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So you found your solution

What will be your last contribution?

"Live it up, rip it up, why so lazy?

Give it out, dish it out, let’s go crazy!"

Roger Hodgson in Fool’s Overture
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Samenvatting

M omenteel staat we voor grote uitdagingen, waaronder het aanpakken van klimaat-

verandering. Industriële processen die moeilijk te verduurzamen zijn, zoals staal-

productie, (olie)raffinage en afvalverwerking, veroorzaken een aanzienlijke uitstoot van

broeikasgassen. De reststromen van deze processen kunnen echter worden verwerkt

met behulp van gasfermentatie, een recent ontwikkelde technologie. De kern van het

gasfermentatie proces is de omzetting van synthesegas, bestaande uit koolmonoxide

CO, kooldioxide CO2, en waterstof H2, tot ethanol en azijnzuur door bacteriën zoals

Clostridium autoethanogenum. Deze stoffen kunnen vervolgens dienen als grondstof

voor nuttige producten zoals brandstoffen, plastics en cosmetica.

Hoewel gasfermentatie al wordt toegepast op industriële schaal, bestaan er onzekerhe-

den over de opschaling van dit proces, met name omtrent de interacties van verschillende

schalen binnen de bioreactor, bellen en bacteriën. Onder meer vertragen de lage oplos-

baarheid van CO en H2, samen met het samenvloeien van bellen, de massaoverdracht

van de gas- naar de vloeistoffase, gebruikelijkerwijs aangegeven middels een lage kL a-

waarde. Daarnaast verloopt de menging in grootschalige bioreactoren (500 m3), veel

trager dan in kleinschalige lab-schaal bioreactoren (0,5 tot 2 L). Gecombineerd met een

aanzienlijke gasomzetting leidt dit tot grote variaties in concentraties van opgelost gas.

De concentratievariaties die bacteriën in de bioreactor ervaren, worden vaak gerelateerd

aan onverwachte productiviteitsverliezen. Dit proefschrift onderzoekt

i) de relevante factoren voor het verkrijgen van voldoende massaoverdracht op indu-

striële schaal,

ii) de omvang en duur van de concentratiefluctuaties en hun nabootsing op laborato-

riumschaal, evenals

iii) de mogelijke impact hiervan op C. autoethanogenum.

Deze kwesties worden uitgebreid geïntroduceerd in hoofdstuk 1.

In hoofdstuk 2 wordt de massaoverdracht in industriële gasfermentatiereactoren (gas-

lift bioreactoren met externe lus) nader bekeken. Empirische correlaties die vaak voor

opschaling worden gebruikt, voorspelden te lage massaoverdrachtswaarden voor CO

(0,3 tot 2 gL−1 h−1 ), terwijl op industriële schaal 7 tot 8,5 gL−1 h−1 verwacht wordt. Met

een numeriek model, dat de gas- en vloeistofstromen binnen een industriële bioreactor

voorspelt, kon de invloed van relevante variabelen voor massaoverdracht, zoals de druk,

de temperatuur, en de beldiameter, worden nagegaan. Hieruit bleek dat vooral kleine

bellen (< 2 mm) nodig zijn om de benodigde waarden te behalen, wat deels te danken is

aan het geproduceerde ethanol, die het samenvloeien van bellen vermindert.
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xii Samenvatting

Vervolgens wordt in hoofdstuk 3 experimenteel uitgezocht in welke mate ethanol en

componenten van fermentatiebeslagen (zoutig kweekmedium en biomassa) het samen-

vloeien van bellen verhinderen en de kLa-waarden verhogen. Uit deze experimenten

bleek dat ethanol aanzienlijk bijdraagt aan het verkleinen van gasbellen (van 3 naar 1 mm),

en de kLa-waarden 2 tot 6 keer kan verhogen. Ook het zout in het medium zorgt voor

kleinere bellen. Het geproduceerde ethanol speelt een substantiële rol in het aanzienlijk

verhogen van de massaoverdracht op industriële schaal. Bovendien werd vastgesteld dat

dat de empirische correlaties, doorgaans ontwikkeld met metingen van lucht in gezuiverd

water, onvoldoende rekening houden met de complexiteit van fermentatiebeslagen.

Met het ontwikkelde stromingsmodel wordt in hoofdstuk 4 de grootte en frequentie

van de concentratiefluctuaties in grootschalige gasfermentatiereactoren in kaart gebracht.

Dit gebeurt door massaoverdracht en gasconsumptie door bacteriën mee te nemen in het

bioreactormodel, voor verschillende biomassaconcentraties. Hieruit bleek dat bacteriën,

ongeacht de hoeveelheid biomassa in de reactor, concentratiefluctuaties ervaren van

ongeveer één orde van grootte. De tijd die bacteriën doorbrengen in gebieden met hoge

en lage concentraties is onregelmatig en varieert tussen de 5 en 30 seconden. Om de

invloed van deze concentratiefluctuaties op C. autoethanogenum te onderzoeken, werd

voorgesteld om een neerschalingsstudie uit te voeren waarbij deze fluctuaties worden

nagebootst in het laboratorium. Dit kan worden bereikt door onregelmatige variaties

aan te brengen in de roersnelheid van een continu werkende bioreactor, met de eerder

genoemde tijdsduur.

In hoofdstuk 5 is een eerste voorspelling gemaakt van het effect van de concentra-

tiefluctuaties. Hiervoor werd een numeriek model van het metabolisme van C. autoet-

hanogenum, wat de belangrijkste reacties binnenin de cel beschrijft, gekoppeld aan het

stromings- en massaoverdrachtsmodel van de industriële bioreactor. Deze bevindingen

zijn vergeleken met experimentele resultaten en beide lieten zien dat de opgeloste CO-

concentratie een cruciale rol speelt bij de productie van azijnzuur of ethanol: een hoge

CO-concentratie leidt tot azijnzuurproductie, terwijl een lage concentratie de ethanolpro-

ductie stimuleert. Bovendien werd er verwacht dat de concentratiefluctuaties ook zouden

resulteren in een versterkte ethanolproductie.

Ter afsluiting worden de onderzoeksvragen uitvoerig beantwoord in hoofdstuk 6, en

worden aanknopingspunten voor vervolgonderzoek uitgewerkt in hoofdstuk 7. Over

het geheel genomen concluderen we dat het beschouwen van de interacties tussen de

verschillende schalen (bioreactor, bellen en bacteriën) van essentieel belang is voor

succesvolle opschaling van gasfermentatiebioreactoren. Meer onderzoek, waaronder

bestudering van de gasopnamesnelheid van C. autoethanogenum, is vereist om dit proces

nauwkeuriger te kunnen voorspellen.

Dit proefschrift biedt niet alleen nieuwe fundamentele inzichten in gasfermenta-

tie, maar draagt ook bij aan verdere implementatie ervan in de industrie, waarmee het

bijdraagt aan de strijd tegen klimaatverandering.



Summary

O ne of the major challenges mankind faces nowadays is combating climate change.

A substantial fraction of greenhouse gases are released by industrial processes,

as steelmaking, (oil)refinery and waste processing. Emissions from these processes

can partly be prevented with a recently developed technology called gas fermentation.

Within this process, synthesis gas – a mixture containing CO, CO2 and H2 – is converted

into ethanol and acetic acid by bacteria such as Clostridium autoethanogenum. These

products could be used in a wide range of applications, like fuels, plastics and cosmetics.

Whilst gas fermentation is already applied at commercial-scale, challenges in scale-up

persists due to complex multi-scale interactions among the bioreactor, gas bubbles, and

bacteria. The poor solubility of CO and H2 alongside gas bubble coalescence, leads to low

gas-to-liquid mass transfer rates (typically denoted via kL a). Slow mixing in industrial

bioreactors (500 m3), and high gas conversion rates, result in large spatial variations in

dissolved gas concentrations. Bacteria experiencing concentration fluctuations have

often been related to decreased process performance. This dissertation explores

i) the relevant factors to obtain high mass transfer rates at industrial-scale,

ii) the magnitude and duration of the concentration fluctuations, and how these can

be resembled at laboratory-scale, and

iii) the possible impact of these concentration fluctuations on C. autoethanogenum.

Chapter 1 serves as a comprehensive introduction into these themes.

Mass transfer in industrial-scale gas fermentation reactors (primarily external-loop

gas-lift bioreactors) is extensively studied in Chapter 2. The engineering correlations that

are often used for bioreactor scale-up, predicted insufficient CO mass transfer capacities

(0.3 – 2 gL−1 h−1), while at scale 7 – 8.5 gL−1 h−1 is expected. With a computational fluid

dynamics (CFD) model of an industrial-scale gas-lift bioreactor, the influence of the

most relevant variables regarding mass transfer, i.e., pressure, temperature, and bubble

diameter, have been studied. The model revealed that predominantly small bubbles (< 2

mm) are required to obtain the industrial-scale performance. The produced ethanol was

expected to inhibit coalescence, facilitating the creation of such small bubbles.

Chapter 3 focuses on experimental investigations regarding the impact of ethanol

and broth components (mineral medium and biomass) on bubble coalescence and kL a

enhancement. The findings indicated that ethanol substantially reduces the gas bubble

diameter (from 3 to 1 mm) and thereby amplifies kL a between 2 to 6 times. The salts in

the medium demonstrated a similar effect in reducing bubble size. The study emphasises

the key role of ethanol in achieving industrial-scale mass transfer rates, and highlighted
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that the engineering correlations, which were mostly developed in air-water mixtures, are

not suitable to describe the complex interactions within fermentation broths.

The CFD model is expanded in Chapter 4 to explore the magnitude and duration of

the concentration fluctuations that the bacteria experience in the large-scale bioreac-

tor. This was done by modelling mass transfer and gas consumption for a wide range

of biomass concentrations. Irrespective of the biomass concentration, bacteria experi-

enced concentration fluctuations of approximately one order of magnitude. The duration

in concentration peaks and valleys varied irregularly, spanning between 5 and 30 sec-

onds. To assess the impact of such concentration variations on C. autoethanogenum, a

downscaling study was proposed to simulate these fluctuations at laboratory-scale gas

fermentation conditions. It was proposed to irregularly modulate the stirring speed of a

continuously operated bioreactor for periods of the aforementioned duration.

An initial evaluation of the impact of the concentration fluctuations is made in Chap-

ter 5. This was done by coupling a metabolic kinetic model of C. autoethanogenum to

the CFD and mass transfer model of the industrial-scale bioreactor. Comparison of sim-

ulation results with experimental data, uncovered that the dissolved CO concentration

influences the product spectrum: elevated dissolved CO concentrations favours acetic

acid production, while ethanol production is stimulated at lower concentrations. The

simulations suggested that the concentration fluctuations led to escalated ethanol pro-

duction rates at the expense of acetic acid production.

In Chapter 6, the research questions will extensively be answered, while future re-

search suggestions will be elaborated in Chapter 7. Ultimately, this dissertation concludes

that accounting for multi-scale interactions – amongst bioreactor, bubbles and bacteria

– is crucial for successful scale-up of gas fermentation bioreactors. Further research,

including investigation of gas uptake kinetics of C. autoethanogenum, is required to refine

the accuracy of gas fermentation modelling.

This dissertation provides novel fundamental insights into gas fermentation field, it

also contributes to furthering its implementation in the industry, thereby contributing to

the fight against climate change.



Nomenclature

Mathematical symbols

Symbol Description Unit

Latin

a Specific surface area m−1
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L Length m
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r Reaction rate kgm−3
L h−1

r̃i Particle-specific rate molh−1
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t Time s

tc Circulation time s

tm 95% mixing time s

∆t Time step s

T Temperature K

u Velocity ms−1

u⃗ Velocity magnitude ms−1
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v∞
b Bubble rise velocity ms−1

vslip Slip velocity ms−1

V Volume m3
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y Mole fraction molmol−1
G
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j

z Axial position m
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Greek

ϵ Energy dissipation rate m2 s−3
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G m−3

L

εL Liquid hold-up m−3
L m−3

L
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i Species
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j Reaction
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MT Mass transfer
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Chapter 1
Introduction

The implementation of biotechnology, in terms of process scale-up and operation, would

not have been possible without application of mathematical concepts and methods which

lie at the heart of modern engineering and education.

James Edward Bailey [1]

This chapter has been written to provide the reader background information for each chapter. Each chapter

contains its own introduction.
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B iotechnology is fundamental to our society. Humanity has mastered the act of using

microorganisms for multiple purposes: from cleaning our wastewater to brewing

beer, from cultivating food to generating fuels and plastics, even to save lives by producing

pharmaceuticals and preventing pandemics using vaccines. The miraculous microbial

world enables us to solve many of the urgent challenges society faces: from preventing

food shortages to mitigating climate change, to changing our meat industry. One of the

solutions the microbial world offers us is called gas fermentation.

1.1. The potential of gas fermentation
In the late 1980’s, early 1990’s, microorganisms were discovered that were able to use

synthesis gas (syngas), a gas mixture containing carbon monoxide (CO), hydrogen (H2)

and carbon dioxide (CO2), as carbon and electron sources to produce useful products

as ethanol and acetate [2, 3]. The workhorses of this process, acetogenic bacteria like

Clostridium ljungdahlii and C. autoethanogenum, were isolated shortly afterwards from

chicken yard waste and rabbit feces [4, 5]. Since the late 2000’s, research into this tech-

nology has skyrocketed, with tens of research articles and many1 review papers being

published every year [6].

The potential of the gas fermentation process is founded in its versatility: syngas

can be produced from a wide range of feedstocks, while also a wide range of products

can be produced (Figure 1.1). The products range from acetate and ethanol, to longer

chain carboxylic acids and alcohols [7], proteins and precursors for polymers [8], while

the production of acetone and isopropanol have been demonstrated at pilot-scale [9].

Current commercial applications convert industrial off-gases towards ethanol, which

can be upgraded to a wide range of products like car fuel, plastics (as polyethylene),

detergents, clothing, and cosmetics [8–11].

Syngas has been used in the chemical industry for many years. With fossil carbon as

input, it has mainly been used in Fisher-Tropsch Synthesis for hydrocarbon production

and in catalytic conversion to methanol [12, 13]. In some industries, such as the steel-

making and the ferroalloy industry, syngas is typically considered as a waste stream and

only used for energy generation. By fermentation these fossil-based waste streams can

be valorised [14]. Potential circular processes can be obtained by gasification of waste

streams such as lignocellulosic biomass residues and municipal solid waste [15]. Lastly,

efforts are being made to use atmospheric CO2 and green hydrogen as feedstocks for the

syngas fermentation process, using CO2 and/or water electrolysis [11].

Compared to the catalytic (e.g., Fisher-Tropsch and syngas-to-methanol) processes

for syngas conversion, the biological process offers several advantages [11, 13–15]: i)

operation at ambient temperatures and pressure (saving energy costs), ii) microbes are

1Too many, according to the authors opinion: around 22% (93 out of 425 hits) of the Web of Science article

collection on “syngas fermentation” published between 2019 and 2023 has been marked as a review paper,

while other areas average around 10% (dated October 23rd 2023).
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Figure 1.1: Schematic representation of the syngas fermentation process, feedstocks and end-products.

cheap catalysts and offer high resistance to contaminants (sulfur, tars), iii) no fixed ratio

between CO and H2 is required, and iv) higher specificity and carbon-to-product yields

can be obtained. However, biological processes take place in water, leading to low volu-

metric productivity (or space-time-yield) although productivity per gram biomass and

catalyst are similar [13], and the low product concentration challenges product separation

[16]. These advantages offer syngas fermentation the potential to become more attractive

and environmental-friendly than the competing chemical processes for the production

of fuels from syngas.

Figure 1.1 schematically illustrates the syngas fermentation process. After production

of the syngas, the gas is being compressed and cleaned to remove impurities such as tars,

nitrogen oxides and sulphates [17, 18]. The separation and purification of ethanol after

fermentation is commonly done via distillation and pressure swing absorption, although

more efficient and sustainable downstream processes have been proposed [16].

1.2. Commercialisation of gas fermentation
As was recently demonstrated with their initial public offering, the company LanzaTech

successfully scaled-up the syngas fermentation process. They were founded in 2005 in

New Zealand, and opened their first full-scale plant in 2018 in Shougang, China, where

they produce ∼50 kton ethanol per year using off-gases from a neighbouring steel-mill

(Figure 1.2a). Currently, LanzaTech is expanding its operations and building facilities

across the world, amongst others in India, South-Africa, and in Ghent, Belgium, in the

Steelanol project with ArcelorMittal (Figure 1.2b) [10].
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Figure 1.2: Photographs of industrial-scale syngas fermentation plants, depicting LanzaTech’s external-loop

gas-lift reactors. a) Shougang-LanzaTech plant near Beijing, China2, b) Steelanol plant near Ghent, Belgium, the

author is visible for scale.

At scale, the syngas fermentation process is performed in an external-loop gas-lift

reactor (EL-GLR) (see Figure 1.1 for a schematic and Figure 1.2 for photographs of their

industrial-scale EL-GLRs). Based on these photographs, the reactor is approximately 30

metre tall and 5 to 7 m wide, and encompasses a volume of more than 500 m3 [10]. This

reactor is similar to the well-known bubble column, but it contains an external-loop to

force (a part of) the liquid back to the bottom, where pressurised gas is injected. Due to

its density difference with the fermentation broth (the liquid mixture containing water,

biomass and the liquid products), the gas and, consequentially, the broth rise upwards,

which is recirculated via an external-loop aside of the reactor [19, 20]. The external-

loop can be used, amongst others, for cooling, liquid feeding and withdrawal, while

a (multiphase) pump can be installed to regulate the mixing time (and mass transfer).

LanzaTech claims an ethanol specificity of 95% [8], near-complete gas conversion (∼90%)

[10], and an ethanol concentration of 50 gL−1 [8] (similar to beer).

Compared to other bioreactor types that are used in commercial-scale processes

(mainly stirred tank reactors), the EL-GLR offers low capital and operational costs (no

stirring required) and decent mixing characteristics [14, 15, 21]. Other reactors that are

frequently studied (at lab-scale) for gas fermentations include hollow fibre membrane

reactors (with limitations like clogging) [21–23] and trickle bed bioreactors (with low

working volumes and flow rates) [21, 23], which both require biofilm formation.

2source: https://www.mitsui.com/jp/en/topics/2019/1230078_11243.html.

https://www.mitsui.com/jp/en/topics/2019/1230078_11243.html
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1.3. Concerns on gas fermentation scale-up
In the scientific literature, there are many concerns on the scalability of the gas fermenta-

tion process and the EL-GLR. These relate to gas-to-liquid mass transfer, biomass and

product concentrations, and the existence of dissolved gas concentration gradients. As

will be shown here, all these issues relate to the interactions between the operational pa-

rameters of the bioreactor, the physical phenomena in the EL-GLR (such as mass transfer

and mixing) and the microorganisms and their metabolism. In this work, these concerns

will be studied, while aiming to find solutions to overcome or alleviate these.

Mass transfer
Transport of the syngas components from the gas phase to the liquid phase, gas-to-liquid

mass transfer, is often regarded as the major limitation in syngas fermentation due to the

low solubility of CO and H2 [2, 13–15, 17, 22]. The mass transfer rate depends on a mass

transfer coefficient kL , the gas fraction εG the bubble diameter db (both combined into

the volume-specific surface area a of the gas phase), and the solubility of the compound.

This large number of parameters means that the mass transfer rate is influenced by many

different factors, such as the broth composition, the pressure p, the temperature T , and

the local turbulent energy dissipation rate ϵ [24–26].

The standard engineering correlations for bubble column and gas-lift bioreactors,

could not predict the high mass transfer performance of industrial-scale EL-GLRs. For

example, as a rule of thumb in columns with coarse bubbles, an oxygen depletion rate of

0.55% per metre liquid height can be assumed [26]. Translating this to a 30 m tall syngas

fermentor, this would maximally lead to 16.5% CO conversion, significantly lower than

the 90% advocated by LanzaTech. To achieve this 90%, a depletion rate of at least 3% per

metre is needed, which could for example be in columns with very small bubbles [26]. As

gas sources can be costly, high gas conversion rates and thus high mass transfer rates are

paramount design parameters for competitive gas-based bioprocesses at scale (e.g., using

syngas, oxygen, methane, H2, and CO2 [27–30]).

Productivity
Another major hurdle in syngas fermentation experiments is the low volumetric produc-

tivity (or: space-time yield), which can be attributed to the low microbial growth rate

µ [13, 17, 22]. Typically, a low µ leads to low biomass concentrations cx and thus low

product concentrations cprod. Biomass retention has been identified as a tool to increase

the volume-specific ethanol productivity and gas conversion rates [22, 31].

High biomass concentrations might cause significant mass transfer limitations, and

therefore thermodynamically unfavourably low concentrations of dissolved gases [32].

In contrast, a too low cx could increase the dissolved gas concentrations so much that

CO becomes inhibiting [33, 34]. This results into a narrow operational window, governed

by the mass transfer rate and the biomass concentration. Furthermore, high ethanol
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concentrations could inhibit growth and product formation [35, 36], but might also lead

to increased mass transfer rates by decreasing db [37].

Within the scientific community, there is some variability in understanding of the

gas fermentation product spectrum. So far, usually acetate is regarded as the main ace-

togenic gas fermentation product [38–40], and it is unclear at which conditions high

ethanol specificity prevail, although several influential factors have been identified. For

example, low pH [38], high (extracellular) acetate concentrations [31, 39, 41], addition of

nitrate [42], and specific medium optimisation [43] could enhance the ethanol production

rates. Increased ethanol production rates were obtained in chemostats by increasing the

biomass concentration [44], by increasing the dilution rate [45], or by H2 supplementa-

tion [45, 46]. 2,3-butanediol and lactate can be considered as by-products due to their

low product concentrations (1:10 ethanol) [47]. It should be noted, however, that the

conducted chemostat lab-studies with CO as main electron source never reached the 90%

specificity as is obtained in industry with CO-rich syngas.

Concentration gradients
In industrial-scale continuous or fed-batch bioreactors, spatial gradients in substrate

(e.g., glucose, O2 or CO) concentration are frequently observed. They typically arise

due to poor mixing in the liquid phase and too slow mass transfer from the gas phase

[48, 49]: When mass transfer or mixing are slower than consumption of the gas, then

such gradients are likely to occur [50]. As mixing in lab-scale (∼2 L) is usually much faster,

these gradients are usually identified at industrial-scale (∼500000 L). As most industrial

microorganisms were characterised at lab-scale, and the scaled-up performance was

typically estimated from the lab-scale performance, these concentration gradients got

associated with significant performance losses [51–53]. Studying how these concentration

gradients influence the microbial metabolism (i.e., all the reactions that occur within the

cell [54]) is therefore paramount for successful scale-up.

In large-scale reactors for syngas fermentations, the existence of a spatial dissolved gas

concentration gradient is expected due to the varying hydrostatic pressure, bubble size,

gas fraction and gas composition [32, 55, 56]. From lifeline analysis (i.e., the concentration

variations from the perspective of the microorganism [57, 58]) decreased product yields

and growth rates were expected based on analogy with E. coli [56] in a modelling study.

Currently, there is no (experimental or modelling) information on how the metabolism of

acetogens is affected by the the environmental fluctuations, and thus how these would

influence gas uptake and the product spectrum.

Scaling-up by scaling-down
The existence of concentration gradients has often been related to (unexpected) perfor-

mance losses after scale-up [52], with as consequence that successful bioreactor scale-up

has often been regarded as "both art and science" [59–61].
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One successful scale-up strategy is the “begin with the end in mind”-concept [62, 63].

