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Value of evidence in the rare type match problem:

common source versus specific source

I.N. van Dorp, A.J. Leegwater, I. Alberink, G. Jongbloed

November 11, 2019

Abstract

In the so-called rare type match problem, the discrete characteristics of a crime stain have not been

observed in the set of background material. To assess the strength of evidence, two competing

statistical hypotheses need to be considered. The formulation of the hypotheses depends on which

identification of source question is of interest (Ommen, 2017). Assuming that the evidence has been

generated according to the beta-binomial model, two quantifications of the value of evidence can

be found in the literature, but no clear indication is given when to use either of these. When the

likelihood ratio is used to quantify the value of evidence, an estimate is needed for the frequency of

the discrete characteristics. The central discussion is about whether or not one of the traces needs

to be added to the background material when determining this estimate. In this paper it is shown,

using fully Bayesian methods, that one of the values of evidence from the literature corresponds

to the so-called ‘identification of common source’ problem and the other to the ‘identification of

specific source’ problem (Ommen, 2017). This means that the question whether or not one of the

traces needs to be added to the background material reduces to the question whether a common

source or specific source problem is under consideration. The distinction between the two values

is especially important for the rare type match problem, since the values of evidence differ most

in this situation.

Keywords — Value of evidence, rare type match problem, identification of source problem,

beta-binomial model
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1 Introduction

The proper evaluation of evidence in case of a rare type match is a fundamental problem in

forensic statistics (Brenner, 2010). Typically, the characteristics of a crime stain (for instance a

DNA profile) are compared with the corresponding characteristics of some material from another

source (for example from a suspect). The strength of evidence is assessed through comparison

of the evidence given two competing statistical hypotheses, presented against a background of

knowledge and experience about the world (Robertson & Vignaux, 1993), which is accomplished

by considering some set of relevant background material. When the characteristics of the crime

stain have not been observed in the background material, one speaks of a ‘rare type match problem’

(Cereda, 2017).

The evidence in the rare type match problem is usually represented by the beta-binomial model

(Cereda, 2017; Dawid, 2017; Dawid & Mortera, 1996; Taroni, Bozza, Biedermann, & Aitken, 2016;

Taroni, Bozza, Biedermann, Garbolino, & Aitken, 2010; Weir, 1996). Two approaches are used in

the literature to determine the value of evidence, using either a fully Bayesian procedure (Cereda,

2017; Dawid, 2017) or a likelihood ratio with some ‘plug-in’ estimate for the parameters (Dawid &

Mortera, 1996; Taroni et al., 2016, 2010; Weir, 1996). This plug-in estimate is either determined

with (Dawid & Mortera, 1996; Taroni et al., 2016) or without (Taroni et al., 2010; Weir, 1996)

adding one of the traces to the background material. The approaches result in two different values

of evidence and the difference between the values is largest in case of a rare type match. Currently,

there is no clear indication which of the approaches should be used, although it has been argued

that the fully Bayesian approach is the only proper method to evaluate the value of evidence

(Cereda, 2017).

The evidence evaluation process is primarily focused on gathering information about the source

of the recovered evidence. Recent work has shown that there are several possibilities to formulate

the competing hypotheses, depending on which identification of source question is of interest

(Ommen, 2017; Ommen & Saunders, 2018; Ommen, Saunders, & Neumann, 2017). The main focus

is on the so-called identification of a common source problem and the identification of a specific

source problem. In a common source problem, all evidence is assumed to come from unknown

sources, whereas the specific source problem states that one of the sources is fixed (Ommen, 2017).

In this paper we will show, using fully Bayesian methods, that one of the values of evidence of

the rare type match problem found in the literature corresponds to the identification of common
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source problem and the other to the identification of specific source problem.

In Section 2 both identification of source problems from (Ommen, 2017) are explained more

thoroughly, and the corresponding hypotheses and underlying statistical models are made precise.

