

Delft University of Technology

Practical Byzantine Reliable Broadcast on Partially-Connected Networks

Bonomi, Silvia; Decouchant, Jérémie; Farina, Giovanni; Rahli, Vincent; Tixeuil, Sébastien

DOI
10.1109/ICDCS51616.2021.00055
Publication date
2021
Document Version
Accepted author manuscript
Published in
Proceedings - 2021 IEEE 41st International Conference on Distributed Computing Systems, ICDCS 2021

Citation (APA)
Bonomi, S., Decouchant, J., Farina, G., Rahli, V., & Tixeuil, S. (2021). Practical Byzantine Reliable
Broadcast on Partially-Connected Networks. In Proceedings - 2021 IEEE 41st International Conference on
Distributed Computing Systems, ICDCS 2021 (pp. 506-516). (Proceedings - International Conference on
Distributed Computing Systems; Vol. 2021-July). https://doi.org/10.1109/ICDCS51616.2021.00055
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ICDCS51616.2021.00055
https://doi.org/10.1109/ICDCS51616.2021.00055

Practical Byzantine Reliable Broadcast on
Partially Connected Networks

Silvia Bonomi∗, Jérémie Decouchant†, Giovanni Farina∗, Vincent Rahli‡, Sébastien Tixeuil§
∗Sapienza Università di Roma, †Delft University of Technology,
‡University of Birmingham, §Sorbonne University, CNRS, LIP6

bonomi@diag.uniroma1.it, j.decouchant@tudelft.nl, gfarina@diag.uniroma1.it,
vincent.rahli@gmail.com, sebastien.tixeuil@lip6.fr

Abstract—In this paper, we consider the Byzantine reliable
broadcast problem on authenticated and partially connected
networks. The state-of-the-art method to solve this problem
consists in combining two algorithms from the literature. Han-
dling asynchrony and faulty senders is typically done thanks to
Gabriel Bracha’s authenticated double-echo broadcast protocol,
which assumes an asynchronous fully connected network. Danny
Dolev’s algorithm can then be used to provide reliable commu-
nications between processes in the global fault model, where
up to f processes among N can be faulty in a communication
network that is at least 2f+1-connected. Following recent works
that showed that Dolev’s protocol can be made more practical
thanks to several optimizations, we show that the state-of-the-art
methods to solve our problem can be optimized thanks to layer-
specific and cross-layer optimizations. Our simulations with the
Omnet++ network simulator show that these optimizations can be
efficiently combined to decrease the total amount of information
transmitted or the protocol’s latency (e.g., respectively, -25% and
-50% with a 16B payload, N=31 and f=4) compared to the state-
of-the-art combination of Bracha’s and Dolev’s protocols.

Index Terms—Byzantine reliable broadcast, partially con-
nected networks, synchronous or asynchronous communications

I. INTRODUCTION

At their very core, distributed systems consist of autonomous
computing entities (or processes) that communicate to globally
solve non-trivial tasks. Over the years, distributed systems
became ubiquitous and increased the possibility that some of the
processes fail in some unpredictable manner. The most general
fault model is the Byzantine model, that allows a process
to simply exhibit arbitrary behavior. Byzantine processes
are opposed to correct processes, that trustfully follow their
prescribed algorithm. In this context, communicating reliably
may become difficult, especially when processes have to rely on
other (possibly Byzantine) processes to convey the information
they want to send (that is, the network is partially connected).

Two useful global communication abstractions have been
defined in this context. First, the reliable communication (RC)
abstraction requires that: (i) when a correct process broadcasts a
message, this message is then delivered by all correct processes,
and (ii) when a message originating from a correct process is
delivered, it was indeed sent by this correct process. Reliable
communication is also referred to as reliable broadcast with
honest dealer, outlining that the source of a message is always
correct. Second, the reliable broadcast abstraction considers the

additional case where the sender of a message may be arbitrarily
faulty. In this case, all correct processes are supposed to
deliver the same message. Reliable broadcast, often abbreviated
as BRB (Byzantine Reliable Broadcast), guarantees stronger
properties than reliable communication, yet both abstractions
can be implemented in a fully asynchronous network. Recently,
protocols that rely on Byzantine reliable broadcast have been
used to implement Blockchain consensus [1] and payments [2].

The most well known asynchronous BRB protocol is prob-
ably Gabriel Bracha’s algorithm, which is sometimes named
double echo authenticated broadcast [3]. This protocol assumes
a fully connected network of N processes (among which at
most f<N/3 are Byzantine) and authenticated network links.

Questioning whether it is possible to remove the full
connectivity assumption in an asynchronous setting leads to
Danny Dolev’s RC algorithm [4], as long as the network
is "sufficiently well connected" (a necessary and sufficient
condition for RC in arbitrary networks is that the connectivity
of the network is at least 2f + 1, where f is the number
of Byzantine processes). However, Dolev’s algorithm does
not solve BRB, as it does not prevent a Byzantine faulty
process from causing correct processes to not all deliver the
same message. Nevertheless, Bracha’s and Dolev’s protocols
can be combined to solve BRB in sufficiently well-connected
synchronous or asynchronous network topologies [5].

In this paper, we start from this state-of-the-art solution to
the BRB problem in partially connected networks, and make
the following contributions (code available online1):
(i) We describe how state-of-the-art optimizations of Dolev’s
RC algorithm [6] can be extended to the BRB combination of
Bracha’s and Dolev’s algorithms.
(ii) We present a total of 12 novel modifications that can
be applied to the BRB combination of Bracha’s and Dolev’s
algorithms, some of them being cross-layer.
(iii) We evaluate the impact of each modification on the protocol
latency and throughput using Omnet++ simulations in a large
variety of settings.
(iv) We detail how these modifications should be combined
depending on the network asynchrony and connectivity, and
on the payload size to optimize latency and/or throughput.

1https://github.com/jdecouchant/BRB-on-partially-connected-networks

1

bonomi@diag.uniroma1.it
j.decouchant@tudelft.nl
gfarina@diag.uniroma1.it
vincent.rahli@gmail.com
sebastien.tixeuil@lip6.fr
https://github.com/jdecouchant/BRB-on-partially-connected-networks

The remainder of this paper is organized as follows. Sec. II
discusses the related work. Sec. III describes the system model
and the BRB problem. Sec. IV provides some background on
BRB algorithms on asynchronous partially connected networks.
Sec. V explains how we modify the interface of the Bracha-
Dolev protocol to include state-of-the-art improvements of
Dolev’s protocol, and to add functionalities. Sec. VI and
Sec. VII respectively present our latency and throughput modifi-
cations of the Bracha-Dolev protocol, which we call MBD.1 to
MBD.12. Sec. VIII details our performance evaluation. Finally,
Sec. IX concludes the paper.

II. RELATED WORK

The first protocol to consider the Byzantine Reliable Broad-
cast (BRB) problem assumed authenticated links2.

Bracha and Toueg formalized the Reliable Broadcast prob-
lem [8, 9] and then Bracha described the first BRB protocol
for asynchronous and fully connected reliable networks (i.e.,
networks where each process is able to communicate with any
other in the system and where messages cannot be lost) and
the proposed solution is able to tolerate f Byzantine nodes
(where f < N/3 and N is the number of processes in the
system) [3]. This protocol is characterized by three different
all-to-all communication phases (namely, send, echo and ready)
and processes progress in the algorithm as soon as they have
heard from a quorum of nodes in a given phase.

This protocol assumes a fully connected communication
network and thus its applicability in general networks (like
the ones considered in this paper) is not directly possible but
requires some adaptation.