This implies that lab-scale experiments should consider the industrial environment from

the perspective of the cell. By mimicking the industrial conditions in a so-called scale-

down simulator, the microbial response to these conditions (i.e., temperature, product

concentration, pH, but most importantly, the relevant concentration gradients) can be

assessed [64, 65]. This should, first of all, lead to less surprises while scaling-up but it

can also enable the selection of more resilient microbial strains and the development

of metabolic models [66, 67]. In the scientific literature, no scale-down experiments

have been done for syngas fermentation. Such experiments could determine whether

decreased yields (as mentioned above) would occur and how the cellular metabolism

would respond in terms of product spectrum.

Bioreactor modelling has been proven as a viable tool to design scale-down experi-

ments from the cellular perspective [64, 66, 68]. Despite several drawbacks of modelling,

it is the best alternative as long as large-scale data is unavailable [69].

1.4. The craftsmanship of fermentation modelling
All models are wrong, but some are useful - George Box [70]

Every model is a representation of reality, and it is therefore possible to decide on the level

of reality representation. Typically, implementing more physical and (bio)chemical phe-

nomena increase the model accuracy, at the cost of the model complexity and simulation

time, whereas the model could also be simpler and faster by neglecting more phenom-

ena, and thus limiting the model resolution and accuracy. In fermentation modelling,

one has to decide on simulation purpose (what is its use?), the level of accuracy (which

phenomena should be included?) and resource requirement (how many CPU hours can

we spend, or how long can we wait?). As such personal choices have to be made during

fermentation model development, fermentation modelling should be regarded as a craft.

Fermentation models typically contain sets of balances (of mass, chemical species,

energy and/or momentum) for various phases (gas, liquid, biomass), with transport and

source terms for inter-phase transport and reaction. To solve these balances, assumptions

have to be made on the physical description of the bioreactor and of the microorganism.

Models for gas fermentation bioreactors (e.g., the EL-GLR), have to cover a wide range of

multi-scale phenomena: One should consider the interrelationships between geometry

and operational conditions (e.g., pressure and temperature, gas inflow) of the bioreactor

(at the metre-scale), mass transport from the gas to the broth via the bubbles (at the

millimetre-scale), and gas consumption and product formation by the microorganisms

(at the micrometre-scale). The interactions between phenomena at all these different

scales are visually represented in Figure 1.3.

In this section, the various types of models typically used for modelling bioreactors

and microorganisms will be discussed.
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Models for bioreactors
The reactor model with the lowest amount of complexity is the zero-dimensional ideal-

mixing model. The bioreactor is assumed to be well-mixed, thereby neglecting the

existence of concentration gradients [71]. These models can be complemented by engi-

neering relations for predicting phenomena such as the gas hold-up, bubble diameter,

and the mass transfer rate more accurately [19, 25, 26]. For continuous (chemostat) biore-

actors, these models are typically solved in a steady-state situation, wherein equilibrium

is obtained between the in- and outgoing streams. Models that consider variations over

time (e.g., how is the equilibrium obtained?) are referred to as dynamic models and could

also be used to simulate full batch and fed-batch bioprocesses.

More details can be acquired using one-dimensional convection-dispersion models,

which could predict how variables (e.g., the gas hold-up, mass transfer rate and dissolved

gas concentrations) would vary along height and time, and have often been applied in

bubble column and gas-lift modelling [72–74]. The advantage of these models is that

they are fast: They can be used to estimate liquid and gas flow rates and the resulting

concentration gradients, and allow coupling to detailed metabolic models [75]. Since

these models are only 1D, they do not describe the turbulence inside the bioreactor, nor

lack the fundamental equations to predict a detailed gas and liquid flow pattern inside the

reactor, which is partly responsible for both mass transfer and the concentration gradient.

In contrast, Computational Fluid Dynamics (CFD) models can be used to obtain a

high-resolution flow field in the bioreactor. By dividing the reactor into small volume-

elements (a mesh) the equations for continuity (mass balance), momentum (Navier-

Stokes), turbulence and chemical species transport can be solved. There are many dif-

ferent models for solving multiphase flow behaviour; the Volume of Fluid model (for

separated or stratified flows), the mixture model (approximating multiphase flow pat-

terns by solving only a single momentum equation describing the mixture), and Eulerian

models where separate momentum equations are solved for each phase. A seemingly

large variation of models is available for turbulence modelling. Of these, the RANS k −ϵ
(Reynolds-Averaged Navier-Stokes) model is currently the workhorse for CFD modelling

in large-scale bioreactors, although the more detailed LES (Large Eddy Simulation) mod-

els are gaining popularity [76]. The most detailed model is the DNS (Direct Numerical

Simulation) model, wherein the Navier-Stokes equations are solved explicitly in each

volume element [77].

Environmental dynamics from the cellular perspective can be studied by releasing

virtual, Lagrangian, particles that follow the liquid flow in the bioreactor. These particles

can represent (a package of) individual cells. By coupling the Lagrangian particles with

the Eulerian model, the environmental fluctuations (in for example dissolved gas concen-

tration) can be recorded, resulting into a lifeline. This Euler-Lagrangian model allows us

to record the history of the microbe, while potentially considering the intracellular state

by coupling a metabolic model [58, 78].
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Practical details concerning the modelling setup are provided in later chapters. For an

extensive overview of the equations and underlying model assumptions in CFD modelling,

the interested reader is referred to [77, 79], while for gas-liquid interactions (such as drag,

lift, bubble-induced turbulence, and turbulent dispersion), choices have to be made

dependent on the physical phenomena in the system [80–82].

Models for microorganisms

A black-box model is the simplest model to describe microorganisms. This model assumes

simultaneous import of substrates and product export, using a process reaction, that can

be based on experimentally derived yields, or based on thermodynamics [83, 84]. The

major disadvantage of black-box modelling is that it is unclear what happens inside the

microbe as mechanisms for carbon and electron storage are not included. This hampers

its applicability for predicting the influence of the dissolved gas concentration gradients

on the microbe and its metabolism. One step further is the inclusion of cell maintenance

and growth using the Herbert-Pirt relation [85], wherein substrate uptake can be related

to the substrate concentration using a kinetic equation, with special emphasis to the one

developed by Monod [86], while still assuming an instant equilibrium between the intra-

and extracellular environment.

To predict the metabolic fluxes, genome-scale metabolic models (GEMs) of C. au-

toethanogenum have been constructed [87, 88], and applied to chemostat reactors for

syngas fermentation [45, 46, 89, 90]. Such models are reconstructed from genome infor-

mation, and can be supplemented with experimental data or with an objective and a set

of constraints (Flux Balance Analysis, FBA), to predict intracellular as well as import and

export fluxes, while assuming a metabolic steady-state [54]. One should note that the

selection of the constraints and objective (which could be maximum growth or minimum

uptake) is challenging and condition-specific. Due to the assumption of metabolic steady-

state the applicability of FBA in a dynamic environment is weak, although dynamic FBA

approaches have been suggested that couple FBA outputs to a dynamic extracellular

environment [91]. GEMs usually contain hundreds to thousands of reactions, making

model solving expensive and hamper its ability to couple it with CFD.

In between the black-box and the GEMs are so-called (pooled) kinetic metabolic mod-

els [40, 92–94]. These models do not consider the entire genome or metabolism but focus

on a smaller reaction network, possibly by lumping several metabolic reactions and/or

metabolites into pools. The models are called Cellular Reaction Dynamics (CRD) models,

as they are able to predict the metabolic dynamics in time scales from seconds to days

[94]. They are also called structured metabolic models, while the black-box description is

said to be unstructured [1, 95]. These CRD models can be solved by integrating a more

limited set of differential equations, making it possible to couple it with CFD [78] using

the Lagrangian particle model, and elucidate the impact of substrate gradients on the

metabolism, and on the reactor performance as a whole.
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Population balance modelling has been done to describe population heterogeneity.

For example, such a model was used to describe the variations in µ among a cell popula-

tion in a bioreactor [96], and has been coupled to a µ-dependent intracellular model at

various scales [97]. Although these models can be used to predict variations in one or two

states, they cannot be used to gather intracellular details as in CFD-CRD modelling [66].

The first CFD-CRD coupling was published in the noteworthy works of Lapin et al.

[58, 98], and was applied later on to industrial-scale fermentations [99, 100]. Since

then, many reviews and perspective papers have exemplified the use of this method

[63, 66, 67, 101, 102], but the actual execution seems to be challenging given the lack

of actual research output using this method. The challenge probably arises due to the

complexity of CFD modelling, and difficulties on developing trustworthy kinetic pool

models.

1.5. Thesis scope and outline
The liquid phase concentrations of the dissolved gases, biomass and products are at centre

of the complex multi-scale interrelationships in bioreactors. Figure 1.3 clearly shows

them at the intersection between the reactor physics and the microorganism, depicting

that they are fundamental parameters for bioprocess performance and scale-up.

This work explores the multi-scale interactions between bioreactor, bubbles and

bacteria in the context of gas fermentation and how these should be addressed for scale-

up, considering the concerns raised in Section 1.3 (i.e., low mass transfer rates, low

(ethanol) productivity, the dissolved gas concentration gradient and the lack of scale-

down studies). This will be done in a step-by-step fashion, by gradually zooming in (and

sometimes out) on an industrial-scale EL-GLR, while aiming to answer the following

questions in the end:

• What are the factors that should be considered to achieve sufficient mass transfer

rates for successful operation of a commercial-scale gas fermentation process?

• What is an effective way to represent industrial-scale gas fermentation conditions

at bench-scale?

• What is the influence of the dissolved gas concentration and its gradient on the

metabolism and product spectrum of C. autoethanogenum?

The common engineering correlations used to describe gas-to-liquid mass transfer [25],

significantly underpredicted the required mass transfer rate for commercial-scale oper-

ation (see Appendix 7.6, Table 2.1), highlighting the scientific concern regarding mass

transfer in gas fermentation scale-up. The factors that could induce sufficient mass trans-

fer in an industrial-scale EL-GLR will be investigated in Chapter 2. This will be done by

developing and validating a CFD model which could describe the gas and liquid flow

inside a pilot-scale external-loop airlift bioreactor. This model will then be applied in the
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large-scale EL-GLR and used to test strategies to obtain commercial-scale mass transfer

performance.

In Chapter 3, the identified strategies (or: hypotheses) from Chapter 2 to obtain high

mass transfer rates in the EL-GLR will be tested in a lab-scale bubble column. First, the

influence of the produced ethanol and its concentration on the bubble size distribution

and the kL a will be studied. Next to this, the fermentation medium (containing salts

and vitamins) and the whole broth (containing biomass will be studied. By determining

the physical properties of each mixture (surface tension σ, viscosity η and density ρ) the

accuracy of the empirical mass transfer correlations will be assessed.

After understanding how high mass transfer rates could be obtained, it will be stud-

ied how the biomass concentration relates to gas uptake rates (and thus productivity)

and the dissolved gas concentration gradient in Chapter 4. This will be done by imple-

menting a mass transfer model and a Monod-type, black-box, kinetic model for CO and

H2-uptake in C. autoethanogenum in the CFD framework developed in Chapter 3. From

Euler-Lagrangian simulations, a scale-down simulator will be proposed to replicate the

industrial-scale environment at lab-scale. The developed scale-down simulator should

enable experimentalists to study the influence of the dissolved gas concentration gradient

on cellular metabolism.

The impact of the dissolved gas concentration and its gradient on the cellular metabolism

and the product spectrum will be investigated in Chapter 5. Here, a metabolic kinetic

model of C. autoethanogenum will be coupled to the CFD model developed in the previ-

ous chapters. This will enable a full coupling between the phenomena in the bioreactor

and the metabolism (see Figure 1.3). It will be studied how high ethanol production

rates may be obtained and how that is influenced by multi-scale (from hydrodynamic to

enzymatic) phenomena.

After wrapping up our results in Chapter 6, the research questions will be answered.

Perspectives towards future work will be provided in Chapter 7.

Please keep seated for an amazing journey from bioreactors to bubbles to bacteria, across

the wonderful world of gas fermentation!







Chapter 2
Hydrodynamics and mass transfer in

external-loop gas-lift reactors

Perfect is the enemy of good

Voltaire

This chapter has been published as:

Puiman, L., Abrahamson, B., Van der Lans, R. G. J. M., Haringa, C., Noorman, H. J., & Picioreanu, C. (2022).

Alleviating mass transfer limitations in industrial external-loop syngas-to-ethanol fermentation. Chemical

Engineering Science, 259, 117770.
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Abstract
Mass transfer limitations in syngas fermentation processes are mostly attributed to poor

solubility of CO and H2 in water. Despite these assumed limitations, a syngas fermenta-

tion process has recently been commercialised. Using large-sale external-loop gas-lift

reactors (EL-GLR), CO-rich off-gases are converted into ethanol, with high mass transfer

performance (7 – 8.5 gL−1 h−1). However, when applying established mass transfer corre-

lations, a much poorer performance is predicted (0.3 – 2.7 gL−1 h−1). We developed a CFD

model, validated on pilot-scale data, to provide detailed insights on hydrodynamics and

mass transfer in a large-scale EL-GLR. As produced ethanol could increase gas hold-up (+

30%) and decrease the bubble diameter (< 2 mm) compared to air-water mixtures, we

found with our model that a high volumetric mass transfer coefficient (650 – 750 h−1) and

mass transfer capacity (7.5 – 8 gL−1 h−1) for CO are feasible. Thus, the typical mass transfer

limitations encountered in air-water systems can be alleviated in the syngas-to-ethanol

fermentation process.

Graphical abstract
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2.1. Introduction

T he conversion of waste gases by synthesis gas (syngas) fermentation has advanced

to industrial scale in the last decade. In this process, a gas mixture containing CO,

CO2 and H2 can be converted by microbes (predominantly Clostridium spp.) into a range

of chemicals, e.g., acetic acid, ethanol, acetone and isopropanol [103]. The company

LanzaTech has been able to commercialise the process of converting CO-rich off-gases

from steel-mills into ethanol. Currently they deploy ethanol production facilities in China,

while expanding their manufacturing network to other countries [8, 10, 103].

Details of the full-scale operation are unknown in the scientific literature due to the

proprietary nature of this process. It is expected that syngas conversion takes place in a

gas-lift reactor with an external circulation loop [104]. This reactor configuration, also

known as the external loop gas-lift reactor (EL-GLR) is like a conventional air-lift loop

reactor as applied in waste-water treatment and industrial bioprocesses. Compared to

the more established bubble column reactors (BCRs), in external-loop airlift reactors

(EL-ALRs) there is forced liquid recirculation (potentially but not necessarily via pump

action) through the downcomer (the external-loop), causing high liquid velocities, a more

defined (plug) flow pattern and a shorter mixing time [20, 105]. The external-loop might

also be used for heat exchange, introduction of fresh feed and broth withdrawal [106].

The increased liquid velocity in the riser is known to decrease the gas residence

time and thus the gas hold-up (εG ) and the volumetric mass transfer coefficient (kL a)

compared to a bubble column [107, 108]. At the same time, gas-liquid mass transfer

is generally known to be one of the limiting factors in syngas fermentation processes

[2, 22, 23, 109, 110]. For industrial ethanol production, it was determined that a kL a of at

least 580 h−1 should be reached for commercial success [111]. Our preliminary calcula-

tions, based on publicly available data reported by LanzaTech, show that a mass transfer

capacity (MTC ) of 7 – 8.5 gL−1 h−1 should be reached, which results in a kL a between 600

and 750 h−1, based on a headspace pressure of 1 bar and 50% CO in the inlet gas (Figure

A.1).

For estimation of kL a in air-water systems, many relationships have been provided in

the literature for different reactor types [25]. With these relations the most likely kL a was

estimated at industrial conditions and compared to the kL a from our preliminary calcula-

tions (Table 2.1), resulting into a MTC between 0.3 and 2.7 gL−1 h−1. A clear discrepancy

between the kL a obtained by these relations and the supposed industrial performance

was found, as all engineering correlations predict a substantially lower kL a. Although

it is widely known that electrolytes, organic molecules (such as the produced ethanol),

biomass, and the reactor geometry influence kL a [25, 26], the impact of these factors

are not comprehensively considered with the correlations in Table 2.1. Furthermore,

empirical relations obtained for ALRs were derived at smaller scales and their validity

for larger scales bears uncertainties. The non-standard reactor geometry and irregular

flow pattern in industrial reactors complicate the prediction of the mass transfer per-
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Table 2.1: Relationships used for the prediction of kL a in Newtonian media in a large-scale EL-GLR, as well

as typical kL a values for industrial operation. See Tables A.1 and A.2 for the meaning, units and calculation

of variables in these equations. The empirical correlations were developed for air-water systems, and would

require a small correction (around 5% lower) for CO due to its lower diffusion coefficient compared to oxygen

[113].

Reference Equation kL a (h−1)

LanzaTech estimation (Figure A.1) 600 – 750

Empirical correlations

External-loop airlift

Bello et al. [114] kL a = 0.76 ·
(
1+ Ad

Ar

)−2 ·u0.8
G ,s ∼130

Chisti et al. [115] kL a = εL

(
1+ Ad

Ar

)−1
u0.899

G ,s · (0.349−0.102csolids) ∼40

Chisti and Moo-Young [105] kL a = 1.27 ·10−4 ·
(

PG
VD

)0.925 ∼75

Bubble column

Deckwer et al. [72] kL a = 0.5 ·u0.884
G ,s ∼80

Deckwer et al. [116] kL a = 0.467 ·u0.82
G ,s ∼90

Jackson and Shen [117] kL a = 0.53 ·u1.15
G ,s ∼30

Heijnen and Van’t Riet [26] kL a = 0.32 ·u0.7
G ,s ·1.024(T−293) ∼140

Dimensionless relations

Akita and Yoshida [118] (Sh) a ·Dr = 0.6Eo0.62Ga0.3Sc0.5ε1.1
G ∼170

Nakanoh and Yoshida [119] (Sh) a ·Dr = 0.09Eo0.75Ga0.4Sc0.5F r 1 ∼230

Kawase et al. [120] (Sh) a ·Dr = 0.452Eo0.62Ga0.3Sc0.5F r 1Re1 ∼15

Uchida et al. [121] (Sh) a ·Dr = 0.17Eo0.62Ga0.3Sc0.5ε1.1
G ∼50

Vatai and Tekić [122] (Sh) a ·Dr = 0.031Eo0.75Ga0.4Sc0.5F r 1 ∼80

Kawase and Hashiguchi [123] (Sh) a ·Dr = 0.142Eo0.6Sc0.5F r 0.075Re0.875
(
1+ Ad

Ar

)−97/80 ∼170

formance using common correlations, which are normally valid for a narrow range of

conditions and were derived in shorter columns (influencing uG ,s ) while assuming ideal

mixing. Spatio-temporal variations complicate the a priori estimation of εG , kL a and

MTC as particular geometry configurations strongly influence the hydrodynamics in

ALRs (e.g., riser width/height, separator dimensions and the particular connection of the

downcomer). For example, while the liquid and gas velocities are expected to be high in

the riser, these should decrease in the wider separator section in the top of the vessels

and consequently increase the local εG [112].

Several models have been developed to describe hydrodynamics of pilot- and full-

scale airlift bioreactors. The model by Van der Lans [74] predicted the axial mean values

of liquid circulation velocity and gas fraction in a pilot-scale external-loop bioreactor

well. Van Benthum et al. [124] modelled three-phase hydrodynamics (liquid velocity, gas

and solid hold-up) in a biofilm airlift suspension extension reactor, wherein the liquid

velocity in a gas-free downcomer is controlled independently from the gas flow velocity.

While neglecting spatial variations of gas, liquid and solids concentrations in the internal
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Table 2.2: The different relations that are used for predicting the liquid-side mass transfer coefficient, kL .

Eq. Reference Equation

Bubble-based models

(2.1) Higbie [127] kL = 2

√
DL,CO
πte

= 2

√
DL,COvslip

πdb
db > 2 mm [26]

(2.2) Calderbank and Moo-Young [128] kL = 0.42
(
∆ρvL g
ρL

) 1
3

( DL,CO
vL

) 1
2

Non-rigid bubbles

Eddy-based models

(2.3) Kaštánek [129] kL = 2

√
DL,CO
πte

= 1.13DL,CO
1
2

(
ϵ/νL

) 1
4

Theoretical

(2.4) Linek et al. [130] kL = 0.45DL,CO
1
2

(
ϵ/νL

) 1
4

Empirical

(2.5) Lamont and Scott [131] kL = 0.4DL,CO
1
2

(
ϵ/νL

) 1
4

Empirical

(2.6) Kawase and Moo-Young [132] kL = 0.3DL,CO
1
2

(
ϵ/νL

) 1
4

Empirical

regions, the model was well able to predict the pilot-scale hydrodynamics. Earlier, Heijnen

et al. [125] described the liquid circulation velocity and gas hold-up in an industrial-scale

biofilm internal-loop airlift suspension reactor, based on mass and momentum balances.

This model is applicable to three hydrodynamic regimes: gas-free downcomer (regime 1),

entrained gas in downcomer (regime 2) and gas back-circulation via downcomer (regime

3). We argue that in the LanzaTech case, operation in regime 1 or 2 may be preferred

compared to regime 3 as the latter could reduce the CO partial pressure and thus its

saturation concentration in the riser.

Convection-dispersion and tanks-in-series (1D) models have been proposed to under-

stand mixing and mass transfer phenomena in small-scale airlift reactors [126], but it is

unclear how the flow pattern deviates from these simple mixing models for the large-scale

EL-GLR. It is generally known that large-scale BCRs show high axial dispersion coefficients

[26] but that EL-ALRs studied at lab and pilot-scale display more plug-flow behaviour

[108]. As the axial dispersion behaviour is unclear in an industrial EL-GLR, the convection-

dispersion models turned out to be unsuitable for the prediction of the large-scale flow

pattern and gas-liquid mass transfer rates. Furthermore, several relations have been

developed to describe the mass transfer coefficient kL , based on local conditions such as

the slip velocity and the eddy dissipation rate (Table 2.2). These relations require a high

spatial resolution, which cannot be provided by the 0D and 1D models.

With 3D computational fluid dynamics (CFD) models a high spatio-temporal resolu-

tion can be obtained, albeit with a much greater computational effort than when applying

simple mixing models. For EL-ALRs, several authors used CFD to study the hydrodynam-

ics and the mixing behaviour [133–135]. Hydrodynamics and oxygen mass transfer in a

lab-scale sectionalized EL-ALR has been studied recently; it was demonstrated that the

kL a predicted with Equation 2.5 (Table 2.2) matched the experimental data better than

predictions from Equation 2.1 and 2.3 [136]. Similar work was done earlier, wherein it was
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observed that Equation 2.3 showed a strikingly good agreement with experimental results

[137]. Most of these models were developed for lab and pilot-scale EL-ALRs, with riser

diameters smaller than 0.14 m, where wall effects can be significant [105].

A CFD model for syngas fermentation in a BCR with a population balance model

for the gas phase was developed recently [56]. Low kL a values and thus low CO transfer

rates, low dissolved CO concentrations and low CO uptake rates were obtained as more

than 50% of the bubbles had a relatively high bubble diameter (db > 8 mm). Several one-

dimensional models have been presented for syngas fermentation in large-scale BCRs as

well. de Medeiros et al. [138] developed such a model for the optimisation of different pro-

cess conditions. They determined that strategies needed to be obtained to enhance the

kL a with at least a factor three, relative to air-water correlations, to decrease the minimum

ethanol selling price to $0.7/L and reach high (70%) thermodynamic efficiency. Another

BCR model was coupled with a black-box stoichiometric model for C. autoethanogenum

based on thermodynamics in order to estimate the ethanol productivity in such a reactor.