Under these models, both the likelihood ratio and the Bayes factor for discrete evidence are derived

in Section 3. Section 4 covers the explanation of the beta-binomial model and the difference between

the value of evidence in the common source and specific source problem is presented, which has

the largest impact on the value of evidence in the rare type match problem.

2 Forensic identification of source problems

In a commonly used illustration of the evidence evaluation process, one of two competing hypothe-

ses is presented by the prosecution (denoted Hp) and the other by the defence (denoted Hd). Since

the strength of evidence is affected by the choice of hypotheses, a correct formulation is of great

importance. The hypotheses are often focused on source-level identification and these problems

are therefore usually referred to as forensic identification of source problems (Ommen & Saunders,

2018). Although other types of identification of source problems may be encountered in forensic

science, we will focus on quantifying the value of evidence in the identification of common source

problems and the identification of specific source problems when a rare type trace has been recov-

ered. In the next sections, we will follow the framework from (Ommen, 2017) and apply it to a

discrete setup.

2.1 Identification of common source

In the identification of a common source problem, the question of interest is whether or not two sets

of unknown source evidence share the same, but unknown origin (Ommen, 2017). This problem

could correspond to a situation where DNA is found at two different crime scenes and the question

of interest is whether the DNA comes from the same (unknown) person, i.e. whether the two crimes

are related. In the identification of common source problem, the hypotheses are typically stated

as follows (Ommen & Saunders, 2018):

Hp : The two sets of unknown source evidence (eu1
and eu2

) both originate from the same unknown

source.

Hd : The two sets of unknown source evidence (eu1
and eu2

) originate from two different unknown
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sources.

Following (Ommen, 2017), the available evidence for the common source problem consists of the

evidence from the first unknown source eu1
, the evidence from the second unknown source eu2

and the background material ea, and is denoted e = {eu1
, eu2

, ea}. In order to test the competing

hypotheses, statistical models for the evidence need to be specified. Since in forensic identification

of source problems the hypotheses do not provide a clear concept of the underlying mathematical

models, a set of possible sampling models should be considered from which a selection is to be

made (Ommen, 2017). The sampling models indicate how the evidence is assumed to be generated

and mainly concern the exchangeability of the observations. The sampling models from (Ommen,

2017) can be reformulated for discrete evidence, where no within-source variation is present. This

means that each sample from a source is equal and therefore only the generation of the source is

of interest. The sampling models can be formulated as follows:

Ma : The background material ea is generated by randomly selecting na sources from the popula-

tion of sources.

Mp : The unknown source evidence eu = {eu1
, eu2
} is generated by randomly selecting a single

source from the population of sources.

Md : The unknown source evidence eu = {eu1 , eu2} is generated by independently randomly se-

lecting two sources from the population of sources.

The prosecution will argue that the unknown source evidence is generated according to sampling

model Mp and the background material according to Ma, whereas the defence states that the

unknown source evidence is generated according to Md and the background material according to

Ma (Ommen, 2017). Thus, both the prosecution and the defence agree on the generation of the

background material. Note that the prosecution hypothesis implies that eu1 and eu2 are the same

with probability 1, since there is no within-source variation, whereas under the defence model eu1

and eu2
are independent.

Since no within-source variation is present for discrete evidence, the frequently used two-level

model (Aitken, Zadora, & Lucy, 2007), which models the within-source distribution in the first

level and between-source distribution in the second level, reduces to a ‘one-level’ model where only

the between-source distribution is of interest. The model for discrete evidence can be seen as a

special case of the general two-level model considered in (Ommen, 2017) by using a degenerate
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distribution for the within-source variation, which has been discussed in (van Dorp, 2018).

Now, we introduce a probabilistic model for the rare type match problem. Having observed

eu1
and eu2

, we consider the experiment of checking for a match in the available evidence set e =

{eu1 , eu2 , ea}. In practical discrete evidence evaluation, only the situation when the characteristics

of eu1
and eu2

are the same will be considered. This means that in practice a match in the available

evidence set with eu1
is equivalent to a match with eu2

and therefore it suffices to consider either

one. To be more specific, for each source in the available evidence, we define a random variable

indicating the ‘level of matching’ of eu1
(or eu2

, which is exactly the same) with the observed

evidence from the source under consideration. Since the source(s) of eu1
and eu2

are unknown, we

will also consider the experiment of checking for a match with eu1 and eu2 .

