is a reticulation and the child c(c(p)) of c(p) is a leaf then
7 return {(c(c(p)), x)};
8 end
9 end

10 return ∅;

Lemma 1. Let x be a leaf in a network N . If a reducible pair with x as the second element of the
pair exists, then Algorithm 1 finds this pair in constant time. Otherwise it returns the empty set
in constant time.

Algorithm 2: FindRC1st(N, x)

Data: A network N and a leaf x
Result: The set of all reticulated cherries in N that has x as the first coordinate

1 Let p be the parent of x;
2 Set Cr = ∅;
3 if p is a reticulation then
4 for every parent g of p do
5 let c(g) be the child of g that is not p;
6 if c(g) is a leaf then
7 Cr = Cr ∪ {(x, c(g))}
8 end
9 end

10 return Cr;

Lemma 2. Let x be a leaf in a network N , and let px denote the parent of x. Let I denote the
indegree of px. Algorithm 2 finds the set of all reticulated cherries that has x as the first coordinate
in O(I) time.

2.2 Reducing pairs from networks

Given a cherry or a reticulated cherry, we may reduce them from a network to obtain a network
of smaller size.

Definition 2. Let N be a network and let (x, y) be an ordered pair of leaves. Reducing (x, y) in
N is the action of

– deleting x and suppressing its parent node in N if (x, y) is a cherry in N ;
– deleting the reticulation edge between the parents of x and y and subsequently suppressing

degree-2 nodes, if (x, y) is a reticulated cherry;
– doing nothing to N otherwise.

In all cases, the resulting network is denoted N(x, y).

We refer to this as picking a reducible pair (x, y) from N . We transform this definition into an
algorithm, and show that a reduction of a pair from a network can be done in constant time.

Lemma 3. Algorithm 3 correctly reduces a given reducible pair in a network N in constant time.



Algorithm 3: ReducePair(N, (x, y))

Data: A network N and a pair of leaves (x, y)
Result: The network N(x, y)

1 if (x, y) is a cherry in N then
2 Let p be the parent of x and y;
3 Remove edge px from N ;
4 Suppress p (if it is a node of degree-2) and remove x in N ;
5 if (x, y) is a reticulated cherry in N then
6 Let px be the parent of x and py the parent of y;
7 Remove edge pypx from N ;
8 Suppress py and px (if they are nodes of degree-2) in N ;
9 end

10 return N ;

3 Tree-child sequence

In this section, we formally define tree-child sequences and how they correspond to tree-child
networks. These are sequences of ordered pairs with additional properties; to illustrate the intuition
behind these properties, we start by showing how to construct networks from sequences of ordered
pairs.

Definition 3. Let N be a network and let (x, y) be reducible pair. Then we may construct N
from N(x, y)—also called add (x, y) to N(x, y)—by applying the following.

1. If x is a leaf in N(x, y) (i.e., if (x, y) is a reticulated cherry in N), and
(a) if p, the parent of x in N(x, y), is a reticulation then add a node q directly above y, and

add an edge qp.
(b) otherwise, add nodes p and q directly above x and y respectively, and add an edge qp.

2. If x is not a leaf in N(x, y) (i.e., if (x, y) is a cherry in N) then add a labelled node x, insert
a node q directly above y, and add an edge qx.

Observe that when adding (x, y) to N(x, y), we assume that y is a leaf in the network N(x, y).
Otherwise, adding (x, y) to N(x, y) is not well-defined.

Now let S = S1S2 · · ·S|S| = (x1, y1)(x2, y2) · · · (x|S|, y|S|) be a sequence of ordered pairs with
the condition that the second coordinate of each pair occurs as a first coordinate in the rest of the
sequence, or as the second coordinate of the last pair. Starting with a network on a single leaf y|S|,
we may iteratively add Si to the network for i = |S|, |S| − 1, . . . , 1 (i.e., backwards through the
sequence S) to obtain some network. We call this the network obtained from S. This condition
ensures that when adding (xi, yi) to the network, yi is already a leaf in the network so that the
operation is well-defined.

Now suppose that we add a second condition on S that the first coordinate of each pair does not
appear as a second coordinate of another pair in the remainder of the sequence. We will sometimes
refer to this condition as the tree-child condition. Then, we claim that the network obtained from S
is tree-child. By construction, we never obtain reticulation nodes that are adjacent to one another.
In particular, every reticulation edge is inserted to existing reticulation nodes whenever possible
(Definition 3.1a). Hence, we may only violate the tree-child property from a tree node having two
reticulation children. So say that we have just added a reticulated cherry (x, y) to a network N .
In N , the tree node parent py of y currently has one reticulation child and one leaf child y. For py to
have two reticulation children, we require some reticulation node to be inserted between py and y,
which can only happen if we add some ordered pair (y, z) to N . However, this would mean that y
appears as a first coordinate of some pair and also as a second coordinate of some pair later on in
the sequence, which contradicts our second condition. If, on the other hand, we have just added
a cherry (x, y) to N , then the parent p of x cannot be a parent of two reticulations after adding
more reducible pairs. Indeed, this would imply that we have added some reducible pair (y, z) later
on to the network (and hence it would appear earlier in the sequence), which again contradicts our
second condition.