High productivities were obtained 4.25 gEtOH L−1 h−1, but this was at the expense of the

gas utilisation (only 17%) as high gas flow rates were used [32]. In another 1D model, with

kinetics reported by LanzaTech, a genome-scale metabolic model for a proprietary C.

autoethanogenum strain was coupled to bubble column hydrodynamics. In their model

kL a and microbial CO uptake rate varied axially between 350 and 425 h−1 and 0 and

7 gL−1 h−1, respectively, by assuming db below 1.5 mm and constant kL of 1×10−4 ms−1

[55]. However, detailed analyses how the low db and high MTC could be accomplished in

industrial reactors are lacking.

Thus far, no CFD model has been developed for describing the hydrodynamics and

CO mass transfer in a large-scale external-loop gas-lift reactor, for studying the required

conditions to minimise the gas-liquid mass transfer limitations in an industrial syngas

fermentation process. Next to that, the results of such a model would provide information

to be used for subsequent reactor design and optimisation. The model that we have

developed in this study for hydrodynamics and mass transfer in an EL-ALR was first

tested and validated by comparing local axial gas and liquid flow velocities in the riser and

the downcomer, gas hold-up, and turbulence intensity with pilot-scale results obtained

by Young et al. [139]. Then, using the same model equations, the large-scale EL-GLR

hydrodynamics and gas transfer were simulated and compared with correlations and

observations from literature. For varying bubble diameters (between 1 and 7 mm), higher

temperatures and gas hold-up, and a range of headspace pressures, kL a and MTC were

determined using different relations (Table 2.2), in order to establish the best operation

window for high industrial performance.
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2.2. Methods
Reactor geometry and mesh
In this work, two reactor geometries were considered: A pilot-scale geometry to com-

pare CFD model predictions with experimental results and a full-scale reactor for the

subsequent mass transfer study. The hydrodynamic CFD model was applied to data ob-

tained by Young et al. [139] for a pilot-scale external-loop reactor (2.95 m high, riser and

downcomer diameter of 19 and 14 cm, 260 L reactor volume, 160 L liquid volume). This

reactor configuration was chosen as it was found that the gas hold-up was independent

of the riser diameter when wider than 14 cm [105]. The 3D geometry was developed using

ANSYS Design Modeller. A polyhedral mesh (400000 cells, 0.27 minimum orthogonal

quality) with a higher resolution in the dispersed-phase domain was developed in ANSYS

Meshing (Figure A.2).

The dimensions of the industrial-scale reactor were estimated from openly available

pictures of the Shougang-LanzaTech plant (Figure 1.2), and are schematically represented

in Figure 2.1. The 3D geometry has been developed using cylindrical bodies, with a ring

sparger [139] mounted at 0.1 m above the reactor base. The total volume of the reactor

equals 840 m3, with an ungassed liquid volume of 565 m3, which roughly corresponds to

the 500 m3 volume presented by LanzaTech [10]. A mesh with 370,000 polyhedral cells, 0.3

minimum orthogonal quality, 20 cm cell size and three refined boundary layers near all

walls (including sparger), was constructed in Fluent Meshing. A mesh refinement study

done using meshes with 1.6 and 1.9 million cells established that the 370,000-cell mesh

was sufficient for determining kL a and MTC within 10% accuracy (Figure A.2, Table A.3).

Fluid dynamic model
The transient gas-liquid flow was computed within ANSYS Fluent 2020R1 with the Eule-

rian multiphase flow model, with implicit volume fraction formulation, dispersed RNG

k-ϵ turbulence model, which is the recommended choice for bubble column modelling

[140], and standard wall functions. The forces involved in the two-phase interaction

were surface tension (continuum surface force), drag (Fluent’s universal-drag model)

and gravity. A model with a similar set of forces was used before for syngas fermentation

modelling in BCRs [56].

In the pilot-scale ALR, mean air bubble diameters ranged from 4 to 6 mm [139], there-

fore as dispersed phase 5 mm bubbles were modelled. For the large-scale reactor, the

mean bubble diameter is unknown and could range between 1 and 7 mm, based on the

liquid properties and operating conditions [26]. Because coalescence inhibition can be

expected due to the salt and ethanol-rich fermentation broth, 3 mm bubbles were mod-

elled in the large-scale hydrodynamic model, according to [141], by assuming a sparger

orifice size of 0.75 mm.

A mass-flow inlet was used on the sparger surface at the bottom of the reactor, pro-

viding a fixed mass flow rate of gas (Table 2.3). A pressure-outlet with gas backflow was
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Figure 2.1: Schematic representation of a) the industrial-scale external-loop gas-lift reactor and b) the sparger

geometry. The wavy line represents the initial (ungassed) liquid height. All dimensions are in meters.

assumed at the top of the column, with the headspace pressure of 101 kPa in both reac-

tors. Sensitivity analyses were done with 304 kPa and 608 kPa headspace pressure for the

large-scale reactor. Boundary conditions considered a turbulence intensity of 5% and the

local vessel diameter. To all the walls standard no-slip conditions were assigned.

As the precise liquid medium properties are unknown due to the presence of variable

concentrations of cells and ethanol, the properties of water at 25◦C were assumed for the

liquid phase (Table 2.4). Gas density differences were accounted for using the ideal gas

law. Both reactor models contained a gas headspace, by initialising the headspace gas

fraction to be 1.
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Table 2.3: Values uses for the mass flow inlet boundary condition in the various models. The superficial gas

velocity for the EL-GLR was calculated by determining the gas flow rate (m3 s−1) using the local pressure at the

sparger (Table A.1). For scale comparison, the gas mass flow per volume liquid is provided.

Superficial gas-velocity Mass flow per volume liquid Mass flow inlet

(cms−1) (kgm−3
L s−1) (kgs−1)

Pilot-scale reactor

0.96 2.37×10−3 3.96×10−4

2.1 5.19×10−3 8.66×10−4

4.7 1.14×10−2 1.90×10−3

8.4 2.04×10−2 3.4×10−3

Industrial-scale reactor

2.8 3.73×10−3 2.11

Table 2.4: Parameters used in the CFD models.

Symbol Description Pilot-scale Industrial-scale Unit

g Gravitational acceleration -9.81 -9.81 ms−2

T Temperature 293.15 310.15 K

p0 Operating pressure 101325 101325 Pa

db Bubble diameter 5×10−3 3×10−3 m

σ Surface tension 0.072 0.072 Nm−1

Gas phase air syngas

ρG Gas density ideal gas law ideal gas law kgm−3

ηG Gas viscosity 1.78×10−5 1.72×10−5 kgm−1 s−1

yCO,in Inlet mole fraction - 0.5 molCO mol−1
G

Liquid phase water water

ρL Water density 998 998 kgm−3

ηL Liquid viscosity 1×10−3 1×10−3 kgm−1 s−1

Mass transfer model
The mass transfer studies in the large-scale bioreactor were performed after a statistically

stationary ("steady") flow field was established (after 1000 seconds simulation time, using

3 mm bubbles). For an additional 200 s, dynamic flow data was exported every second for

time-averaging and processed in Tecplot 360 EX 2018 R1. Based on the computed flow

field, kL a and MTC were calculated via six different relations for kL (Table 2.1). Spherical

bubbles were assumed because of the small bubble diameter and bubble-stabilizing

effects of dissolved solutes (Equation 2.7) as well as a linear gradient in axial gas phase

CO mole fraction yCO (considering 90% CO conversion (Figure A.1)) (Equation 2.8). The
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Table 2.5: Parameters used for mass transfer calculations.

Symbol Description 20 ◦C 37 ◦C Unit Source

νL Kinematic viscosity 1.018×10−6 7.121×10−7 m2 s−1 Reid et al. [142]

DL,CO CO diffusion coefficient 1.78×10−9 2.71×10−9 m2 s−1 Cussler [143]

HCO Henry coefficient 2.93×10−7 2.29×10−7 kgm−3 Pa−1 Sander [144]

impact of the bubble size was studied in the 1 – 7 mm range. The influence of the operating

temperature was considered as it affects the liquid viscosity, CO diffusion coefficient and

Henry constant (Table 2.5). For the calculation of MTC , microbial CO uptake kinetics

are not required, instead a dissolved CO concentration of 0 gL−1 was assumed in all grid

cells.

MTC = kL a · csat
L,CO = kL · 6εG

dbεL
·HCOpyCO (2.7)

yCO(z) =− (yCO,in −0.9yCO,in)

hD
z + yCO,in (2.8)

Model solution
The transient models were solved using ANSYS Fluent 2020R1. For the pilot-scale models,

a time step of 0.01 s was used with a maximum of 30 iterations per time step, wherein the

residuals decreased to O(10−3). The results presented here were obtained by storing flow

data at the positions mentioned by Young et al. [139] every 0.01 s, starting at 50 s (when a

steady flow field was reached) until 110 s flow time.

For the industrial reactor, the time step dt was gradually increased from an initial

0.01 s until 0.65 s, dt = 0.025 s until 3 s, dt = 0.05 s until 5 s and dt = 0.1 s from 5 seconds

on. This time-stepping strategy was required to keep solution convergence (residuals

< O(10−3)) within 10 – 25 iterations per time step, and found to be crucial to achieving

convergence near the mesh-refined sparger location. The solution methods, spatial dis-

cretization and relaxation factors for both reactor models are given in Table A.4.
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2.3. Results and discussion
In this section, the flow pattern predicted by the CFD model will first be compared with

the pilot-scale data obtained by Young et al. [139] (section 2.3.1). After this, the results

at the large-scale are discussed (section 2.3.2) in terms of the gas hold-up, flow pattern

and hydrodynamic regime. Then, results on mass transfer and strategies for relieving the

gas-liquid mass transfer limitations will be discussed (section 2.3.3), before we sketch the

implications of this research in the outlook (section 2.3.4).

2.3.1. Pilot-scale flow pattern
The computed liquid velocity in the riser was compared with the velocity profiles along

the radius obtained experimentally by Young et al. [139] (Figure 2.2). The computed mean

liquid velocity in the riser approximates the measured one with maximum deviations

of 36% (Table A.5). However, the computed velocity gradients along the column radius

were consistently smaller (i.e., flatter velocity profiles) than those measured (i.e., showing

usually a sharp maximum at the axis at r /R = 0). The radial profiles of the turbulence

intensities in both the riser and downcomer are quite similar to the data, but the model

underestimates the turbulence intensity in the riser, while overestimating in the down-

comer. This is probably a result of the simplified set of forces considered in the model. Roy

et al. [135] were able to model the radial liquid velocity profile by using the standard k-ϵ

model and taking the turbulence dispersion and lift forces into account, together with a

conveniently chosen bubble size. On the other hand, liquid velocity measurement errors

up to 10% for the riser were noted from a liquid phase mass balance by Young et al. [139],

which could possibly explain part of the deviation between model and measurements.

The (gas-free) downcomer velocity profile, however, showed good correspondence, as well

as the profiles predicted for the gas hold-up and gas velocity. The trends for increasing

superficial gas velocities were modelled correctly for all variables.

By simulated injection of a liquid tracer (with the same properties as water) just

above the sparger, it was determined that the model can predict the typical circulating

liquid mixing behaviour as often shown in airlift reactors [105, 145]. The tracer concen-

tration profile over time ct extracted from the CFD simulations was normalised with the

final (steady state) concentration ct ,∞. This normalised tracer concentration over time

t was fitted with Equation 2.9 [105] expressing the fluctuations of concentration over

a normalised time θ (θ = t/tc , with tc the circulation time), as function of the Boden-

stein number (Bo = uL,axLc /Dax with Lc the circulation length and the axial dispersion

coefficient Dax).
ct

ct ,∞
=

(
Bo

4πθ

)1/2 ∞∑
n=1

exp

[−(n −θ)2Bo

4θ

]
(2.9)

In this way, Bo and tc for the EL-ALR were determined at several locations in the

reactor (Figure 2.3). The model predicted Bo values around 45, which are typical esti-

mations for Bo in an ALR [146, 147], indicating the dominance of the plug-flow in the
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Figure 2.2: Comparison of radial profiles obtained by experiments in a pilot-scale EL-ALR [139] (filled circles)

and mean values of CFD results (open circles with dashed lines) for different uG ,s (8.4 (blue), 4.7 (black), 2.1

(red) and 0.96 cms−1 (cyan). a) the axial liquid velocity in the riser (uL,ax), b) the axial liquid velocity in the

downcomer (−uL,ax), c) the axial gas velocity in the riser (uG ,ax)), d) the turbulence intensity in the liquid in the

riser and e) downcomer, and f) the gas hold-up in the riser. Error bars: the standard deviation of the CFD results

during 60 s simulation time (data stored every 0.01 s).

reactor. A mean circulation time of about 7.6 s resulted from the tracer model with a uG ,s

of 8.4 cms−1.

Considering that most of the flow parameters were determined to be within a 25%

range of experimental values (Table A.5) and the good correspondence with mixing theory,

we considered the model appropriate for engineering calculations. Furthermore, the

most important variable concerning mass transfer, the gas hold-up, was reasonably well

predicted. In order to be sure that the radial liquid velocity profile is properly predicted, it

will be compared with theoretical predictions for this profile in large-scale EL-ALRs in the

upcoming section.
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Figure 2.3: The normalised concentration of a tracer obtained from the CFD model (black lines) and concentra-

tion according to the axial dispersion model for ALR (Equation 2.9) (red lines), compared at four locations in the

pilot-scale reactor. For all locations, the Bodenstein number was ∼45 with the root-mean-square-error (RMSE)

smaller than 0.1. The CFD data has been obtained at uG ,s of 8.4 cms−1.

2.3.2. Large-scale flow pattern
In this section, the results of the large-scale reactor CFD model are presented. First, its

ability to predict the gas fraction is discussed, since this is a key variable regarding mass

transfer. Then the gas and liquid velocity-fields are analysed in detail. Lastly, the radial

profiles of the liquid velocity in the riser and the observed time-variations are discussed.

The simulated gas hold-up in the EL-GLR was on average 0.13 at a superficial gas

velocity of 2.8 cms−1. This value was in good agreement with the values obtained from

several correlations available in literature for BCRs and EL-ALRs (Table 2.6).

The local values of the instantaneous gas hold-up (Figure 2.4a) were averaged in time

over 200 seconds (Figure 2.4c). The CFD simulations indicate that at the bottom of the

reactor, the freshly sparged gas is strongly pushed towards the wall of the riser, which

might result in bubble coalescence, by the liquid exiting the downcomer. This is also

visible in the liquid flow patterns (Figure 2.4b, d). When the gas is pushed towards the left

side, the local liquid velocity increases, creating a circulation loop around the downcomer

outlet. Similar behaviour has been observed experimentally for bottom-plate spargers

Table 2.6: The 200 s time- and volume-averaged gas hold-up εG determined by CFD in the EL-GLR, riser and

downcomer, compared with values from established correlations. The values of uG ,s,r and uL,s,r used in the

correlations were the averages of the time-averaged axial superficial velocities computed in six horizontal planes

across the riser. 1: v∞
b = 0.25 ms−1, 2: Lcon = 0.5 m and Ld = 19.5 m. Other parameters in Table A.1.

Study Reactor type Equation εG

This study EL-GLR 3D CFD model 0.126

Zuber and Findlay [148] 1 BCR εG ,r = uG ,s,r
1.08

(
uG ,s,r +uL,s,r

)+v∞
b

0.137

Heijnen and Van’t Riet [26] 1 BCR εG ,r = uG ,s
v∞

b
(homogeneous flow) 0.112

Chisti and Moo-Young [105] EL-ALR εG ,r = uG ,s,r

0.24+1.35
(
uG ,s,r +uL,s,r

)0.93 0.124

Bello et al. [114] EL-ALR εG = 0.16
( uG ,s,r

uL,s,r

)0.56 (
1+ Ad

Ar

)−1
0.149

Choi and Lee [149] 2 EL-ALR εG ,r = 0.288u0.504
G ,s,r

(
Ad
Ar

)−0.098 (
Lcon
Ld

)−0.094
0.112
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[105] and also from CFD models developed for different EL-ALRs [135].

Halfway the riser the instantaneous gas hold-up shows an asymmetric distribution

(Figure 2.4a), while the time-averaged gas hold-up (Figure 2.4c) is more symmetrical with

high values along the riser axis, indicating an oscillating gas plume. This is also apparent

from the velocity plots, with liquid moving back and forth between the sides (Figure

2.4b). Such oscillating behaviour has been observed experimentally in internal-loop

airlift reactors [150]. However, by time-averaging these movements cancelled-out and

a quasi-symmetric velocity profile was obtained (Figure 2.4d). While the liquid mostly

rises, the negative values observed near the riser wall indicate a certain degree of back-

mixing, which has also been observed experimentally in ALRs [20, 151]. This internal

liquid recirculation contributes to the overall mixing in the riser and creates axial and

radial dispersion.

Approaching the gas-liquid separator at the top of the riser, the gas hold-up tends

to increase as gas expansion (decreasing hydrostatic pressure) and the wider separator

diameter (decreasing the local liquid velocity) increase the gas residence time. This par-

ticular section of the reactor could become advantageous for mass transfer because the

expected lower CO saturation concentration (due to the lower hydrostatic pressure and a

lower CO fraction in the gas) can be compensated by the increase in gas hold-up.

Just above and in the downcomer inlet, high εG as well as high liquid flow velocities

were predicted. While the liquid flow is directed horizontally and downwards, the bubbles

dragged into the downcomer will rise. This causes a sharp separation between gas and

liquid and consequently high εG . Similar behaviour was found by modelling EL-ALRs

with comparable geometry [133, 134, 137]. Degassing geometries might prevent the gas

to flow into the downcomer [152]. At the left side of the downcomer, the drag by the liquid

and buoyancy of the gas bubbles are in equilibrium and therefore a stable gas hold-up is

obtained over time (Figure 2.4c). This corresponds to the second gas entrainment regime

[125], wherein the gas bubbles entrained in the downcomer do not reach the bottom and

only partially fill the downcomer. Higher local gas hold-up in the downcomer close to the

riser wall was also observed in internal-loop airlift reactors [153].

The question emerges on how high the recirculation through the downcomer is in the

EL-GLR compared with the internal recirculation in the riser. From the velocity field it was

determined that, in this particular reactor geometry, about 14% of the liquid goes down

via the downcomer while the rest flows downwards near the riser walls. This indicates

that axial mixing in the riser is significant and plug-flow behaviour cannot be assumed

for the liquid phase. Although the downcomer appears to be poorly used for the liquid

circulation in the studied operation regime, it clearly increases the liquid flow rates in

the riser compared to a bubble column (with zero net axial liquid velocity). Such results

highlight the added value of CFD predictions as this behaviour could not be predicted

with simpler 1D models.
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Figure 2.4: Surface plots in the y z-plane (x = 0) of the EL-GLR (uG ,s = 0.028 ms−1). a), b) gas hold-up and

liquid velocity magnitude at a certain moment in time after establishing the flow field (t = 1100 s), with arrows

indicating the velocity vectors. c), d) gas hold-up and axial liquid velocity averaged over 200 s.
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Figure 2.5: Radial profiles for the axial liquid velocity in the EL-GLR (with uG ,s = 0.028 ms−1). Open circles: 200

s time-averaged mean velocities; error bars: time-variations observed via the standard deviation; dashed lines:

parabolic profile calculated with Equation 2.10.

In the pilot-scale model, a parabolic velocity profile was not observed (Figure 2.2)

therefore the large-scale model needed to simulate local axial and radial velocity varia-

tions. At several heights in the riser, the profile of axial liquid velocity along the whole

riser diameter was calculated over time, then compared with a parabolic profile (Equation

2.10, Figure 2.5) characteristic for BCRs and ALRs [154]. Both parameters of the parabolic

profiles, velocity at the riser axis uL,ax(r = 0) and superficial liquid velocity uL,s,ax, were

taken from time-averaged CFD results.

uL,ax(r ) = (
uL,ax(r = 0)−uL,s,ax

)(
1−2

( r

R

)2
)
+uL,s,ax (2.10)

At the lower locations (5.1 m and 7.4 m) the liquid velocity profile is skewed towards the

left side, due to the liquid entering from the downcomer. However, the liquid velocity

profile shifts towards the central axis at higher locations in the riser, where it matches the

proposed parabolic profile. It should be noted that there are large time-variations, which

should be taken into account when analysing mass transfer in EL-GLRs, for example by

time-averaging for 200 s (Figure A.3).

Many phenomena found at pilot-scale were also predicted by the simulations to occur

in the large-scale external-loop reactor. Moreover, the predicted overall gas hold-up and

liquid flow velocities showed a good match with literature relations. From all these indica-

tors it can be concluded that with a CFD model the large-scale hydrodynamic behaviour

can be described properly. With this hydrodynamic model, subsequent calculations on

kL a and MTC will be performed and are discussed in the next section.



Results and discussion

2

33

2.3.3. Mass transfer
Gas fermentation processes are developed towards a multitude of products, e.g., acids,

alcohols, ketones, glycols, aromatics, dienes, esters and terpenes [8]. Although the litera-

ture is very scarce on their influence on mass transfer in fermentation broths, it is known

that hydrophilic products inhibit bubble coalescence in water, thereby decreasing the

Sauter mean bubble diameter (d32) [37], and increasing kL a [155]. In a pilot-scale bubble

column (3 m high, 20 cm width), Keitel and Onken [37] found decreases in d32 from 4 to 1

mm and doubling of εG from 2 to 4%, for a variety of alcohols. By increasing hydrophobic

chain length, stronger effects (i.e., occurring at lower concentrations) were reported, for

d32, εG , and kL a [37, 155]. Similar results (<1 mm bubbles and highly increased εG ) in tall

bubble columns were obtained with ethanol [156–159], while Krishna et al. [160] found

that the ethanol stabilises the homogeneous flow regime (i.e., bubbly flow at higher uG ,s ).

In ALRs, however, organics increased εG up to a modest 30% [161, 162]. The smaller

influence of organics on εG in ALRs compared to BCRs was explained by, amongst others,

the higher velocities of the axial liquid flow [107]. The expected ethanol concentration in

the LanzaTech reactor (50 gL−1) [111] is much higher than the minimum concentrations

for coalescence inhibition (1 – 10 gL−1) [37]. Therefore, we can assume a low d32 (opti-

mistic scenario: about 1 mm; pessimistic scenario: 3 mm) in the scenario with ethanol,

whereas scale-independent d32 between 5 and 7 mm are observed in BCRs with air-water

mixtures [25, 26, 163]. Likewise, it may be assumed that the produced ethanol could

increase the local gas hold-up by at least 30% compared to solutions without ethanol.

Furthermore, temperature dependencies of the physical properties show a significant

influence on the mass transfer. By operating at a temperature of 37◦C, kL a is estimated to

be around 1.44 times higher than at 20◦C [26], mainly due to an increased CO diffusion

coefficient (+150%) and decreased liquid kinematic viscosity (-45%). However, the effect

of this elevated temperature will be counteracted by a lower CO solubility through its

Henry coefficient (-28%), which in turn negatively influences MTC . The net effect of a

higher temperature, however, will still be positive.

