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Abstract

DNA computing is an emerging field that aims at enabling more efficient data storage
and processing. One principle of DNA computing is to encode some information

*Current affiliation: Big Data Institute, University of Oxford, Oxford, United Kingdom; Wellcome

Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.
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(e.g., image, video, programming scripts) into a digital DNA-like sequence and then syn-
thesize the corresponding DNA molecule. Synthesizing this molecule using digital or
real human genomic fragments theoretically opens the possibility for privacy attacks,
which have been demonstrated on a large array of human genomic data. These privacy
attacks aim at breaching the privacy of DNA samples, allowing an attacker to discover
privacy-critical information from the partial or complete DNA information of an individ-
ual. In the context of DNA computing, novel privacy attacks will certainly emerge and
could consist in discovering a part of a particular script or video that is privacy-critical. It
is therefore important to consider whether privacy attacks and defensemechanisms can
be used when manipulating genomic data. First, this chapter provides the background
about genomic data, and its modern generation and processing. It then provides a sur-
vey on known genomic privacy attacks, and presents the privacy-enhancing technolo-
gies that have been designed to protect genomic data. Later, this chapter also
introduces the current trust management methods one can rely on to further secure
DNA storage and processing methods, before discussing how DNA computing cur-
rently relates to those attacks and privacy-preserving technologies. Finally, this chapter
presents future research avenues.

Abbreviations
1000 GP 1000 Genomes Project

AES Advanced Encryption Standard

CSP Cloud Service Provider

dbGAP database of Genotypes and Phenotypes

DNA Desoxyribonucleic Acid

GA4GH Global Alliance for Human Genetics

GWASs Genome-Wide Association Studies

IBS Identical-By-State

LD Linkage Disequilibrium

NGS Next Generation Sequencing

SGX Software Guard Extensions

SMPC Secure Multiparty Computations

SNPs Single Nucleotide Polymorphisms

TEEs Trusted Execution Environments

WGS Whole Genome Sequencing

1. Introduction

Human Deoxyribonucleic Acid (DNA) is the genetic material con-

tained in human cells that encode all the information necessary for an

organism’s functioning and reproduction. Therefore, understanding how

DNA modulates all those processes became a hot topic due to its potential

contributions on fields such as healthcare and forensics.

The DNA molecule is composed of four nucleotides, i.e., adenine (A),

thymine (T), guanine (G), and cytosine (C), that bind together to form a

double helix. The two strands that compose the double helix are antiparallel,
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and, for each individual, contain genomic variations at certain positions in

the genome. Genomic variations are alternative genomic subsequences

where individuals might differ, the most common among people are

Single Nucleotide Polymorphisms (SNPs). SNPs are genomic variation

where there is a single nucleotide difference, either because a nucleotide

has been replaced by another one, or because a nucleotide has been inserted

or deleted. SNPs are also the most studied genomic variations because of

their low complexity. Genomic variations among and between individuals

are interconnected by complex statistical relations, such as Linkage

Disequilibrium (LD) and kinship, which respectively describe dependencies

between different regions in the genome, and between genomes from rel-

atives. LD describes the nonrandom associations of a group of genomic var-

iations, which comes from their simultaneous transmission during cell

divisions. The resulting statistical associations can be exploited to infer a

genomic variation when others are known. Kinship or kin relationships

describe hereditary connections and marriage ties between individuals,

including direct bonds (e.g., children, parents, grandparents) and collateral

bonds (e.g., siblings, cousins, aunts, uncles). Kin relationships result in geno-

mic similarities between members of the same family because of the biolog-

ical inheritance process that dictates the transmission of genetic information

from parents to their children.

The notions of genotypes and phenotypes are important to understand

the genomic data field, and are defined and correlated as follows. An indi-

vidual’s genotype corresponds to its set of genomic variations. The pheno-

type of an individual is the set of its observable physical characteristics, such

as its appearance (e.g., skin color/type, hair color/type, body silhouette),

development (e.g., blood cells, hormones production), and behavior. The

phenotype is the result of the expression of the information in the genotype

in combination with the environment interactions (i.e., epigenetics). Since

the environment has a great impact on the phenotype, even individuals with

similar genotypes, such as twins, can present different phenotypes.

The inclusion of genomic data in multiple scientific areas was promoted

by the advances of Next Generation Sequencing (NGS) technologies, which

decreased the data generation cost and, consequently, increased the avail-

ability of genomic data. The first step to reveal the DNA information

encoded by a sample is to sequence it using a NGS technology. NGS tech-

nologies are machines that perform a chain of chemical reactions on a

biological sample (e.g., a blood sample) to translate it into its digital equiv-

alent, in the form of sequences of nucleotide called reads. After sequencing,

the information retrieved is treated in a processing pipeline to identify its

special features, i.e., its genomic variations.
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Let us briefly introduce the main steps of this processing pipeline: read

alignment and variant calling. Read alignment is the first step required to

determine the biological information contained on the reads produced by

NGS technologies. In this step the reads are mapped to a reference genome

to determine their original position in the genome. The reference genome is

a synthetic genome sequence containing the most common genomic vari-

ations in the global population. The human reference genome was assem-

bled based on the genome of several individuals from all around the

world. Therefore, it represents a global synthetic sequence and not a single

individual’s genome. Variant calling is the step where the aligned reads

are compared to the reference genome to identify the positions at which

they differ. In this step, a quality score is used to distinguish from real geno-

mic variations and sequencing errors.

DNA data have been increasingly used in healthcare data processing

pipelines, such as personalized medicine and disease predisposition testing,

research, direct-to-consumer services, and forensics [1]. The high through-

put of sequencing machines, which encourages huge DNA data production,

and the intensive computations required to process genomic data, often leads

these processing pipelines to be outsourced to cloud environments that pro-

vide powerful computational resources at an affordable cost. Cloud-based

environments for biomedical data have been described in Refs. [2, 3].

However, although public clouds provide powerful computational

resources at an affordable cost, they are managed by a third party, i.e., a

Cloud Service Provider (CSP). Using public cloud therefore raises new

challenges in order to keep genomic data secure [4]. Furthermore, the

increasing availability of genomic data and its large array of potential appli-

cations encouraged data sharing to accelerate the understanding of DNA

functioning, and allow the largest number to benefit from the information

it encodes. Due to the important expected applications of DNA data, and

because of its greater availability, several genomic data repositories were cre-

ated to support and speed up knowledge acquisition and creation. Some

examples of those repositories include the 1000 Genomes Project (1000

GP), the database of Genotypes and Phenotypes (dbGaP), and the 100,000

Genomes projects. The 1000 GP is a publicly available repository of human

genomes, launched in 2008 with the goal of creating a resource on human

genetic variations. dbGaP is a repository containing genotype and phenotype

data, which is an important collection for Genome-Wide Association Studies

(GWASs), and genome-diseases correlation studies. The 100,000 Genomes

Project is an England effort to provide a repository of cancer and rare diseases

42 Maria Fernandes et al.



genomic data to boost research in these fields. GWASs are a particular DNA

study whose goal is to link observed genomic variations with particular dis-

eases. GWAS consists of a massive scan over multiple individuals’ genomes

to search for particular patterns that help to predict occurrences of a disease.

Once those patterns are identified, they can be used to study the contribution

of genes to the disease, and improve its diagnostic and treatment. Along with

the increase of genomic data processing, new requirements have emerged

such as the needs for high performance and privacy. The high-performance

demand pushed for the use of scalable and cost-efficient environments, such

as public clouds, that provide powerful computational resources and large

storage capacity. However, as DNA data is directly linked to its owner iden-

tity, privacy breaches can occur when data is not protected before it is sent to

the cloud.

The emphasis put on genomic data security has been growing with the

application of genomic data in developing fields. Enforcing data security

in an information system requires providing both privacy and trust.

Privacy challenges may arise when genomic data, which is sensitive infor-

mation, is stored and processed in a cloud environment, or shared. The pri-

vacy risks that appear when outsourcing biomedical data to public clouds

without adequate protections are discussed in Refs. [5, 6]. Genomic data

carry sensitive information such as predisposition to genetic diseases, phys-

ical traits and familial relations. As have seen described, members of a family

share genomic traits, and genome correlations. Humbert et al. [7] demon-

strate that the genomic privacy of a target individual decreases when geno-

mic information from its family members is shared. This work highlights the

increasing of privacy risks, since human genomes sequencing is constantly

growing. In addition, the nonrevocable nature of DNAmakes any potential

data leakage result in privacy loss that can never be attenuated. Therefore,

such data should be kept secret to prevent any harm to the owner, such

as genetic discrimination, which could result in denial of health insurance,

education, and employment, or blackmail [8]. From a security perspective,

biological correlations between human genomes should also be considered

when designing DNA data processing algorithms, since they can be

exploited by an adversary to infer further information based on a partial

genomic sequence and known statistics and/or to relate family members.