This brings us to the following definition.



Definition 4. A tree-child sequence (TCS) is a sequence of ordered pairs of two leaves such that

– the second coordinate of each pair occurs as a first coordinate in the rest of the sequence, or as
the second coordinate of the last pair; and

– no first coordinate leaf is used as a second coordinate in the remainder of the sequence.

Let N be a network and let S be a TCS. Denote by NS the network obtained by repeatedly
reducing N with each element of S in order. We say that S reduces N if NS is a network with a
single leaf (for any leaf in N), a root, and no other nodes. We call a TCS S minimal for a tree-
child network N if S reduces N and if NS1 · · ·Si−1 6= NS1 · · ·Si for all i ∈ [|S|]. Suppose that N
contains n leaves and has reticulation number r. Then any minimal TCS for N is of length n+r−1.

Using the operations outlined in Definition 3, one may obtain a tree-child network N from a
given TCS S. As each addition of an ordered pair creates either a cherry or a reticulated cherry in
the network, we may simply reverse the operations to see that S reduces N . This brings us to the
following correspondence.

Theorem 1. Let N be a tree-child network. Then there exists a minimal TCS S that reduces it.
The network obtained from S is isomorphic to N .

Let S be a TCS. Then the network obtained from S is unique and is tree-child. Furthermore, S
is a minimal TCS for this network.

While each TCS gives rise to a unique tree-child network, there can be many TCSs that reduce
the same tree-child network. In particular, given a tree-child network, we may pick the reducible
pairs in any order.

Theorem 2. Let N be a tree-child network and let (x, y) be a reducible pair of N . Then there
exists a minimal TCS of N whose first element is (x, y).

In the setting of Theorem 2, we have that N(x, y) is a tree-child network. Then, by iteratively
applying the theorem to the reduced network each time, it is indeed the case that we may pick
the reducible pairs in any order—making sure the second property of a TCS is not violated. The
following algorithm then shows how we may obtain a minimal TCS for a tree-child network by
picking reducible pairs in any order, and maintaining a list of all reducible pairs in the network.

Algorithm 4: FindTCS(N)

Data: A tree-child network N
Result: A minimal TCS S for N

1 Set C = ∅ ;
2 for x ∈ L(N) do
3 C∪FindRP2nd(N, x);
4 end
5 Let S be an empty sequence;
6 while C 6= ∅ do
7 Choose (x, y) ∈ C;
8 Set S = S(x, y);
9 N ′ = ReducePair(N, (x, y));

10 if (x, y) is a cherry in N then
11 C = C \ {(x, y), (y, x)}∪FindRP2nd(N ′, y)∪FindRC1st(N ′, y);
12 if (x, y) is a reticulated cherry in N then
13 C = C \ {(x, y)}∪FindRP2nd(N ′, y)∪FindRC1st(N ′, y);
14 end
15 N = N ′;
16 end
17 return S;

Lemma 4. Let N be a tree-child network on X with reticulation number r. Algorithm 4 finds a
minimal TCS for N in O(n + r) time.



3.1 Putting it all together

The following theorem characterizes when a tree-child network is contained in another tree-child
network, using TCSs.

Theorem 3. Let N and N ′ be two tree-child networks on the same leaf-sets. N contains N ′ if and
only if any minimal TCS of N reduces N ′.

Therefore, using the subroutines that we have introduced previously (Algorithms 1 - 4), we
obtain the following algorithm that solves the Tree-child Network Containment problem.
Let N and N ′ be two tree-child networks on the same leaf-sets. Using Theorem 2, we first obtain
some minimal sequence S that reduces N by picking reducible pairs in any order (Algorithm 4).
By Theorem 3, if S reduces N ′, then N ′ is contained in N ; otherwise, N ′ is not contained in N .

Algorithm 5: TCNContains(N,N ′)

Data: Two tree-child networks N and N ′ on the same set of taxa
Result: Yes if N contains N ′, No otherwise.