Thus, for different models describing kL (Table 2.1), the impact of the bubble diameter

(varied between 1 and 7 mm) and the mutual impact of increased hold-up and tempera-

ture were examined (Figure 2.6). It was found that with a bubble diameter of 3 mm, most

correlations predicted kL a and MTC lower than those required by the process (Figure

A.1), even with an increased hold-up and temperature. However, with 2 mm bubbles,

sufficient kL a and MTC were predicted using the relations from Higbie [127] and Kaštánek

[129]. In addition, when including hold-up and temperature effects with 2 mm bubbles,

also the relations from Calderbank and Moo-Young [128] and Linek et al. [130] led to

adequate kL a and MTC . If the bubble diameter would be 5 to 7 mm, which is expected

for air-water mixtures in industrial BCRs [25, 26], then all correlations predict insufficient

kL a and MTC , causing mass transfer limitations. These values correspond with the

values from Table 2.1, stressing the validity of these relations in air-water dispersions.
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Figure 2.6: kL a (a, b) and mass transfer capacity MTC (c, d), calculated using different kL -relations (1 to 6 in

Table 2.2) for varying bubble diameters, while considering the effect of produced ethanol on the gas hold-up

and the higher temperature (b, d). Red: Higbie [127], cyan: Calderbank and Moo-Young [128], green: Kaštánek

[129], blue: Linek et al. [130], magenta: Lamont and Scott [131], black: Kawase and Moo-Young [132]. Error bars:

standard deviation during a 200 s period with statistically stationary flow field; Black dashed line: lower value of

the estimated range of the industrial process.

From this sensitivity analysis we can conclude that industrial-scale syngas fermenta-

tion in the EL-GLR requires small bubble diameters (≤ 2 mm), which should be obtained

in combination with a high gas-hold up at 37◦C. Ethanol presence promotes these con-

ditions, while in air-water conditions (5 to 7 mm bubbles) the mass transfer limitations

would not be alleviated. Therefore, our results indicate that in an industrial syngas fer-

mentation process towards bubble-stabilising products, e.g., ethanol, the typical mass

transfer limitations that are present in air-water systems can significantly be alleviated.

It is noted that there are large differences among the kL a values predicted using

the different kL-relations. The relations based on eddy energy dissipation rate (2.3–2.6)

predict lower values than the bubble-based relations (2.1, 2.2). The deviations with re-

lations 2.1 and 2.2 could be due to underestimation of ε by the k-ε turbulence model
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[164]. Accounting for this with a scaling factor, based on the overall minimum power

input [165, 166], would result in a 22% increase in kL a. Moreover, it has been noted that

relation 2.3 has a too high proportionality constant [132] compared to the similar relations

2.4–2.6. Generally, sensitivity analyses with different kL-relations should be done in future

modelling work on gas-liquid mass transfer. Experiments in EL-ALRs could determine

which relation describes kL the best in the specific reactor and how the produced ethanol

and the higher temperature would influence the kL a.

In some cases the kL a was predicted to be sufficient, while the MTC was not (e.g.,

relations 2.5 and 2.6). This indicates that the ideal-mixing assumption (Figure A.1) may

not hold and, instead, the local values of kL a and solubility should be taken into con-

sideration when computing MTC . Although high kL a values were obtained at certain

locations (such as in the separator), the contribution of these volumes to the overall mass

transfer rate was found to be low because of the decreased CO saturation concentration

(Figure 2.7). However, the high kL a at the reactor top could be beneficial for CO depletion

such that the off-gas only contains residual amounts of CO. As LanzaTech patented a

method with the aim of, amongst others, increasing mass transfer in the headspace via a

so-called ‘showerhead’ [104], it is expected that these local high kL a values at the top of

the reactor are indeed required for maximising gas conversion. Although significant CO

mass transfer was predicted in the downcomer, when microbial consumption takes place,

only marginal transfer is expected as the relative volume of the downcomer is small and

as the EL-GLR is operated in the second hydrodynamic regime.

a)         
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,L COc b)
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Figure 2.7: Surface plots on the y z-plane of the EL-GLR (x = 0), showing 200 s time-averaged values for a) the

CO saturation concentration in the liquid, b) the kL a as predicted using the Higbie relation (Equation 2.1, c)

the mass transfer capacity, assuming db of 3 mm, a 30% increase in gas-hold up compared to water due to the

presence of ethanol and a temperature of 37◦C.
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Figure 2.8: Volume-averaged values of a) kL a and b) MTC in the EL-GLR for different headspace pressures,

calculated via different kL -relationships (Table 2.2) assuming db of 3 mm, a 30% increase in gas-hold up

compared to water due to the presence of ethanol and a temperature of 37◦C. Red: Higbie [127], blue: Calderbank

and Moo-Young [128], magenta: Lamont and Scott [131]. Bars: standard deviation during a 200 s period with

statistically stationary flow field.

High pressure fermentation has been mentioned as a promising strategy to increase

the mass transfer rate of poorly soluble gases [113]. Patents indicate that in lab exper-

iments with higher operating pressures (304 and 608 kPa) increased ethanol titre and

productivity was obtained [167, 168]. However, in the scientific literature, no beneficial

effect was found on the productivity, while C. ljungdahlii’s product spectrum shifted from

acetate and ethanol towards formate at increased pressures [169]. Inhibitory effects were

observed for CO with an inhibition constant of 60 kPa [34], so that increased pressures

could decrease the CO consumption rate. The gas saturation concentration increases

proportionally with the pressure (Equation 2.7), but the gas hold-up would decrease

(ideal gas law) with a constant gas (mass) flow rate. In order to study these opposing

phenomena, the effect of increasing the headspace pressure on the kL a and MTC was

investigated by running CFD simulations with 304 and 608 kPa headspace pressure.

It was observed that increased headspace pressures decrease the kL a significantly

(Figure 2.8). This is due to the decrease in εG , which decreased from 0.13 to 0.054 and

0.033, at 304 and 608 kPa respectively. Similar values of MTC at increased pressure were

observed when it was calculated using the relations of Higbie [127] and Calderbank and

Moo-Young [128], while a slight decrease was observed with the eddy-based equation.

Thus, the decrease in εG was neutralised by the solubility-increase. One should note that

the compressor power requirement [113] increases sharply for increased pressures.

At elevated pressures, one could increase the gas mass flow rate linearly with pressure

to obtain a constant superficial gas velocity and thus kL a, without changing the hydro-

dynamic regime. In our study, the mass flow rate was assumed constant at 2.11 kgs−1,

causing decreasing superficial gas velocities and hold-up at elevated pressured. As is
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it expected that LanzaTech operates six reactors to produce in total 48 ktona−1 ethanol

(Figure A.1), a higher gas mass flow rate at higher pressures was not likely. If the gas

flow rate would be increased proportionally with pressure (to obtain constant kL a), a

near-linear relationship between MTC and the compressor power requirement is ob-

tained (Figure A.4), making operating at overpressures an economical choice. Moreover,

considering CO-uptake kinetics, with high affinity and inhibiting effect at high dissolved

CO concentrations [138], we would not recommend operation at higher pressures.

2.3.4. Outlook

The hydrodynamics and gas-liquid mass transfer in an industrial-scale reactor for the

conversion of CO-rich steel-mill off-gases by syngas fermentation were studied by com-

putational fluid dynamics. Simulation results indicated that conditions could be reached

for industrially-sufficient specific mass transfer rates (kL a) and mass transfer capacities

(MTC ). High MTC was found possible when the operating temperature is 37◦C and

by producing ethanol, which inhibits bubble coalescence to maintain relatively small

bubbles (db ≤ 2 mm), and increases riser gas hold-up (∼30%). We recognise that other

factors (e.g., particular medium components or process engineering strategies) might

also be deployed to obtain such mass transfer capacities. Since most of the kL a relations

from literature (Table 2.1) were derived in air-water systems, without considering any

enhancing effects, further research is needed on the development of mass transfer cor-

relations representing real fermentation conditions. Especially, these relations should

consider the presence of bubble-stabilising compounds such as ethanol, acetone, and

acetic acid, as well as the presence of salts, antifoam agents and microbial biomass. The

addition of fine particles (e.g., kieselguhr, silica) can also increase kL a substantially [170],

possibly by minimising bubble coalescence [171], and could be included in such relations,

which are pertinent for the development of more realistic CFD and process models.

The two-phase flow pattern in the large-scale reactor was found to be very dynamic,

with large variations in the movement of the gas plume. As the local values of the gas solu-

bility and kL a determine MTC , the high spatio-temporal resolution that can be obtained

via CFD was necessary for predicting the reactor performance and for determination of

the main factors influencing mass transfer. Since the main limitation of CFD is its high

computational demand, further research should focus on the development of coarse-

grained computational models (such as compartment models) to determine kL a and

MTC in a faster way and as function of several variables such as the gas flow rate, media

composition (enhancement agents), pressure and reactor scale and geometry.

The strong dynamics of the computed flow patterns in the large-scale reactor will

determine the trajectories of microorganisms performing the syngas conversion. Con-

sequently, the microorganisms would experience peaks and valleys in dissolved CO

concentrations in an irregular fashion. By implementing CO-uptake kinetics, CO concen-

tration profiles can be obtained for the different operating conditions. Euler-Lagrangian
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simulations can then reveal what conditions microbes experience over time (lifelines) and

how that would influence their (dynamic) behaviour [58]. Coupling the flow field with

a metabolic model of C. autoethanogenum could reveal the influence of these dynamic

conditions on the bioprocess performance and (by)product spectrum and guide the

development of scale-down simulators and optimised reactor geometries [99].

To develop an optimal bioreactor, spatial homogenization of mass transfer is impera-

tive [111], requiring high kL a in zones with lower solubility (e.g., separator section) and

low kL a in zones with high solubility (e.g., lower riser section). Controlling the liquid

flow rate in the riser, which determines the riser gas hold-up, could be done to fine-tune

the local mass transfer capacity. Reducing the liquid backmixing could for example be

accomplished by adding internal surfaces, such as perforated plates [20], which would

additionally promote local bubble-break up [136], or by increasing the resistance in the

downcomer [107, 172] by decreasing its diameter or adding a pump, to force the flow at

the optimal rate. By decreasing the liquid flow rate in the riser, the riser gas hold-up can

be increased, possibly leading to an increased mass transfer capacity. As this may increase

the mixing time [146], one should balance the impact of the mass transfer time with the

liquid mixing time when designing large-scale EL-GLRs. Using the downcomer, the liquid

velocity and thus the gas velocity and hold-up can be adjusted, which cannot be done

in a bubble column. The downcomer can also be used for product removal towards the

distillation section, inflow of fresh medium or nutrients, heat transfer, and as source for

supplying the showerhead [104].

Alternatively, by positioning the sparger above the downcomer inlet, the gas flow could

be better distributed in the riser [105]. In this case, less bubble coalescence is expected as

the gas is less likely to be pushed towards the wall opposite to the downcomer. Although

the CO solubility is larger in the riser bottom, the higher sparger position would lead to a

CO-depleted zone below the sparger, which decreases the overall mass transfer capacity.

CFD simulations with a sparger above the downcomer inlet confirm a 4-6% decrease

in MTC , due to the low gas hold-up below the sparger (Figure A.5, Table A.6). Further

research on the sparger position and how the downcomer (and its position) influence

bubble coalescence in ethanol-rich media could be helpful for designing industrial-scale

EL-GLRs with higher productivity.

In this study, all the CO transferred to the liquid phase was assumed to be instanta-

neously consumed by the microbes. In practice, there will be CO dissolved in the liquid

phase, thus decreasing the driving force for mass transfer. The dissolved CO concen-

tration is determined not only by the local flow conditions and mass transfer rates, but

also by the local microbial CO uptake rate, governed by the uptake kinetics (especially

the affinity). The literature is very scarce on studies of CO uptake kinetics by Clostridia

(e.g., [34]). Detailed CO uptake kinetics using dissolved CO concentration measurements

should be developed with priority.
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Many authors [2, 22, 110] explain the low mass transfer capacity obtained in syngas

fermentation partly by the low solubility of CO. Solubility can also be affected by the

ethanol fraction in the solution, and this effect has been mostly studied for O2 dissolution.

Shchukarev and Tolmacheva [173] determined little impact of ethanol on the O2 solubility

in the water-ethanol mixture for ethanol mole fractions below 0.2. Therefore, it is not

expected that the CO solubility would be affected by the produced ethanol in the studied

reactor conditions (50 gL−1 ethanol or mole fraction ∼0.02 [111]). Since O2 and CO have

comparable Henry coefficients at 37◦C (9.6×10−6 and 8.2×10−6 molm−3 Pa−1, respectively

[144] and the CO fraction in syngas is often higher than the O2 fraction in air, we argue

that the challenges that have to be addressed in aeration processes should be faced in

syngas fermentation as well. Instead of attributing the poor performance to the solubility,

research should focus on ways to enhance kL a in the bioreactor, e.g., by the presence of

organic products.

Promising processes for the conversion of syngas towards other products, such as

fatty acids [7], acetone, iso-propanol and 2,3-butanediol [8] have been developed. For

successful commercialisation of such processes, one could benefit a lot if the produced

products are mass transfer-enhancing, like ethanol, or even better.

2.4. Conclusion
With a CFD model, which was validated using published data from a pilot-scale reactor,

we investigated the hydrodynamics of a large-scale external-loop gas-lift reactor. With this

model, the gas-liquid mass transfer was studied for an industrial CO-to-ethanol fermen-

tation process. Several relations describing the mass transfer coefficient were evaluated

and kL a and mass transfer capacity were computed for varying process conditions.

At an operating temperature of 37◦C, with increased gas hold-up compared to air-

water and smaller bubbles (≤ 2 mm instead of 5 to 7 mm), most available mass transfer

relations predicted sufficient kL a and MTC for an industrially viable syngas fermentation

process, in line with data published by LanzaTech. We argue that this is possible since the

produced ethanol inhibits bubble coalescence, causing smaller bubbles and increased

gas hold-up. This indicates that typical mass transfer limitations encountered in air-water

systems can be alleviated under industrial syngas fermentation conditions.

In spite of being computationally intensive, CFD can also be used for determining

high-resolution process conditions that could not be accurately computed using sim-

pler models. The developed hydrodynamic and mass transfer model can be used to

advance research into reactor design for industrial syngas fermentation, for determina-

tion of the microbial response in such reactors using Euler-Lagrange modelling, and the

development of scale-down simulators operated in a representative window.
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Abstract
In gas fermentations (using O2, CO, H2S, CH4 or CO2), gas-to-liquid mass transfer is often

regarded as one of the limiting processes. However, it is widely known that components in

fermentation broths (e.g., salts, biomass, proteins, antifoam, and organic products such as

alcohols and acids) have tremendous impact on the volumetric mass transfer coefficient

kL a. We studied the influence of ethanol on mass transfer in three fermentation broths

derived from syngas fermentation. In demineralized water, we observed that the addition

of ethanol, the expected product, increased kL a two-fold in the 0 – 5 gL−1 h−1 range,

after which near-constant kL a values were obtained. In the fermentation broths, kL a

was increased significantly (2 – 4 fold compared to water) by ethanol supplementation,

and to be highly influenced by broth salinity. Our results indicate that kL a is a dynamic

parameter in gas fermentation experiments and can be significantly increased due to

broth components.

Graphical abstract



Introduction

3

43

3.1. Introduction

M any fermentations with gaseous substrates (e.g., O2, CO, H2S, CO2, CH4) are con-

sidered as promising conversion processes for a multitude of useful products (e.g.,

succinic acid, ethanol, butanol, hexanoic acid, lactic acid) [103, 174, 175], of which sev-

eral are established in industrial practice [8, 28]. For many of these processes, poor

gas-to-liquid mass transfer and low dissolved gas concentrations have been identified

as a limiting factor [22, 25, 176, 177]. Based upon that, a lot of research, for example in

syngas fermentation, is focused on increasing the volumetric mass transfer coefficient

(kL a) by developing innovative reactor configurations [22, 23, 178]. Understanding of the

kL a values obtained is essential in the gas fermentation field.

For a long time, it has been known that medium components and products (such

as salts, acids, alcohols, surfactants, biomass and antifoam) can significantly affect kL a

[155, 179–182]. For a broad range of alcohols in water, a fivefold increase in kL a was

observed in a narrow concentration range [155], which was explained by a decrease in

Sauter mean bubble diameter (d32) (from 4 to 1 mm) and a twofold increase in the gas

hold-up (εG ) [37]. The presence of alcohol decreases the surface tension and stabilises

low-diameter gas bubbles, leading to repulsions and thereby inhibiting coalescence

[37, 157]. Similar effects on mass transfer were not only observed for alcohols, but also

for organic acids, ketones and compounds like lactic acid [37, 182, 183]. Changes in the

gas solubility at alcohol concentrations relevant for gas fermentations were, however,

expected to be negligible [173].

Similar effects have been noticed for electrolytes. Lessard and Zieminski [180] ob-

served significant coalescence inhibition (more than 90%) for different salt solutions with

ionic strength above 0.3 molL−1, resulting in increases in kL a values [155]. The presence

of biomass, however, may decrease kL a by absorption to the bubble surface (the so-called

"blocking effect"), as well as by increasing the viscosity, which stimulates coalescence

[179] and reduces the diffusion coefficient [143]. Dissolved proteins are known to improve

mass transfer as they stabilise bubbles and prevent coalescence [181]. Furthermore, in

air-water systems, the mass transfer coefficient (kL) is known to be, amongst others, a

function of the bubble diameter: Small bubbles (db around 1 mm) have a rigid surface

with a kL around 1×10−4 ms−1, while larger bubbles (db > 2 mm) have a mobile surface

and kL between 3 and 5×10−4 ms−1 [26].

Typically, biomass, salts, proteins, products, and substrates are jointly present in

fermentation broth, and might change the medium physical properties (i.e., surface ten-

sion, viscosity, density) with respect to pure water. Some empirical relations (Table B.1)

predict the influence of these properties on kL a [25, 118–122]. As these relations have

been developed using air-water mixtures without taking into account biomass and salts

concentrations, their validity for fermentation broths remains unclear.
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The aforementioned studies on mass transfer mostly focus on mixtures with water and

one compound of interest, while the joint influence of different compounds has hardly

been studied. Studies with fermentation broths have only been performed to characterise

the effect of the biomass concentration on kL a [179] and on d32 [184]. In wastewater

technology, however, it is common to measure aeration performance in process water

(with contaminants and biomass sludge), which is often characterised with the alpha-

factor, which relates the kL a in process water with clean water [185]. Analyses on the joint

influence of broth components in gas fermentations on mass transfer are lacking in the

scientific literature, making it challenging to estimate. Knowledge on the most influential

parameters and their respective ranges would be essential for accurate prediction in real

fermentation broths, both during experiments and modelling. With the growing interest

in fermentation and bioprocess design, understanding on the most influential parameters

and their respective ranges would be essential for accurate kL a prediction.

In this study, we aim to determine mass transfer characteristics (kL a, d32, εG , kL)

in different fermentation broths to show that there are complex interactions between

the compounds present and that this has significant consequences in gas fermentation

processes. Syngas fermentation is used as an example of a gas fermentation process, as it is

a frequently studied process wherein mass transfer is often mentioned as a factor for poor

performance [22, 23]. For safety and analytical reasons, oxygen mass transfer is studied,

but the same trends are expected for other gases that also have a very low solubility in

water, such as CO, H2S, and CH4. The very low concentration of dissolved O2 is expected

not to change kL a, d32, εG , or kL . The investigated product is ethanol, since it is a major

product in the commercialised syngas fermentation process [10]. First, we will determine

the range wherein ethanol addition affects kL a. After that, we will study the influence of

ethanol on the mass transfer characteristics in five mixtures (water, fermentation medium,

and three syngas fermentation broths). The experimentally obtained kL a values will be

compared with kL a values from published empirical relations, after determining the

physical properties of the mixtures.
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3.2. Materials and methods
Influence of ethanol concentration on kLa
kL a was determined in water-ethanol solutions using the dynamic absorption method

[25] in a 1.5 L temperature-controlled stirred tank reactor (STR) with 1 L working volume

(Applikon Biotechnology, the Netherlands). After desaturation with pure nitrogen, dis-

solved oxygen (DO) was measured every second with an AppliSens Dissolved Oxygen

probe (Applikon Biotechnology, the Netherlands) while supplying 1 vvm of air at 800 rpm

stirring rate. Experiments were performed at 20 ◦C and 37 ◦C and at least in threefold for

all demineralized water-ethanol mixtures (with 0, 2.5, 5, 10, 15, 25 and 50 gL−1).

Mass transfer characteristics of different mixtures
Several mixtures were tested in a bubble column reactor (BCR): demineralized water,

mineral fermentation medium ("medium"), and three fermentation broths derived from

syngas fermentation experiments (e.g., "broth-1"). A BCR was used since it enables

more detailed analyses on db and εG than a STR does. The influence of ethanol on the

mass transfer characteristics was determined by supplementing with the industrially

obtained ethanol concentration (50 gL−1) [111], after experiments without supplemented

ethanol. The Supplementary material provides the composition of the mineral fermenta-

tion medium as well as the media and methods for cultivation of the fermentation broths

(Table B.2).

Mass transfer characteristics of the different mixtures were determined in a lab-scale

glass bubble column (7 cm internal diameter, 70 cm liquid height) with a multi-orifice

sparger (0.6 mm orifice diameter). Experiments were performed with air at a low super-

ficial gas flow velocity of 1.8 mms−1 to ensure that flow was homogeneous and that the

individual bubbles could be pictured for bubble size determination. The liquid temper-

ature was kept at 37 ◦C. Gas hold-up was determined by measuring the ratio between

aerated and unaerated volumes [156] using a ruler at the column wall. kL a was deter-

mined using the same method as described above, with the oxygen probe located 42 cm

above the sparger, at least in triplicate for each mixture.

The bubble size was analysed using two methods, one for the small bubbles in mix-

tures with supplemented ethanol and another for larger bubbles in the mixtures without

ethanol. During aeration, pictures of the small bubbles were made with a photo-optical

endoscopic probe (SOPAT-VF GX 2750) (SOPAT, Germany) with the focal plane at 0.5 mm,

located 47 cm above the sparger. From 600 images, between 100 and 1400 bubbles (de-

pending on the mixture) were captured with the Hough circle detection method in the

Python OpenCV package, and their diameters were calculated using a camera-specific

pixel-to-mm conversion factor. As these bubbles were spherical, the Sauter mean bubble

diameter d32 was calculated using Equation 3.1, in which Vb,i is the volume of bubble i,

Ab,i its surface area and db,i its diameter.
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d32 = 6

∑
i Vb,i∑
i Ab,i

= 6
4
3π

∑
i
( 1

2 db,i
)3

4π
∑

i
( 1

2 db,i
)2 (3.1)

To obtain the (equivalent) diameter of the larger bubbles, pictures were made with

a CANON EOS 200D camera. A metal ruler was placed inside the column to decrease

the influence of light refraction and to obtain a pixel-to-mm ratio. With image analysis

software (ImageJ) db was measured for spherical bubbles, and for spheroidal bubbles

the radii of the semi-major ra and semi-minor axes rc were measured to determine their

eccentricity e and equivalent diameter deq of bubble i (Equation 3.2). Subsequently, d32

was calculated with the obtained (equivalent) diameters of the spherical and spheroidal

bubbles using Equation 3.1. The two bubble size determination methods were cross-

validated using broth-4, see Figure B.1 and Table B.3.

deq,i = 6
Vb,i

Ab,i
= 6

4
3πr 2

a rc

2πr 2
a +π r 2

c
e ln

( 1+e
1−e

) with e =
√

1− r 2
c

r 2
a

(3.2)

After determining d32, kL a and εG , Equation 3.3 was used to calculate kL .

kL = kL a

a
with a = 6εG

d32
(3.3)

The standard deviation σ of kL was evaluated using classical error propagation (Equa-

tion 3.4). The unpaired t-test with Welch’s correction was used to determine statistical

significance for all mass transfer characteristics.

σkL = kL

√√√√σ2
kL a

kL a
+ σ2

a

a
withσa = a

√√√√σ2
εG

εG
+
σ2

db

d32
(3.4)

Determination of mixture properties
After aeration in the BCR, the mixtures’ physical properties were determined at 37 ◦C.