Therefore, it is important to protect family relationship information to

ideally prevent privacy attacks. A deeper discussion on privacy attacks

on genomic data and existing privacy-preserving techniques can be found

in Ref. [9].
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DNA computing is an emerging field that aims at using DNA to store

information to perform computations through chemical reactions. For this

purpose, synthesizedDNA is produced, by first composingDNA sequences in

silico and then producing the corresponding DNA molecules in laboratory.

Since each molecule is synthesized to store digital information, i.e., video,

photo, code, its sequence is obtained by using a binary correspondence for

each nucleotide. For example, a basic encoding of nucleotides over 2 bits

could be: A ¼ [00], T ¼ [01], C ¼ [10], and G ¼ [11]. DNA computing

promises the development of massive parallel computing technologies, which

would allow complex problems to be solved in a short amount of time, instead

of requiring weeks using conventional computers. These promises rely on the

fact that millions of DNA molecules can interact simultaneously. However,

this also increases the complexity of the output that a DNA computer would

provide. Human DNA and synthesized DNA (generated for DNA comput-

ing) share the same structure; however, since they encode different informa-

tion, they can have different properties. Yet, an interesting practical

application of DNA computing, in which the synthesized DNA has similar

properties as the DNA found in the human body, is the synthesis of DNA

molecules to detect cancerous or damaged cells with the goal of triggering

the repairing response on them. This process allows the prevention of the

rapidmultiplication of such cells and therefore slows the effects of the resulting

illnesses. This process has been described by Shapiro et al. [10]. In this context,

the synthesized DNA generated, which uses as template the human DNA,

presents the statistical correlations it possesses such as LD and kinship.

Therefore, similar to the sequenced human DNA, the synthesized DNA is

vulnerable to security attacks performed on human DNA. Such attacks aim

at disclosing sensitive information about the owner based on his/her DNA

sequence or on the DNA sequence of its relatives. This chapter focuses on

the security, privacy, and trust management aspect of human DNA. The goal

of this chapter is to show the privacy risks that synthesized DNA and human

DNA share. We therefore describe security attacks that have been performed

on the latter and provide an overview of the state-of-the-art techniques one

can use to prevent such attacks. In addition, this chapter also provides guide-

lines to maintain trust when designing privacy-preserving solutions for

human-like DNA. Overall, this chapter makes the following contributions.

1. First, this chapter describes the security and privacy challenges in the

context of human DNA and DNA computing, and put the emphasis

on existing privacy attacks on genomic data.

2. Second, it surveys the scientific community’s efforts to develop privacy-

preserving techniques for genomic data.
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3. Third, it highlights how trust can be maintained while processing

genomic data.

4. Finally, this chapter discusses the relations and impact of privacy-

preserving techniques and genomic data privacy attacks on DNA

computing.

The remainder of this chapter is organized as follows. Section 2 provides an

overview on the existing security attacks on genomic data. Section 3 pre-

sents the community effort to develop privacy-preserving solutions to

prevent the reported security attacks. Section 4 describes the important trust

management aspects for the design of secure genomic data processing and

storage solutions. Section 5 discusses the previous sections, and the evolution

of the scientific community best practices. Section 6 concludes this chapter

and provides some insights for future work.

2. Security attacks

Over the past decades, many privacy attacks on genomic data have

been reported. These attacks explored genomic data features obtained from

a single individual, from a family, or from a target group. These attacks

alerted the research community of the need to develop privacy-preserving

genomic data processing and storage methods to benefit from cloud envi-

ronments and keep private information secret.

Security attacks occur when an adversary has access or is able to modify

data towhich authorized access was not granted.Nowadays, DNA computing

is used in biomedical sciences, with applications in healthcare and personalized

medicine, where human DNA is used as a template, such as DNA molecules

synthesis for abnormal cells detection. In this context, the synthesized DNA

need to present properties similar to those of the DNA naturally found in

the human cells. However, these similarities make the synthesized DNA sus-

ceptible to the privacy attacks reported on human DNA. Therefore, this

section describes the security attacks on humanDNA,which one should keep

in mind when applying DNA computing for biomedical applications. When

launching privacy attacks against human DNA, the adversary aims at discov-

ering sensitive and not released information about a target individual or

group. Privacy attacks were reported since 2006 and further exploitation of

nonprotected genomic data was also described, with possibly severe conse-

quences to the data owner, in particular, possible insurance denial and

employment refusal [11, 12]. Due the demonstrated misuse of genomic data,

researchers aimed at developing privacy-preserving techniques to adequately

protect genomic data and prevent future harm for the data owners.
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Fig. 1 presents a summary of all the different reported attacks on human

DNA over the years for all the attacks categories. The genomic privacy

attacks described in the literature can be classified into four categories, which

are further discuss in this section:

1. Inference attacks

2. Re-identification attacks

3. Membership attacks

4. Recovery attacks

The main differences between the attack categories are the background

knowledge (i.e., the information) the adversary has initially access to, and

the kind of information the adversary tries to learn. Table 1 summarizes

the adversary’s background knowledge and target information for each cat-

egory. The amount and quality of the background information directly

impacts the outcome information of the attack, and consequently its success.

At the end, this section also discusses system exploits, which may target

information systems that manipulate human DNA. Such exploits should be

prevented so that privacy-preserving methods remain robust to attacks.

2.1 Inference attacks
Inference attacks aim at discovering additional sensitive information based

on a partial or full genomic sequence. This kind of attack was also commonly

used to infer the health status of target individuals based on their genomic

sequence and on background knowledge about disease-related genes. The

information retrieved from this kind of attack can be used by the other

attacks categories. The background knowledge used for these attacks is some

genomic information about a target individual (e.g., SNPs information,

whole or partial genomic sequence) and population statistics such as allele

frequencies or LD.

Fig. 1 Overview of privacy attacks.
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Gottlib [8] reported the use of genetic testing by US employers to infer

the genetic disease susceptibilities of employees who did not provide

their consent. Performing these tests without consent represents a privacy

violation that can lead to employment discrimination. Nyholt et al. [13]

demonstrated that even after hiding a particular gene, it might be possible

to infer it from its neighboring regions. Despite Professor Watson’s DNA

sequence not containing information about the APOE gene—one of the

main genes known to be related to Alzheimer’s disease—the authors were

able to discover its value using the neighboring regions of the hidden gene.

This was made possible by the biological relations that link close regions in

the human DNA.Wang et al. [14] proposed an inference attack using integer

programming to infer hundreds of SNPs based on known pair-wise correla-

tions between SNPs in the human genome. In this paper the authors also

propose a membership attack that is discussed later in this chapter (see

Section 2.3). Gitschier [15] described a method to infer haplotypes from

the Y chromosome by exploring genealogical relations between men. The

proposed method was used to infer surnames of individual from the Utah

Residents with Northern and Western European Ancestry population

Table 1 Security attacks: Background and discovered information.
Attack category Possible background info. Desired info.

Inference Partial or full DNA sequence

Population statistics

Hidden/nonobserved

genomic variations

Disease predisposition

Re-identification Partial or full DNA sequence

Available medical data

Population statistics

Demographic information

Familial relationships

Phenotypic traits

GWAS statistics

Individual’s identity

Membership Partial or full DNA sequence

Reference population statistics

GWAS statistics

Genotype frequencies

Gene expression profiles

Participation of an individual

in a group of interest

Recovery Partial or full DNA sequence of

relatives

Familial relationships

Genomic variation statistics

Reconstruction of partial or

complete DNA sequence of a

target individual
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present in the 1000 Genomes Project. Therefore, it may also enable

re-identification. Schadt et al. [16] performed an inference attack based on

gene expression data, which allows the prediction of the genomic sequence

that leads to an observed expression data. They then proposed the use of

the predicted genomic sequence to perform a re-identification attack and dis-

cover individuals in large populations.Humbert et al. [7] demonstrated how to

infer the genomic sequence of familymembers, related to an individual whose

genomic sequence is observed. This attack uses reproduction statistics and

known relationships between genomic variations in the human genome,

and uses belief propagation, which in the context of genomic data is used

to compute unobserved genomic variations that have a correlation with

observed ones. Samani et al. [17] proposed an attack that takes advantage of

publicly available high-order correlations among single nucleotide variations

existing in the human genome, in particular recombination rate and diploid

genotypes, to discover hidden or nondisclosed genomic variations. This attack

has a higher inference power than previous work that considered only lower-

order correlations. Ayday et al. [18] inferred hidden or nonobserved DNA

information based on the partial DNA sequence of a target individual or a

DNA sequence from amember of his family and publicly available phenotypic

information. Berrang et al. [19] proposed a method that uses Bayesian

networks, which leverage the combination of different types of information,

for inference risk evaluation. The proposed method is used to perform infer-

ence of mother–child relationships based on DNA methylation profiles and

genomic information, which the authors named a linking attack. He et al.