Concerning generic networks where full connectivity cannot
be assumed, Dolev [4] showed that correct processes can
reliably communicate in presence of f Byzantine nodes if,
and only if, the network graph is (2f+1)-connected.

In particular, Dolev’s algorithm allows a process pi to deliver
a message when it receives it through at least f + 1 disjoint
paths on which processes behaved correctly (which is made
possible when it flows through at least 2f+1 disjoint paths). In
order to do that, it requires to solve a maximum disjoint paths
problem. Also in this case, the solution assumes authenticated
and reliable point-to-point communication links.

Despite its theoretical correctness, Dolev’s solution is not
practical in large networks due to its worse-case complexity
both in terms of messages and computational complexity.

Bonomi et al. [6] proposed several optimizations that improve
the performance of Dolev’s algorithm on unknown topologies.
Indeed, a few modifications allow to save messages, making
the algorithm more appealing from a practical point of view
even if its worst-case complexity still remains high. Maurer
et al. [10] considered the reliable communication problem in
settings where the topology can vary with time. In Maurer et
al.’s protocol, a process needs to solve the minimum vertex cut
problem instead of the not equivalent (in dynamic networks)
maximum disjoint paths problem.

2Let us recall that authenticated links guarantee that the identity of the
sender cannot be forged and can be implemented without cryptography [7].

Instead of assuming the global fault model, Koo presented
a broadcast algorithm under the t-locally bounded fault
model [11], which was later coined CPA (Certified Propagation
Algorithm) [12]. Tseng et al. provided a necessary and sufficient
condition for CPA to work correctly on a given topology [13].
Several authors have defined weaker reliable communication
primitives for improved scalability [14, 15].

All the aforementioned works [4, 6, 10–13] solve a weaker
problem than BRB, indeed they guarantee that all correct
processes eventually deliver messages diffused by a correct
source but no agreement in case of a faulty one.

More recently, BRB on partially connected networks has
been achieved by combining Bracha’s and Dolev’s algorithms3.
For example, Wang and Wattenhoffer used this method to
design a randomized Byzantine agreement protocol [5]. We
show in this work that the two protocols can be combined in a
more efficient way. We evaluate the impact of our modifications
to the combination of Bracha’s algorithm with Bonomi et
al. [6]’s improved version of Dolev’s algorithm. Our new
modifications apply to Bracha’s and Dolev’s protocols, and the
cross-layer combination of the two protocols.

Other approaches have assumed authenticated processes (i.e.,
processes can use digital signatures) instead of authenticated
communication channels [16]. Relying on cryptography pro-
vides integrity and authenticity properties that simplify the
algorithms. In particular, weaker connectivity is required to
solve the BRB problem. However, cryptography has a compu-
tational cost and requires a trusted public key infrastructure
(PKI). From a theoretical point of view, cryptography-based
approaches are limited to the case of computationally bounded
adversaries (e.g., that cannot generate hash collisions). Also,
having a trusted agent (TA) that is never Byzantine trivializes
the BRB problem (the sender can simply send its message
to the TA, and every correct node can then reliably collect it
from there). By contrast, we aim at solutions that can cope
with computationally unbounded adversaries.

Recently, Contagion [17] replaced quorums by smaller
stochastic samples, and described an abstraction whose proper-
ties can be violated with a probability that depends on the size
of the samples. Differently, RT-ByzCast [18] and PISTIS [19]
aimed at providing real-time guarantees in probabilistically
synchronous and reliable networks. The idea of using pseudo-
randomized message dissemination has been used to tolerate
malicious or selfish behaviors in several works [20, 21], which
however only provide probabilistic guarantees, while we target
exact deterministic guarantees.

III. SYSTEM MODEL AND PROBLEM STATEMENT

Processes. We assume a set Π = {p1, p2, . . . , pN} of N pro-
cesses, uniquely identified by an ID, which are interconnected.
We assume that up to f < bN/3c of the N processes are
Byzantine, i.e., that they can behave arbitrarily or maliciously.
Processes know about the number N of processes, the IDs of
the processes in the system, and the fault threshold f .

3One can also combine Bracha and CPA, but the different local Byzantine
conditions yields a stronger requirement to be satisfied.

2

𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑝6

𝑝7

𝑝8

𝑝9

Fig. 1. A reliable communication graph with N = 10 and f = 1.

Communications. The processes are interconnected by a
communication network, which can be represented by an
undirected graph G = (V,E) where each node represents
a process pi ∈ Π (i.e., V = Π), and each edge represents
a communication channel. Two processes can directly com-
municate with each other if and only if they are connected
by an edge. Otherwise, processes have to rely on others to
relay their messages and communicate. Intermediary nodes
might be Byzantine, i.e., drop, modify or inject messages. We
assume that communication channels are authenticated, i.e., that
messages received by a node pi on the link interconnecting it
with a node pj always come from pj . Communication channels
can be synchronous or asynchronous, but they are reliable, i.e.,
a message cannot be lost. We assume that the communication
network is at least 2f+1 connected. Fig. 1 illustrates a 3-
vertex-connected communication network. We assume that the
network topology is unknown to processes.

We assume that processes broadcast payload data, which
can be of variable size, and that they might have to broadcast
the same payload data at different times during the system’s
life. To do so, processes use a header that uniquely identifies
the payload data and contains control information.

Byzantine Reliable Broadcast. We consider the following
Byzantine Reliable Broadcast (BRB) abstraction. Its interface
is as follows: nodes initiate broadcasts using Broadcast
events, while a Deliver event indicates that a message has
been delivered by a node. Moreover, this abstraction guarantees
the following properties:
[BRB-Validity] If a correct process p broadcasts m, then some
correct process eventually delivers m.
[BRB-No duplication] No correct process delivers message
m more than once.
[BRB-Integrity] If a correct process delivers a message m
with correct sender pi, then m was previously broadcast by pi.
[BRB-Agreement] If some correct process delivers m, then
every correct process eventually delivers m.

Reliable Communication. In addition to the BRB abstrac-
tion, we also consider the weaker Reliable Communication
(RC) abstraction, which has the same interface as BRB, and
guarantees the same properties, except BRB-Agreement, which
is only guaranteed when the sender is correct.

IV. BACKGROUND: BRB ON ASYNCHRONOUS AND
PARTIALLY CONNECTED NETWORKS

In this section we first recall Bracha’s and Dolev’s algorithms
and we then present how they can be used to provide BRB in
asynchronous partially connected networks.

A. Bracha’s Algorithm for BRB in Asynchronous and Fully
Connected Networks

Bracha’s algorithm (sometimes called authenticated double-
echo broadcast) describes the first BRB protocol for asyn-
chronous and authenticated communication networks [3]. Let
us recall that this protocol assumes a fully connected network
made of reliable and authenticated point-to-point links and it
tolerates up to f Byzantine processes (where f < N/3 and N
is the number of processes in the network).

The protocol works in three phases. When a process pi
wants to BRB-broadcast some payload data, it sends a SEND
message along with the payload data to all nodes in the system
(phase 1). Upon receiving a SEND message, a process sends an
ECHO message to all the nodes in the system (along with the
payload data) and moves to phase 2 where it remains waiting
for a quorum of ECHO messages. Upon receiving

⌈
N+f+1

2

⌉
ECHO messages for a given payload, a process sends a READY
message to other nodes and moves to phase 3. Let us note
that a READY message can also be sent upon receiving f+1
READY messages as it will ensure that al least one correct
process is moving to phase 3 and thus it is safe to broadcast a
READY message and to move to phase 3 as well. Finally, upon
receiving 2f+1 READY messages, a process can BRB-deliver
the payload data by concluding the procedure.