Density was measured with a benchtop density meter (DMA 5000, Anton Paar, Austria).

The dynamic viscosity was determined with a Haake Viscotester 500 (Thermo Fisher

Scientific, US) with NV sensor system. Dynamic surface tension was measured using a

BPT Mobile tensiometer (KRÜSS Scientific, Germany), at least in duplicate.

The biomass concentration for fermentation broth-2, broth-3 and broth-4 was mea-

sured by determination of volatile suspended solids (VSS) concentration in the broth,

from 150 mL broth samples [186]. For broth-1, the biomass concentration was obtained

by measuring its optical density at 660 nm (OD660). This was converted to VSS concentra-

tion using calibration curves previously obtained during cultivation. Acetate and ethanol

concentrations in filtered broth samples (0.22µm pore size, Millipore, Millex-GV, Ireland)

were determined using ultra high performance liquid chromatography (UPLC) with an

Aminex HPX-87H column (BioRad, United States) at 50 ◦C coupled to a refractive index
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(RI) detector RefractoMax 520 (Thermo Fisher Scientific, US), using 1.5 mmolL−1 aque-

ous phosphoric acid as eluent. Lastly, protein concentrations were determined with the

Pierce™ BCA Protein Assay Kit (Thermo Fisher Scientific, US) according to the manu-

facturer recommendations. From the cultivation media composition (Table B.2), ionic

strength I was calculated (Equation 3.5), from each ion concentration c and charge z.

I = 1
2

∑
i

ci z2
i (3.5)
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3.3. Results and discussion
In this section, we will first present the influence of the concentration of ethanol in water

on the kL a, which was determined in a stirred tank reactor (section 3.3.1). After that,

detailed results for the different mixtures in a bubble column reactor will be presented

(section 3.3.2), which will be followed by a discussion on kL for fermentation broths

(section 3.3.3). Lastly, a comparison with empirical correlations (sections 3.3.4) will be

performed with the determined physical properties.

3.3.1. Influence of ethanol on kLa
The influence of the ethanol concentration in water on kL a has been determined in a

stirred tank (Figure 3.1). Sharp increases in kL a values were observed in the lower con-

centration range, until a plateau was reached (between 5 – 10 gL−1, independent from the

temperature). For both temperatures, the maximum kL a value was about twice as large

as it would be without ethanol. Visually, we observed a significant reduction in bubble

size upon the addition of ethanol, explaining the increased kL a value (Figure B.4.

The kL a value increases roughly 40% between 20 and 37◦C, which corresponds with

predictions for this temperature-increase [26, 117]. The results obtained for these two

temperatures indicate that the temperature-increase and the ethanol addition most likely

show an independent influence on kL a. This temperature increase predominantly causes

an increase in kL (by increasing the diffusion coefficient, and reducing the kinematic

viscosity [142, 143]).

In STRs with added ethanol, similar increases in kL a have been observed before

[187], but not with such a clear plateau formation. The plateau formation in kL a has

been observed for other organic compounds in STRs [155], and has been explained by

the constant bubble diameter beyond a certain concentration range [37]. Similar results

on plateau formation have been seen in a plunging jet contactor with propanol [188] and

in an external-loop airlift reactor with methanol, ethanol and propanol [189].

The ethanol concentration range in which the steep change in kL a values was ob-

served (0 – 5 gL−1) corresponds to the range of ethanol titres achieved in lab-scale syngas

fermentation experiments, for example [17, 22, 90]. The rapid ethanol concentration

change within this range indicates that kL a is not a constant but a dynamic parameter

during gas fermentation processes. For example, during batch operation, different values

of kL a may apply. Moreover, we recommend to obtain kL a values using representative

fermentation conditions rather than using water, to compare reactor configurations

[178, 190] or to determine dissolved gas concentrations [191].

Consequently, we expect that kL a differs between fermentation broths derived from

syngas fermentation experiments and synthetic aqueous solutions containing some broth

solutes. As more detailed analyses on db and εG can be performed in BCRs, we will use

BCRs in the upcoming sections. Due to the plateau formation by ethanol addition, we

will perform experiments with the expected industrial cEtOH of 50 gL−1 [111].
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Figure 3.1: Influence of the ethanol concentration on kL a, data obtained at 20 ◦C (filled squares) and 37 ◦C

(open squares) in the stirred tank. Error bars: standard deviations from triplicates.

Table 3.1: Physical properties of the different mixtures that were analysed in this study. All properties were

measured at 37 ◦C. Provided are the liquid-phase density (ρL ), liquid-phase viscosity (ηL ), surface tension (σ),

ionic strength (I ), and the concentrations of biomass (cx), proteins (cprot), total acetic acid (cAcT), and ethanol

(cEtOH) of each mixture.

ρL ηL σ I cx cprot cAcT cEtOH

kgm−3 mPas mNm−1 molL−1 gL−1 gL−1 gL−1 gL−1

Water 992.91 0.768 69.02 N/A N/A N/A 0 0.00

Mineral medium 996.28 0.768 68.62 0.296 N/A N/A 0 0.00

Broth-1 997.97 0.821 70.43 0.296 0.061 0.369 1.14 0.00

Broth-2 997.62 0.732 68.82 0.171 0.246 1.278 2.22 0.18

Broth-3 996.60 0.763 69.08 0.136 0.087 0.062 1.37 0.12

Water + 5% ethanol 984.36 0.827 52.20 N/A N/A N/A 0 49.20

Mineral medium +

5% ethanol
986.63 0.825 51.49 0.277 N/A N/A 0 49.20

Broth-1 + 5% ethanol 989.28 0.815 51.66 0.277 0.057 0.345 1.07 49.20

Broth-2 + 5% ethanol 988.06 0.840 51.83 0.160 0.230 1.196 2.07 49.37

Broth-3 + 5% ethanol 987.93 0.759 51.76 0.127 0.082 0.058 1.28 49.32

3.3.2. kLa determination in different mixtures with ethanol
The determined physical properties of the mixtures are shown in Table 3.1. As the fer-

mentation broths contain only little amounts of ethanol, we supplemented the mixtures

with ethanol to reach the industrially relevant concentration (50 gL−1). A clear decrease

in surface tension occurs upon supplementation of ethanol. Broth-4 was not included

in the table as there was possible interference with the reducing agent during the kL a-
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determination (see section 3.3.5), such that the kL a and kL values could not be predicted

reliably.

For all other mixtures, a significant increase in kL a is observed (Figure 3.2a) upon

the addition of ethanol (p = 0.038). In water, a sixfold higher kL a is encountered after

adding ethanol. Such increases have been obtained before with ethanol [155, 158]. This is

explained by the decrease in d32 (from 2.7 mm to 0.7 mm) and the doubling of the gas

hold-up due to the addition of ethanol.

The mineral medium and broth-1 show an increased kL a compared to the demineral-

ized water. This might be due to their high ionic strength (0.3 molL−1, Table 3.1) since little

coalescence was expected when ionic strength is above 0.2 molL−1 [180]. This suggests

that kL a might easily be increased in fermentation broths by increasing ionic strength by

slightly changing the mineral medium composition.

Although ethanol decreases the bubble size and makes the bubbles more spherical

and rigid (Figure B.3), the beneficial effect of ethanol on kL a is less pronounced in the

mineral medium than in pure water. This lower increase in kL a can be attributed to a

decrease in kL , which might be due to unresolved complex interactions between salts and

ethanol in the boundary layers.

For all fermentation broths, kL a is observed to be lower than in the mineral medium.

As d32 and εG remain similar in broth-1 and broth-2, the decrease in kL a is attributed

to a decrease in kL (see section 3.3.3), resulting in broth-2 and broth-3 having a similar

kL a as water (without ethanol). Hence, the presence of biomass in these broths seems to

diminish the beneficial effects of salts on kL a. Supplemented ethanol causes a decrease

in d32, but the net increase in kL a is less pronounced than for the mineral medium. Still,

the kL a values in the ethanol-rich broths are two to four times larger than the value in

water without ethanol, indicating that the mass transfer properties of these broths can

neither be represented by those of pure water, nor by those of water with added ethanol

only.

In all cases with ethanol, a significant decrease in bubble diameter is observed (p

= 0.023), as well as a narrower bubble size distribution by analysing the standard devi-

ations (Figure 3.2b) and the bubble size distribution plots (Figure B.4). This confirms

that ethanol stabilises the homogeneous flow regime [156, 160], while the coalescence

inhibition causes a hold-up increase (Figure 3.2c) [157].

In the mineral medium and fermentation broths, d32 does not change much, except

for some decrease with broth-3. This implies that the biomass, acetate and proteins

have little effect on the bubble size at the observed concentrations. Broth-3 also shows a

remarkably low d32 without ethanol, compared to the other mixtures. This effect cannot

be explained, because more data are required to achieve correlation to the physical prop-

erties or the concentration of components.

The addition of ethanol significantly (p = 0.0003) increases the gas hold-up for all me-

dia (Figure 3.2c). Increases in gas hold-up have been explained by coalescence inhibition:
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smaller bubbles rise slower, thereby increasing the gas residence time in the reactor and

thus the hold-up [157]. The same applies for the mineral medium and broths: salts and

surface-active compounds decrease d32 by inhibiting coalescence and thus increase the

hold-up. For more details about the underlying mechanisms, one is referred to Keitel and

Onken [37] and Jamialahmadi and Müller-Steinhagen [157].

The obtained data hint at a decrease in kL due to supplemented ethanol (Figure 3.2d),

but this was not statistically significant (p = 0.10). A decrease would be explained by

an ethanol layer causing extra mass transfer resistance around the gas bubble, or by

increasing surface rigidity due to the small and spherical bubbles.

3.3.3. kL as function of biomass concentration
From the different mixtures, it was observed that the fermentation broths have a lower

kL than water. This weakly correlates (Pearson’s r = -0.57) with the biomass concentration

in the broth (Figure 3.3). It has been argued [25] that biomass increases broth viscosity

and thus decreases kL . However, the viscosities of the measured samples are in such a

narrow range that a viscosity-based kL-model cannot adequately describe these changes

[131] (Figure B.5). Any such reduction might be explained by a bubble surface blocking

effect of the biomass, creating additional mass transfer resistance, even though direct

oxygen consumption was not expected for syngas fermenting bacteria [25]. We expect that

there are complex interactions between the (type of) microbe, salts and nutrients in the

medium, and the products that influence the value of kL . Unfortunately, at this moment,

we are not able to provide general guidelines for prediction of kL in fermentation broths

without further experiments.

3.3.4. Comparison with empirical correlations
Empirical relations (Table B.1) are often used for the prediction of kL a in bubble column

fermentations [25]. After determining surface tension, density and viscosity for all the

different media (with and without ethanol) (Table 3.1), the kL a values were calculated

using these equations (Figure 3.4). However, a large discrepancy is visible between

the experimental and predicted values. These relations systematically underestimate

kL a since they do not consider the influence of biomass, the salts and ethanol on the

bubble properties. For example, the decrease in surface tension by ethanol has a smaller

influence on kL a in the empirical relations than observed in our experiments. As we saw

that variables such as ionic strength, ethanol and biomass concentration are important

regarding mass transfer in fermentation broths, these variables should also be part of

such relationships.
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Figure 3.3: Mass transfer coefficient kL for different values of the biomass concentration in the studied mixtures.

Open symbols: mixtures without ethanol, filled: mixtures with 50 gL−1 ethanol. Error bars: standard deviations.

Figure 3.4: Parity plot of experimental kL a data in the different mixtures vs. the values calculated using empirical

relations: Akita and Yoshida [118], Nakanoh and Yoshida [119], Kawase et al. [120], Uchida et al. [121], Vatai and

Tekić [122].
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3.3.5. Implications and future studies
This study shows several mass transfer characteristics obtained in different liquid mix-

tures relevant for gas fermentations. The obtained results show that the influence of

medium components is significant and should be considered in future experimental and

modelling work in gas fermentations. Our results are highly applicable to (industrial)

practitioners of gas fermentation experiments as these can be beneficial for accurate

determination of kL a and provides means to increase the kL a value by tuning medium

composition.

Although it is widely known that antifoam promotes coalescence [25, 181] and de-

creases mass transfer by creating a monolayer around the bubbles [192], and that dis-

solved solids (e.g., silica) can both improve and worsen mass transfer (depending on the

concentration) [170], we did not consider their presence. Furthermore, only one mass

transfer enhancing agent was studied (ethanol) for only one type of gas fermentation

broths (derived from syngas) with a limited range of biomass concentrations (0 – 0.5 gL−1).

To reduce the redox potential, which is required for anaerobic (syngas) fermentation,

a reducing agent was added to the fermentation broths (Table B.2). Reaction of oxygen

and the reducing agent (sodium sulphide) might have disturbed the dynamic absorption

method for kL a determination (for broth-4), such that this broth had to be left out from

the aforementioned evaluation. In such a case the method might be adapted to, for

example, the method proposed by Bandyopadhyay et al. [193]. Future studies should also

note that the dynamic absorption method for kL a determination has low validity at high

power inputs (P/V > 1000 Wm−3 [194]. Considering that in air-water systems P/V is a

critical variable determining the kL a value [25, 195], further research should be done to

determine the influence of P/V in cases with ethanol. Therefore the influence of variable

superficial gas velocities (in BCRs and STRs) and stirrer speeds could be studied (STRs).

Industrial syngas fermentation requires higher biomass concentrations (around 10 gL−1)

[32] than the concentrations achieved in our experiments. Such high biomass concen-

trations are expected to influence the broth viscosity and thus the kL . Furthermore, the

used bubble column (7 cm diameter) is not representative for an industrial fermentation.

To represent a large-scale bubble column, the column diameter should be more than

15 cm to exclude wall effects for mild viscous liquids [196]. For an industrial-scale syngas

fermentation, a significantly higher gas flow velocity can be expected. We noted by using

such gas velocities in this column, determination of d32 in media without ethanol would

be challenging due to the regime change to slug flow. To prevent slugs, we decided to

compare d32 and kL a at low gas flow velocities. In literature, at higher gas flow rates and

in wider and higher columns, the beneficial effect of ethanol on gas hold-up [156, 160]

and kL a has been observed [189]. Therefore, we think that the phenomena reported in

this paper will also be present in large-scale reactors.



Conclusion

3

55

Our research indicates that other aspects of broth composition (next to ethanol con-

tent) influence mass transfer that is currently not well understood. Further research is

needed to quantitatively predict the relevant parameters (e.g., kL , d32) in order to develop

more realistic mass transfer models for fermentations. Although the exact mechanism

might remain unknown, systematic experiments and technologies like machine learning

might be used to develop algorithms for reliable prediction of mass transfer properties in

fermentation broths of various compositions. Unravelling the mechanisms behind our

observations (e.g., why kL a is lower in the mixture with mineral medium and ethanol

compared to the water-ethanol mixture) will require additional and more fundamental

studies, which could guide the development of mechanistic models.

Although our results were only obtained with supplemented ethanol, we stress that

similar phenomena have been obtained with other compounds (longer alcohols, acids, ke-

tones) [37, 155, 182]. This indicates that similar deviations in mass transfer characteristics

can be expected in a wide range of gas fermentations [174], e.g., syngas fermentation (to

alcohols/acids), microbial electrosynthesis (to acids) [176] as well as aerobic sugar-based

fermentations (e.g., 1,4-butanediol production [27]). As there are methods available to

measure mass transfer characteristics (kL a, d32, εG , kL , a) easily, we highly recommend

to perform these experiments with realistic broths to prevent underestimation of mass

transfer rates.

3.4. Conclusion
By supplementing ethanol to water, kL a sharply and significantly increases, primarily by

decreasing d32. This effect is also present, but weaker, in the studied syngas fermentation

broths. Broth salinity (ionic strength) and biomass concentration seem to affect kL a in

fermentation broth as well. Future mass transfer studies should consider the influence of

broth components because literature models fail to predict their effects.





Chapter 4
Downscaling gas fermentation by

taking the microbial perspective

Waar de werkelijkheid ontbreekt, daar is de schijn het beste

Desiderius Erasmus

This chapter has been published as:

Puiman, L., Almeida Benalcázar, E., Picioreanu, C., Noorman, H. J., & Haringa, C. (2023). Downscaling industrial-

scale syngas fermentation to simulate frequent and irregular dissolved gas concentration shocks. Bioengineering,

10(5), 518.

57



4

58 Downscaling gas fermentation by taking the microbial perspective

Abstract
In large-scale syngas fermentation, strong gradients in dissolved gas (CO, H2) concentra-

tions are very likely to occur due to locally varying mass transfer and convection rates.

Using Euler-Lagrangian CFD simulations, we analysed these gradients in an industrial-

scale external-loop gaslift reactor (EL-GLR) for a wide range of biomass concentrations,

considering CO inhibition for both CO and H2 uptake. Lifeline analyses showed that

microorganisms are likely to experience frequent (5 to 30 s) oscillations in dissolved gas

concentrations with one order of magnitude. From the lifeline analyses we developed

a conceptual scale-down simulator (stirred-tank reactor with varying stirrer speed) to

replicate industrial-scale environmental fluctuations at bench-scale. The configuration

of the scale-down simulator can be adjusted to match a broad range of environmental

fluctuations.

Our results suggest a preference for industrial operation at high biomass concentra-

tions as this would strongly reduce inhibitory effects, provide operational flexibility, and

enhance the product yield. The peaks in dissolved gas concentration were hypothesised to

increase the ethanol yield due to the fast CO-uptake mechanisms in C. autoethanogenum.

The proposed scale-down simulator can be used to validate such results and to obtain

data to parameterise lumped kinetic metabolic models that describe such short-term

responses.

Graphical abstract
Industrial-scale (500 m3) syngas fermentation Lab-scale (2 L) syngas fermentation 

variable 

stirring speed

varying scales:

similar experiences,

similar behaviour
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4.1. Introduction

S yngas fermentation is nowadays an established process for the conversion of waste

gases into chemicals [8, 10]. The company LanzaTech successfully commercialises the

fermentation of synthesis gas (containing CO, H2 and CO2) into ethanol, and is currently

exploring other products such as acetone and isopropanol [9]. Although mass transfer

limitations have often been accounted as a limiting factor for scale-up of syngas fermen-

tation, such limitations could highly be relieved by making products which are bubble

coalescence-suppressing, such as ethanol [197].

High product specificity towards ethanol (> 90%) is required for successful com-

mercialisation [8]. In a process called solventogenesis, Clostridium autoethanogenum,

the workhorse of industrial-scale syngas fermentation, produces ethanol from syngas

(e.g., using Reaction 4.1 and 4.2), while during acetogenesis syngas is converted into

acetate [14, 198]. Solventogenesis can be triggered by low extracellular pH [11], by high

extracellular concentrations of acetate [199], or by H2 supplementation [46].

6CO+3H2O −−→ C2H6O+4CO2 (4.1)

6H2 +2CO2 −−→ C2H6O+4H2O (4.2)

Since industrial-scale reactors are of considerable size (e.g., 5 m diameter by 25 m

height, or ∼500 m3, is not exceptional), the occurrence of spatial gradients is more of a rule

than an exception. Usually substrate gradients occur when the characteristic time of reac-

tion τrxn is significantly lower than the characteristic time of transport, which is related to

mixing for substrates in the liquid phase via the circulation time (tc ), and to mass transfer

for gaseous-phase substrates (τMT) [48, 49]. For large-scale syngas fermentation, τrxn is

expected to be much lower (∼0.3 s; [40]) than τMT (around 10 – 20 s; [197]) and tc (∼40 s;

Figure C.1). Furthermore, both hydrostatic pressure differences (3.5 bar at the bottom vs.

1 bar near the headspace) and gas mole fraction differences (e.g., yCO decreases from 50%

to 5% from bottom to top due to consumption) cause a gradient of around factor 35 in

saturation concentration, while the volumetric mass transfer coefficient kL a might be

locally varying due to turbulent fluctuations, differences in bubble size and gas hold-up

[197]. We hypothesise that all of this leads to sizeable dissolved CO and H2 concentration

gradients which might have implications on the syngas fermentation performance.

The impact of such concentration differences on C. autoethanogenum can be studied

with Euler-Lagrangian CFD modelling. This way environmental changes, for example

in substrate concentration, temperature, and shear stress, can be recorded from the

perspective of the microbe (the so-called lifeline) [62, 64, 66]. The cells are simulated

as Lagrangian flow-followers (particles) and, when they do not interact with the flow

or concentration field (one-way coupling), are used for analysing the environmental

fluctuations occurring in the bioreactor [56, 57, 200]. Such analyses could be used for the

development of scale-down simulators [165, 201] or to study cell population heterogene-

ity [202]. Two-way coupling has to be realised when studying the influence of biomass
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on the flow or concentration fields [58, 99]. This method requires the use of a structured

metabolic-kinetic model that could be coupled with the CFD model in a computationally

viable fashion [66]. Although very detailed genome-scale metabolic models and kinetic

ensemble models are currently available for C. autoethanogenum and other acetogens

[46, 62, 203], two-way coupling of these models is currently too computationally intensive

for practical application. Development of less-detailed, yet structured kinetic models by

metabolite lumping [67, 68, 94] is key to study the influence of C. autoethanogenum on

the flow and concentration fields more accurately.

Siebler et al. [56] studied how C. ljungdahlii would respond to CO gradients in a

severely mass transfer limited bubble column reactor. They hypothesised based upon

their Euler-Lagrangian results and in analogy with Escherichia coli that in their case tran-

scriptional changes were very likely (>84%) to occur because long-lasting CO limitations

would lead to a maintenance-dominated metabolism. Redox-controlled oscillations

in biomass-specific uptake and production rates were observed in C. autoethanognum

[204], within the timescale of hours, while substrate fluctuations in the order of seconds

(∼tc ) or minutes are expected in the large-scale. With scale-down simulators (e.g., based

on a single-vessel, multiple vessels such as stirred tank reactors coupled with plug flow

reactors, or microfluidics) the physiological cell response on such short-term fluctuations

could be studied so that the large-scale environment as experienced by the cell is repro-

duced at bench-scale [48, 64–66, 205]. The obtained metabolite fluctuations can be used

for parametrisation of the lumped metabolic models [67].

Several scale-down simulators have been developed and used in the past decades, but

the requirements of a scale-down simulator for syngas fermentation have not been iden-

tified yet. Since there are many unknowns in the scientific literature regarding kinetics

and short-term cell responses, the execution of scale-down experiments that are repre-

sentative of the large-scale behaviour is crucial for advancing the syngas fermentation

field. In this study, we propose a scale-down simulator to study industrial-scale syngas

fermentation at lab-scale. To exemplify the distinctive applicability of the proposed scale-

down simulator, a wide range of industrial biomass concentrations were studied, since

this is a major determinant for the dissolved gas concentration. The impact of gas (CO2)

production on the dissolved gas concentration gradients and thus possible fluctuations

for the microbe was studied. We used our previous CFD model of an industrial-scale

external-loop gaslift reactor (EL-GLR) and our lab observations to develop and analyse

lifelines representative for large-scale syngas fermentation [197, 206].
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4.2. Methods
Eulerian concentration field
Geometry and flow field

As a starting point for the simulations, the 3D reactor geometry and computed flow field

of the EL-GLR were used, for which the modelling approach was validated on pilot-scale

data as described in [197]. The only change was the syngas composition from a 50% CO,

50% N2 mixture to a 50% CO, 20% H2, 30% CO2 (v/v) mixture [204]. Since the average mo-

lar mass of these compositions is similar and the ideal gas law applies, the mass-flow inlet

boundary condition of 2.11 kgs−1 was kept the same, as well as the headspace pressure of

101 kPa.