[20] developed an inference attack based on publicly available genomic

information and personal traits revealed by target individuals or their relatives.

The attack allows an adversary to predict nonobserved genotypes and traits.

Table 2 summarizes the techniques used to perform inference attacks, the

key findings, and the possible harm caused to the genomic data owner.

2.2 Re-identification attacks
Re-identification attacks aim at associating a given DNA sequence with its

owner. The background knowledge that is required for performing such

an attack might include publicly available DNA statistics, the genomic

sequence of target individuals or publicly available genomic sequences,

medical records with additional personal details (e.g., name, age, gender,

geography), and genealogical databases that contain familiar relationships.
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Malin and Sweeney [21] developed CleanGene, a software that assesses

the identification risk associated to DNA sequences. This software performs

re-identification based on available health-related data, i.e., from pharmacy

records and hospital records, and disease knowledge from publicly available

repositories. Later, the same authors proposed REIDIT [22], an algorithm

that performs data re-identification. The proposed algorithm uses determin-

istic methods to link genomic data to named individuals, whose information

is available in published records. The authors define a trail attack as a variant

of a re-identification attack where the identity of a target individual is dis-

covered using information that is collected from different independent

sources (e.g., from different studies in which the individual participated).

In the end, the adversary collects sufficient information to perform

Table 2 Inference attacks.
Technique Key finding Outcome

Genetic testing Genetic diseases

susceptibility

Employment denial

Statistics-based inference Hidden genomic

regions inference

Disease susceptibility disclosure

Integer programming Hidden genomic

variations

Genomic information and disease

susceptibility disclosure

Genealogy-based

inference

Genomic profiles

inference

Allow re-identification

Gene expression based

inference

Genomic sequence

inference

Allow re-identification and

membership attacks

Belief propagation with

genomic statistics

Hidden genomic

variations

Genomic information and disease

susceptibility disclosure

Genomic

correlations-based

inference

Hidden genomic

variations

Genomic information and disease

susceptibility disclosure

Phenotype-based

inference

Hidden genomic

variations

Genomic information and disease

susceptibility disclosure

Bayesian networks Mother–child
relations

Familial relationships disclosure

Traits-based inference Hidden genomic

variations

Genomic information and

personal traits disclosure
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re-identification, even if the information of each source alone is not suffi-

cient. Li et al. [23] demonstrated that 75 statistically independent SNPs

are sufficient to unequivocally identify an individual. The study was based

on common random SNPs. However, if rare SNPs are observed the number

of SNPs required for a successful re-identification would be even lower.

This work provided an important baseline for further design of privacy-

preserving approaches. Goodrich et al. [24] proposed the Mastermind

attack, which demonstrates that even after applying cryptographic tech-

niques to protect genomic sequences’ privacy, it is still possible to learn some

information at each guess attempt which goal is to learn hidden information

(e.g., genomic variations). Like in the mastermind game, at each guess

attempt, correctly guessed DNA positions are reported and if so, an adver-

sary already learns part of the sequence. This attack allows the discovery

of the identity of a genomic sequence owner with a limited number of

guess attempts. Sweeney [25] proposed a re-identification method using

demographic information applied to de-identified health data. This attack

demonstrates that based on few attributes (i.e., place, gender, and birth data),

which are combined with voter registration lists, it is possible to identify

53% of the American population. The information used in this attack was

easy to obtain, since the voter registration lists was obtained for 20 dollars,

and the health data was publicly or semipublicly available. Gymrek et al. [26]

combined DNA information from the Y chromosome with publicly

available genealogical information, in particular surnames. Then, taking

advantage of the father to son surname heritage, the authors were able to

de-anonymize 131 genomes from the 1000 Genomes Project. However,

since this attack is based on the Y chromosome, it only applies to male indi-

viduals. Sweeney et al. [27] proposed an attack that links anonymized

genomic data from the Personal Genome Project to their owner’s name

by combining publicly available records (i.e., voting lists) and demographic

information (i.e., birth date, postal code, gender). Humbert et al. [28] per-

formed a re-identification attack on anonymized publicly available genomic

data that takes advantage of genotype–phenotype relationships, either

obtained from public repositories that report SNPs and phenotypic trait rela-

tions or computed from genotype–phenotype databases. Wang et al. [29]

demonstrated that it is possible to infer the identity of target individuals from

aggregate statistics, such as GWASs statistics, even if they are differentially

private, using Bayesian networks. Although the success of identity inference

attacks decreases when rigorous privacy protection is applied to the GWAS

statistics, the authors showed that the success probability of such attacks
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increases with the background knowledge and that it is higher than that

of random guesses. Lippert et al. [30] proposed a method that allows

re-identification of individuals based on the prediction of traits applying

phenotyping, and statistical modeling on Whole-Genome Sequencing

(WGS) data. The authors relied on maximum entropy algorithm to use trait

predictions for determining the genomic sample and phenotype profile that

originated from the same individual. The authors show that phenotypic pre-

diction from WGS data can enable re-identification without further data

required. Zaaijer et al. [31] proposed a new method to perform

re-identification of human DNA samples in a fast and inexpensive way,

called MinION sketching. They demonstrated that analyzing 60–300 ran-

domly selected SNPs and relying on Bayesian inference it is possible to link

anonymized genomic samples with their owners. Erlich et al. [32] proposed a

re-identification attack based on long-range familial searches. The proposed

attack was performed on a dataset with 1.28 million individuals collected

from direct-to-consumer services, such as 23andMe and Ancestry.

Considering US individuals with a European ancestry, which represented

85% of the individuals from the dataset, it was possible to reach a third cousin

or closer relationship in 60% of the searches. After finding a relative in a

long-range familial search, the authors demonstrated that it is possible to

perform re-identification using common demographic identifiers (e.g., age,

gender, geography).

Table 3 summarizes the main techniques and background information

used for re-identification attacks, and their key findings. In this kind of

attacks the goal and harm caused is always identity disclosure by linking

de-identified genomic data with the owner’s identity, independently of

the information and method used.

2.3 Membership attacks
Membership attacks focus on inferring the participation of a given individual

in a study group. The attacks in this category compare the statistics of the

target DNA statistics with the statistics of the target group and of a reference

population. With this method, the closer the statistics of an individual are to

a certain group, the higher is the probability that she belongs to that group.

Homer et al. [33] were the first to propose a membership attack that

inferred the participation of an individual in a given study group. Using

genomic variations expression or allele frequency information, the authors

propose some statistics that compare the value obtained for a target
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individual’s DNA sequence with the ones obtained for a reference popula-

tion and for a particular study group. Then, one can conclude that the target

individual belongs to the study group, if its statistic are closer to the value of

the study group. Interestingly, this attack showed that studying 50,000 inde-

pendent SNPs is sufficient to infer the participation of an individual in a

group of 100 people, or 10,000 SNPs if the group is composed of 10 people.