Let Yi denote the random variable corresponding to the matching of the evidence from the ith

source in the background material ea, for i = 1, 2, . . . , na. Moreover, let Yu1
denote the random

variable corresponding to the matching of the first unknown source evidence eu1 and let Yu2 denote

the random variable corresponding to the matching of the second unknown source evidence eu2
.

The sampling model Ma then implies that

Yi
iid∼ G(·|θa), i = 1, 2, . . . , na,

where G denotes the probability distribution of the matching of the population of sources indexed

by the parameter θa. Under the prosecution model, eu1
and eu2

are generated by the same source

and therefore we have

Yu1
∼ G(·|θa)

and Yu2
is equal to Yu1

with probability 1. Under the defence model, eu1
and eu2

are generated

by two different sources and we have

Yu1 ∼ G(·|θa) and Yu2 ∼ G(·|θa) independently.

In Section 3, the representation given in this section will be used to quantify the value of

evidence in the common source problem. Later on we will choose the Bernoulli distribution for

G(·|θa) to indicate either a match or no match.
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2.2 Identification of specific source

The identification of a specific source problem focuses on the question whether a single set of

unknown source evidence comes from a known, specified source or that it originates from a source

with unknown origin (Ommen, 2017). This problem could correspond to a situation where DNA

is found at a crime scene and a suspect is identified, and the question of interest is whether the

DNA comes from the suspect. In the identification of specific source problem the hypotheses are

usually stated as follows (Ommen & Saunders, 2018):

Hp : The unknown source evidence eu originates from the specific source.

Hd : The unknown source evidence eu does not originate from the specific source, but from some

other unknown source.

Following (Ommen, 2017), the available evidence for the specific source problem consists of the

unknown source evidence eu, the specific source evidence es and the background material ea, and

is denoted e = {eu, es, ea}. Again, sampling models can be defined to illustrate how the evidence

is generated. For the specific source model, the sampling models from (Ommen, 2017) can be

reformulated for discrete evidence as follows:

Ma : The background material ea is generated by randomly selecting na sources from the popula-

tion of sources.

Ms : The specific source evidence es is generated by the known, fixed specific source.

Mp : The unknown source evidence eu is generated by the known, fixed specific source.

Md : The unknown source evidence eu is generated by randomly selecting a single source from the

population of sources.

The prosecution will state that the unknown source evidence is generated according to sam-

pling model Mp. Contrary, the defence will argue that the unknown source evidence is generated

according to sampling model Md. Both the prosecution and the defence agree on the generation

of the specific source evidence and the background material, which are assumed to be generated

according to sampling models Ms and Ma, respectively. (Ommen, 2017) Note that the sampling

model Ma is identical to the one in the identification of common source problem. For the specific

source problem, the prosecution hypothesis implies that eu and es are the same with probability
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1, since there is no within-source variation, whereas under the defence model eu and es are inde-

pendent.

Again, a probabilistic model for the rare type match problem needs to be defined. Because the

specific source is known and fixed, all randomness is removed from the model for discrete evidence,

so es is also fixed. We consider the experiment of checking for a match with the specific source

evidence in the available evidence set e = {eu, es, ea}. As in the common source problem, let Yi

denote the random variable corresponding to the matching of the evidence from the ith source in

the background material ea, for i = 1, 2, . . . , na. Let Yu denote the random variable corresponding

to the unknown source evidence eu. Since the specific source is known, i.e. not random, the artificial

experiment corresponding to the specific source evidence es is not random and results always in a

realisation ys indicating a match. As in the common source problem, the sampling model Ma can

be represented by

Yi
iid∼ G(·|θa), i = 1, 2, . . . , na,

where G denotes the probability distribution of the matching of the population of alternative

sources, i.e. other sources than the specific source, indexed by the parameter θa. For the prosecution

model, we have Yu = ys with probability 1 since the unknown source evidence is assumed to come

from the fixed specific source, and no probability distribution is involved in the evaluation of

evidence. Lastly, under the defence model we have

Yu ∼ G(·|θa).