Next to the equations for gas and liquid flow, volume fraction, and turbulence, the

species equations were solved transiently for both phases for obtaining the concentra-

tion fields, by implementing user-defined functions (UDFs) for both mass transfer and

biological reaction (Figure 4.1), in ANSYS Fluent 2021R1.

Mass transfer model

The mass transfer coefficient kL was computed by taking the maximum value derived

from either the Higbie [127] (Equation 4.3) or the Lamont-Scott relation [131], the result

of the latter was corrected for the underestimation of the energy dissipation rate ϵ by the

a) Industrial-scale (500 m3) syngas fermentation

External-loop gas-lift reactor
b) Scale-down simulator (CSTR)

Getinge Applikon 3 L glass bioreactor

Gas inlet

2.11 kg s-1

50% CO

20% H2

30% CO2

Gas outlet

p = 101 kPa

Ethanol

Hydrodynamic model: 0 – 1200 s

• Gas + liquid flow (Eulerian, universal drag)

• Turbulence (RNG k-ε)

• Validation on pilot-scale data

Add mass transfer model: 1200 – 2200 s

Add reaction model: 2200 – 3000 s

Determine lifelines: 3000 – 4000 s

1

2

3

4

Figure 4.1: Conceptual representation of the modelling procedure for both a) the industrial-scale reactor and b)

the scale-down simulator. The 3D geometry, based on publicly available pictures of the Shougang-LanzaTech

plant, the hydrodynamic model CFD of the EL-GLR and its validation on pilot-scale data are extensively

described in our previous work [197]. The scale-down simulator is based upon a 3 L bioreactor (2 L liquid

volume), with varying duration of high and low stirrer speed after the start-up phase. See Table C.1 for details on

the geometry of this reactor [207]. Created with BioRender.com.

BioRender.com
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k-ϵ model [165] using the pneumatic power input derived from standard correlations

[166] and the liquid volume integral of ϵ (Equation 4.4). The maximum kL of species i

was used to account for both surface layer renewal mechanisms, since high kL might

be obtained in zones with high energy dissipation [164], but transfer in low-turbulent

conditions is better approximated by the Higbie relation [26].

kL,i = 2

√
DL,i vslip

πdb
(4.3)

kL,i = 0.45DL,i
1
2 (ϵcor/νL)

1
4 with ϵcor = fcorϵlocal and fcor = Pin∫

VL
ϵlocaldVL

(4.4)

In order to obtain a realistic mass transfer rate for industrial-scale syngas fermentation,

spherical bubbles with constant diameter (3 mm) were assumed based upon our previous

work [197] (Equation 4.5). Since coalescence could be suppressed by the presence of

surface-active compounds (e.g., ethanol, salts) in syngas-to-ethanol fermentations, small

bubbles can be obtained, leading to high mass transfer rates [157, 181, 200, 206].

While our multiphase model accounted for mass loss through interphase mass transfer

and gas expansion using the ideal gas law in Fluent’s volume fraction equation [79],

we acknowledge that bubble coalescence, break-up, shrinkage by consumption, and

pressure-based bubble expansion were not considered by assuming a constant bubble

size. Although these factors could have potentially improved the accuracy of the gas

phase description, we chose to prioritise obtaining realistic gas mass transfer rates and

focusing on the biological aspects of our study. Therefore, we opted for a simplified set of

equations, similar to Siebler et al. [56], that were within the scope of our work.

The saturation concentration was calculated considering the local gas phase mole

fraction. The pH equilibrium of CO2 with carbonate species could increase the gas-to-

liquid mass transfer rate in neutral (pH 6 - 8) and basic conditions (pH > 8), however

this effect can be neglected as the syngas fermentation process is operated at pH 5. To

ensure complete saturation of CO, H2, and CO2, and achieve steady-state conditions (i.e.,

statistically stationary) in the average flow and concentration fields, the mass transfer

model was run for 1000 s. Although short-time fluctuations occurred, there were no long-

term dynamics, as evidenced by the constant rolling average of the global gas hold-up

and dissolved gas concentrations.

MT Ri = kL,i a∆cL,i = kL,i 6
εG

db

(
Hi pyi − cL,i

)
(4.5)

Biological reaction modelling

The biomass-specific CO and H2 uptake rates (qi ) were modelled using a recently derived

kinetic model [40]. Both CO- and H2-uptake models account for CO inhibition (Equation

4.6 and 4.7), and are based on models derived by Mohammadi et al. [34] and de Medeiros

et al. [208], respectively.
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Table 4.1: Parameters used for the simulation of the Eulerian concentration field.

Name Symbol CO H2 CO2 Unit Source

Inlet gas fraction yi ,in 0.5 0.2 0.3 moli mol−1
G [204]

Henry coeff. Hi 2.30×10−7 1.47×10−8 1.06×10−5 kg m−3 Pa−1 [144]

Diffusion coeff. DL,i 2.71×10−9 6.01×10−9 2.56×10−9 m2 s−1 [143]

Maximum uptake rate qmax
i 1.459 2.565 - mol mol−1

x h−1 [40]

Half-saturation coeff. KS,i 0.042 0.025 - mol m−3 [40]

Inhibition coeff.
KI 0.246 - - molm−3 [40]

KI ,CO - 0.025 - molm−3 [40]

qCO = qmax
CO

 cL,CO

KS,CO + cL,CO + c2
L,CO
KI

 (4.6)

qH2 = qmax
H2

(
cL,H2

KS,H2 + cL,H2

)(
1

1+ cL,CO
KI ,CO

)
(4.7)

The overall reaction rate ri is the product of qi and the biomass concentration cx , the

latter was assumed to be spatio-temporally constant as a continuous process is considered

in steady state. The reaction rates were enabled once CO and H2 concentrations reached

a steady saturation value. Once statistically stationary flow and concentration fields were

obtained (after 600 s the rolling averages of the global dissolved gas concentrations and

hold-up remained constant), time-averaged fields were collected over an averaging period

of 200 s. Parameters used for computing the Eulerian concentration fields are provided in

Table 4.1.

The influence of microbial CO2 production was examined by modelling two extreme

cases at 25 gL−1 biomass: i) only CO2 consumption by H2 catabolism, qCO2 = − 1
3 qH2 ,

and ii) also including production by CO catabolism: qCO2 = 4
6 qCO − 1

3 qH2 . The case with

the most extensive dissolved gas concentration gradient was subsequently used to study

a wide range of industrially relevant conditions, by running simulations with varying

biomass concentrations (2, 5, 7.5, 10 and 25 gL−1).

The obtained dissolved gas concentrations from the Eulerian simulations for the

different biomass concentrations were compared to approximations obtained by a simple

ideal-mixing model (cL,i from Equation 4.8), wherein it was assumed that all transferred

gas is directly consumed. The ideal-mixing model used the same parameters (Table

4.1) and uptake kinetics (Equations 4.6 and 4.7), an average pressure (274 kPa), and the

volume-average kL a obtained from the CFD simulations.

MT Ri = (kL a)i
(
Hi pyi − cL,i

)= qi cx = ri (4.8)
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Lifeline analysis
Microbial lifelines were obtained for three cases with different biomass concentrations (5,

10 and 25 gL−1). Massless Lagrangian particles were injected at the sparger and tracked

for a certain number of circulation times Ntc and particles Np . To account for turbulence

effects, Fluent’s discrete random walk model was enabled. While tracking the particles,

the current time, position, concentrations, and biomass-specific uptake rates were stored

in text format every 0.1 s. Data obtained for the first 90 s (approximately one 95% mixing

time tm , Figure C.1) were discarded to ensure that the particles were evenly dispersed

over the whole reactor volume during the entire analysis.

The lifelines revealed distinct periods of maxima and minima (i.e., peaks and valleys)

in both dissolved CO and H2 concentrations. Peak and valley periods were defined from

the lifelines by comparing the transient concentrations in the lifeline with the Eulerian

average dissolved gas concentration: in case the transient concentration was 2 times

(for the 5 gL−1 case) or 1.5 time (for the other cases) higher or lower than the Eulerian

average concentration for at least 1 s, then a peak or valley was assigned, for which the

residence time and the average gas concentration were stored. Probability-normalised

histograms were calculated subsequently using 100 linearly distributed bins over the

whole parameter space (e.g., residence time or average concentration in peak), except for

time in the valleys where the maximum value was capped at 150 s. The circulation time tc

was calculated as the average time between two peaks (Equation 4.9):

tc = Np
tlifeline

Npeaks
(4.9)

For the case with 5 gL−1 biomass, lifelines were obtained during tlifeline = 1000 seconds

(around 23 circulation times) and for Np = 160,000 Lagrangian trajectories. This resulted

into extensive simulation time and data usage so that the analysis of the full dataset was

computationally unwieldy. Therefore, we had to determine how many Lagrangian trajec-

tories (Np ) and circulation times (Ntc ) were needed to ensure statistical independence

using the Kullback-Leibler divergence (see Appendix B, Figure C.2).

Design of a scale-down simulator
The scale-down simulator was designed based on the results of the lifeline analysis (i.e.,

the probability density functions of concentrations and residence times in peaks and

valleys). The goal of this scaled-down system is to reproduce to the best possible degree

the residence times and concentrations experienced by microbes in the full-scale system.

The starting point was a continuously operated bench-scale stirred tank reactor (CSTR)

(see Figure 4.1 and Table C.1), for which operational conditions were varied to mimic the

large-scale environment at several biomass concentrations.

Mass transfer, dilution and consumption rates were modelled for CO, H2, CO2 and

biomass while assuming ideal mixing in the liquid phase (Equation 4.10). The evolution of

the gas (CO, H2 and CO2) composition in the dispersed phase yD,i and in the headspace
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yH ,i were also considered (Equation 4.11, 4.12) since these could be highly variable

during operation at low gas flow rates. The dispersed gas volume VG ,D was determined

by approximating the gas hold-up using the method proposed by [25], while volume

balancing was done to calculate the headspace gas volume VG ,H .

dcL,i

d t
= Dr (cL,i ,in − cL,i )+ (kL a)i

(
Hi pyi − cL,i

)+qi cx (4.10)

d yD,i

d t
= FG ,in

VG ,D
yi ,in −

FG ,out

VG ,D
yD,i − VL

VG ,D
(kL a)i

(
csat

L,i − cL,i

) RT

p

with FG ,out = FG ,in −
∑

i=all gases

[
(kL a)i

(
csat

L,i − cL,i

)]
VL

RT

p

(4.11)

d yH ,i

d t
= FG ,out

VG ,H

(
yD,i − yH ,i

)
(4.12)

The volumetric mass transfer coefficient kL a of compound i is dependent on the

superficial gas velocity and the stirrer speed [71] and was estimated by considering mass

transfer enhancement by the broth composition ( fbroth = 1.5, [206]), the temperature

and the compound-specific diffusion coefficient in water (Equation 4.13). The power

input was estimated for a Rushton impeller with P0 = NPon3d 5
imp and the used geometry

[25, 209].

(kL a)i = fbroth ·
[

0.026

(
P

VL

)0.4 (
uG ,s

)0.5
](

1.022(T−293.15))√ DL,i

DL,O2

with P =α
(

P 2
0 nd 3

imp

FG ,in
0.56

)β (4.13)

The overall gas consumption rate was determined using the local concentrations in

the liquid phase via Equations 4.6 and 4.7 and the biomass concentration. The total

biomass growth rate
(
µ · cx

)
was determined using the model parameters derived by

[32] for solventogenic conditions (Equation 4.14), while neglecting the maintenance

requirements of the biomass. Biomass retention in the system was assumed (e.g., [31])

and varied by adjusting the biomass recycling rate Rrec.

µ= qCOYx/CO +qH2 Yx/H2 (4.14)

The modelled bench-scale reactor was operated with a constant dilution rate of

0.021 h−1, inlet gas flow of 0.05 vvm, temperature of 37 ◦C, pressure of 101 kPa and a stirrer

speed during start-up of 75 rpm. Initial concentrations of CO, H2, CO2 and biomass in

the liquid from Table 4.2 were assumed to solve the system with the ode15s function in

MATLAB. After the start-up period the concentration oscillations were repeatedly imposed

by varying the stirrer speed. The obtained scale-down lifelines were analysed using the

same routine as for the industrial-scale reactor but considering no threshold factor to

discriminate between the peaks and valleys, since these were manually imposed.
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Table 4.2: Parameters specifically used for the design of the scale-down simulator. The other parameters as in

Table 4.1.

Name Symbol CO H2 CO2 Biomass Unit Source

Inlet gas fraction yi ,in 0.5 0.2 0.3 - moli mol−1
G -

Inlet liquid conc. cL,i ,in 0 0 0 cL,x,outRrec mol m−3
L -

Biomass yield Yx/i 0.041 0.0070 - - molx mol−1
i [32]

Initial liquid conc. cL,i ,0 0.1 0.03 7.4 2.03 mol m−3
L -

4.3. Results and discussion
4.3.1. Eulerian concentration gradients
Influence of gas production

The results of Eulerian simulations with 25 gL−1 biomass in two CO2 production cases

were compared in terms of the dissolved CO concentration cL,CO distribution in the reac-

tor (Figure 4.2a,b). Although the dissolved gas concentrations in both simulations were

in the same range (as expected since the biomass concentration was kept constant), the

spatial distribution of cL,CO within the riser was completely different. In both cases, the

highest CO concentrations appeared at the base of the riser, where the mass transfer rates

are high due to the hydrostatic pressure and high CO and H2 gas fractions. As the gas

rises, the pressure and gas fractions decrease, leading to lower mass transfer rates. More

mass transfer was observed in the top separator due to the locally increased gas hold-up

(Figure C.3), leading to increased cL,CO. In the downcomer, the long biomass residence

time and poor gas renewal caused low CO concentrations.

The gas plume is pushed towards the left side by the liquid exiting the downcomer,

resulting in high dissolved gas concentrations at the left side in the case without CO2

production, which is due to reduced oscillations in the gas plume. When CO2 is con-

sidered, the gas, and thus the dissolved syngas, concentrate towards the middle (Figure

4.2a, b) similar to the case without gas consumption [197]. Additional gas is generated

halfway the riser by microbial reaction and is transferred back to the gas phase due to

CO2 oversaturation at decreased hydrostatic pressure. The additional gas in the riser (cf.

Figure C.3a, b) leads to transport of dissolved CO towards the right side of the riser (cf.

Figure 4.2a, b) and homogenises the dissolved gas distribution (i.e., the variation of cL,CO

and cL,H2 ) within the whole reactor volume (Figure C.4).

Next to cL,CO, the evolution of gas hold-up εG and consequently kL a in the EL-GLR

are highly affected by gas consumption (Figure 4.2c, d). As the mass transfer simulation

starts without dissolved gas at t = 1200 s, there is an initial drop in εG due to gas dissolu-

tion. The lower εG causes a drop in kL a because of their linear dependence (Equation 4.5).

After about 400 s the liquid saturates with dissolved gas and εG and kL a stabilise. When

the reaction is switched on at t = 2200 s, both εG and kL a suffer a significantly drop in the

cases with high biomass concentration, since high amounts of gas are being consumed

(Figure C.3), even when CO2 production is included. Similar decreases in εG were also
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Figure 4.2: Effect of CO2 production on mass transfer and dissolved gas distribution. Time-averaged (200 s)

dissolved CO concentrations cL,CO in the zy-plane (x = 0) of the EL-GLR for 25 gL−1 biomass a) without CO2

production and b) by considering CO2 production. Time-dependence of the dispersion volume-averaged c) εG

and d) kL a during the CFD-simulations. Until 2200 s only gas-liquid mass transfer was included (black line). At

2200 s gas consumption was switched on in the model in three cases: 2 gL−1 biomass without CO2 production

(blue line), 25 gL−1 biomass without CO2 production (red line), 25 gL−1 biomass including CO2 production

(green line).

visible in the model by Siebler et al. [56]. Interestingly, with little biomass in the reactor

(2 gL−1) the gas conversion is highly decreased (from 0.67 kgs−1 at 25 gL−1 to 0.16 kgs−1)

due to inhibiting CO concentrations (Figure C.5), increasing εG and kL a compared to the

cases with more biomass.

Although εG could be well predicted with empirical relations in cases without gas

consumption [197], the 33% decrease in εG by microbial gas consumption makes the

prediction of εG and thus kL a even more challenging in operational EL-GLRs. This ob-

servation is especially relevant for gases rich in carbon source or electron donors, like

the used syngas, in contrast to air where the dilution with inert N2 and typically near

equimolar conversion of O2 into CO2 results in negligible volume changes due to mass

transfer.

The reduced gradients when considering CO2 production, would decrease the impact

of cL,CO variations on microorganisms. Due to uncertainties on the metabolism, e.g., the

possibility of simultaneous CO and H2 consumption [44], the modelled cases would either

under- or overestimate the CO2 production rate. Since the case without CO2 production

appears to generate larger fluctuations and thus complicate the design of the scale-down

simulator (and this is, dependent on the syngas composition, the ideal gas fermentation

process from an environmental point of view), we further examined this scenario.
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Influence of biomass concentration

Dissolved gas concentration fields in the large-scale reactor were computed with 2, 5, 7.5,

10, and 25 gL−1 biomass, as shown in Figure C.6 and Figure C.7. The variability that the

microbes experience in dissolved CO and H2 concentrations, as well as the corresponding

biomass-specific uptake rates qCO and qH2 , are displayed in Figure 4.3.

The mean values for the Eulerian fields follow the same trend as the ideal-mixing

model (Equation 4.8), indicating that the concentration range is predominantly cL,i < KS,i .

For cx below 5 gL−1, the high potential mass transfer capacity compared to the reaction

rate leads to strong CO inhibition, while in the 5 – 10 gL−1 range the mass transfer rate is in

equilibrium with microbial syngas consumption at lower dissolved gas concentrations. At

high cx (25 gL−1) gas uptake is fast, leading to low cL,i and thus also low uptake rates. This

decrease in qi is compensated by the greater cx , causing the volumetric reaction rate and

gas conversion to remain similar to cases with less biomass and higher biomass-specific

uptake rates (Figure C.5). The ideal-mixing model suggests that an optimum qi could

be obtained at a certain biomass concentration, but the exact biomass concentration

remains challenging to be determined using the CFD models considering the wide con-

centration distribution, the non-linear kinetics, and that iteratively running these models

is very time-consuming. As there is less inhibition at higher cx , there could be a possibility

to increase gas conversion by supplying more gas, providing that coalescence remains

suppressed by broth components [206].

There is a large volumetric spread in the dissolved gas concentrations obtained

by the CFD models. The highest quartile of concentrations is often a factor 10 higher

than the concentrations in the second quartile (e.g., at 5 gL−1 Q2 of cL,CO starts around

1× 10−2 molm−3, while Q4 starts at 1× 10−1 molm−3). This would imply that the mi-

croorganism could experience regular concentration fluctuations of around one order of

magnitude. However, due to the non-linear nature of the CO and H2 uptake kinetics, such

fluctuations only lead to minor oscillations in biomass-specific uptake rates. Here, the

observed concentration gradients are significantly smaller than those in sugar fermen-

tations with similar τrxn [57], due to the continuous gaseous substrate supply. However,

the spread in the concentration fields may cause an overestimation of uptake rates by the

ideal mixing models.

Overall, the ideal mixing model was able to describe the concentration range reason-

ably well, especially in the limitation regime, and could still be used for quick estimations

of dissolved gas concentrations at varying conditions (e.g., increased mass transfer, pres-

sure, or with different kinetics). The spatio-temporal variations in cL,i , which can only be

obtained by CFD modelling, are then to be estimated as ± half-an-order of magnitude

around the derived concentrations from the ideal mixing model.
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Figure 4.3: Spatial variations in (a, b) dissolved CO and H2 concentrations and (c, d) biomass-specific uptake

rates, represented in boxplots, for varying biomass concentrations. The boxplots were obtained from the 200 s

time-averaged results of the CFD simulations and depict the spread around the mean values, with each quartile

representing 25% of the reactor volume, while the diamond symbol represents the volume-averaged mean value.

The dashed line is the result of a simple ideal-mixing model, using the volume-averaged kL a from the CFD

model (0.050 s−1 for CO and 0.074 s−1 for H2).

4.3.2. Lifeline analysis
From the lifelines obtained in cases with 5, 10 and 25 gL−1 biomass it appears that the

microorganisms could experience frequent fluctuations in solute concentrations (in 5 to

30 seconds), as visible from Video S1. To quantify the microbial experience, the residence

times in the peaks and valleys of substrate concentrations were determined, as well as the

average dissolved CO and H2 concentration during a peak or valley. From the resulting

probability density functions, we determined the joint probability of observing a specific

residence time and concentration in a peak or valley (Figure 4.4).

The dynamic behaviour of the EL-GLR causes a large spread in the observed con-

centrations and residence time. This makes it impossible to standardise a concentration

profile of a lifeline. The difference in concentration between the peaks and valleys are

around a factor of 5, but within these there are significant deviations (up to 50%) around

their specific mean values.
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Figure 4.4: Scatter plots representing the likelihood of a microbe to experience peaks or valleys with a certain

combination of cL,CO and duration. Each dot represents a peak or valley with a concentration and residence

time, and is colored by the probability of occurrence of that specific combination in the whole set of lifelines.

Each row of plots represents data obtained with a specific biomass concentration: (a, b) 5, (c, d) 10 and (e, f)

25 gL−1. Peaks are in the left column of plots (a, c, e) and the valleys are at the right (b, d, f). A similar figure was

made for H2 (Figure C.8).

Although the average gas concentrations during the oscillations are very different for

the three biomass concentrations, the microbial residence time distributions are quite

similar. This is caused by the similar hydrodynamic behaviour in the three cases, resulting

from similar superficial gas flow velocity and gas conversion rates while neglecting the

influence of biomass concentration on fluid properties (density and viscosity). Interest-
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ingly, in the cases with 5 and 10 gL−1 the dips in concentration lasted sometimes very

long (> 100 s). This could be due to a recirculation pattern in the downcomer. Since in

the 25 gL−1 case the concentration difference is small between peaks and valleys, and

still some gas pockets with relative high CO concentration exist, such moments were not

observed.

During the CO peaks at 5 gL−1, cells can spend short moments (between 5 and 15 s) at

inhibitory concentrations (since K I = 0.25 mol m−3. In this case cL,CO still remains around

the values needed for an optimum qCO, so that strong inhibition would not be expected

since tpeak<tc ≈ 40 s, based upon the used kinetic model. The precise microbial response

to such short moments of potential inhibition is unclear.

Similar results were obtained for H2 (Figure C.8). The residence times in peaks and

valleys were in the same ranges as for CO, with high concentration fluctuations of about

a factor 5 noticed. Because H2 uptake was inhibited at a relatively low cL,CO (K I ,CO =

0.025 molm−3), this resulted in high levels of CO inhibition during peaks. When inter-

ested in H2 (and thus CO2) conversion, CO levels should be kept well below the inhibitory

values, which could be achieved by adjusting the inlet gas composition (e.g., by green

hydrogen supplementation) and/or by increasing the biomass concentration. Due to

the strong fluctuations in cL,CO and the inhibiting effect of CO on H2 uptake, qH2 was

significantly influenced, highlighting the need to study the mutual effect of CO and H2

fluctuations on qH2 .

The ratio between the average dissolved concentrations of CO and H2 (cL,CO/cL,H2 ) in-

creases with an increased biomass concentration: cL,CO/cL,H2 ≈ 2 at 5 gL−1, 3 at 10 gL−1

and 6 at 25 gL−1. This is caused by the faster decrease of qCO compared to qH2 with

biomass concentration (cf. Figure 4.3 c, d) due to decreased CO inhibition. To in-

spect the level of inhibition by CO in the determined ranges for peaks and valleys, the

biomass-specific CO and H2 uptake rates were calculated for each case using its respective

cL,CO/cL,H2 ratio (Figure 4.5).