For the sake of completeness, we report in Algo. 1 the
pseudo-code of the algorithm.4

B. Dolev’s Algorithm for Reliable Communication in (2f+1)-
Connected Networks

Dolev’s protocol provides reliable communication if pro-
cesses are interconnected by reliable and authenticated com-
munication channels, and if the communication network is at
least (2f + 1)-connected [4].

Dolev’s protocol leverages the authenticated channels to
collect the labels of processes traversed by a content. Processes
use those labels to compute the maximum number of node-
disjoint paths among all the paths received for a particular
content. A process delivers a content as soon as it has verified its
authenticity, i.e., as soon as it has received the content through
at least f+1 node-disjoint paths. The keystone of Dolev’s proof
is that by Menger’s theorem, if the communication network is
(2f+1)-connected then there are at least 2f+1 node-disjoint
paths between any two processes in the network [24], and since
at most f processes are faulty, according to the pigeonhole
principle, a process will receive a message sent by another
process through at least f+1 disjoint paths.

Depending on whether the processes know the network
topology or not, Dolev presented two variants of its protocol,
which respectively use predefined routes between processes,
or flooding. We focus on the unknown topology version of
Dolev’s algorithm, whose pseudo-code is presented in Algo. 2.

Dolev’s algorithm made practical. Let us note that the
worst case complexity of Dolev’s algorithm is high (both
in terms of number of messages and complexity to verify

4We extract, and refer the reader to the pseudo-code from [22] and [23].

3

Algorithm 1 BRB in asynchronous and fully connected
networks (Bracha’s protocol) at process pi

1: Parameters:
2: Π: the set of all processes.
3: N : total number of processes.
4: f < N/3: maximum number of Byzantine processes.
5: Uses: Auth. async. perfect point-to-point links, instance al.
6:
7: upon event 〈Bracha,Init〉 do
8: sentEcho = sentReady = delivered = False
9: echos = readys = ∅

10:
11: upon event 〈Bracha,Broadcast | m〉 do
12: forall q ∈ Π do { trigger 〈al,Send | q, [SEND,m]〉 }
13:
14: upon event 〈al,Deliver | p, [SEND,m]〉 and not sentEcho do
15: sentEcho = True
16: forall q ∈ Π do { trigger 〈al,Send | q, [ECHO,m]〉 }
17:
18: upon event 〈al,Deliver | p, [ECHO,m]〉 do
19: echos.insert(p)
20:
21: upon event echos.size() ≥

⌈
N+f+1

2

⌉
and not sentReady do

22: sentReady = True
23: forall q ∈ Π do { trigger 〈al, Send | q, [READY,m]〉 }
24:
25: upon event 〈al,Deliver | p, [READY,m]〉 do
26: readys.insert(p)
27:
28: upon event readys.size() ≥ f + 1 and not sentReady do
29: sentReady = True
30: forall q ∈ Π do { trigger 〈al,Send | q, [READY,m]〉 }
31:
32: upon event readys.size() ≥ 2f + 1 and not delivered do
33: delivered = True
34: trigger 〈Bracha,Deliver | s,m〉

if a specific content can be safely delivered). Bonomi et al.
presented several modifications that reduce the number of
messages transmitted along with their size [6] in practical
executions5. We recall these modifications in the following.
[MD.1] If a process p receives a content directly from the
source s, then p directly delivers it.
[MD.2] If a process p has delivered a content, then it can
discard all the related paths and relay the content only with
an empty path to all of its neighbors.
[MD.3] A process p relays path related to a content only to
the neighbors that have not delivered it.
[MD.4] If a process p receives a content with an empty path
from a neighbor q, then p can abstain from relaying and
analyzing any further path related to the content that contains
the label of q.
[MD.5] A process p stops relaying further paths related to a
content after it has been delivered and the empty path has been
forwarded.

C. BRB in (2f + 1)-connected networks

The state-of-the-art method to implement the BRB abstrac-
tion in a partially connected network consists in combining

5Let us stress that the proposed modifications do not improve the worst
case theoretical complexity of the protocol, but the authors showed, through
experimental evaluations, that in several practical settings, the performance
gain is significant.

Algorithm 2 Reliable communication in (2f +1)-connected
networks (Dolev’s protocol) at process pi

1: Parameters:
2: f : max. number of Byzantine processes in the system.
3: Uses: Auth. async. perfect point-to-point links, instance al.
4:
5: upon event 〈Dolev,Init〉 do
6: delivered = False
7: paths = ∅
8:
9: upon event 〈Dolev,Broadcast | m〉 do

10: forall pj ∈ neighbors(pi) do
11: trigger 〈al,Send | pj , [m, []]〉
12: delivered = True
13: trigger 〈Dolev,Deliver | m〉
14:
15: upon event 〈al,Deliver | pj , [m, path]〉 do
16: paths.insert(path + [pj])
17: forall pk ∈ neighbors(pi) \ (path ∪ {pj}) do
18: trigger 〈al,Send | pk, [m, path + [pj]]〉
19:
20: upon event (pi is connected to the source through f + 1 node-disjoint

paths contained in paths) and delivered = False do
21: trigger 〈Dolev,Deliver | m〉
22: delivered = True

Bracha’s algorithm with a second algorithm that is in charge
of providing the abstraction of a reliable point-to-point link
(i.e., with a protocol ensuring Reliable Communications on
generic networks). For that purpose, one can either use Dolev’s
algorithm, CPA, or even topology specific protocols [25], de-
pending on the assumptions one is willing to make regarding the
communication network. In the global fault model and without
additional network assumptions, one has to rely on Dolev’s
algorithm. The combination of Bracha’s and Dolev’s algorithms
has recently been used to design a randomized Byzantine
agreement protocol on partially connected networks [5].

In practice, Bracha’s and Dolev’s protocols can be combined
by replacing each send-to-all operation at process pi (i.e, forall
q ∈ Π do {trigger〈al,Send | q, [mType,m]〉}) in Algo. 1
(lns. 12, 16, 23, 30) by a 〈Dolev,Broadcast | [mType,m]〉
operation, where mType ∈ {SEND,ECHO,READY}. In addi-
tion, one has to replace 〈al ,Deliver | q, [msgType,m]〉
in Algo. 1 (lns. 14, 18, 25) by 〈Dolev ,Deliver |
[msgType,m]〉, where q is the source of the f+1 disjoint
paths identified to trigger a Dolev-deliver in Algo. 2, ln. 20.
The resulting protocol stack is illustrated in Fig. 2, which also
shows the interface of each module. This combination can
be made more practical by applying modifications MD.1–5.
However, given that the number of messages generated by
Bracha’s and Dolev’s protocols are respectively O(N2) and
O(N !), and that Dolev’s algorithm requires solving a problem
with exponential complexity (i.e., finding disjoint paths in a
unknown network), the combination of these two protocols
does not scale well with the number of processes.

V. CROSS-LAYER BRACHA-DOLEV IMPLEMENTATION AND
FUNCTIONAL MODIFICATIONS

In the following, we describe how Bracha’s and Dolev’s
protocols can be combined and leverage modifications MD.1-5.

4

Bracha

〈al, Send | p, [mType, data, path]〉

〈Bracha, Broadcast | data〉 〈Bracha, Deliver | data〉

〈Dolev, Broadcast | [mType, data]〉 〈Dolev, Deliver | [mType, data]〉

Dolev

App

Link al

〈al, Deliver | q, [mType, data, path]〉

Fig. 2. Composition of Bracha’s and Dolev’s algorithms to implement BRB
on partially connected networks.