In Section 3, this representation will be used to quantify the value of evidence in the specific source

problem.

3 Quantifying the value of evidence

To decide which hypothesis is most probable after observing all evidence, the posterior odds

P (Hp|e)
P (Hd|e)
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is the most natural and frequently used ratio to consider. A generally accepted method to evaluate

forensic evidence is based on Bayes’ theorem and splits the posterior odds into

P (Hp|e)
P (Hd|e)

=
P (e|Hp)

P (e|Hd)
· P (Hp)

P (Hd)
,

or in words

Posterior odds = Value of evidence× Prior odds.

It has been argued that the role of the forensic expert is to determine the value of evidence, whereas

the prior odds are beyond his or her scope.

Let f denote the likelihood structure of the evidence, where we follow the terminology coined in

(Ommen, 2017). In the statistics community, there are two commonly used approaches to evaluate

the value of evidence. In one approach the value of evidence is given by the likelihood ratio

LR(θa; e) =
f(e|θa, Hp)

f(e|θa, Hd)
,

which depends on the parameter θa, that is unknown but has a true value. Since the true value

of θa is unknown, in practice some estimate of the unknown parameter based on the background

material is substituted into the likelihood ratio function. Note that in the likelihood ratio approach,

the true value of θa is seen as a fixed quantity and not as a random variable.

On the other hand, a fully Bayesian approach can be taken by constructing the Bayes factor

BF (e) =

∫
f(e|θa, Hp) dΠ(θa|Hp)∫
f(e|θa, Hd) dΠ(θa|Hd)

,

where a prior distribution is imposed on θa and the unknown parameter is integrated out of the

expression. The prior belief of θa is the same given each hypothesis, so that Π(θa) := Π(θa|Hp) =

Π(θa|Hd) (Ommen, 2017). Although in forensic statistics the terms likelihood ratio and Bayes

factor are often used interchangeably, we will make a strict distinction between these objects in

this paper.

Let g denote the probability mass function corresponding to G, as defined in the previous

8



section. For the common source problem, the likelihood ratio is given by

LRCS(θa; e) =
1

g(yu2
|θa)

and the Bayes factor is

BFCS(e) =

∫
g(yu1

|θa) dΠ(θa|ea)∫
g(yu1

|θa)g(yu2
|θa) dΠ(θa|ea)

, (1)

see Appendix 6.1. Alternatively, in the specific source problem the likelihood ratio is

LRSS(θa; e) =
1

g(yu|θa)

and the Bayes factor is given by

BFSS(e) =
1∫

g(yu|θa) dΠ(θa|ea)
, (2)

see Appendix 6.2. These general formulas will be used in the next section to quantify the value of

evidence for the beta-binomial model.

4 The beta-binomial model

In the rare type match problem, the random variables Yi corresponding to the background material

are usually regarded as the result of a sequence of na Bernoulli trials with probability of success

θa. Here, success corresponds to the event of observing the same discrete characteristics as on the

crime stain, i.e. a match, and failure to the event of observing any other characteristic(s). Hence, in

the setup from Section 3, the distribution G(·|θa) is the Bernoulli distribution with parameter θa.

This means that the total number of matches in the background material can be represented by a

binomial model with parameters na and θa. In forensic statistics, the prior probability distribution

of θa is often modelled by the beta distribution (Brenner, 2010; Cereda, 2017; Weir, 1996). This

is a conventional choice of prior, because of the known conjugacy with the binomial distribution.

Let sa denote the total number of matches in the background material, i.e. sa =
∑na

i=1 yi.
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Denote the prior distribution of θa by

Θa ∼ Beta(α, β), α, β > 0.