1 Set S =FindTCS(N);
2 for i = 1, . . . , |S| do
3 N ′ = ReducePair(N ′, Si);
4 end
5 if N ′ is a network on a single leaf then
6 return Yes;
7 end
8 return No;

Theorem 4. Given two tree-child networks N and N ′ on the same taxa set X where the reticula-
tion number of N is r, it can be decided in time O(n + r) whether N ′ is contained in N .

The theorem has the following corollary regarding the network Isomorphism problem, which
asks whether two given networks are isomorphic. Indeed, we can solve this problem by running
Algorithm 5 twice, since two networks are isomorphic if and only if they are contained in one
another. The problem for tree-child networks was previously shown to be solvable in O(n2) time [3].
Therefore, we present the first linear-time algorithm for checking whether two tree-child networks
are isomorphic.

Corollary 1. Given two tree-child networks N and N ′ on taxa set X where the reticulation number
of N is r, it can be decided in O(n + r) time whether N is isomorphic to N ′.

4 Implementation

Algorithm 5, which checks whether a given tree-child network is a subnetwork of another, was
implemented in Python to test the theoretical linear bound in practice. In this section, we present
running time results of the implementation on a large randomly generated data set. We show that
the theoretically proven linear running time is indeed achievable in practice. The tests were run on
a Linux system with a quad-core Intel Xeon W3570 running at 1.7GHz and 24GB of DDR3 RAM
clocked at 1333MHz. The operating system was Debian GNU/Linux 9 with a 4.19.46-64 Linux
kernel. The software was written in Python version 3.7.3.

4.1 Generating the datasets

For the test data, we generated 131200 instances of the Tree-child Network Containment
problem: two yes-instances and two no-instances for all n, r, r′ ∈ {25, 50, . . . , 975, 1000} with r′ ≤ r,
where n is the number of leaves of both networks, r is the reticulation number in the first network,



S = (3, 4)(2, 1)(2, 4)(3, 1)(1, 4)(1, 4)

1 2 3 4 1 2 3 4 1 2 3 4 1 3 4 1 4

(3, 4) (2, 1) (2, 4) (3, 1) (1, 4) (1, 4)

41 4

N NS[:1] NS[:2] NS[:3] NS[:4] NS[:5] NS[:6]

Fig. 1. A binary tree-child network N (grey and black) reduced to a leaf 4 by a tree-child sequence S.
The reduction is shown as a sequence of networks NS[:i] for i = 0, 1, . . . , 6 from left to right, in which an
element of S is applied to the network successively. This sequence is minimal for the network, as every
element of the sequence reduces either a cherry or a reticulated cherry of the network. An example of a
cherry (3, 1) can be seen in the network NS[:3], and a reticulated cherry (3, 4) can be seen in the network N .
The reduction of both reducible pairs is carried out as in Subsection 2.1. Observe that this sequence is a
tree-child sequence. The black subnetwork is also reduced by S, and the embedding can be constructed by
building both networks simultaneously and keeping track of the edges added by the pairs that change the
subnetwork (black pairs and arrows).

and r′ the reticulation number in the second network. Each instance consists of two semi-binary
tree-child networks on the same leaf-set, for which we asked whether the first network contained
the second network.

For each instance, we generated the first network with n leaves and reticulation number r
using Algorithm 6. The second network was generated depending on whether it was a yes- or a
no-instance. If it was a yes-instance, a subnetwork with reticulation number r′ was obtained using
Algorithm 7; for a no-instance, a network on the same number of leaves and reticulation number
r′ was randomly generated with the same process as the first network (using Algorithm 6).

This way, each generated yes-instance is always a yes-instance for the Tree-child Network
Containment problem. For the no-instances, however, the random generation of the second net-
work could also give a subnetwork of the first network, but the probability of that happening is
very small, as the number of tree-child networks grows very quickly with the number of leaves and
reticulations [2].

The dataset used for the experiment along with the code for generating random datasets, and
the actual implementation of Algorithm 5 can be found on https://github.com/RemieJanssen/
Cherry-picking_TC_Network_Containment.

Generating random networks The tree-child networks were randomly generated as TCSs using
Algorithm 6. This algorithm takes two positive integers n and r, and outputs a tree-child network
with n leaves and reticulation number r. It starts with the cherry (1, 2), and successively adds
leaves as cherries, and reticulated cherries between two leaves that already exist in the network
(respecting the tree-child condition).