Protocol stack and interfaces. Fig. 3 illustrates the interface
of our combination of Bracha’s and Dolev’s protocols, modified
to support modifications MD.1–5 and repeatable broadcasts.
We detail below the fields used in this interface, and Sec. VI-C
shows how some of those fields can be made optional.

Repeatable broadcast. Across the system’s life, we assume
that a process might broadcast several times the same payload
data. For example, this would be required for sensing appli-
cations (e.g., temperature monitoring). We then assume that a
broadcast message contains the payload data m, the ID of its
source process s, and a broadcast ID bid (a sequence number)
that the source process monotonically increases after each
broadcast. If the source is correct, the source and broadcast
IDs of a broadcast message uniquely identify a payload
data. A Byzantine process might reuse a broadcast ID for
several payload data, in which case all processes will agree on
delivering at most one payload and ignore the others.

We therefore modify the interface of the BRB pro-
tocol so that Broadcast and Deliver operations include
the s and bid fields: 〈BD ,Broadcast | [(s, bid),m]〉 and
〈BD ,Deliver | [(s, bid),m]〉. This modification limits the
Byzantine processes’ ability to replay messages. Each process
maintains a transmission graph for each message it receives
that is uniquely identified by the broadcasting process ID, the
broadcast ID, the message type, the sending process ID and
the payload (which is necessary to handle Byzantine senders).

Applying modifications MD.1–5. For MD.1–5 to be used in
the combination of Bracha’s and Dolev’s algorithms, the format
of the ECHO and READY messages has to be slightly modified
to contain the ID of their original sender, so that ECHO or
READY messages that are broadcast by different processes can
be distinguished. Using the original specification of Dolev’s
protocol, one could rely on the full paths received along with
messages to identify the sender of an ECHO or READY
message. However, optimization MD.2 of Dolev’s protocol
replaces a path by an empty path upon delivery of a message,
which then prevents the identification of the original sender of
the message from its path. For this reason, ECHO and READY
messages must contain an additional field that identifies their
sender. For example, an ECHO message generated by process pi
would then have the format [ECHO, pi, (s, bid),m, path].

In the following, to avoid repetitions, we will use BD to
refer to the Bracha-Dolev protocol combination; BDopt to refer
to the version of BD optimized with the modifications MD.1–5;

BD

〈al, Send | p, [mType, fields]〉

〈BD, Broadcast | data〉 〈BD, Deliver | data〉

Link al

App

〈al, Deliver | q, [mType, fields]〉

Fig. 3. Interfaces in a cross-layer combination of Bracha’s and Dolev’s
protocols to implement BRB on partially connected networks.

and name our novel modifications MBD.1–12.

VI. OPTIMIZING FOR LATENCY

A. Limiting payload transmissions

Bracha’s and Dolev’s protocols make processes include the
payload data (i.e., the content they wish to broadcast) in each
message sent to their neighbors. However, when the payload
data is large, and because of the large number of messages
generated, it is worthwhile to reduce the number of times the
payload data is exchanged. Some Byzantine-resilient protocols
replace the payload by hashes or signatures for this purpose.
These methods could be used in the Bracha-Dolev combination
too. However, we aim at avoiding the use of cryptographic
methods to contain the computational overhead of the protocol
but also to tolerate computationally unbounded adversaries.

Modification [MBD.1] We modify the protocol as follows.
Upon receiving a message that contains a previously unknown
payload data, a process pi associates it to a unique local ID.
Note that simply replacing a payload data by its source ID
and sequence number would not allow this modification in
asynchronous settings, because Byzantine processes might send
several payloads with the same sequence number and because
messages might be reordered during their transmission, which
would threaten the BRB-Agreement property. When sending a
message to its neighbors related to this payload data for the
first time, the process then includes the local ID it chooses. In
later messages, pi only sends the local ID of that payload data.
A neighbor of pi, say pj , might generate its own local ID for
a given payload before receiving pi’s local ID. This is not a
problem, and pi can either use its local ID or the one received
from pj to interact with pj .

Because of the asynchrony of communications, a process
might actually receive the message that contains the payload
data after subsequent messages that only use the local ID. In
that case, we modified the protocol so that a process stores the
messages that mention an unknown payload in a queue, before
processing them all when the payload data is finally received.

In the worst case, our method requires a process to receive a
given payload data once from each of its neighbors. In practice,
the size of local IDs should be decided in an ad-hoc manner
so that a process does not run out of available IDs.

B. Bracha phase transitions

Processes receive and forward Send, Echo and Ready
messages that have been created according to Bracha’s protocol,
following a dissemination that Dolev’s protocol determines. In

5

the following, we describe several modifications that processes
can implement when they create messages, following the
reception of a message that has been delivered using Dolev’s
algorithm. These modifications reduce the total number of
messages exchanged, and the overall bandwidth consumption.

Echo and Ready amplifications. In Bracha’s protocol, it
is known (and necessary) that the reception of f + 1 Readys
in Bracha’s protocol allows a process to generate its own
ready message, if it has not done so already [22, 23]. This
situation can happen in Bracha’s protocol because the links are
asynchronous. However, we also observe that the delivery of
f+1 Echos allows a process to generate its own Echo message,
and send it if it was not sent before because the original
Send message has not yet been delivered. Our modification
MBD.2 of Send messages into single-hop messages makes this
amplifications of Echos necessary.

Single-hop Send messages [MBD.2]. In the default combi-
nation of Bracha’s and Dolev’s protocols, the Send messages
that a correct process creates reach all the processes. We
modify the protocol so that upon receiving a Send message,
a neighbor of the source stops disseminating it, and creates
instead an Echo message that it relays to all its neighbors.
When a process pi Dolev-delivers a [SEND, (s, bid),m, path]
message that it received from a neighbor pj , the combination of
Bracha’s and Dolev’s algorithms makes it forward a modified
Send message to its neighbors not included in path, i.e.,
[SEND, (s, bid),m, path+[pj]]. A process can avoid generating
and forwarding the modified Send message without loss of
information. A Send message is therefore a single-hop message
and does not need to carry a path.
Proof. Bonomi et al. proved that upon Dolev-delivery
of a message [SEND, (s, bid),m, path] a process pi can
send a [SEND, (s, bid),m, []] message instead of the
[SEND, (s, bid),m, path+[pj]] message to its neighbors not
included in path (MD.2 in Sec. IV-B). This modification
decreases the size of the forwarded Send message. Following
Bracha’s algorithm, after having validated a Send message,
process pi should also send an [ECHO, pi, (s, bid),m, []]
message to all its neighbors. However, upon receiving an
[ECHO, pi, (s, bid),m, path] message, processes can extract the
[SEND, (s, bid),m, path] message they should have received
in the unmodified protocol and process it.

Echo to Echo transitions [MBD.3]. When a process pi
receives an [ECHO, pk, (s, bid),m, path] from a neighbor pj
that makes pi Dolev-deliver the message, according to Dolev’s
protocol and MD.2, pi forwards [ECHO, pj , (s, bid),m, []]
to its neighbors not included in path . As a result of de-
livering the Echo message, process pi might also send an
[ECHO, pi, (s, bid),m, []] message to all its neighbors (after
having delivered the Send message of the source, or received
f + 1 Echos - using the Echo amplification).

These two messages can be merged into a single one, in
particular because they both have to be transmitted using empty
paths (the first one because it was delivered, due to MD.2,
and the second one because it has just been created). For
that purpose, we introduce a new message type Echo_Echo

formatted as [ECHO_ECHO, pi, pj , (s, bid),m, path], where pi
is the ID of the process whose Echo message was received,
while pj is the ID of the process whose Echo was delivered
by pi and triggered the emission of the Echo message by pi.
We explain below how these messages are handled.