Wang et al. [14] proposed an extension of the Homer’s attack by adding into

consideration existing statistical correlations among SNPs on the DNA, i.e.,

LD. Such correlations allow the inference of further nonobserved SNPs that

Table 3 Re-identification attacks.
Technique Knowledge Key finding

Medical data crossing Pharmacy, hospital

records, and diseases

information

CleanGene software for

re-identification risk

assessment of DNA sequences

Deterministic

methods to link DNA

data to individuals

Public genetic and

nominative information

from different sources

REIDIT software performs

re-identification; definition of

trails attacks

Common allele-based

statistics

Common SNPs

information

75 Independent SNPs allow

unequivocally identification

of individuals

Data crossing Demographic and

de-identified health

information

The identity of 53% of the

American population was

disclosed

Genealogical

correlations

Y chromosome and

genealogical information

Surnames disclosure for 131

genomes from the 1000 GP

Genotype–phenotype
correlations

Genotype and phenotype

information

Physical traits based

re-identification

Bayesian networks Aggregated statistics Re-identification of a target

individual participating in a

GWAS

Phenotypic-based

correlations

Whole-genome

sequencing (WGS) data

and physical traits

Re-identification without

requiring further information

Long-range familial

searches

Familial relations and

demographic information

Familial relations reveal close

relatives, and demographic

identifiers allow

re-identification
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when included in the attacker knowledge empower the attack statistics. This

work shows that the optimized attack is able to determine the participation

of some individuals in a particular Genome-Wide Association Study

(GWAS) even using a low-quality reference population. In addition, the

attack used a couple hundred SNPs, which represent around 30� less

SNPs than in Homer’s attack to achieve the same attack power. Braun

et al. [34] proposed the use of empirical tests to assess the participation of

a target individual in a study group. The empirical test is performed using

the target individual genotype information and the marginal allele frequen-

cies of the group one is studying. Jacobs et al. [35] demonstrated how

likelihood-based statistics can be used to infer the participation of a target

individual or his close relatives in a GWAS. The statistics are computed using

genotype frequencies and individual genotypes. In addition, this paper eval-

uates the membership attack power for different sample size and considering

different sets of SNPs for computing the statistics. Sankararaman et al. [36]

developed the SecureGenome tool, which enables the detection of a target

individual on a study group based on the summary statistics from a GWAS.

The membership attack compares the target individual alleles profile with

the allele frequencies of the study group and the allele frequencies of a

reference population, similar to Homer’s attack [33]. Clayton et al. [37]

designed a membership attack using a Bayesian approach. This attack con-

siders prior probability knowledge about the participation of an individual in

a certain sample. Shringarpure and Bustamante [38] demonstrated an attack

on the Beacons Project. This project designed a platform for secure querying

of genomic information where only Boolean answers are returned to the

user, with the purpose of limiting the amount of private information

disclosed. Although the information obtained per query is limited, the pro-

posed attack shows that by querying 250 genomic variations and combining

their results, it is still possible to discover the participation of an individual in

a beacon with 64 European individuals. Re-identification was also deemed

possible; however, it required a much higher number of queries (1000 geno-

mic variation queries). This attack showed that beacons are susceptible to

membership attacks and may also leak phenotypic information about the

participants they study. Cai et al. [39] proposed an attack that takes as input

a dataset and the GWAS statistics from 25 randomly selected genomic var-

iation sites to infer whether an individual participated in the case group.

More precisely, this attack requires the genotype of a target individual

and compares it with the genotypes inferred from the case group using

the GWAS statistics, and if a match is found, the target individual is
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considered to have participated in the case group. From then on, it is also

possible to perform re-identification of case individuals. Backes et al. [40]

proved that genomic data is not the only type of omics data that can be used

to perform membership attacks. They used expression data, in particular

from microRNA and showed how to infer the participation of a target indi-

vidual in a particular group. Since microRNA data is more affected by the

health status than genomic data, it is therefore more informative about the

group the individual belongs to, be it the control or the case group. Thenen

et al. [41] improved the membership attacks proposed by Shringarpure and

Bustamante.With only 5 queries (50� less queries than the ones required by

the former attack), they were able to infer the participation of individuals in a

beacon with 95% of confidence, using the same beacon configuration used

in previous works. The attack improvements are due to the use of high-

order Markov chains to infer high-order relations on the genomic data.

Another important finding of this work is that current privacy protection

measures, which include particular genomic regions hiding and the imple-

mentation of a query budget, are not efficient against the proposed member-

ship attacks.

Table 4 summarizes the techniques and background information used in

the membership attacks, and their key findings. All the attacks in this

category require some genomic information of the target individual(s).

2.4 Recovery attacks
Recovery attacks focus on inferring the DNA sequence of a target individual

aided by publicly available DNA statistics, such as allele frequency in the ref-

erence population, and/or kin relations if the genomic sequences of relatives

are available. The inferred DNA sequence can then be used to perform

attacks from the previous categories, which assume the availability of the

DNA sequence of a target individual.

Kong et al. [42] exploited kin relationships to infer haplotypes of target

individuals based on observable genomic information of their relatives. The

proposed inference method incorporates information about recurrent

mutations transmitted from parents to their children and fine-scale recom-

binations. Wang et al. [14] also performed recovery of nonobserved

sequences, overall 100 sequences containing a total of 174 SNPs were recov-

ered, based on single and pair-wise allele frequencies. Those recovered

sequences were then used in the proposed inference and membership

attacks. Fredrikson et al. [43] showed that personalized medicine models
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can leak information about an individual’s DNA sequence. By combining

the information from a pharmacogenetic model, which was used to design

particular medicines for a patient, and demographic information from the

same patient, the authors proved that is possible to discover some hidden

regions of the DNA sequence of a patient. Deznabi et al. [44] described

how to discover parts of the genomic sequence of a target individual based

on familial relations, public phenotype information, and other available data

from online repositories (e.g., social networks). Akg€un [45] proposed an

active recovery attack which allows the adversary to discover genomic data

from an individual using SNP statistics. This attack consists of the manipu-

lation of the weights attributed to the SNPs used in a test so that it is easier to

infer the SNPs of a target individual from the test results. This attack was one

of the few assuming a dishonest party. Edge and Coop [46] proved that using

Table 4 Membership attacks.
Technique Information Key finding

Queries

knowledge

combination

Genomic variations

expression data or statistics

50,000 SNPs are sufficient to

disclose membership in a group

of 100 people and 10,000 SNPs

for a 10 people group

Statistics

comparison

Genomic variations

expression data or statistics

and statistical correlations

Including statistical correlation

in the genome requires 30� less

SNPs to achieve the same attack

power

Empirical tests Allele frequencies of the

study group

Membership disclosure

Likelihood-based

statistics

GWAS statistics Membership inference of a

target individual and close

relatives

Bayesian methods Target group statistics Membership disclosure

Queries

knowledge

combination

Genomic variations queries For a beacon with 64 European

individuals 250 queries allow

membership disclosure

Higher-order

Markov chains

Genomic variations

information

Membership prediction using

50� less queries for the same

result of similar attacks

Disease and gene

expression

correlations

Expression data Membership disclosure in

disease-related studies
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publicly available genomic data an adversary is able to learn the genomic

sequence of a target individual using Identical-By-State (IBS) tiling. This

technique consists in matching known genomic sequences against an

unknown one to obtain information about it. The authors showed that

applying IBS tiling for 900 genomes from the 1000 Genomes Project reveals

at least one allele from 82% of the SNP sites of an individual with European

ancestry. In addition, the authors proposed a variant of IBS tiling, called IBS

probing, that allows the adversary to learn if the target individual’ genome

contains a specific disease-related allele, whose neighboring sequence is

known. A related attack was described by Ney et al. [47]. In this attack,

the authors demonstrated that an adversary could almost learn the entire geno-

mic sequence of a target individual from GEDmatch—a US direct-to-

consumer online service that compares DNA data files. Two possible ways

are described to learn the individual’s genomic sequence: (i) by uploading

artificial nearly-all-heterozygote genome and examining the resulting IBS

segments (similar to Ref. [46]), and (ii) by uploading an all-heterozygote

genome and examining the resulting images.

Table 5 summarizes the different techniques and background informa-

tion used on recovery attacks, and their respective key findings.

2.5 System exploits
System exploits can affect all information systems, and are therefore not spe-

cific to genomic data processing systems. They explore system vulnerabilities

and they must be taken into account when designing privacy-preserving

systems in order to ensure their long-term security. System exploits and

intrusions can lead to user’s data exposure and consequently to information

leakage. In order to be secure, systems must ensure confidentiality, integrity,

and authentication. Confidentiality focuses on preventing unauthorized access

to the data. Integrity ensures that the data is not modified by unauthorized

users and is also in charge of reporting those changes in case they happen.

Table 5 Recovery attacks.
Technique Information Key finding

Kin-based

inference

Kin relationships and

relatives partial genomic data

Target individual sequence

reconstruction

Information

integration

Pharmacogenetic models and

demographic information

Target individual genomic sequence

reconstruction

Identical-

by-state tiling

Known and unknown

genomic sequences

Multiple SNPs inference that allow

genomic sequence reconstruction
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Last but not the least, authentication is the property that allows the verification

of users’ identity and then grant or deny them access to the system.

Malicious attacks are also part of system exploits that can lead to privacy

breaches and data theft. A successful attack can result in data loss if backup

data copies are not maintained.