Updating the prior distribution of θa with the background material and using the conjugacy prop-

erty of the beta-binomial model results in

Θa|ea ∼ Beta(α+ sa, β + na − sa).

This property will be used recurrently in this section when quantifying the value of evidence. Note

that in the rare type match problem sa = 0.

Throughout this section, it is assumed that yu1 = 1 and yu2 = 1 in the common source problem,

and yu = 1 and ys = 1 in the specific source problem, which corresponds to the situation that the

characteristics of all the traces match. Note that this is the only situation that will be considered

in practical evidence evaluation: it does not make sense to determine the value of evidence if we

can already observe that the discrete characteristics do not match. In the following sections, the

values of evidence resulting from the approaches used in the literature are compared with the Bayes

factors corresponding to the common source and specific source problem.

4.1 Two values of evidence from the literature

Currently, the literature does not distinguish between specific source and common source prob-

lems when calculating the value of evidence for the rare type match problem. Usually, the value

of evidence is based on the likelihood ratio. It is generally accepted that for the rare type match

problem the likelihood ratio is given by 1/θa, which indeed corresponds to the likelihood ratio for

both the common source and specific source problem. In this approach, an estimate is needed for

θa which will be plugged in the likelihood ratio to arrive at the value of evidence.

Although different estimates can be used, a frequently used estimator is given in (Taroni et al.,

2010; Weir, 1996) and considers the mean of the updated prior distribution (posterior mean) of θa

given the background material:

θ̂a = E[Θa|ea] =
α+ sa

α+ β + na
.
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Plugging this estimate in the likelihood ratio, the value of evidence is given by

α+ β + na
α+ sa

. (3)

Alternatively, in (Dawid & Mortera, 1996; Taroni et al., 2016) it is argued that the value of evidence

is given by

α+ β + na + 1

α+ sa + 1
, (4)

which is obtained by considering the mean of the updated prior distribution of θa with both the

background material and one of the traces, i.e.

θ̂a = E[Θa|ea, es] = E[Θa|ea, eu1 ] =
α+ sa + 1

α+ β + na + 1
.

The work from (Cereda, 2017) already provided many insights in the evaluation of evidence un-

der the beta-binomial model. It was explained that the value obtained in (3) corresponds to a

likelihood ratio approach with a ‘standard’ Bayesian plug-in estimate, whereas the value in (4)

coincides with a fully Bayesian procedure.

The difference between the two values of evidence given in equations (3) and (4) has resulted

in a broad discussion about whether or not one of the traces needs to be added to the database.

Currently, it is not clear when each value should be used which leads to inconsistencies in the

evidence evaluation process. Since sa ≤ na and β > 0 by definition of the problem, we always have

that

α+ β + na + 1

α+ sa + 1
<
α+ β + na
α+ sa

.

Moreover, the difference between both values is most noticeable in the rare type match problem

when sa = 0. In Section 4.3 this difference will be further explored.

4.2 Common source and specific source Bayes factor

To determine the Bayes factor for the common source problem, equation (1) can be used. Consid-

ering this expression, the numerator of the Bayes factor for the common source problem is given
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by

∫
g(yu1

|θa)π(θa|ea) dθa =

∫
θa

Γ(α+ β + na)

Γ(α+ sa)Γ(β + na − sa)
θα+sa−1
a (1− θa)β+na−sa−1 dθa

=
α+ sa

α+ β + na
.

The denominator is given by

∫
g(yu11|θa)g(yu21|θa)π(θa|ea) dθa =

∫
θ2a

Γ(α+ β + na)

Γ(α+ sa)Γ(β + na − sa)
θα+sa−1
a (1− θa)β+na−sa−1 dθa

=
(α+ sa)(α+ sa + 1)

(α+ β + na)(α+ β + na + 1)
,

so that the common source Bayes factor becomes

BFCS(e) =
α+ β + na + 1

α+ sa + 1
. (5)

Similarly, using the expression in equation (2) the specific source Bayes factor is found to be

BFSS(e) =
1∫

g(yu|θa)π(θa|ea) dθa
=
α+ β + na
α+ sa

. (6)

This means that the value of evidence in equation (3) corresponds to a specific source problem,

whereas the value in equation (4) corresponds to a common source problem. Therefore, the question

whether or not one of the traces needs to be added to the database reduces to the question whether

a common source or specific source problem is under consideration. If one considers a common

source problem, equation (5) should be used. If one considers a specific source problem, equation

(6) needs to be used.