In the algorithm, this is achieved by building a tree-child sequence backwards. It chooses to
add a reducible pair corresponding to a cherry or reticulated cherry uniformly at random until we
have added the required number of leaves and reticulation number. To make sure the sequence is a
tree-child sequence, we keep a list NF of taxa that are ‘non-forbidden’, which, in this case, means
that the taxon is not currently the child of a tree node that has a reticulation as the other child
(i.e., the leaf has not appeared as a second coordinate element of a reducible pair). If a taxon is
in NF , it is possible to take this taxon as the first element of a pair appended at the start of the
sequence. As a tree-child network always has a cherry or a reticulated cherry, NF is never empty.
This implies that the algorithm should never output False, but lines 15 and 16 are kept so that
the algorithm can easily be adapted to return only binary tree-child networks. To achieve this, one
only has to add the line “NF = NF \ {first_element}” between lines 21 and 22 in the algorithm.
Finally, the algorithm outputs a TCS, from which we can uniquely construct a TCN.



Algorithm 6: RandomTCS(X, r)

Data: A set of taxa X = {1, . . . , n}, and a reticulation number r.
Result: A TCS S on X of length n+ r − 1.

1 Initialize Y = {1, 2} the current set of taxa;
2 Initialize S = (2, 1) the current sequence;
3 Initialize L = n− 2;
4 Initialize R = r;
5 Initialize NF = {2};
6 while L > 0 or R > 0 do
7 type_added = None;
8 if |NF | > 0 and L > 0 and R > 0 then
9 With probability L

L+R
, type_added = L;

10 Otherwise, type_added = R;
11 else if |NF | > 0 and R > 0 then
12 type_added = R;
13 else if L > 0 then
14 type_added = L;
15 else
16 return False;
17 end
18 first_element = None;
19 second_element = None;
20 if type_added = R then
21 Set first_element to an element of NF chosen uniformly at random;
22 Set R = R− 1;
23 else
24 Set first_element to the first element of X \ Y ;
25 Set L = L− 1;
26 Set Y = Y ∪ {first_element};
27 Set NF = NF ∪ {first_element};
28 end
29 Set second_element to an element of Y \ {first_element} chosen uniformly at random;
30 NF = NF \ {second_element};
31 S = (first_element, second_element)S;
32 end
33 return S;

Note that each tree-child network has positive probability of appearing for this process. In fact,
each tree-child sequence ending with (2, 1) has positive probability.

Let us now turn to the procedure to generate a tree-child subnetwork (i.e., generating the sec-
ond network in a yes-instance). For this purpose, we again work with the representation of the
networks as tree-child sequences.

We first select ordered pairs from the sequence of the first network, such that the resulting
subsequence corresponds to a tree. This is simply done by selecting a pair with first element x for
all x ∈ X uniformly at random. Because the sequence we started with is a tree-child sequence, the
subsequence consisting of the chosen pairs is a tree-child sequence as well: suppose (x, y) and (y, z)
are selected. Then (y, z) must appear after (x, y), because otherwise y appears as a first element
after it has appeared as a second element in the original sequence.

After selecting the pairs that form a base tree of the network (a spanning tree contained by
the network), we select r′ additional pairs that will form the r′ reticulations of the subnetwork.
By a similar argument as for the base tree, this subsequence is a tree-child sequence. And as it is
reduced by the subsequence, it is also reduced by the sequence of the original network. Hence, the
network corresponding to the chosen pairs is a tree-child subnetwork of the original network.



Algorithm 7: RandomSubTCS(S, r′)

Data: A TCS S on X of length n+ r − 1, and a number r′ ≤ r.
Result: A sub-TCS S′ of S on X of length n+ r′ − 1

1 Let S be indexed by {1, . . . , |S|};
2 Set IS′ = ∅;
3 for x ∈ X do
4 Let Ix be the set of indices of pairs of S with x as first element;
5 Pick ix uniformly at random from Ix;
6 Set IS′ = IS′ ∪ {ix};
7 end
8 Randomly add r′ elements from {1, . . . , |S|} \ IS′ to IS′ ;
9 Let S′ be the subsequence of S consisting of the elements indexed by IS′ ;

10 return S′;

4.2 Results

For all yes-instance tests in which the second network was a subnetwork of the first (i.e., the
ones generated by Algorithm 7), Algorithm 5 correctly returned a true value. Similarly, for all
no-instance tests in which the second network was generated randomly and independently from
the first network, Algorithm 5 correctly found that the second network was not a subnetwork of
the first. This means that, even though there was a non-zero probability that the second network
was a subnetwork, this did not happen in any of the instances. We expected this, as the probability
of this happening is extremely small.

Note that the largest test instances (1000 leaves, 1000 reticulations) had a running time of
approximately 0.1s. This is expected to scale well for even larger instances, as the linear fit of the
data is very good. The R2 values for the fits and the linear dependence of the running time on the
number of leaves and reticulations can be found in Table 1. For this fit, we performed a standard
linear regression with an intercept of 0 (i.e., forced through the origin), which makes sense because
the running time should be zero for an empty instance.