Finally, in the context of DNA data, maintaining secure systems is of par-

amount importance, due to the previously discussed sensitive information

encoded in the DNA and the reported privacy breaches. There are twomain

scenarios for genomic data systems: (i) the data is stored locally or in a private

server, or (ii) the data is stored in a public cloud, e.g., because of its large size.

In the first scenario, the system designer is responsible for placing pro-

tection methods to prevent system exploits. To strengthen the protection,

protection techniques can be also applied at the data level, for example, data

obfuscation and data encryption. While, for the second scenario, the system

protection is of the responsibility of the CSP. Therefore, the user should

protect his data before sending it to the public cloud. Commonly, this pro-

cess is made through data encryption since it prevents the cloud or any other

entity that obtains an access to the data to learn its real value.

3. Privacy-preserving techniques

Traditional privacy-preserving techniques need to be adapted to be

used on genomic data, since, as discussed previously, genomic data itself

contains re-identifiable information. Several approaches were proposed to

perform some computations on genomic data in a privacy-preserving way,

such as in GWASs statistics computation, DNA sequences alignment, and

genomic database queries. GWASs consist in the analysis of several genomes

over multiple genomic variation positions to find the relation between geno-

types and diseases. Such solutions use different techniques, such as data obfus-

cation, cryptography, and trusted hardware. DNA computing itself is a

paradigm that can be used to design novel privacy-preserving techniques;

however, this field is in its infancy. Briefly, work on this field described

DNA cryptography, which is described later in this section.

As the previous section detailed, several privacy attacks on genomic data

have been described in the literature. Following these findings, the potential

impact of privacy attacks on data owners made the research community

focus its effort on the development of methods to prevent successful attacks.

These methods can be categorized as follows:

1. De-identification methods

2. Data augmentation methods
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3. Cryptography-based approaches

4. Secure Multiparty Computations (SMPC)

3.1 De-identification methods
De-identification consists in removing all the personal identifiers from the

data in order to keep secret the identity of the data owner. The main goal

of de-identification is to prevent the direct association of genomic data

with their owners, and consequently, protect the owners identity. In other

words, de-identification aims at providing data anonymity. This is a tech-

nique widely implemented for biomedical data. However, as demon-

strated by re-identification attacks, applied alone this method is often

not enough to protect the data owner. Indeed, these methods are par-

ticularly inefficient in protecting genomic data since they do not remove

the identifying information contained in the genomic data itself (i.e., rare

genomic variations). In addition, providing anonymity has become more

difficult with greater availability of information in online platforms,

which can be related with genomic data and contribute to individuals’

identification.

K-anonymity is a widely applied paradigm to enforce a stronger data

de-identification, which consist in modulating the data attributes in such a

way that based on those attributes an adversary is not able to distinguish

an individual from k-1 other individuals [48, 49]. The two methods mainly

used to achieve k-anonymity are suppression and generalization. Suppression

consists in removing the attributes that can lead to direct identification of

an individual, such as those that are not shared with other individuals

in the dataset and are not generalizable. Generalization consists in trans-

lating an attribute value in a broader class. For example, it is common to

replace a numerical value by an interval that contains it. Emam et al. [50]

developed a de-identification algorithm that ensures k-anonymity on

health datasets. Other commonly used methods to achieve anonymity

are l-diversity and t-closeness. l-Diversity [51] was proposed as an improve-

ment of k-anonymity that preserves privacy when the diversity in the attri-

bute values is low, and assumes that the adversary has access to background

knowledge. t-closeness [52] is a refinement of l-diversity where the differ-

ence between the distribution of the sensitive attributes for a given class and

the distribution of the same attributes in the full table is at most t. Although

this method improves privacy, it also implies some utility loss at the data

management and data mining levels.
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DNA Lattice Anonymization (DNALA) [53] was proposed to

anonymize pairs of genomic sequences, which are represented by the

sequence that represents the minimal distance to both. This is a generaliza-

tion process that resembles k-anonymity. The proposed method was tested

on human genomic sequences publicly available. Themain limitations of the

proposed generalization are the following: (i) it is dependent of the pair of

sequences considered; and (ii) it is limited to two sequences.

Lin et al. [54] proposed a generalization method based on data binning.

The proposed approach ensures that no unique record is present in the data-

base released to the users. The bin size works as an anonymity level indicator,

since a larger bin size makes data less specific and detailed, and consequently,

provides a higher level of anonymity.

In conclusion, although de-identification methods were reported to be

insufficient to prevent re-identification [38, 55, 56], they do complicate

them. It is also important to consider that anonymity in the context of

genomic data is different from other data types, since genomic data contains

personal identifiable information itself. Furthermore, its combination with

other metadata, such as name, gender, age, and geographic details, power

the privacy attacks described in the previous section. DNA computing, as

an emerging paradigm, could also contribute for the development of

de-identification methods, allowing the data to be de-identified as soon as

it is produced by the sequencing machines. This could be done, for example,

by removing the need of metadata, such as identifiers, by also encoding them

in a DNA sequence format.

Fig. 2 summarizes common de-identification techniques used for med-

ical records. For the name and diagnosis columns, it is used pseudo-

anonymization where the real names and diagnosed disease are replaced

Name Age Num. exams Diagnosis
Alice
Bob
Claire
David
Eva
Frank

34
25
29
31
28
28

3
10
7
4
2
9

Cancer
Diabetes

Cancer
Cancer

Diabetes
Diabetes

Name Age Num. exams Diagnosis
P1
P2
P3
P4
P5
P6

30-34
25-29
25-29
30-34
25-29
25-29

1-5
6-10
6-10
1-5
1-5
6-10

D2
D1

D2
D2

D1
D1

Fig. 2 De-identification.
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by a unique identifier. For the age we have two classes (25–29 and

30–34 years) that grant 4-anonymity for the 25–29 class and 2-anonymity

for the 30–34 class. In other works, this means that at least four records have

the same information in a given data column. For the number of exams, there

are two classes (1–5 and 6–10 exams) and this generalization grants

3-anonymity.

The referred techniques are applied to metadata that usually is together

with the DNA data; however, DNA data contains identifiable information

itself. Therefore, other techniques are required to completely anonymize the

DNA data.

3.2 Data augmentation methods
Data augmentation consists in applying generalization or obfuscation in

order to protect data. In the context of genomic data, it consists in making

the data of different individuals indistinguishable by generalizing or obfus-

cating the information it contains, so as to prevent their unequivocal

identification.

Generalization, at the genomic sequence level, consists in the represen-

tation of two or more sequences with the most common sequence among

them. In other words, a set of genomic reads are represented by the most

common genomic variations they contain [53, 57].

Data masking consists in hiding sections of the data in order to make

them unobservable and unpredictable for an adversary. The data that is

masked corresponds to the sensitive information one wants to protect from

unauthorized access. Cogo et al. [58] proposed the first automated sensitive

DNA short sequences detection, which relies on Bloom filters. This approach

improves privacy protection by allowing the user to store and process the sen-

sitive and insensitive DNA sequences differently. Later, Decouchant et al. [59]

proposed an automated sensitive information detection for long DNA

sequences. This approach allows the efficient privacy-preserving processing

of DNA sequences with a lower performance overhead and higher precision

thanCogo’s approach. Extending this approach, Fernandes et al. [60] designed

a sensitivity levels classification method-based DNA properties, such as allele

frequency and LD.

Differential privacy is another data augmentation technique, which is

used to make an aggregate result indistinguishable whether a single individ-

ual participates or not in that result through the addition of noise [1, 61, 62].

With differential privacy, the greater the noise added, the higher the privacy
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protection is. However, the addition of noise reduces the data utility.

Consequently, applying this technique requires studying the trade-off

between data utility and privacy protection to ensure that subsequent data

analysis will not be compromised.

The techniques in this category make re-identification attacks harder to

perform, since their main purpose is to hide sensitive information or geno-

mic regions, possibly by adding noise.

3.3 Cryptography-based approaches
Cryptography-based approaches are characterized by the protection of the

input and output using an encryption scheme. These approaches can be

mainly used for two purposes: storage or processing. They differ by the

encryption schemes used since the processing scenario requires operations

to be allowed on the encrypted data. Cryptography-based approaches are

interesting because of their guaranteed privacy-protection; however, their

application is limited due to their longer computational time. Garbled cir-

cuits [63] allow two parties to perform secure computations. For example, a

user can send his encrypted data to a server where some computations are

performed and, then, the encrypted results is sent back to the user.

Garbled circuits protect the input and intermediate results, which are never

revealed, since they are always manipulated encrypted on the server side.