Finally, a process pi can decide to which neighbors
it should send the Echo_Echo message, and to which it
should only send its own Echo message (cf. MD.3, IV-B):
(i) [ECHO_ECHO, pi, pj , (s, bid),m, []] is sent to the neigh-
bors that have not yet Dolev-delivered [ECHO, pj , (s, bid),m]
and are not included in the received path; and (ii)
[ECHO, pi, (s, bid),m, []] is sent to the remaining neighbors.
Proof. Upon receiving an [ECHO_ECHO, pi, pj , (s, bid),m, []]
message, a process can extract [ECHO, pj , (s, bid),m, []]
and [ECHO, pi, (s, bid),m, []] messages. It is correct for pi
to forward the Echo message with an empty path
(MD.2, IV-B). In addition, pi does not have to forward the
[ECHO, pj , (s, bid),m, []] message to its neighbors that have
delivered the [ECHO, pj , (s, bid),m] message (MD.3, IV-B),
which justifies the use of an Echo message instead of an
Echo_Echo message.

Echo to Ready transitions [MBD.4]. When a pro-
cess pi Dolev-delivers an [ECHO, pj , (s, bid),m, path] message
that it received from a neighbor pk, the standard Bracha-
Dolev protocol combination makes pi forward a modified
Echo message to its neighbors not included in path, i.e.,
[ECHO, pj , (s, bid),m, path + [pk]], while MD.2 makes pi
forward an empty path to those neighbors. As a result of
delivering the Echo message, process pi might also send a
[READY, pi, (s, bid),m, []] message to all its neighbors (after
having Dolev-delivered 2f + 1 Echo messages).

We introduce a second novel message type
Ready_Echo associated to messages of the format
[READY_ECHO, pi, pj , (s, bid),m, path], where pi is the
ID of the process whose Ready was received, while pj is
the ID of the process whose Echo was delivered by pi and
triggered the emission of the Ready message by pi. The path
field of a Ready_Echo message describes an empty path upon
creation, but this is not the case if the message is relayed. As
for Echo_Echo messages, process pi decides whether to send
a Ready_Echo, Ready, Echo, or no message at all for each of
its neighbors depending on whether or not it has transmitted
an empty path for the Echo or the Ready.
Proof. Upon receiving a [READY_ECHO, pi, pj ,
(s, bid),m, []] message, a process can extract
[ECHO, pj , (s, bid),m, []] and [READY, pi, (s, bid),m, []]
messages. It is correct for pi to forward the Echo message
with an empty path (MD.2, IV-B). In addition, pi does not
have to forward the [ECHO, pj , (s, bid),m, []] message to
its neighbors that have delivered the [ECHO, pj , (s, bid),m]
message (MD.3, IV-B), which justifies the use of a Ready
message instead of a Ready_Echo message for those neighbors.

Reception of Echo_Echo and Ready_Echo messages.
We detail here how processes handle Ready_Echo mes-
sages (Echo_Echos are handled similarly). Upon receiving
a [READY_ECHO, pi, pj , (s, bid),m, path] message, we have

6

Algorithm 3 READY_ECHO message reception at process pi
1: upon event 〈 al, Deliver | pl, [READY_ECHO, pr , pe, (s, bid), m,

path] 〉 do
2: insert path+[pl] in [ECHO, pe, (s, bid)]’s graph
3: insert path+[pl, pe] in [READY, pr, (s, bid)]’s graph
4:
5: // Dolev-delivered(msg) checks whether msg has already been
6: // Dolev-delivered prior to this event (MD.5)
7: sendEcho= !Dolev-delivered([ECHO, pe, (s, bid)])
8: sendReady= !Dolev-delivered([READY, pr, (s, bid)])
9:

10: // actOnEchos and actOnReadys create and send Echo/Ready
11: // messages if necessary, according to Bracha’s algorithm
12: // Dolev-delivering(msg) checks whether msg is being
13: // Dolev-delivered at this event (MD.2)
14: (Dolev-delivering([ECHO, pe, (s, bid)]))?
{actOnEchos(s, bid, pe); epath=[]} : epath=path+[pl]

15: (Dolev-delivering([READY, pr, (s, bid)]))?
{actOnReadys(s, bid, pr); rpath=[]} : rpath=path+[pl]

16:
17: // Avoiding the neighbors that sent empty paths (MD.3)
18: NDE = neighborsThatDelivered([ECHO, pe, (s, bid)])
19: NDR = neighborsThatDelivered([READY, pr, (s, bid)])
20:
21: if sendEcho and !sendReady then
22: forall x ∈ neighbors(pi) \ (NDE∪path∪{pl})
23: trigger 〈al,Send | x, [ECHO, pe, (s, bid),m, epath])〉
24: else if !sendEcho and sendReady then
25: forall x ∈ neighbors(pi) \ (NDR∪path∪{pl})
26: trigger 〈al,Send | x, [READY, pr, (s, bid),m, rpath])〉
27: else
28: forall x ∈ NDR \ (NDE∪path∪{pl})
29: trigger 〈al,Send | x, [ECHO, pr, (s, bid),m, rpath])〉
30: forall x ∈ NDE \ (NDR∪path∪{pl})
31: trigger 〈al,Send | x, [READY, pr, (s, bid),m, rpath])〉
32: forall x ∈ neighbors(pi) \ (NDE∪NDR∪path∪{pl})
33: if epath == rpath then
34: trigger 〈al, Send |x,[READY_ECHO, pe, pr,

(s, bid),m,epath]〉
35: else
36: trigger 〈al,Send | x, [ECHO, pe, (s, bid),m, epath]〉
37: trigger 〈al,Send | x, [READY, pr, (s,bid),m, rpath]〉
38: end if
39: end if
40:

seen that processes can extract [ECHO, pj , (s, bid),m, path]
and [READY, pi, (s, bid),m, path] messages. However, it might
not always be necessary for processes to forward the
Ready_Echo message to their neighbors, as a Dolev dissemina-
tion would dictate. Indeed, some of these neighbors might have
already delivered the Echo or the Ready message (MD.3, IV-B),
or neighbors that have delivered can be included in the received
path (MD.4, IV-B). Algo. 3 provides the pseudocode that
processes use to handle the Ready_Echo messages they receive.

Empirical lessons. We observed that the system’s latency
is lower when processes first forward a message they have
received before sending the message they might have created.
In addition, one might also remark that we have not mentioned
the possibility for a received Ready message to trigger the
emission of a Ready message, which might be exploited to
create a Ready_Ready message. Similarly, one could say that
receiving an Echo_Echo message might trigger the emission
of an Echo message, which would justify the need to create
a message type that would carry three Echos. In practice, we
have not observed that these phenomena appeared sufficiently

often to justify this implementation.

C. Optimized messages [MBD.5]

So far, we have assumed that messages in the Bracha-
Dolev protocol combination contain, besides the payload
data, a payload ID (s, bid), a message type mType ∈
{SEND,ECHO,READY}, the ID of the process that generated
the message, and a list of process IDs to indicate the path
the message followed in the topology. We now detail several
observations that allow these messages to be more concisely
transmitted without loss of information.

Send messages. As we have seen in the previous sec-
tion, Send messages are single-hop messages. Therefore,
they do not have to carry the source ID in the pay-
load’s ID (s, bid), because communication links are au-
thenticated. Send messages also always carry the payload
data along with the local ID that was chosen by the
source. Send messages therefore have the following format:
[SEND, bid, localPayloadID , payloadSize, payload].

Optional fields. We now consider the other types of message
we have mentioned: Echo, Ready, Echo_Echo, and Echo_Ready.
A process receives a message in a buffer, and decodes the
information it encloses according to a header that contains the
message type, and several bits that indicate the fields to be
read in the message.