Note that the fits become much better when we split the data in instances where the second
network is or is not a subnetwork of the first (i.e., between the yes- and the no- instances), even
though the dependence of the running time on the parameters does not change much after this
split. The most striking difference we can see in this analysis, is the dependence on the reticulation
number of the second network.
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Fig. 2. The dependence of the running time on the number of leaves n (left) and the number of reticulations
in the second network r′ (right). This was visualized by fixing the other parameters to a set value of 1000
in both plots. Fitted lines are independent of Table 1.



As shown in Figure 2, the no-instances were consistently, and marginally, faster than the yes-
instances. For varying leaf numbers, the instances where the second network was not a subnetwork
(no-instances), were consistently, but marginally, faster than when the second network was a sub-
network (yes-instances) (Figure 2, Left). This was similarly true for when we varied the reticulation
number r′ of the second network. The effect of varying r′ on instances for when the second network
was not a subnetwork (no-instances) was negligible. This can be seen in the right figure of Figure 2,
but also in Table 1, where the order of the slope of r′ for the no-instances is far smaller than all
other slopes in all the instances. For the yes-instances, the running time of the algorithm displayed
a linear dependence on r′, which was in the same order as the other parameters. This can be
explained as follows. When the second network is not a subnetwork, Algorithm 5 will seldom need
to reduce a pair in Line 3: it will check whether the pair in the sequence is reducible in the second
network. As the second network is randomly generated independently of the first network, it will
not have many pairs in common with the first network, which means it will not have to reduce
pairs often.

Table 1. Linear regression analysis for tree-child network containment on 131200 instances, for which half
were yes-instances and the other half no-instances. The high R2 value indicates that the fit of the curve is
essentially linear (where an R2 value of 1 indicates a perfect linear fit) and the slopes indicate the change in
running time for every increase in the number of leaves, reticulation number r, and reticulation number r′.

R2 slope
leaves (s/leaf) r (s/reticulation) r′ (s/reticulation)

all data 0.9725659 3.03328079 · 10−5 2.99713310 · 10−5 4.75681146 · 10−6

subnetwork: YES 0.9966596 3.14405850 · 10−5 2.89850496 · 10−5 9.54505907 · 10−6

subnetwork: NO 0.9976078 2.92250310 · 10−5 3.09576119 · 10−5 −3.14361016 · 10−8

5 Discussion

In this paper, we have looked at tree-child sequences and how they can be used to solve the
Network Containment problem for tree-child networks. A theoretical linear-time algorithm
was given for this, and we have shown that our Python implementation also runs in linear time,
in the number of leaves and the reticulation number.

In an effort to generalize our results, a natural question would be to ask what would happen
if we weakened our current notion of a tree-child sequence. In Definition 4, we stated that the
tree-child sequences must satisfy two conditions. The first condition ensures that each sequence
corresponds to some network; the second condition ensures that the network is tree-child. Therefore
we may consider networks that are more general than tree-child networks, by removing this second
condition. These new sequences (which we call cherry-picking sequences) may be used to construct
networks (called cherry-picking networks), with the operations as in Definition 3. This raises two
questions. Do our Network Containment results hold when we consider inputs of cherry-picking
networks? And, is there a structural characterization of these networks? To partly answer these
questions for cherry-picking sequences, in [9], we have shown that a network can be reduced in any
order (if it can be reduced at all). Furthermore, if a network is reduced by a minimal sequence
for another network, the first is contained in the second. However, for cherry-picking sequences,
it is no longer true that a subnetwork is reduced by any of the minimal sequences of the original
network (Figure 3 of [9]). Therefore, Network Containment cannot be solved using cherry-
picking sequences; in fact, the counter-example shows that even Tree Containment cannot be
solved using cherry-picking sequences. The second question, about the structural characterization,
remains open.

On a similar note, one can attempt to use tree-child sequences to solve a new problem related
to Hybridization, where the input is a set of tree-child networks instead of trees. The problem
aims to find a tree-child network with minimal reticulation number, containing all input networks.
This problem has not been studied before, but could be very important, as there is a dire need of
methods for finding a consensus network for a given set of networks.



As a follow-up, it would be interesting to extend our Network Containment results to a
more general framework. In this paper, we have presented a linear time algorithm for checking
whether a tree-child network contains another tree-child network on the same set of taxa. What is
the change in complexity (if there is one) when we consider tree-child networks on different sets of
taxa? Does the problem become NP-hard, or does it remain polynomial time? Could a modified
version of our algorithm be used to solve this problem?
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