Homomorphic encryption is a particular subject of cryptography which

allows mathematical operations on the encrypted data. This allows some

computations to be outsourced to untrusted environments, such as public

clouds, without having to decrypt the data. Atallah et al. [64] designed a

privacy-preserving strings comparison algorithm using homomorphic

encryption, which computes the edit distance between two DNA

sequences. Kantarcioglu et al. [65] proposed a cryptography-based approach

that allows genomic sequences sharing and querying.

Despite the performance limitations of cryptography-based approaches,

there are still some applications where encryption can be practical, such as

determining disease susceptibility through genetic testing [66] and secure

datasets querying [67]. He et al. [68] proposed a cryptography-based

approach to identify relatives. In this approach a pair of individuals only

share the necessary encrypted genomic information to determine if they

are relatives or not. The results obtained showed that this approach is able

to find relationships up to third cousins level while preserving the privacy of

the individuals.
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Cryptography-based approaches provides a high level of protection;

however, current encryption schemes are not designed to protect genomic

data for its full lifetime [7]. This is a real challenge since an individual’s

genome is partially inherited from previous generations and transmitted

to the future ones.

In the context of DNA computing, DNA cryptography is emerging.

This technology uses DNA algorithms that convert the information to be

protected into DNA, first converted to the digital DNA sequence and then

to the DNA molecule. This process is equivalent to the operations per-

formed by standard cryptographic schemes, where plaintext information

is converted into encrypted data. In this field two types of DNA cryptogra-

phy methods exist: DNA-based data hiding schemes and DNA-based

encryption schemes. DNA-based data hiding schemes consist in converting

the message to DNA nucleotides and then mix the real message DNA with

fake DNA sequences and send themix to a receiver. DNA-based data hiding

schemes consist in encoding the information in DNA nucleotides instead of

using binary form. Then, the double helix is created following the comple-

mentarity property to increase the complexity [69, 70].

Fig. 3 summarizes the process of encryption of DNA sequences. Usually,

the DNA sequence is translated into a 2-bit sequence and, then, each 2-bit is

encrypted individually as represented in the figure. Following, computations

can be performed on the encrypted data and in the end the encrypted result is

decrypted to reveal the result in clear text.

3.4 Secure multiparty computations
SMPC allow the secure collaboration of several institutions, e.g., hospitals,

biocenters, researcher centers, and universities. SMPC enable computations

Fig. 3 DNA encryption.
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over a dataset that is distributed among the participating institutions while

keeping the data private [71]. This technique allows third parties to perform

computations on encrypted data, without learning any information about

the data, the computed results, or the contribution of any party participating

in the computation. Therefore, SMPC does not require to trust a third

party. In addition, since data is transferred encrypted, data usability is not

compromised while providing privacy protection. On the other hand,

the computational overhead and communication costs between participants

are high, whichmaymake SMPC not practical for some applications. SMPC

can use standard cryptographic algorithms, such as AES, which provide

strong privacy and confidentiality properties. Some examples of SMPC-

based approaches include the work described in Refs. [72–74]. Aziz et al.
[72] proposed a SMPC-based approach that used the Paillier encryption

scheme to enable queries on genomic data. The results were obtained con-

sidering five geodistributed parties and show that this method requires

a computational time comprised between 7 min and 4 h. Cho et al. [73]

proposed secure GWAS analysis through SMPC. Another closely related

contribution is METIS [74], which uses SMPC to make the clients, the

server, and data owners cooperate to enable computations on genomic data

provided by the data owner without disclosing it to the other parties. This

approach intents to give the genomic data owner the full control regarding

his/her genomic data analysis permissions. At the same time, the data owner

has no computations overhead.

Table 6 summarizes the advantages and disadvantages of the privacy-

preserving techniques discussed in this section.

Table 6 Overview of privacy-preserving techniques.
Technique Advantages Disadvantages

De-identification Personal identifiers removal

Replace identifiers by pseudo

information.

Not efficient. Genomic data

is identifying information

itself

Permit to link genomic data

to owner’s identity

Data

augmentation

Hidden information

Real value replaced by more

abstract information

Data utility can decrease

Information precision

decreases

Continued
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4. Trust management

Trust management considers other possible sources of exploits that can

compromise the genomic data privacy. The data producer, the users, and the

storage service providers play an important role on the genomic data cycle.

Privacy protection for genomic data must consider the vulnerabilities to

potential attacks on the data producer side, on the user side, and on the stor-

age provider. This topics are discussed in the following sections.

4.1 Genomic data ownership
An important question regarding human DNA privacy and trust manage-

ment is to determine to whom the sequenced genomic data belongs to,

and who should keep it. For several researchers the sequenced genomic data

belong to its donor and he/she should own the full rights regarding that data.

However, nowadays, DNA sequencing and processing involves different

institutions (i.e., sequencing center, biocenter, hospital) which make own-

ership complex with several entities requesting and having access to the

DNA sequence. As discussed in the next section, the data provider is a com-

monly trusted entity, whose main role is to produce the DNA sequence.

However, assuming that the DNA sequence should be kept only by its

donor, the traditional processing pipeline needs to be modified so that

Table 6 Overview of privacy-preserving techniques.—cont’d
Technique Advantages Disadvantages

Cryptography Highest protection

Prevent unauthorized access to

the data

Computations secure

computations running on

untrusted environments

Low performance

Data size increases

Computational overhead

increases

Limited operations allowed

SMPCa Allow secure collaboration

Computations run on

encrypted data

Data utility preserved

No computational overhead on

the client side

Large data analysis require

nonnegligible data transfers

High computational

overhead

aSecure multiparty computations (SMPC).
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the data provider or any other entity involved in the data processing is not

able to keep a copy of the data.

In the processing phase, genomic data owner should be able to define

for which applications he/she allows the data to be used, in other words,

the data owner must define the data access and usage policies. There are

two main kinds of data use, primary and secondary. The primary use of

the data grants the permission to use the data for a particular application

(e.g., research, GWAS, genetic testing), which is often the original reason

behind its collection. The secondary use allows the data to be used for other

applications than the initial use case. In both cases, the data is controlled by

the service provider. Therefore, the data owner needs to define the access

and usage policies before the access to the data is granted. Furthermore,

at any moment the data owner must be able to update the consent accord-

ingly to his/her preferences, which should be immediately implemented.

Although, the data owner might allow the use of his/her data and later

change it, once the data usage has been granted for some application, it is

impossible to ensure that the involved entities destroy their data copy.

4.2 Trusting the data provider
One way to get a genome sequenced is to participate in genetic studies by

donating a biological sample, which is handled by the data provider. The

data provider, commonly biocenters with sequencing facilities, is the entity

responsible to generate the data. The data providers for human sequencing

data is the sequencing center. In the DNA computing context, the data pro-

vider is the laboratory where the DNA sample is synthesized.

Other widely known data providers are direct-to-consumer sequencing

services, such as 23andMe, Helix, MyHeritage, and Ancestry, that provide

genome sequencing service and allow the user to explore its own genomic

information as a recreational process. The cost of those services has been

dropping in the last decade (23andMe: from $99; MyHeritage: 79€) and
their use has increased. However, when using such a service the user must

inform himself about the policies of data ownership. It must be clarified by

the service provider if the spare biological sample is discarded and whether

the genomic data is completely deleted upon request. Nevertheless, most of

these direct-to-consumer sequencing services store the genomic data in

servers they rent from public clouds, where it can be accessed by the user.

Therefore, the user must also get informed about the data protection policies

while choosing a service provider.
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One other point of discussion is whether or not the data provider should

keep a copy of the data. From the privacy point of view, it would open a

window of vulnerability if a copy is kept, since the data is owned and man-

aged by another entity. On the other hand, having a copy of the data allows

better availability and reduces the risk of data loss. This decision must take

into account the specific data storage and sharing policies of each data

provider.

4.3 Access control
Access control consists in regulating who has access to the data following

stipulated access policies and agreements. In addition, access control is also

in charge of ensuring the traceability of the access to a particular file or data.

In other words, it can be described as registering all the accesses made to the

data, which in case of data modification or corruption would allow the iden-

tification of its author [62, 75]. Although this technique alone is not privacy-

preserving, since it does not itself provide data protection, it is widely used in

combination with other techniques.

Nowadays, the most commonly used access control model is the role

based access control (RBAC) method, in which access is granted to the users

that have a role that justifies data access for specific tasks they are in charge of.

In the context of DNA data, the access to the data would be granted to the

specialists the owner accepts to share data with, e.g., doctors and researchers.