4.3 Value of evidence in the rare type match problem

To illustrate the influence of adding a trace to the database, both the common source and specific

source Bayes factor are evaluated for different values of the hyperparameters α and β with a

database of size na = 100. In Figure 1, the Bayes factor is shown for the rare type match problem,

i.e. when sa = 0. It is immediately visible that the influence of β is limited, whereas the Bayes

factor reduces as α increases. Moreover, the Bayes factor of the common source problem leads to

far more conservative values than the Bayes factor of the specific source problem.
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When α is large, the difference between both values of evidence becomes smaller (see also Figure

2). This observation was already made in (Cereda, 2017) and can be explained by the fact that

for β/α→∞ the beta distribution becomes a degenerate distribution placing all mass at θa = 1.

This means that the probability of observing the characteristics of interest tends to 1, which is of

course inappropriate for the rare type match problem.

Figure 1: Bayes factor corresponding to the common source problem (left) and the specific source problem (right)
in the rare type match problem as function of α for β ∈ {0.5, 1, 5, 10} and na = 100.

Figure 2: Ratio between BFSS and BFCS as function of α in the rare type match problem (left) and as function
of sa for α = β (right), where β ∈ {0.5, 1, 5, 10} and na = 100. The dashed line indicates the value 1.

Figure 2 also shows that the difference between the common source and specific source Bayes

factor is most noticeable in the rare type match problem. For other problems, when a reasonable

13



number of matches is observed in the background material, the difference becomes negligible and

both values of evidence would essentially lead to the same conclusions.

5 Discussion

The value of evidence in the rare type match problem depends on which identification of source

question is considered. In forensic casework, this choice mainly depends on the assumptions a

forensic expert makes based on the context of the evidence. The main difference between the

common and specific source problem is whether the (first) unknown source evidence is compared

to evidence originating from either a fixed or a random source (Ommen, 2017). Of course, one

could argue that all evidence is generated from an overall distribution and that the specific evidence

under consideration is also a realisation of a random source, which would be an argument in favor

of the common source problem. Likewise, the first unknown source evidence in the common source

problem could be seen as fixed, which would transform the setup to a specific source problem.

For the rare type match problem, the common source model leads to a more conservative value

of evidence than the specific source problem. However, for the court most interest seems to lie

in answering a specific source question, which would help provide a decision between guilt and

innocence of a specific suspect (Ommen & Saunders, 2018). Since the choice between the common

and specific source problem has a major impact on the value of evidence for the rare type match

problem, the forensic expert should be aware of the consequences of this choice and carefully state

the assumptions before evaluating the evidence.

6 Conclusion

For the beta-binomial model, which is frequently used in the rare type match problem, two values

of evidence from the literature are discussed. The main question of interest here is whether or not

one of the traces needs to be added to the background material to determine the plug-in estimate

for the likelihood ratio. In this paper the sampling models for both the common source and specific

source problem from (Ommen, 2017) are presented for the evaluation of discrete evidence. The

underlying statistical models are made precise and the value of evidence is considered, using either

the likelihood ratio or the Bayes factor. Using a fully Bayesian approach it is shown that one

of the values from the literature corresponds to the identification of common source problem and
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the other to the identification of specific source problem. This means that the question of interest

reduces to the question whether a common source or specific source problem is under consideration.

The value of evidence from the common source problem is found to be more conservative than the

specific source Bayes factor. The difference between both values is especially noticeable in the rare

type match problem.