First, messages might contain or not the payload data, which
is indicated by a bit payloadBit . If payloadBit is set, a process
expects to read the ID of the payload data (s, bid), the local
ID selected by the sending process localPayloadID , and the
payload data. If payloadBit is not set, a process only expects
to read localPayloadID .

Second, the ID of the source that generates a message is
originally included in the path of a message, and therefore
does not always have to be transmitted in a message. However,
when processes replace a propagation path by an empty path
(using MD.2), this is not the case anymore, and processes
therefore restore the sender field in their message. To handle
both situations, we add a bit senderBit that indicates whether
the sender ID is included in the message.

Finally, if the creator of the message is not the neighbor
from which it is received (indicated by the authenticated link),
a message contains a path, which is decoded using a pathLen
field that indicates the number of process IDs to be read,
followed by a list path that contains the process IDs.

For example, an Echo message can have the following format
[ECHO, payloadBit=1, senderId=1, (s, bid), echoSenderID ,
localPayloadID , payloadSize, payload , pathLen, path] at
most once between any pair of processes for a given sender. In
a more positive situation, an Echo message can be transmitted
as [ECHO, payloadBit=0, senderId=0, localPayloadID],
which happens every time a process generates its own Echo.

VII. OPTIMIZING FOR THROUGHPUT

A. Handling asynchrony

We present several optimizations that can be implemented
when the Bracha part of the protocol generates novel messages

7

while the Dolev propagation of a received message has to
continue. These optimizations reduce the overall amount
of information exchanged over the network. Ignore Echos
received after Dolev-delivering the corresponding Ready
[MBD.6]. If a process pi Dolev-delivers a Ready message that
was sent by a process pj then pi can stop disseminating and
discard any Echo message emitted by pj .
Proof. If pi Dolev-delivered the Ready message of a process pj ,
it means that pi verified that pj did send the Ready message.
The Echo message that pj sent contains less information and
reflects an old state of pj .

Ignore Echos received after delivering the content
[MBD.7]. If a process pi Bracha-delivers a content (because it
has Dolev-delivered 2f+1 Readys), then it can stop dissemi-
nating and discard all Echo messages it might receive that are
related to this content.
Proof. If pi Bracha-delivered a message, then pi has Dolev-
delivered Ready messages from 2f+1 distinct processes and at
least 2f+1 processes are reliably exchanging the related Ready
messages. Thus, all processes will eventually Bracha-deliver
the message and the Echo message is not needed.

Receiving Readys before transmitting Echos [MBD.8].
If a node pi has Dolev-delivered the Ready message of its
neighbor pj , it can avoid sending any future Echo message it
receives to pj . Note that this happens as soon as pj’s Ready
is received, since it is transmitted with an empty path and
therefore immediately delivered.
Proof. If pj is faulty, whether or not it transmits a message
to pj will not impact the protocol’s guarantees. If pj is correct,
it has Dolev-delivered dN+f+1

2 e Echos, or f+1 Readys, before
sending its Ready, and each of these Echos or Readys have been
forwarded with empty paths. These messages will eventually
be Dolev-delivered by all processes.

Avoiding neighbors that delivered [MBD.9]. If a node pi
has received 2f+1 Readys (generated by 2f+1 different
processes) with empty paths that are related to the same content
from a neighbor pj , then pi can avoid sending any message
related to that content to pj in the future.
Proof. If pj is correct it sent 2f+1 Readys with an empty path
to all its neighbors (MD.2). These neighbors will eventually
receive these 2f+1 Readys and be able to deliver independently
from pi’s message transmissions through pj . Again, if pj is
faulty, it will not make a difference for the protocol’s properties
whether or not it receives messages from pi.

Ignore messages whose path is a superpath of a message
previously received [MBD.10]. If a node pi receives a
message m1 (e.g., an Echo from process p0) with path path1,
for which a previous message m0 with path0 was received
(and which only differs from m1 by its path) and such that
path0 is a subpath of path1, then pi can ignore m1.
Proof. The path path1 does not help pi identify 2f+1 disjoint
paths towards the source, because path0 contains a subset of
the processes that are included in path1. Similarly, it is not
useful to forward the received message with a modified path
equal to path1+[pi], because a subpath such as path0+[pi]
or [] has already been transmitted.

Upon receiving a message, a process checks whether a
subpath has been previously received, and if so discard the
message, otherwise the received path is saved. Processes
represent paths using bit arrays, and store them in a list. The
observed performance impact of this method does not justify
the use of more efficient data structures.

B. Non-tight cases

We introduce several modifications that decrease the number
of processes that participate in various phases of the Bracha-
Dolev protocol combination when the number of processes in
the network is larger than 3f + 1.

Reduced number of messages in Bracha [MBD.11]. To
implement this method, we assume that processes know the
ID of all processes in the system. The processes with the
dN+f+1

2 e+f smallest IDs generate Echos, while the processes
with the 2f+1+f smallest IDs generate Readys. The other
processes simply relay the messages they receive. All processes
deliver when they have collected 2f+1 Readys.
Proof. To realize this, one has to reason starting from the
end of Bracha’s protocol. A process needs 2f + 1 Readys to
deliver, therefore only 3f + 1 processes are required to send
a Ready, since there are at most f faulty processes in the
system, and there are no message losses. To be able to send a
Ready, a process needs to receive dN+f+1

2 e Echos. Therefore,
dN+f+1

2 e+f processes are required to send an Echo. Finally,
the source needs to transmit its Send message to dN+f+1

2 e+f
processes. Note that when N = 3f+1, the number of processes
that are chosen to participate in each phase is always equal to
3f + 1, as indicated by Bracha’s protocol.

Send messages in Bracha-Dolev. [MBD.12] If the source
has more than 2f+1 neighbors, it can transmit its Send message
to 2f+1 of its neighbors, instead of to all of them.
Proof. If the source sends its Send message to 2f + 1 of its
neighbors, it means that at least f + 1 correct neighbors will
eventually receive the Send message. These correct neighbors
will then initiate a Dolev-broadcast of their Echo message
(cf. Send to Echo transition) to all other nodes in the system.
Since every pair of processes are connected through at least
2f + 1 disjoint paths, every process in the system will
eventually receive at least f + 1 Echo messages. Using the
Echo amplification, each of these processes will then send their
own Echo, which means that every correct process will have
delivered the original Send message of the source.

Discussion. Those modifications decrease the number of
exchanged messages drastically. However, they also often
increase the protocol’s latency. Indeed, the processes selected to
generate Echo/Ready messages might be located far from each
other in the network. Without these modifications all processes
send their Echo/Ready messages, which allows processes to
collect the required numbers of Echos/Readys faster.

VIII. PERFORMANCE EVALUATION

A. Settings

We use the Omnet++ network simulator v.5.6.2 [26], which
runs C++ code. We use an Intel Xeon E5-4650 CPU (2.10GHz)

8

TABLE I
MESSAGE FIELDS.