Several genomic sequence repositories require a data access request that is

evaluated by a specialized committee. Although this process is essential to

protect the data from being misused, it can take several months until it

concludes. This process can even be longer in the case of collaborative

repositories since all the involved institutions need to approve the access.

Another limitation of this methodology is that the access to the data is com-

monly granted for a short period of time, and in case the access period needs

to be extended, the decision process needs to be repeated [76]. This process

can sometimes limit accessibility to the datasets in exchange for more control

over data accesses and, consequently, reduce the possibility of privacy

breaches.

Erlich et al. [77] described an alternative to the classic access control,

bilateral consent framework (BCF), to facilitate genomic data sharing while

protecting data privacy. In the BCF, the participants can directly decide who

can access their data instead of requiring a decision from the access control

committee. This streamlines the process of obtaining access to data and also
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to apply changes on the access rights. However, although such a model seems

to be promising, the privacy sensitive nature of genomic data makes many

institutions keep utilizing more classic access control schemes. This demon-

strates that dynamic access control solutions require further development.

Blockchain is an emerging technology that allows the collaboration

between multiple parties removing the need of an intermediary trusted cen-

tralized party to authenticate the interactions. In the context of healthcare,

blockchain applications have been increasing, with particular interest for

patients identity’s validation, to facilitate the management of permissions,

and for access control to biomedical data [78, 79].

In the DNA computing field, Namasudra proposed a secure and fast

access control model to address the system overhead and the long accessing

time required when searching for data stored in the cloud [80]. This

scheme keeps a fast data access list on the cloud side, and uses a 1024-bit

DNA computing based key for data encryption, which increases data

security.

4.4 Cloud environment: Storage and processing
Genomic data processing requires extensive resources due to the huge amount

of data to be analyzed and the intensive computational processing. Therefore,

this processing is often outsourced to public clouds, which provide perfor-

mance improvement and larger storage memory. However, clouds are

managed by a CSP that provides limited control to the user over its own data.

Furthermore, the data can be manipulated (i.e., copied, transferred) by the

CSP without users awareness and stored in multiple locations for data avail-

ability. These properties make the data more prone to possible unauthorized

access by the CSP or an intruder when it is stored in a public cloud [81]. In

order to prevent the unauthorized access to genomic data on clouds, the user

can apply some protective techniques and must agree with the CSP on the

conditions to handle the data [82].

In particular for genomic data, it is also important to know the data prop-

erties to limit the potential information leakage in case the data outsourced

to the cloud might suffer some privacy breach. In Ref. [83] the authors define

some data aggregation properties, in particular the ratio between number of

genomes and number of genomic variations that users should follow when

releasing genomic data to prevent information leakage. Cryptography-based

schemes have been proposed to allow the outsourcing of intensive computa-

tions, such as sequence comparison, to public clouds while protecting data
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privacy [84]. Chen et al. [85] proposed a privacy-preserving reads alignment

approach that combines processing on public and private clouds. The main

concept of this approach is to assign hash values to sensitive information

and, then, process the hashes in a public cloud. Further processing on the sen-

sitive information is performed in the private cloud. Although this process

outsources part of the computations, significant computations still run in

the private cloud. Balaur [86] performs alignment on hybrid clouds based

on MinHash and k-mer voting. This approach was developed to allow the

user to transfer part of the processing to the public cloud while guaranteeing

privacy protection and ensuring high accuracy. The candidate positions

step uses privacy sensitive information, i.e., the genomic sequence and the

reference genome in plaintext, and is performed in the trusted environment

(private cloud), while the secure voting that selects the best position a read

aligns to is performed using hash values in the public cloud. DepSky [87]

focused on providing secure storage in a cloud-of-clouds relying on encryp-

tion, encoding, and data replication. Charon [88] was designed to provide

secure storing and sharing of genomic data on cloud-of-cloud systems.

GenoShare [89] is a tool that was developed to support conscious genomic

data sharing. This tool takes as input the genomic information to be shared,

the adversary’s background knowledge, and other publicly available informa-

tion, for example, previous data releases. It then simulates three privacy attacks

(membership, phenotype inference, and kinship inference) to determine

which data can safely be shared and which data should not be shared.

More recently, Cogo et al. [90] proposed a privacy-preserving efficient and

dependable cloud-based storage approach for human genomes. This approach

combines sensitive information detection and deduplication. The sensitive

information detection method is applied to human genomic reads for privacy

protection improvement, while the deduplication method allows the

optimization of the storage space. This work represents an important effort

toward privacy-preserving outsourcing of genomic data to the cloud

environment.

Trusted Execution Environments (TEEs) are secure and isolated mem-

ory and code partitions located on a processor, which are not accessible to

the remaining system. They were developed to provide data confidentiality

while ensuring the integrity of the code they execute. Consequently,

if communications with the TEEs are secured, the data and intermediary

results are protected. Some examples of TEEs include ARM TrustZone

and Intel SGX. However, some side channel and cache attacks were
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reported and showed vulnerabilities of TEEs. In reaction, mitigation

methods have also been proposed [91, 92]. Some secure genomic data

processing algorithms have been developed using TEEs, including secure

genetic testing and privacy-preserving decentralized processing of genomic

data [93–96]. However, to assume that the processing done inside a TEE is

secure, it requires to trust the processor manufacturer, e.g., Intel for the SGX

technology.

Privacy risks associated to the processing of biomedical data in cloud

environments were studied in Ref. [97]. This study highlights the main ben-

efits of cloud computing as the following: (i) vast resources availability,

which is useful for parallelization; (ii) affordable cost; and (iii) the user is free

from the maintenance duties. However, important security challenges also

appear when outsourcing sensitive information to the cloud, which include:

(i) control, management, and security of the data is the user responsibility

and the CSP; therefore, they should agree on the policies; (ii) access rights

need to be well defined and updated, since cloud environments can be

accessed remotely; (iii) the user must prevent data loss by holding a backup

copy, since cloud environments are shared resources and are susceptible to

failures, as all computational systems.

Table 7 summarizes the discussed trust management fronts in this section,

highlighting the main challenges and techniques used.

Table 7 Trust management.
Topic Challenges Techniques

Data

ownership

Define who owns the data Access and usage

agreement

Data provider Ensure the data is used for the only purpose it

was created

Guarantee that no copy is used without

permission.

Informed consent

when sequencing

Access

control

Prevent unauthorized access to the data

Provide access traceability

Blockchain

Data access lists

Bilateral consent

framework

Cloud

environment

Protect data from being accessed by intruders

and the Cloud Service Provider (CSP)

Agreement between CSP and user regarding

data storage and access

Data encryption

Trusted execution

environments

Hash functions
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5. Discussion

Genomic data presents a wide range of applications, which boosted its

production and availability, creating massive amounts of genomic data to be

processed. This led the research community to develop high-throughput

algorithms and search how to leverage more efficient environments for

genomic data processing, such as public clouds. However, several privacy

attacks on genomic data have been reported in the literature, demonstrating

that data was not being protected adequately. Such privacy attacks are clas-

sified into four main classes: inference attacks, re-identification attacks,

membership attacks, and recovery attacks. The main difference between

the different types of attacks is the information the adversary intents to dis-

cover, ranging from obtaining additional genomic information about a tar-

get individual to discovering the data owner identity. This applies to human

DNA data, which is characterized by natural correlations that occur between

regions in the genome and between the genomes of members of the same

family. Privacy attacks on human DNA use those correlations to improve the

power of the attack. For synthesized DNA such correlations exist if it was cre-

ated based on the human genome. If it is created independently, the properties

can be different; however, since they share the same format, similar attacks

might be devised to disclose information contained in synthesized DNA.

The potential harm caused by privacy attacks alerted the researchers about

the urgent need for efficient privacy-preserving approaches for storing,

sharing, and analyzing it. Although several privacy-preserving approaches

were proposed in the last decades, the field is still at an early development stage

and reaching a good balance between privacy and utility is still a challenge in

many applications. The main difficulty to address is that privacy-serving tech-

niques commonly used are not sufficient for genomic sequences since they

contain personal and identifiable information themselves.