From determining the specific gas uptake rates, it became clear that the reactor

should be operated in the limitation regime, when increasing cL,i would result in a greater

qi (e.g., at 25 gL−1) while inhibitory concentrations are avoided. At low biomass concen-

tration (5 gL−1), CO inhibition is already problematic, leading to decreased H2 uptake

rates in the peaks. With 10 gL−1 a significant increase in qCO is observed when transition-

ing from a valley to a peak (from 0.3 to 0.8 mol mol−1
x h−1), but small increases in cL,CO

during the peaks could worsen overall performance since qCO is close to optimum. From

the oscillatory dataset of Mahamkali et al. [204] was derived that fluctuations in qCO and

qH2 in the timescale of hours lead to large increases in qEtOH and thus the ethanol yield

[40]. Scale-down experiments with imposed concentration fluctuations could inform

whether this observation holds for the circulation timescale as well.
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Figure 4.5: Overall biomass-specific a) CO and b) H2 uptake rates computed for biomass concentrations of 5

(blue), 10 (red), and 25 gL−1 (green). cL,CO in the H2 uptake kinetics was calculated by using a cL,CO/cL,H2 of

2, 3 and 6 for each respective case. The full arrows indicate the concentration ranges of the peaks, while the

dashed arrows indicate the ranges for the valleys. CO-uptake is independent of the biomass concentration,

hence the single line.

Too low dissolved gas concentrations would cause a thermodynamically infeasible

catabolism and thus no syngas uptake at all. Such concentrations were estimated to be

around 4×10−4 and 3×10−3 molm−3 for CO and H2, respectively, assuming independent

consumption of CO and H2/CO2 for solventogenesis [32]. Since such low cL,CO was not

obtained in our analysis, we did not expect such problems for CO consumption. However,

for H2, values below the thermodynamic limit were attained in the valleys for 10 and

25 gL−1 biomass, so that a coupling with CO consumption is potentially required to supply

enough electrons for H2 uptake. As this may come at the expense of the product yield,

further scale-down studies are required to determine how C. autoethanogenum may react

to such short-term fluctuations in H2 concentration.

Siebler et al. [56] estimated that a starvation regime could occur when cL,CO < 3×
10−3 molm−3. Since in this regime a major portion of the energy might be spend on

maintenance catabolism, lower growth rates can be expected, leading to higher product

yield. In the configuration they studied, such CO shortages were highly likely to occur,

causing a probable shift towards a starvation regime. In our simulations, this situation

may only occur in the valleys when operating with high cx . Due to higher cL,CO in our

other cases, reaching the maintenance catabolism was very unlikely to occur, since kL a

of the EL-GLR was a factor 5 higher than in the BCR studied by Siebler et al. [56] (with kL a

∼ 0.01 s−1 and cx = 10 gL−1).

Our results suggest that even higher cx may be advantageous, considering the current

operation in the limitation regime and that high mass transfer could be obtained due

to bubble coalescence suppression in the fermentation broths. Operation at very low

cL,CO would enable operational flexibility and a high product yield, without sacrificing

gas conversion. Caution is needed to prevent that the dissolved gas concentrations do

not get so low that the reaction becomes thermodynamically unfeasible, or that the high

cx hampers mass transfer and mixing by increasing broth viscosity [179].
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In the LanzaTech process, kL,COa could well be around 3-4 times higher [197] than

the final one obtained in our model (650 h−1 vs. 180 h−1). This could be due to mass

transfer intensification (e.g., by introduction of perforated plates [20]) or by achieving

smaller bubbles (∼1 mm). Although bubbles would become more rigid in such a case,

mass transfer might still be enhanced by cell monolayers around the bubbles, especially

in case of operating at high biomass concentrations [25]. In such high mass transfer cases,

substantial CO inhibition might be expected, stressing the need to operate at high (>
25 gL−1) biomass concentrations.

4.3.3. Development of scale-down simulator

Based upon the analysis of the CFD data, we used numerical simulations to propose a

conceptual design of a scale-down simulator to experimentally replicate the dissolved

gas concentrations which were estimated to be experienced by microorganisms in the

industrial-scale syngas fermentation. A single-vessel system, being a 2 L working vol-

ume CSTR, was chosen as basis for the scale-down simulator. Since rapid and irregular

fluctuations in peaks and valleys should be obtained, we did not consider multi-vessel

systems with forced circulation because rapid consumption of dissolved gas in the tubes

connecting the vessels would be detrimental for the performance. In addition to the

advantage of no substrate depletion in the tubes, clogging or high shear stress by pump

action could also be avoided. In a well-mixed stirred-tank, there are little spatial varia-

tions in dissolved gas concentration (unlike plug-flow systems) so that the dissolved gas

concentrations can be better controlled. Another potential scale-down system would be

a two-stage STR with a perforated plate separating two well-mixed zones [210]. This way

the dynamic interchange between two concentrations could be reproduced, although the

step transitions might be unrealistic for the observed large-scale behaviour. A significant

disadvantage of using a single-vessel is the lack of population heterogeneity in cellular

experience, which would definitely be present in multi-vessel systems, as well as the poor

incorporation of dead (or low concentration) zones such as the downcomer [211, 212].

Furthermore, slow mixing at low power input might possibly lead to local concentration

gradients [71]. Operation at smaller scales with better mixing (e.g., 200 mL) might, how-

ever, lead to practical problems regarding sampling.

To mimic the large-scale successfully, we should make sure that the microbes expe-

rience similar peak/valley duration and concentration differences as in the large-scale

bioreactor. Although we could argue from Figure 4.4 that most peaks last between 5 and

15 seconds, and valleys 10 to 30 seconds, this argument does not account for frequently

occurring irregularities. There are peaks and valleys that largely exceed these times, e.g.,

peaks of 25 s and valleys of 60 s are not exceptional, and the scale-down simulator should

replicate such outliers in terms of time and concentration. With the probability distribu-

tions of the residence times derived from the CFD lifelines, variations in the stirrer speed

were imposed to obtain corresponding peaks and valleys in the scale-down simulator. It
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Table 4.3: Operational conditions of the scale-down simulator to obtain an acceptable fit of the lifelines obtained

by the scale-down simulator with the CFD-derived lifelines.

Peak Valley Recycle

cx,EL−GLR n kL,COa P/V n kL,COa P/V Rrec cx,SD

(gL−1) (rpm) (h−1) (Wm−3) (rpm) (h−1) (Wm−3) (-) (gL−1)

5 910 153 23,000 20 1.3 0.11 0.5 0.54

10 900 150 2200 150 15 70 0.91 1.44

25 500 71 3400 70 5.6 6.1 0.96 3.27

was determined that around 2000 oscillations, lasting ∼15 h in total, should be applied in

the scale-down simulator to make sure that enough variation in peak or valley residence

time is imposed (Figure C.2). To account for the varying biomass concentrations from the

three CFD cases (5, 10 and 25 gL−1), the biomass recycling rate Rrec was altered between

the different cases to adjust the reaction rate.

With this computational set-up and the iteratively derived operational conditions

(Table 4.3), lifelines were simulated in the conceptual bench-scale reactor for the three

different cx that roughly correspond to the large-scale lifelines (Figure 4.6). The pulses

in stirring speed are well captured and provide the same peak-valley frequencies as is

expected at the large-scale. The concentrations that the microbes would experience are

similar as in the large-scale bioreactor within the peaks and valleys. For example, for

CO and H2 in the 5 gL−1 cases the upper concentrations are always in the same order

of magnitude and the experienced valleys are very similar to the ones in the large-scale

reactor (Figure 4.6a, b). For the cases with high cx it is more challenging to represent the

deep concentration valleys well (cL,i ≪ 1×10−3 molm−3) since the increased cx generally

requires more mass transfer in the valleys. Since the impact of such concentrations on

the qi is small (Figure 4.5), negligible influence of this was expected.

The rate of increase in dissolved gas concentration during the transition from a valley

to a peak in the scale-down simulator is very similar to that in the large-scale bioreactor:

instantaneously the microbes experience concentration increases up to around 1 – 2

orders of magnitude in a matter of seconds (1 – 5 s). The decrease of the slope at the

beginning of the peaks in cL,CO can equally be identified in some of the peaks of the CFD

lifelines. In the large-scale this rapid increase is due to the microorganism travelling

instantly into a zone with high mass transfer and thus dissolved gas concentrations, while

in the scale-down simulator the mass transfer increase responds to the step increase in

stirring speed.

The transition from the peak to the valley was found to be more problematic to repro-

duce in the bench-scale reactor for the cases with 10 and 25 gL−1. Although the dissolved

gas concentration decay is more plug flow-like at the large-scale, immediate decreases

back to a representative "valley-baseline" were observed in the scale-down simulator.

Simulating a ramped decrease in stirring speed could be helpful to obtain a more realistic

decay in concentrations.
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Figure 4.6: Microbial lifelines obtained from the simulation of the EL-GLR (blue) and the scale-down simulator

(red), for CO and H2, and the varying biomass concentrations in the large-scale reactor: a, b) 5 gL−1; c, d)

10 gL−1; e, f) 25 gL−1. Random lifelines were chosen from the CFD simulation (blue) and a random time span

of the lifelines in the scale-down simulator

A major factor varying between the two scales is the frequency and magnitude of cel-

lular exposure to shear forces. This was quantified with the energy dissipation/circulation

function (EDC F = Ptotal
Veff

1
tc

) [213, 214] while approximating tc as 1
4 tm [71]. In the scale-

down simulator there is highly varying exposure to shear between peaks and valleys when

the cells are close to the impellers (EDC F varies from 50 kWm−3 s−1 to 1×10−4 kWm−3 s−1,

respectively). In the EL-GLR there is only a high shear region around the gas plume (EDC F

∼0.06 kWm−3 s−1), without considering bubble burst. The significantly varying EDC F
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Figure 4.7: Comparison of the probability density functions obtained by the scale-down simulator (bars) with

the CFD results (lines). Probability density functions for a) the concentration of dissolved CO during the peaks

(blue) and the valleys (red), as well as the residence time in a b) valley or c) peak. Here, the case of CO with 5 g

L−1 biomass is provided, other cases (H2 5 g L−1, and both compounds for 10 and 25 g L−1) are provided in

Figures C.10-C.14. The scale-down simulator was operated with 2000 peaks.

between two scales could be of impact when C. autoethanogenum is shear-sensitive, but

this was not expected, due to its small size (around 3 µm) compared to the Kolmogorov

scale (∼10µm) [4, 215].

The correspondence of the results of the scale-down simulator with the large-scale reactor

was determined by performing a lifeline analysis. In this way, the probability distributions

for the residence times and the concentrations in the peaks and valleys could be compared

quantitatively (Figure 4.7 and Figures C.10-C.14). Generally, a very good correspondence

of the residence time distributions was obtained. To some extent this is logical as CFD

results of these are the inputs of the scale-down simulator, although the limitations of a

bench-scale reactor do not guarantee good correspondence to be feasible; it indicates

the feasibility of imposing rapid stirring speed fluctuations in a well-mixed bench-scale

system.

Corresponding concentration distributions were more challenging to obtain since

the ranges of the large-scale CO peak concentrations are very large (0.1 – 0.25 molm−3,

Figure 4.7a). In the scale-down simulator the CO peak concentration could not become

that high (maximum 0.2 molm−3) so that a narrower range was obtained, which was

more skewed towards the lower concentrations. The assumptions and parameters used

in the mass transfer and kinetic models make it challenging, however, to purely rely on
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quantitative results for the concentration fluctuations in the scale-down setup. Using

more accurate mass transfer and kinetic models would increase the reliability of our

quantitative predictions and thus our conceptual scale-down simulator.

Despite all these limitations, we showed that with a conceptually relatively simple

scale-down simulator, the large-scale dissolved gas concentration gradients for a wide

range of biomass concentrations could be reproduced in lab-scale. Model-based tuning

of the operational conditions (e.g., stirrer speed, gas flow rate, gas composition) of the

scale-down set-up on the probability distribution functions of the large-scale reactor,

is a possible strategy to maximise correspondence between the two scales and thereby

provide a fruitful basis towards representative scale-down of syngas fermentation.

4.3.4. Outlook
Further improvement of the scale-down simulator could lead to even better represen-

tations of the large-scale behaviour. An optimisation routine could help obtaining the

best-fit parameters with the CFD-derived data. The ideal scale-down simulator has as few

as possible variable parameters and represents the large-scale behaviour for a wide range

of conditions. The effect of parameters (e.g., stirrer speed during the start-up phase) could

be derived using tools such as principal component analysis during the optimisation and

help deciding whether or not to use the parameter in further analyses.

The quantitative results of the CFD study and the proposed scale-down study are

strongly dependent on the process conditions (e.g., headspace pressure, gas fraction)

as well as on the kinetic model for CO and H2 uptake. For example, the current models

for CO-uptake significantly underestimate the maximum specific growth rate (µmax
model

= 0.03 h−1) compared to experimental values (µmax
exp = 0.12 h−1) [45]. As they are param-

eterised using insufficient data, the accuracy of our simulations is decreased and is

therefore a major drawback of the study. Development of accurate kinetic models is

crucial for reliably modelling bioreactors, and we hope that our work motivates further re-

search in this area. The MATLAB scripts describing the conceptual scale-down simulator

are openly available and can be used for further development with updated sub-models.

Despite the mentioned limitations, the proposed set-up and method are still applica-

ble to a wide range of conditions. Even without using CFD, but an ideal mixing model

(Equation 4.8), one can estimate the effect of process variables (e.g., increased mass

transfer rates) on the average concentration in the large-scale reactor. In case the reactor

is operated in the gas limitation regime (cL,i < KS,i ), spatial concentration differences of a

factor 5 around the mean could be expected based upon our CFD simulations. Since in

the scenarios with varying biomass concentrations the residence time distributions in the

peaks and valleys does not greatly differ, such differences are neither expected in other

operational cases in the limitation regime. A scale-down simulator could then be tuned

based upon the estimated concentration differences and the residence time distributions.
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Although the developed scale-down simulator is conceptually easy to understand,

the practical installation and operation might be challenging. The repeated variations in

stirrer speed at high frequencies should be controlled, as well as possible ramp phases

when increasing or decreasing the stirring speed. Ideally, rapid-sampling and/or online

measurement for CO and H2 [216, 217] should be applied to make sure that peaks and

valleys are obtained in the intentioned manner. As the peaks and valleys are applied in the

second-timescale, probe lag should be taken into account when analysing the experimen-

tal data. Furthermore, the influence of broth components on kL a in real fermentations

should be considered for better predictions [206]. If the in situ concentrations cannot be

measured, they could be predicted using a precisely determined kL a [218].

Our conceptual scale-down simulator makes it possible to simulate a statistically

representative lifeline of the EL-GLR within a fraction of the time that it would cost for the

CFD model to be run and analysed. Such a lifeline could then be used to study interactions

between the extra- and intracellular environment by coupling with a metabolic kinetic

model [40]. The obtained response should then be similar to the large-scale response due

to the correspondence of both lifelines. By making variations of such lifelines, the peak

and valley residence time and concentration distributions can be obtained that could

lead to a desired large-scale response (e.g., high ethanol specificity).

Ramp and feast-famine studies in the scale-down set-up could be used to param-

eterise kinetic models that describe the short-term response of C. autoethanogenum

[40, 94, 219], by rapid sampling of metabolite and enzyme concentrations. Ramp studies

would be helpful to determine whether the instantaneous electron supply in the peaks

would indeed lead to increased ethanol production, as was expected from long-term

oscillations [204]. If the gas uptake rates are product-independent, then such scale-down

simulators could be used for engineered strains to produce higher-value products [9], pro-

teins [220], or for coupled reactions with other microorganisms, such as chain-elongators

[221] or PHA production [222]. With the scale-down simulator, the microbe could be

adapted to large-scale conditions, so that less scale-up problems might be expected [62].

The analyses of the industrial syngas fermentation process in this and our previous

study [197] are all model-based and only slightly tuned based upon the scarcely available

literature data of the full-scale LanzaTech operation [8, 10, 111]. To advance the syngas

fermentation process, for model validation and the execution of highly representative

scale-down simulators, the publication of real industrial data would be required, such as

large-scale circulation times, operational kL a values, a range of dissolved gas concentra-

tions and their gradients. All of this could, for example, enable the utilisation of a broader

range of gas compositions, the development of processes towards higher-value products

and intensified fermentation equipment.

In our analyses we showed that high biomass concentrations (e.g., cx > 10 gL−1)

might be advantageous for both product yield and gas conversion. Since the highest

reported biomass concentration in syngas fermentation reactors is around 9 gL−1 [31],
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experiments should target the influence of increased biomass concentrations and its

viability on gas uptake, broth viscosity and mass transfer. The precise operating interval

in terms of dissolved gas (CO and H2) concentrations should be retrieved experimentally,

so that the thermodynamically infeasible range can be avoided while operating in the

maintenance-dominated regime which would enable high product-to-substrate yields.

Our results show that with the currently used syngas composition (20% H2) and high

biomass concentration (25 gL−1), H2 catabolism may be thermodynamically infeasible,

although co-consumption with CO might occur [46]. Thus, in a future with intermittent

green hydrogen supply from renewable resources [223], supplementation of hydrogen

might be a good option to valorise excess electricity and increase the CO-to-product yield.

4.4. Conclusion
The effect of the biomass concentration and dissolved gas concentration fluctuations in

large-scale syngas fermentation was studied with Euler-Lagrangian simulations. Based

upon these numerical simulations we recommend the industrial operation at relatively

high biomass concentrations, as this would reduce the effects of CO inhibition, could

increase the product yield and would provide high operational flexibility. Simulations

indicate that in large-scale syngas fermentation C. autoethanogenum will experience

frequent oscillations (peaks and valleys) in dissolved gas (CO, H2) concentration of about

one order of magnitude, in a timescale of seconds (5 to 30 s). Such concentration fluc-

tuations may occur irrespective of the biomass concentration and were hypothesised to

favour the ethanol yield.

The large-scale concentration fluctuations should be simulated during small-scale

experiments to study how C. autoethanogenum adapts to industrial-scale conditions. We

proposed a single-vessel scale-down simulator that theoretically replicates the fluctua-

tions in dissolved gas concentrations by varying the stirrer speed based on the large-scale

oscillations. Numerical analysis shows that the duration of the oscillations could be

replicated well, but the settings might be adjusted to achieve higher similarities for the

variations in concentration. The obtained lifelines in the proposed scale-down simulator

represent the large-scale reactor well for a wide range of biomass concentrations and

operational conditions.
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The search for knowledge is not nourished by certainty:
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Abstract
Gradients in dissolved gas concentrations are expected to affect the performance of large

reactors for anaerobic gas (CO, H2, CO2) fermentation. To study how these gradients,

and the dissolved gas concentration level itself, influence the productivity of the desired

product ethanol and the product spectrum of C. autoethanogenum, we coupled a CFD

model of an industrial-scale gas fermentor to a metabolic kinetic model for a wide range

of metabolic regimes. Our model results, together with literature experimental data and

a model with constant dissolved gas concentrations, indicate high ethanol specificity

at low dissolved CO concentrations, with acetate reduction to ethanol at very low dis-

solved CO concentrations and combined ethanol and acetate production at higher CO

concentrations. The gradient was predicted to increase both the biomass-specific ethanol

production rate and the electron-to-ethanol yield by ∼25%. This might be due to intensi-

fied ferredoxin and NAD+ redox cycles, with the rate of the Rnf complex - a critical enzyme

for energy conservation – as key driver towards ethanol production, and all at the expense

of a reduced flux to acetate. We present improved mechanistic understanding of the gas

fermentation process, and novel leads for optimisation and fundamental research, by

coupling observations from various down-scaled lab experiments to expected microbial

lifelines in an industrial-scale reactor.
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5.1. Introduction

I n the last few years, anaerobic gas fermentation (with CO, H2 and/or CO2 gas mixtures)

has successfully been commercialised by the company LanzaTech for the production

of ethanol from industrial waste streams [8, 10]. Ethanol is the product of main interest,

since it has an established use as fuel and because it can be upgraded to plastics, textiles,

and fine chemicals, while the spent microbial biomass can be used as animal feed [8–11].

The industrial gas fermentation process with the acetogen Clostridium autoethanogenum

is deployed in external-loop gas-lift reactors (EL-GLR), which has shown potential for

achieving high gas-to-liquid mass transfer rates, at least in part due the coalescence-

inhibiting properties of the produced ethanol [197, 206].

In large-scale bioreactors (e.g., the mentioned EL-GLR of ∼500 m3), gradients in

(amongst others) liquid-phase substrate and dissolved gas concentrations are usually

expected when the characteristic time of consumption is smaller than those of liquid

circulation and mass transfer, respectively [48, 49]. Moreover, variations in hydrostatic

pressure and the gas composition were estimated to result in a gradient of factor 35 [224].

The temporal fluctuations that microorganisms experience as a consequence of these

spatial gradients (lifelines) were found to enlarge population heterogeneity [97, 98, 202],

and often lead to reduced performance [51–53].

Recent works show that spatial dissolved gas concentration gradients are also ex-

pected in industrial-scale gas fermentation bioreactors, such as bubble columns [55, 56]

and the EL-GLR [224]. From the microbial perspective, the spatial concentration varia-

tions in the EL-GLR were predicted to result in frequent and irregular (5 – 30 s) cycles in

dissolved gas (CO, H2) concentrations with one order of magnitude [224]. Long periods (>

70 s) at low CO concentrations (ccrit
L,CO < 0.003molm−3) were hypothesised to result into

a starvation regime, with transcriptional changes as consequence, and reduced growth

rates and product yields [56].

The impact of the concentration gradient on the cellular metabolic activity, and thus

its product formation rate, can be studied by coupling a computational fluid dynamics

(CFD) model of a bioreactor with a dynamic metabolic model (cellular reaction dynam-

ics, CRD), in an Euler-Lagrangian computational framework. With a one-way coupled

approach and kinetics applied to the Eulerian field, the impact of the concentration

gradient on the microbial metabolism can relatively quickly be assessed, while with full

Euler-Lagrangian two-way coupling the microbial metabolism also impacts the gradient.

The first two-way coupled simulations for industrial fermentations were performed by

Reuss and co-workers [58, 98], after which follow-up work was done via various method-

ologies: Morchain et al. [96] used population balance models for microorganisms, while

Haringa et al. [99] used a 9-pool dynamic kinetic model [94]. One-way coupled simula-

tions for bubble column reactors were done for Saccharomyces cerevisiae [225] and C.

autoethanogenum [56, 224], and it was found that microorganisms in bubble columns

typically experience shorter starvation periods than in stirred-tank reactors [226]. One
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of the major limitations of this approach is the computational power required for the

high-resolution simulations, which can partially be relieved with the use of compart-

ment models [205, 227, 228]. In recent years, the CFD-CRD modelling approach gained

widespread attention, as it opens avenues towards more rational scale-up and optimisa-

tion of industrial-scale bioreactors [63, 66, 68].