Appendix

6.1 Likelihood ratio and Bayes factor of the common source problem

Let f denote the likelihood structure of the evidence. For the common source problem, the

likelihood ratio can be found from

LRCS(θa; e) =
f(e|θa, Hp)

f(e|θa, Hd)
=

f(eu1 , eu2 |θa, Hp)f(ea|θa, Hp)

f(eu1
|θa, Hd)f(eu2

|θa, Hd)f(ea|θa, Hd)

=
f(eu2

|eu1
, θa, Hp)f(eu1

|θa, Hp)

f(eu1 |θa, Hd)f(eu2 |θa, Hd)

where we use the assumption that f(ea|θa, Hp) = f(ea|θa, Hd) and the rule of conditional prob-

ability f(x, y) = f(x|y)f(y). Note that this expression of the likelihood ratio is slightly different

from Equation (3.6) in (Ommen, 2017), since we want to condition eu2 on eu1 so that we can use

that according to the prosecution both sets of common source evidence are equal with probability

1.

Using the stochastic model corresponding to the common source rare type match problem, as

introduced in Section 2, we translate this in terms of statements in Y :

LRCS(θa; e) =
P (Yu2

= yu2
|Yu1

= yu1
, θa, Hp)P (Yu1

= yu1
|θa, Hp)

P (Yu1
= yu1

|θa, Hd)P (Yu2
= yu2

|θa, Hd)

=
P (Yu1 = yu1 |θa, Hp)

P (Yu1
= yu1

|θa, Hd)P (Yu2
= yu2

|θa, Hd)

=
g(yu1

|θa)

g(yu1 |θa)g(yu2 |θa)
=

1

g(yu2 |θa)
,

where we use that under the prosecution model Yu2
is equal to Yu1

with probability 1, so that

P (Yu2
= yu2

|Yu1
= yu1

, θa, Hp) = 1.
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In (Ommen, 2017), the following alternative expression of the Bayes factor is derived:

BFCS(e) =

∫
f(e|θa, Hp) dΠ(θa|Hp)∫
f(e|θa, Hd) dΠ(θa|Hd)

=

∫
f(eu1 , eu2 |θa, Hp) dΠ(θa|ea, Hp)∫

f(eu1 |θa, Hd)f(eu2 |θa, Hd) dΠ(θa|ea, Hd)
.

This expression will be used to derive the Bayes factor for the common source problem:

BFCS(e) =

∫
f(eu1

, eu2
|θa, Hp) dΠ(θa|ea, Hp)∫

f(eu1
|θa, Hd)f(eu2

|θa, Hd) dΠ(θa|ea, Hd)

=

∫
f(eu2 |eu1 , θa, Hp)f(eu1 |θa, Hp) dΠ(θa|ea, Hp)∫
f(eu1

|θa, Hd)f(eu2
|θa, Hd) dΠ(θa|ea, Hd)

.

Again, we use the rule of conditional probability f(x, y) = f(x|y)f(y) to condition eu2 on eu1 given

Hp. For the probability model corresponding to the rare type match problem, this results in

BFCS(e) =

∫
P (Yu2 = yu2 |Yu1 = yu1 , θa, Hp)P (Yu1 = yu1 |θa, Hp) dΠ(θa|ea, Hp)∫

P (Yu1 = yu1 |θa, Hd)P (Yu2 = yu2 |θa, Hd) dΠ(θa|ea, Hd)

=

∫
g(yu1

|θa) dΠ(θa|ea, Hp)∫
g(yu1

|θa)g(yu2
|θa) dΠ(θa|ea, Hd)

,

where we use that under the prosecution model Yu2
is equal to Yu1

with probability 1 and hence

P (Yu2
= yu2

|Yu1
= yu1

, θa, Hp) = 1.

Assuming that the prior distribution of θa given the background material is the same for both

hypotheses, the common source Bayes factor is given by

BFCS(e) =

∫
g(yu1

|θa) dΠ(θa|ea)∫
g(yu1

|θa)g(yu2
|θa) dΠ(θa|ea)

.

Note that this derivation is analogous to the development used in (Taroni et al., 2010).