Privacy-preserving techniques applied to genomic data include

de-identificationmethods, data augmentation methods, cryptography-based

approaches, and SMPC. In the de-identification methods, anonymization

techniques are widely used for genomic data; however, they have been

shown to be insufficient to prevent re-identification attacks [26]. For geno-

mic data, anonymization is not sufficient since the data itself contains

personal identifiable information. Nonetheless, those techniques are still

applied to genomic data jointly with other protection methods, since they

make the identity inference task harder. Data augmentation methods are
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more efficient than anonymization since they aim at hiding or generalizing

properties that are inherent to genomic data. Data masking and differential

privacy are commonly appliedmethods. Suchmethods target the prevention

of re-identification attacks, even though they might not completely prevent

them. A drawback data augmentation methods is reaching an acceptable

trade-off between privacy and utility loss. In particular for differential pri-

vacy, in order to achieve good privacy protection, considerable noise is

added to the data; however, its utility might become compromised.

Cryptography-based approaches provide the highest protection to genomic

data and they are very efficient against all kinds of privacy attacks, since any

data or metadata is not revealed to any unauthorized party. However, the

required computational resources and time are not negligible and even

unpractical for some processing tasks. Cryptography-based approaches are

efficient to prevent all the described privacy attacks if the data is only handled

in plaintext in trusted environment and by the authorized users. SMPC

are often applied to allow collaboration between different entities, e.g.,

biocenters, that want to perform computations over all data parties without

revealing each entity data share. Regarding privacy protection, SMPC is

efficient since data is only transmitted encrypted and the computations

are only decrypted by the legit users, which have the decryption key.

Giving a practical example, to prevent recovery attacks as described in

Refs. [46, 47] that apply IBS tilling and combine publicly available genomic

data and genealogical databases, two mitigation approaches could be

implemented. First, often the IBS tiling reveals the location of the queried

segments, which contribute to the inference of the target individual’s

genome. Therefore, hiding this information from the results would compli-

cate the sequence inference since the adversary would only learn if the

segment is present or not in the genome. Second, for the case of the use

of artificial or manipulated genomic sequences, the prohibition of such

sequences would prevent the techniques applied in Ref. [47]. However,

authentication techniques for genomic sequences are still an open challenge.

For synthesized DNA, natural correlations occurring in the humanDNA

are not considered, which introduces some independence between synthe-

sized DNA sequences. Thus, techniques such as data augmentation and

cryptography-based techniques can be applied and might provide improved

protection to synthesized DNA. To determine the information encoded on

the synthetic DNAmolecules, traditional sequencing technologies that have

been designed for human DNA sequencing can be used. This process even-

tually returns the plaintext sequence of nucleotides corresponding to the
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synthetic DNA information, which in turn reveals information about the

original data that was used to create it. Therefore, the sequenced data must

be stored securely to prevent information leakage.

The described privacy-preserving techniques are yet insufficient to

address the performance and utility that would fully take advantage of geno-

mic data processing while ensuring the adequate privacy protection.

Interoperability among genomic data from different institutions potentially

geodistributed is still not fully addressed. In addition, in this scenario stan-

dardization and common laws are required to replace the existing per coun-

try genomic data privacy guidelines.

In the context of genomic data, trust managements need to consider

several points. First, the data owner must have the right to manage the data,

including data access and processing. However, there are open discussions

regarding who should keep the data, with the following possible scenarios:

(i) only the data owner has a copy of the data; (ii) the data provider has a copy

of the data; and (iii) the entities involved in the processing have a copy of the

data. In scenario (i), the main problems are that data availability and data pro-

tections are solely of the responsibility of the data owner. In this case, data

access would need to be requested to the owner each time the data is

requested. In addition, there is a higher risk of data loss and in case it happens

the genome needs to be re-sequenced which incurs extra expenses and extra

time. In scenario (ii), the data owner needs to allow the data provider to keep

a copy of his/her data. This scenario might leave the genomic data more

exposed than in scenario (i), since the spare copy is managed by the data pro-

vider and the data owner needs to trust it. However, in case the data owner

loses his copy, it can ask the data provider a new copy. In scenario (iii),

allowing the processing entities to also have a copy of the data, means even

less control on the data accesses. Although currently access control is strictly

managed, involving other entities increases the complexity of the process.

On the other side, this scenario provides better data availability.

Although access control have been defined as essential on systems storing

and processing genomic data, its implementation is not yet optimized.

Nowadays, data access requests are reviewed by a specialized committee

and last several months.

The storage and processing of genomic data are often outsourced to

more cost-efficient and powerful environments, such as public clouds.

However, processing biomedical data on public clouds can represent an

increased information leakage risk when the data is not efficiently protected.
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Those risks have been described in Refs. [5, 6]. Since the public is an envi-

ronment accessible to multiple entities, the data stored in it is more prone to

possible access attempts by unauthorized entities. In order to take advantage

of the computational resources provided by cloud environments, several

solutions have been proposed to perform privacy-preserving computations

on genomic data. However, such solutions are limited to few possible com-

putations and they require nonnegligible computation on a trusted environ-

ment. Therefore, further studies are required on this subject in order to

allow the maximization of the resources without sacrificing performance

or privacy.

To conclude, privacy-preserving processing of genomic data has been

evolving in the last decades. Significant advances were made; however, the

journey is still not over. In addition to the improvement points discussed

in this section, some other open challenges include: (i) considering a more

realistic threat model, which would include malicious adversaries; (ii) consid-

ering dynamic systems, which tolerate datasets modifications (Refs. [98, 99]

are early examples for genome wide association studies and genomic beacons,

respectively); (iii) ensuring interoperability between data from different

sources and define genomic data privacy standards. First, the most common

threat model considered for the privacy-preserving approaches design is the

honest-but-curious adversary. This model describes an adversary that follows

the protocol but might however try to learn further information about the

data. The honest-but-curious adversary model is a moderate model, since

the behavior of the adversary is somehow controlled. In practice, malicious

adversaries, which are adversaries that intentionally try to deviate from the

protocol to extract information they do not have the right to access, or perturb

the system, form a more realistic threat model since no assumption is made

about their behavior. Second, most of the current genomic data systems

assume static databases, where the datasets are published and are rarely or never

updated. In practice, databases can be updated by the addition or removal of

information. However, in practice, and considering that the data owner

should be able to revoke the access permissions to his/her data at any time,

the databases must allow not only the addition of information, but also the

removal of some data without privacy breaches. This is currently an open

challenge. Last, ensuring the interoperability between data from different

sources requires standardization of the data formats along with the definition

of standards for genomic data privacy. However, currently, the legislation for

genomic data protection is not globalized. So far, each country defines the
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laws related to genomic data privacy. This complicates data sharing and col-

laborations between geodistributed institutions. However, the research com-

munity is aware of the need for improving this field. Although some entities

have been working in the field, such as Global Alliance (GA4GH), trying to

establish some common guidelines and define standard methods for genomic

data protection.

6. Conclusion and future work

In the context of DNA computing, some applications make use of

synthesized DNA that is similar to the human DNA; thus, this chapter

discussed the properties of human DNA and privacy attacks that consider

it. Genomic data is used in multiple fields due to its informative nature;

however, it encodes highly sensitive and personal information that is unique

for each individual. Therefore, privacy is essential on the genomic data life

cycle, i.e., storage, sharing, and processing. Furthermore, DNA information

leakage can result in unwanted and irreversible harm. Once it is leaked,

genomic privacy cannot be recovered since DNA is nonrevocable.

Moreover, intra- and intergenomic data correlations, respectively, among

different regions in a DNA sequence and among family members can leak

additional information, including hidden information if not adequately han-

dled. The multiple privacy attacks reported on genomic data demonstrated

the main vulnerabilities of current processing algorithms which would not

provide enough privacy protection to the data. This urged the development

of privacy-preserving approaches. The main challenges raised in this field are

mainly the protection of data privacy and the practical performance, since

often privacy protection requires performance sacrifices. Privacy-preserving

techniques have been used to allow multiple genomic data applications,

although some applications still remain unprotected. One of the main rea-

sons for these limitations is the performance and/or data utility sacrifice most

of the privacy-preserving techniques imply in order to improve privacy

protection.

Genomic data privacy research has to address several open challenges.

The development of privacy-preserving systems that are able to tolerate mali-

cious adversaries, that intent to explore vulnerabilities to gain unauthorized

access to genomic data, is important since this threat model is more realistic

than the often assumed honest-but-curious adversary. In addition, the

improvement of current privacy-protection techniques to enable updates

on the data while guaranteeing the adequate privacy protection would also
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be a valuable advance in the field. More dynamic datasets would allow the

production of more accurate statistics to speed up research. Finally, standard-

ization would benefit the genomic data privacy and allow better interopera-

bility between data from different sources, for example, from different studies

that collect data in a geodistributed fashion. Currently per-country laws limit

the large potential of genomic data sharing and research collaborations.
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