Msg field Description Size
mtype Message type 4 bits

s ID of the source process 32 bits
bid Message ID 32 bits

data_size Payload data size in Bytes 32 bits
data Payload data 16B/16KB

erId1 ECHO/READY sender ID 32 bits
erId2 Embedded ECHO/READY sender ID 32 bits

pathsize Path length (number of processes) 16 bits
path List of process IDs Variable

machine. We evaluate the impact of modifications MBD.1–
12 on BDopt, the state-of-the-art combination of Bracha’s
algorithm with Dolev’s algorithm modified with Bonomi et
al.’s improvements [6]. We vary the number N of processes, the
number f of Byzantine processes, and the network connectivity
k, so that N ≥ 3f+1 and k ≥ 2f+1. For each experiment
with a (N, k, f) tuple, we generate a regular random graph [27]
using the NetworkX Python library [28], and report the average
of 5 runs. The latency and throughput of each network link
are set to 0.5ms and 1Mbps, respectively. We measure the
protocols’ latency as the time when all correct processes have
delivered the broadcast message. Note that further messages
might still be exchanged after this point. We consider payloads
of 16B and 16KB, to represent small and large messages. We
simulate the protocol execution for a single broadcast message
(i.e., only one process broadcasts a message), and make all
processes participate to maximize the bandwidth consumption.
Table I details the size of the message fields. In plots, vertical
bars indicate the minimum and maximum observed values.

B. Impact of individual modifications

We evaluated the impact of each modification on BDopt’s
latency and network consumption with a large set of parameters.
Table II summarizes the protocol layer on which a modification
is applied, and its impact on latency and throughput for small
and large payload sizes. We observed that one can decide
whether a modification should be used to improve either latency
or the network consumption based on the payload size and the
network connectivity k. We illustrate some modifications when
N = 31 and a 16KB payload. Fig. 4 shows that MBD.4 almost
always improves latency (from -50% to 1.2%), and is more
effective when k increases or f decreases. Figs. 5 and. 6 show
MBD.11’s impact on latency and on the network consumption,
respectively. MBD.11 limits the number of processes that
generate Echo/Ready messages while the others only relay
messages. MBD.11 decreases the network consumption (-66%
to -16%) but also often increases latency (-31% to +240%).
Larger payloads lead to larger performance improvements.

C. CPU and memory consumption

We measured the total processing time per process during
an experiment where N =31, f =4 and a 16KB payload. This
time decreases when the network connectivity increases for
all combinations of modifications from 6s to 0.5s. Processing

0 4 8 12 16 20 24 28 32
Network connectivity (k)

60
53
46
39
32
25
18
11

4
3

10

Va
ria

tio
n

la
te

nc
y

(%
)

f = 1
f = 4
f = 7
f = 10

Fig. 4. MBD.4’s latency impact - N = 31, 16KB payload.

0 4 8 12 16 20 24 28 32
Network connectivity (k)

60
30

0
30
60
90

120
150
180
210
240
270

Va
ria

tio
n

la
te

nc
y

(%
)

f = 1
f = 4
f = 7
f = 10

Fig. 5. MBD.11’s latency impact - N = 31, 16KB payload.

times cannot be directly associated with the protocol’s latency.
First, because processes continue to treat messages after they
have delivered a content. And second, because Omnet++ does
not advance the simulation time when messages are processed.
Compared to real deployments this effect would create differ-
ences only when several messages are simultaneously received.
We partially compensate it so that, at creation time, messages
are delayed by a time that corresponds to the processing time of
the message that triggered their emission. Latencies measured
in a real-deployment would probably be slightly higher than
those we observed. However, the effect of our modifications on
latency and bandwidth would be the same since the processing
times were not significantly impacted by our modifications. The
modifications have a very small impact on memory usage, since
the most costly ones require storing a boolean per process.

D. Latency vs. Network Consumption

Based on the observed impact of our modifications, we
compare the latency and network consumption improvements of
three combinations of modifications to BDopt that respectively
contain: (i) lat.: only the modifications that decrease latency;
(ii) bdw.: only the modifications that decrease bandwidth
consumption; and (iii) lat. & bdw.: only the modifications
that decrease both latency and bandwidth consumption. Figs. 7
and 8 respectively show the latency decrease and the network
consumption of these configurations with (N, f)=(31, 4) and
a 16B payload. Configurations lat. and lat. & bdw. always
decrease latency (from -25% to 0%), while bdw. almost always
increase it (up to 130%), because of MBD.11. However,

9

TABLE II
IMPACT OF THE MODIFICATIONS WITH RANDOM GRAPHS AND SYNCHRONOUS COMMUNICATIONS.

Small payload (16B) Large payload (16KB)
MBD Layer Lat. var. % Useful when # bits var. Useful when Lat. var. % Useful when # bits var. Useful when

1 B [−22, 4.3] always −63 always [−93,−78] always −97 always
2 BD [−21, 62] large k [−1.8, 9] small f∨ large k [−15.4, 107] large k [−4.3, 0.4] always
3 BD [−21, 99] large k [−1.8, 12] large k [−17, 104] large k [−4.3, 0.4] large k
4 BD [−25, 5] large k [−1.4, 19.7] f=1 ∨ large k [−50, 1.2] always [−1.3, 0.8] f=1 ∨ large k
5 BD [−5.3, 9.4] small f and k [15, 19] never [−4.1, 4.5] small f and k [−0.9, 0] always
6 B [−5.3, 1.6] - [−9.6, 0] always [−4, 4.5] - [−0.9, 0.13] always
7 B [−3, 1.4] - [−13.2,−1.4] always [−2, 5.4] - [−5.8, 0.07] always
8 B [−8.7, 3.8] - [−12.8,−3.1] always [−3.6, 2] - [−4.9, 0.07] always
9 BD [−5.7, 3.0] - [−43, 0] always [−3.9, 1.9] - [−38, 0] always

10 D [−5.1, 1.3] small f and k [−1.9, 0] always [−4.2, 6.2] small f and k [−1.5, 0] always
11 B [−25, 149] small f∧ large k [−66,−16] always [−31, 240] small f∧ large k [−66,−16] always
12 B [−15, 27] large k [−2.7, 2.6] small f and k [−17, 57] large k [0.26, 4.7] never

0 4 8 12 16 20 24 28 32
Network connectivity (k)

70
63
56
49
42
35
28
21
14

7
0

Va
ria

tio
n

#b
its

 tr
an

sm
itt

ed
 (%

)

f = 1
f = 4
f = 7
f = 10

Fig. 6. MBD.11’s bandwidth consumption impact - N = 31, 16KB payload.

0 4 8 12 16 20 24 28 32
Network connectivity (k)

25
0

25
50
75

100
125
150
175

Va
ria

tio
n

la
te

nc
y

N = 31, f = 4, lat.
N = 31, f = 4, bdw.
N = 31, f = 4, lat. & bdw.

Fig. 7. Latency impact of the configurations - (N, f)=(31, 4), 16B payload.

bdw. decreases the network consumption the most (from 25
to around 12KB in average, i.e., around -50%), while lat.
and lat. & bdw. have a similar impact (from 25 to around
20KB in average, i.e., -20%). These results show that there
is no single best configuration to optimize both latency and
network consumption. In the same settings with 16KB payload,
the latency is decreased between -93% and -83%, while the
bandwidth consumption is decreased by -99.4% to -97%.

E. Evolution with the number of processes

In this experiment, we considered graphs that include 25,
31, 40, and 73 processes. We chose the average possible f
value for each N value. Simulating systems with larger N
values is challenging because of the exponential number of

0 4 8 12 16 20 24 28 32
Network connectivity (k)

0

5

10

15

20

25

30

Ba
nd

wi
dt

h
co

ns
um

pt
io

n
(K

B)

lat.
bdw.
lat. & bdw.
BDopt

Fig. 8. Bandwidth consumption per configuration - (N, f) = (31, 4), 16B
payload.

messages, memory and computing time that processes require to
execute the Bracha-Dolev protocol combination. Figs. 9 and 10
respectively show the bandwidth and latency improvement
of the lat. and bdw. configurations over BDopt with a 16B
payload. We omit configuration lat. & bdw. in those figures for
clarity. As one can see, configurations bdw. and lat. improve
the bandwidth consumption respectively by -80% to -70%, and
by -63% to -38%. Configuration lat. also improves the latency
(-50% to +2%). However, bdw. increases the latency by up to
400% when k is small, which goes out of the plot, but otherwise
also manages to improve latency down to -40%. Latency and
network consumption improvements are even higher with the
larger 16KB payload (resp. at least -97.6% and -97.3%).