6.2 Likelihood ratio and Bayes factor of the specific source problem

Let f denote the likelihood structure of the evidence. For the specific source problem, the likelihood

ratio can be found from

LRSS(θa; e) =
f(e|θa, Hp)

f(e|θa, Hd)
=

f(eu, es|Hp)f(ea|θa, Hp)

f(eu|θa, Hd)f(es|Hd)f(ea|θa, Hd)

=
f(eu|es, Hp)f(es|Hp)

f(eu|θa, Hd)f(es|Hd)
=
f(eu|es, Hp)

f(eu|θa, Hd)
,
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where we use the assumption that f(ea|θa, Hp) = f(ea|θa, Hd) and f(es|Hp) = f(es|Hd).

Moreover, we use the rule of conditional probability f(x, y) = f(x|y)f(y) to condition eu on es

so that we can use that according to the prosecution the unknown source evidence is equal to the

specific source evidence with probability 1. Note that this expression of the likelihood ratio is

slightly different from Equation (3.9) in (Ommen, 2017) since we omit the parameter θs, which is

used to model the ‘within-specific source’ variation that is not present in the discrete setup.

Using the stochastic model corresponding to the specific source rare type match problem, as

introduced in Section 2, we translate this in terms of statements in Y :

LRSS(θa; e) =
P (Yu = yu|ys, Hp)

P (Yu = yu|θa, Hd)
=

1

g(yu|θa)
,

where we use that under the prosecution model Yu is equal to ys with probability 1, so that

P (Yu = yu|ys, Hp) = 1.

The Bayes factor for the specific source problem follows from:

BFSS(e) =

∫
f(e|θa, Hp) dΠ(θa|Hp)∫
f(e|θa, Hd) dΠ(θa|Hd)

=

∫
f(eu, es|Hp)f(ea|θa, Hp) dΠ(θa|Hp)∫

f(eu|θa, Hd)f(es|Hd)f(ea|θa, Hd) dΠ(θa|Hd)

=
f(eu|es, Hp)f(es|Hp)

∫
f(ea|θa, Hp) dΠ(θa|Hp)

f(es|Hd)
∫
f(eu|θa, Hd)f(ea|θa, Hd) dΠ(θa|Hd)

=
f(eu|es, Hp)

∫
f(ea|θa, Hp) dΠ(θa|Hp)∫

f(eu|θa, Hd)f(ea|θa, Hd) dΠ(θa|Hd)
· f(ea|Hd)

f(ea|Hp)

= f(eu|es, Hp) ·
∫
f(ea|θa, Hp) dΠ(θa|Hp)

f(ea|Hp)
· f(ea|Hd)∫

f(eu|θa, Hd)f(ea|θa, Hd) dΠ(θa|Hd)

= f(eu|es, Hp) ·
f(ea|Hp)

f(ea|Hp)
·
[∫

f(eu|θa, Hd)
f(ea|θa, Hd) dΠ(θa|Hd)

f(ea|Hd)

]−1

=
f(eu|es, Hp)∫

f(eu|θa, Hd) dΠ(θa|ea, Hd)
,

where we use the assumptions that f(es|Hp) = f(es|Hd) and f(ea|Hd) = f(ea|Hp). This derivation

is inspired by Derivation (3.11) from (Ommen, 2017), but again the parameter θs is omitted.

Moreover, we choose to condition eu on es given Hp by applying the rule of conditional probability

f(x, y) = f(x|y)f(y). For the probability model corresponding to the rare type match problem,
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this results in

BFSS(e) =
P (Yu = yu|ys, Hp)∫

P (Yu = yu|θa, Hd) dΠ(θa|ea, Hd)
=

1∫
g(yu|θa) dΠ(θa|ea, Hd)

,

where we use that under the prosecution model Yu is equal to ys with probability 1 so that

P (Yu = yu|ys, Hp) = 1.

Assuming that the prior distribution of θa given the background material is the same for both

hypotheses, the specific source Bayes factor is given by

BFSS(e) =
1∫

g(yu|θa) dΠ(θa|ea)
.
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