F. Asynchronous networks

In addition to the above experiments, we also performed ex-
periments with links whose transmission delays were computed
per message using a normal distribution centered around 5ms
with a standard deviation of 20ms truncated between 0 and
80ms. With these settings, messages were frequently reordered
during their transmission. Using the three sets of optimizations
obtained for synchronous networks, we observed a latency
decrease of 10%, and a network consumption decrease of 50%
with 16KB messages and N = 31. This suggests that overall,
our modifications also perform well in asynchronous networks,

10

0 10 20 30 40 50 60 70 80 90
Network connectivity (k)

85

75

65

55

45

35

25

15

Va
ria

tio
n

#b
its

 tr
an

sm
itt

ed
 (%

) (N, f) = (25, 4), lat.
, bdw.

(N, f) = (31, 5), lat.
, bdw.

(N, f) = (49, 8), lat.
, bdw.

(N, f) = (73, 12), lat.
, bdw.

Fig. 9. Bandwidth consumption improvement over BDopt - 16B payload.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
Network connectivity (k)

60
50
40
30
20
10
0

10
20
30

Va
ria

tio
n

la
te

nc
y

(%
)

(N, f) = (25, 4), lat.
, bdw.

(N, f) = (31, 5), lat.
, bdw.

(N, f) = (49, 8), lat.
, bdw.

(N, f) = (73, 12), lat.
, bdw.

Fig. 10. Latency improvement over BDopt - 16B payload.

but also that the configurations might have to be fine tuned to
improve performance.

IX. CONCLUSION

In this paper, we discussed the Byzantine reliable broadcast
problem on unknown partially connected topologies. This
problem can be solved by combining two seminal protocols,
Dolev’s and Bracha’s algorithms. We first explained how
recent improvements of Dolev’s algorithms can be used in
this protocol combination. We then described a total of 12 new
modifications one can apply to this protocol combination to op-
timize latency and/or bandwidth consumption. We benchmarked
the impact of each modification using the Omnet++ network
simulator on random graphs. When simultaneously applied,
our modifications allow the BRB problem to be solved with a
lower latency and/or bandwidth consumption, e.g., respectively
down to -25% and -50% with a 16B payload when N=31
and f=4. Future works include to also consider the local fault
model used for example in the CPA line of work [11–13].

REFERENCES

[1] J. Yu, D. Kozhaya, J. Decouchant, and P. Esteves-Verissimo.
“Repucoin: Your reputation is your power”. In: IEEE Transac-
tions on Computers 68.8 (2019), pp. 1225–1237.

[2] D. Collins, R. Guerraoui, J. Komatovic, P. Kuznetsov, M. Monti,
M. Pavlovic, Y.-A. Pignolet, D.-A. Seredinschi, A. Tonkikh,
and A. Xygkis. “Online payments by merely broadcasting
messages”. In: DSN. 2020.

[3] G. Bracha. “Asynchronous Byzantine Agreement Protocols”.
In: Inf. Comput. 75.2 (1987), pp. 130–143.

[4] D. Dolev. “Unanimity in an unknown and unreliable environ-
ment”. In: FOCS. IEEE. 1981.

[5] Y. Wang and R. Wattenhofer. “Asynchronous Byzantine Agree-
ment in Incomplete Networks”. In: AFT. ACM, 2020.

[6] S. Bonomi, G. Farina, and S. Tixeuil. “Multi-hop Byzantine re-
liable broadcast with honest dealer made practical”. In: Journal
of the Brazilian Computer Society 25.1 (2019), 9:1–9:23.

[7] K. Zeng, K. Govindan, and P. Mohapatra. “Non-cryptographic
authentication and identification in wireless networks”. In: IEEE
Wireless Communications 17.5 (2010), pp. 56–62.

[8] G. Bracha. “An asynchronous [(n-1)/3]-resilient consensus
protocol”. In: PODC. 1984.

[9] G. Bracha and S. Toueg. “Asynchronous Consensus and
Broadcast Protocols”. In: J. ACM 32.4 (1985), pp. 824–840.

[10] A. Maurer, S. Tixeuil, and X. Defago. “Communicating reliably
in multihop dynamic networks despite byzantine failures”. In:
SRDS. 2015.

[11] C.-Y. Koo. “Broadcast in radio networks tolerating byzantine
adversarial behavior”. In: PODC. 2004, pp. 275–282.

[12] A. Pelc and D. Peleg. “Broadcasting with locally bounded
byzantine faults”. In: Information Processing Letters 93.3
(2005), pp. 109–115.

[13] C. Litsas, A. Pagourtzis, and D. Sakavalas. “A graph param-
eter that matches the resilience of the certified propagation
algorithm”. In: AdHoc-Now. 2013.

[14] A. Maurer and S. Tixeuil. “Byzantine broadcast with fixed dis-
joint paths”. In: Journal of Parallel and Distributed Computing
74.11 (2014), pp. 3153–3160.

[15] A. Maurer and S. Tixeuil. “Containing byzantine failures with
control zones”. In: IEEE TPDS 26.2 (2014), pp. 362–370.

[16] M. Castro and B. Liskov. “Practical Byzantine Fault Tolerance”.
In: OSDI. 1999.

[17] R. Guerraoui, P. Kuznetsov, M. Monti, M. Pavlovic, and D.-A.
Seredinschi. “Scalable Byzantine Reliable Broadcast”. In: DISC.
2019.

[18] D. Kozhaya, J. Decouchant, and P. Esteves-Verissimo. “RT-
ByzCast: Byzantine-Resilient Real-Time Reliable Broadcast”.
In: IEEE ToC 68.3 (2018), pp. 440–454.

[19] D. Kozhaya, J. Decouchant, V. Rahli, and P. Esteves-Verissimo.
“PISTIS: An Event-Triggered Real-time Byzantine Resilient
Protocol Suite”. In: IEEE Transactions on Parallel and Dis-
tributed Systems (2021).

[20] S. B. Mokhtar, J. Decouchant, and V. Quéma. “Acting: Accurate
freerider tracking in gossip”. In: SRDS. 2014.

[21] J. Decouchant, S. B. Mokhtar, A. Petit, and V. Quéma. “Pag:
Private and accountable gossip”. In: ICDCS. 2016.

[22] C. Cachin, R. Guerraoui, and L. E. T. Rodrigues. Introduction
to Reliable and Secure Distributed Programming. Springer,
2011.

[23] M. Raynal. Fault-tolerant message-passing distributed systems:
an algorithmic approach. Springer, 2018.

[24] K. Menger. “Zur allgemeinen kurventheorie”. In: Fundamenta
Mathematicae 10.1 (1927), pp. 96–115.

[25] J. Behrens, S. Jha, K. Birman, and E. Tremel. “RDMC: A
reliable RDMA multicast for large objects”. In: DSN. 2018.

[26] Omnet++ Discrete Event Simulator. URL: https://omnetpp.org/.
[27] A. Steger and N. C. Wormald. “Generating random regular

graphs quickly”. In: Combinatorics, Probability and Computing
8.04 (1999), pp. 377–396.

[28] A. Hagberg, P. Swart, and D. S Chult. Exploring network
structure, dynamics, and function using NetworkX. Tech. rep.
LANL, 2008.

11

https://omnetpp.org/