The metabolism of acetogens and the Wood-Ljungdahl pathway have extensively been

described before [11, 229, 230]. Carbon (CO and CO2) is fixed via the Wood-Ljungdahl

pathway, which contains two branches: In the carbonyl branch CO is converted into

CO2 to reduce ferredoxins with the reversible carbon monoxide dehydrogenase (CODH)

enzyme, while in the methyl branch CO2 is converted into formate, which is further

reduced to an activated methyl group. CO and the methyl group are then combined

into acetyl-CoA at the expense of 1 ATP, which is recovered downstream through acetate

production [229]. By the establishment of a chemiosmotic gradient, ATP for growth and

maintenance is produced: The Rnf complex exports protons via electron transfer from

reduced ferredoxin (Fd2−
red) to NAD+ [230, 231]. Ethanol is mainly produced via the AOR

pathway (named after the enzyme acetaldehyde:ferredoxin oxidoreductase), which is

thermodynamically feasible only when the intracellular acetate concentration passed

the threshold of 1000 times the acetaldehyde level [232, 233]. High intracellular acetate

concentrations are obtained at low extracellular pH (5.0) and high concentrations of

undissociated acetic acid, since this neutral form of the acid can passively diffuse into the

cell [233]. H2-uptake relates to ethanol production, as its electrons are directly stored in

Fd2−
red and NADPH [45, 46].

A 12-pool CRD model was recently developed that could describe metabolic dynamics

upon metabolic-induced self-oscillations [204] of C. autoethanogenum in a chemostat

culture [40]. This model could explain how extracellular concentrations (of CO, H2, CO2,

protons and the products acetic acid, ethanol and 2,3-butanediol), and the intracellular

carbon (formate, acetyl-CoA, acetate) and electron pools (Fd2−
red, NADH, NADPH), change

upon fluctuations in any of these. From the self-oscillating culture, it was found that the

biomass-specific ethanol production rate, qEtOH, varies proportionally to the uptake rate

of the electron donors (CO and H2) [40]. By varying the redox potential among several

batch cultures Grimalt-Alemany et al. [234] observed severe dynamics (within one order

of magnitude) in the NAD(H) pool size and the NADH/NAD+ ratio, and that dynamics in

the latter positively correlated with the ethanol specificity.

Since the observed dynamics in both studies (in the order of days) are of metabolic

origin (no proteomic differences were observed in [204]) and related to thermodynamics,

they may help identify how the short-timescale dynamics occurring in the industrial-scale

bioreactor (in the order of seconds) affect the metabolism. Based on the dynamics in

these experimental studies, we hypothesise that the temporal-variations in dissolved

gas concentration as occurring in the industrial-scale EL-GLR, lead to increased qEtOH,

compared to a spatially- and temporally homogeneous environment.
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In this work, we coupled the CRD model [40] with our previously developed CFD

model of an industrial-scale EL-GLR [197, 224] supplied with a gas mix containing 50%

CO, 20% H2 and 30% CO2, to study how the dissolved gas concentration and its gradient

may influence the metabolic behaviour of C. autoethanogenum (with focus on the product

spectrum, substrate inhibition, and energy conservation mechanisms). Computations

were done with several biomass concentrations to study a wide range of fluctuations on

dissolved gas concentrations, from conditions with excess mass transfer to severe mass

transfer limitations (from over-reduced to significantly under-reduced conditions). By

comparing the CFD-CRD model results with those of a model with constant dissolved

gas concentrations, the impact of the dissolved gas concentration and its dynamics on

the metabolism and product spectrum of C. autoethanogenum could be studied. From

the results, we could identify which metabolite pools, reactions and enzymes relate to

ethanol production, establish several hypotheses for further research, and propose ways

for reactor, strain and process optimisation.
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5.2. Methods

CFD-CRD coupling approach
The CFD model (geometry, flow pattern and operation conditions) of an external-loop

gas-lift reactor (∼500 m3) that was developed in our previous study [197], was comple-

mented with a mass transfer model in [224], and, in the present work, with the CRD model

developed in [40]. The hydrodynamic model was validated on pilot-scale data, while mass

transfer rates of the EL-GLR corresponded with industrial standards by assuming bubbles

with a constant diameter of 3 mm [197], possible due to coalescence inhibition [206].

The CFD simulation including black-box kinetics (with 5 gx L−1) and gas-liquid mass

transfer, described in [224], was used as an initial condition for the CFD-CRD model

described here. 250,000 Lagrangian particles were released at t = 3000 s, and mixed for

200 s, to ensure a homogeneous distribution of particles in the reactor at the start of the

CFD-CRD simulation. The pH was kept constant at 5.0, while the initial external product

and intracellular metabolite and co-factor concentrations were in the range of the ones

used for the CRD model calibration [40, 204] (Table D.1).

As soon as the CRD model was activated, two-way reaction coupling was applied for

CO, H2 and CO2 according to the method described in Haringa et al. [78, 235], so that

the metabolic-kinetic model determines the concentration fields and the gas hold-up. A

schematic overview of the model structure and solving procedure is provided (Figure 5.1).

The development and parameterisation of the metabolic kinetic model are described ex-

tensively in [40] and the relevant parts for two-way coupling in Appendix D.1.1. The MAT-

LAB model, comprising 12 metabolite pools and 12 reactions, was rewritten into C code,

and implemented in an Euler-Lagrangian framework using the DPM_SCALAR_UPDATE

macro in Ansys FLUENT. This allowed tracking and updating of particle-associated vari-

ables, specifically the metabolite concentrations, at every particle time step ∆tp , that was

equal or smaller than the flow time step (∆tp ≤∆t f = 5 ms).

Since NADH has the lowest turnover time (∼1 ms) the metabolic equations were

integrated with a fixed – intracellular – time step ∆tIC of 0.1 ms. As ∆tIC ≪ ∆tp , an in-

tegration routine was implemented using the Runge-Kutta 4th order algorithm. After

each ∆tIC, the concentration vector was updated until ∆tp was completed. The particle

position was updated, while the CRD model was integrated again, until the Eulerian time

step ∆t f had been completed. At t +∆tp , the volumetric source terms for CO, H2, and

CO2 were computed for each particle within each volume element (VE) during the time

step r̃i (p,∆tp ) using the concentration differences in that particle (Equation 5.1). It was

assumed that the amount of Lagrangian particles for which the CRD model was solved,

Np , are evenly distributed in the EL-GLR and that each particle equally contributes to

the total biomass concentration. After ∆t f the volumetric source terms for the dissolved

species mass balances were computed per VE by summation over each particle and the

number of ∆tp required to reach ∆t f .
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Figure 5.1: Overview of the CFD-CRD model and its solving procedure. a) Geometry of the EL-GLR wherein

the equations for flow, turbulence and mass transfer are solved, together with the displacement of Lagrangian

particles. b) Structure of the metabolic-kinetic model, taken from [40]. c) Step wise solving procedure of the

CFD-CRD model.

ri ,VE =

Np,VE∑
p=1

∆t f∑
∆tp

r̃i (p,∆tp )

VL,VE
with r̃i (p,∆tp ) =

ci |t+∆tp − ci |t
∆tp

VL,reactor

Np
(5.1)
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The metabolic model is based on lin-log kinetics, which is a good approximation

of typical hyperbolic kinetics close to a given reference state [236, 237], but leads to

inaccurate and unstable behaviour in extreme regions [236, 238]. Thus, results obtained

with lin-log based metabolic models are most accurate within a rather narrow range

of concentrations (typically one order of magnitude around the reference state). Such

behaviour could therefore be expected when the CRD model is solved outside its range of

calibration, for example at very low dissolved gas concentrations (cL,CO < 0.025 molm−3).

As wide concentration ranges occur in the large-scale reactor, several modifications

have been made to the solving procedure of the metabolic-kinetic model to increase

solution stability (Appendix D.1.2). This comprises rate reversibility and a rate-limitation

mechanism based on a given set of minimum concentrations ci ,min, preventing unrealistic

rates and negative intracellular concentrations.

Model convergence and solution
During ∆tp the metabolite concentrations get updated, while the mass balances of the

extracellular gas species only get updated after solving one flow time step ∆t f . As we

assumed ci ,IC = ci ,EC for the gases, their extracellular concentrations should be updated

as often as possible to preserve the mass balances, requiring very short ∆t f . This implies

that the integrated gas uptake rate of a particle during ∆tp , ri ,p = ci |t+∆tp − ci |t
∆tp

, should be

equal to the derivative at the beginning of that time step, ri ,p = dci
d t

∣∣∣
t

(Equations D.3-D.5).

As the flow time step directly affects the total simulation duration, we set ∆t f to 5 ms, a

compromise between simulation accuracy and computational efficiency; Np was fixed at

80,000 on similar grounds (Appendix D.1.5, Figures D.3, D.4).

The CFD-CRD model was solved for 1000 s flow time using Ansys Fluent 2021R2 for

three biomass concentration cases, with cx of 100, 150 and 200 molm−3 (2.5, 3.75 and

5 gL−1). Computations were done using the Snellius supercomputer with 128 cores of

AMD Rome 7H12 CPU’s, with an estimated simulation duration of 530 h per case.

Carbon and electron balance closure (relative error < 5%) for the lifelines were checked

for model verification after completion of the CFD-CRD simulations. This was done for

i) the original, unmodified (“raw”), CRD model (model α), ii) the CRD model with rate-

limiting modifications (model β), and iii) by not considering the values obtained for cL,CO

< 0.025 molm−3 (model γ).

Post-processing
The following data was exported from FLUENT every 75 ms: the concentrations of each

metabolite pool, the qi of CO, H2, CO2, acetate and ethanol, and the position and the

local number of particles Np,VE were written (for 4000 particles, to prevent excessive data

transport and storage). With this data, concentration profiles, derivatives and rates could

be reconstructed by solving the CRD model for each moment in time in MATLAB, this

approach was checked by additionally writing the derivatives for 20 particles. Lifeline
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data was analysed after removing the first 100 s (approximately one 95% mixing time). For

visualisation, the data was smoothed using MATLAB’s smoothdata function, according to

the moving mean algorithm with smoothing factor of 0.05.

Average particle metabolite concentrations and their derivatives were stored in every

VE, according to a rolling-average routine. The number of particles that was present in

each VE was registered and used to calculate the rolling average of these variables.

Model with constant concentrations
In order to determine the actual influence of the concentration gradients in the CFD-

CRD model, the CRD model was also solved at constant dissolved gas concentrations.

This was done for a wide range of fixed dissolved CO and H2 concentrations. The CO

concentration range was determined from the lifeline averages for each cx , while cL,H2 was

found to be correlated to cL,CO and determined via linear regression (Figure D.6); the CO2

concentration was kept constant (Table D.4). The model was integrated with the same

Runge-Kutta scheme as the CFD-CRD model, resetting the dissolved gas concentrations

after each ∆tIC of 0.1 ms. The CRD model was solved for an interval of 1000 s (∼1.5 min

per simulation). This duration of 1000 s was chosen to be comparable with the CFD-CRD

simulations, even if after this time the metabolism does not reach steady state.
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5.3. Results and discussion
The results of our modelling study are presented first in terms of mass- and electron

balances, to check the influence of the model modifications (section 5.3.1). We look into

the global reactor performance, in sections 5.3.2-5.3.4, by analysing energy conservation,

characteristic times and averages of individual lifelines. Then in section 5.3.5, we zoom in

to discuss the metabolic behaviour and the role of key cellular reactions (particularly the

Rnf complex). Several hypotheses that emerged from the study are discussed in section

5.3.6, while in the last section, 5.3.7, practical recommendations are provided for further

optimising gas fermentors.

5.3.1. Mass balances in the biomass phase
After solving the CFD-CRD model, we examined mass- and electron balance closure for

various model modifications (Figure 5.2). This analysis reveals that the electron balance

never closed for the unmodified CRD model (α), with gaps of 10 to 20%. Implementation

of the rate-limiting mechanism (model β) damped excessive rates (most prominently in

JFDH, JCODH, JEtS and JRnf). The mechanism ensured mass balance closure (within 5%)

and resulted in a substantial reduction in qEtOH from 0.4 molmol−1
x h−1 to a more realistic

0.15 molmol−1
x h−1.

The lin-log structure of the CRD model induced a numerical depletion of formate, at

concentrations outside the range of calibration (Figure D.5). The rate-limiting mechanism

dampens the formate depletion (cf. model α with β), although it could not entirely be

avoided, due to the high minimum concentration that was required to solve the formate

pool (10−4 vs. <10−8 molm−3 for other metabolites). As the rate-limiting modifications

were only activated at low cL,CO, the numerically generated formate escalated ethanol

production rates (qEtOH increased from 0.09 to 0.15 molmol−1
x h−1, cf. β and γ). This

results in uncertainty in the model predictions in the low CO concentration range. As

both direct CO2 reduction to formate (CO2 + H2 −−→ For – + H+) [239], and a formic acid

import and formate export mechanism were not included in the CRD model, and as net

CO2 consumption was never observed, inclusion of these reactions in future work could

improve the physical reliability of the model at lower cL,CO.

Irrespective of the used model, clear trends in the rates were observed: for example,

at increased cx higher qEtOH was observed at the expense of acetate production (Ac−IC

+ AcT), while this was partly due to extracellular acetate consumption at increased cx .

As substantial parts of the reactor are operated under low CO conditions, removal or

modification of these values from the lifelines would severely affect the magnitude and

interpretation of the lifeline results. We hence proceed with model β in further analyses,

considering the uncertainty in the model results at low CO concentrations.
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Figure 5.2: Influence of the CRD model choice on the balances (denoted via metabolic rates) of post-processed

lifelines. The a) carbon and b) electron mass balances are provided for the three cx cases with theα: unmodified

CRD model; β: CRD model with rate-limiting modifications; γ: model β applied for cL,CO > 0.025 molm−3.

These low cL,CO occurred in all cx cases (62% of data at 5 gL−1 < 0.025 molm−3, 29% at 3.75 gL−1 and 10% with

2.5 gL−1. ). Metabolic rates (colouring in legend) were averaged for 4000 lifelines during 900 s and balanced

according to their respective carbon and electron contents. The relative mass balance error was calculated via

the difference between the sum of positive and negative rates (as %).

5.3.2. Spatial distribution of energy conservation

In line with the gas hold-up profile in the EL-GLR, there is a clear spatial gradient in

dissolved CO concentration, cL,CO, of around one order of magnitude between the high

and low concentration zones (Figure 5.3a,b). Similar εG and cL,CO distributions were

obtained in our previous study with Haldane-type CO-uptake kinetics [224], indicating

that such simulation results are largely insensitive to the model choice. High cL,CO is

observed in locations with high εG , such as in the gas plume that is being pushed towards

the left side due to the liquid flow exiting the downcomer, and in the gas plume that tends

to converge towards the middle of the column. A small cL,CO pocket is present in the

downcomer, due to some gas accumulation. The cL,CO we derived is still significantly

higher than the ones reported in [56] due to the severe mass transfer limitations that were

adopted in their simulations (kL a ≈ 40h−1, here 360 h−1). qCO follows cL,CO (Figure 5.3b,c)

since uptake inhibition related to cL,CO was not predicted by the CRD model (see sections

5.3.2 and 5.3.5).

Near the sparger, with locally high cL,CO and qCO, high rates of ferredoxin reduction

are observed (Figure 5.3d). This indicates that our model predicts fast uptake (by diffu-

sion) and utilisation of the incoming CO by CODH, and thus rapidly varying ferredoxin

reduction rates, as was hypothesised [240] and measured before [241]. Higher up in

the riser, cL,CO and qCO are still high, but moderate reduction and oxidation rates are

observed since the cells might be saturated with Fd2−
red. At zones with low cL,CO and qCO

(downcomer, in the riser near the downcomer outlet, and close to the walls near the top
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Figure 5.3: Spatial variations in gas hold-up and metabolites in the EL-GLR. Surface plots in the zy-plane (x=0)

of the EL-GLR with time-averaged a) εG , b) cL,CO, c) qCO, d,e) ferredoxin and NADH reduction rates (red) and

oxidation rates (blue) respectively, f) qEtOH. The results are time-averaged during the whole simulation duration

of 1000 s, with cx = 5 gL−1.

separator), high re-oxidation rates of ferredoxin are observed. As soon as Fd2−
red is oxidised,

NAD+ is reduced and ethanol is produced (Figure 5.3e,f). The model predicts an inverse

relationship between the ferredoxin redox state and the ethanol production rate; in zones

where ferredoxin is reduced, little ethanol is produced, while ethanol is produced in zones

where ferredoxin is oxidised. As a consequence, ethanol is mainly produced in zones with

low εG and cL,CO (cf. Figure 5.3b, e). From a microbial point of view, faster variations in
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dissolved gas concentration are expected to lead to faster ferredoxin oxidation/reduction

cycles, and increased variations in qEtOH.

Our model predicts via correlation analysis of lifeline data a significant delay (at least

15 s, with 5 and 3.75 gx L−1, and even 30 s with 2.5 gx L−1) between CO consumption

and ethanol production, governed by the dissolved gas concentration gradient: only

when cL,CO (and cFd2−
red

), section 5.3.5) decrease, qEtOH increases. This lag time is slightly

shorter (∼25%) than the circulation time, indicating that ethanol is being produced in

a rather short period within the circulation. This is in sharp contrast with results from

black-box and genome-scale metabolic models (using dFBA simulations), which both

assume metabolic steady-state and show high production rates at locations with high gas

uptake rates [75]. In our case the reactor can be subdivided in two zones: (1) a ferredoxin

reduction zone and (2) a re-oxidation zone. Video S2 clearly shows the consequential

differences in ethanol production zones compared to the black-box model. While further

research is required to confirm these predictions, the model suggests a process design

and operation that produces multiple, but smaller, of these zones, leading to shorter redox

cycles, and improved ethanol productivity.

5.3.3. Analysis of characteristic times
Estimation of characteristic and turnover times is a widely used method for quick assess-

ment of reactor performance and identification of limiting processes [48–50]. From the

CFD-CRD model of the EL-GLR becomes clear that mixing and mass transfer are equally

slow and generally slower (i.e., higher characteristic time) than CO-uptake (Figure 5.4),

indicating that a dissolved CO gradient exist (in the cases with 3.75 and 5 gx L−1), which

was confirmed in Figure 5.3b. H2-uptake is significantly slower than CO-uptake, and its

high characteristic time is expected to lead to a spatially well-distributed cL,H2 . The slow

H2-uptake mechanism was expected from experiments [45], as H2 is thermodynamically

the less preferred electron source in a gas mixture [242], and the cell can generate more

ATP and reducing equivalents (Fd2−
red , NADH, NADPH) per electron from CO than H2 [243].

The H2-uptake rates predicted with the CFD-CRD model are significantly lower than the

ones that were predicted with the Monod kinetics used in our previous study (Figure D.7),

indicating differences between models on the kinetic behaviour of H2-uptake.

The model predicts that electron storage is done mainly via the ferredoxin pool. The

Fd2−
red pool has a similar turnover time compared to CO-uptake, especially in the transport

limited regime with 5 gx L−1. The turnover times mainly depend on the concentrations

of the metabolite pools, causing that NADH and NADPH show a 100 and 10 time lower

turnover time, respectively, which indicate even faster redox cycles of NAD+ and NADP+.

Fd2−
red can thus be hypothesised as an electron buffer for the cell. As the intracellular con-

centration of Fd2−
red was never measured, this hypothesis remains to be verified, although

low concentrations of NADH and NADPH have indeed been measured before [204].
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Figure 5.4: Characteristic times for metabolite consumption, mass transfer and mixing. A spatial gradient may

be present when the characteristic times are below the dashed grey zone, representing transport limitations.

Turnover times of the metabolite pools were computed as the median of the ratio of the metabolite pool size

and its depletion rate for 4000 lifelines (τi = ci /Ji ). Error bars represent the standard deviation over 4000

lifelines considering a normal distribution. Following the models in [224], kL a was derived as the 900 s time-

and-volume-averaged kL a of CO, with the error bar representing the standard deviation during that period,

while the circulation time tc was estimated via tm (1/4 of the 95% mixing time of 90 s in every case [71]).

Similarly, the turnover time of acetate is high, while the other intermediates in the

Wood-Ljungdahl pathway (formate and acetyl-CoA) are depleted significantly faster, in

the cases with higher cx . This shows a relatively fast pathway from acetyl-CoA to acetate

production, despite the high concentrations of intracellular acetate due to the low pH

(5.0) and the high extracellular concentration of acetic acid (90 molm−3). An interesting

observation is the high formate turnover time: In the case with 2.5 gx L−1, formate is

overproduced at highly reduced conditions (with very high cFd2−
red

, and correspondingly at

high cL,CO) (Figure D.9). Formate production has been observed experimentally to relate

with pressure [169, 244], or with very low biomass concentrations [41], both resulting into

very high cL,CO.

The fast turnover time of CO suggests that the two-way coupling is not needed for

the prediction of the cL,CO gradient, since a one-way coupling routine (with the Haldane

kinetics) could also predict a similar gradient and lifelines. The CO- and H2-uptake rates

in the CRD model are, however, predicted by considering the intracellular concentrations,

which could lead to an inhibition effect (see section 5.3.5). In order to account for such

effects, implementation of a two-way coupling strategy is required.

5.3.4. Influence of dissolved CO on product spectrum
To study the influence of the concentration gradient on the global reactor performance,

the results from the CFD-CRD simulations, based on their time-averaged biomass-specific

uptake, product formation rates, and observed concentrations, were compared with the

results from the model with constant dissolved gas concentrations (Figure 5.5). To check
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the correspondence of the model predictions with experimental trends and values, we

retrieved qi and calculated cL,CO for several chemostat experiments. Overall, the trends

and the values of the experimental studies corresponded well to those predicted by the

model.

The models overestimate the average CO-uptake rate compared to experimental data

at high cL,CO (Figure 5.5a). This led to a rather constant qCO while there was a large spread

in cL,CO in our model, rendering qCO unsuitable for trend analysis. This is partly due to the

calibration of the CRD model, which predicted qCO consistently around 1 molmol−1
x h−1

while more variation was observed in the experimental data [218]. The (Haldane and

Monod-type) kinetic models that have been developed so far (e.g., [34, 40, 208]), are

unable to predict the high qCO that is observed experimentally (e.g., [45]). We noticed

wide variability in qCO in chemostat experiments with low cL,CO. Due to this variability

and the lack of models that adequately link cL,CO and qCO, we are unable, at this point, to

establish any hypotheses or trends based on qCO, and decided to focus our analysis on

the role of cL,CO on the product spectrum.

Acetate production (Figure 5.5b) is slightly underestimated by the model in all sce-

narios, but the trend clearly corresponds: more acetate is produced at higher cL,CO. The

trend of qEtOH and the ethanol-per-electron yield (Figure 5.5c,d) match surprisingly well

with the experimental data, and is clearly inverse to the acetate trend: more ethanol is

produced at lower cL,CO. This relationship is also visible in the acetate-per-ethanol ratio

(Figure 5.5e), where it is clear that qEtOH > qAcT at cL,CO < 0.1 molm−3. Our model and

experimental data suggest that ethanol is produced at the expense of acetate at lower

cL,CO, while acetate is produced at the expense of ethanol at high cL,CO.

The CFD-CRD model suggests that the gradients expected at scale benefit ethanol pro-

duction, since consistently a significant (∼25%) higher qEtOH and qEtOH/qe− and lower

acetate production are predicted, compared to the results obtained without concentration

fluctuations (p < 10−4 in all cx cases using a one-sample t-test, wherein the distribution

of lifelines is compared to the mean result of the constant concentration model in that

respective range). Section 5.3.5 further explores potential reasons behind this behaviour.

Another interesting observation is that at large-scale, population heterogeneity is likely to

be observed, visible from the wide scattering of the lifeline-averages in Figure 5.5. The

relatively short simulation duration of the CFD-CRD model could be a factor underlying

the scattering, but given the currently available computational resources longer two-way

coupled simulations with such a resolution are practically unfeasible. For example, to

match the long simulation time of the P. chrysogenum industrial fermentation (70 hours)

with the current model setup, ∼14 years of simulations would be required. The develop-

ment of reduced order models (e.g., compartment models) could be a solution to alleviate

this problem [226–228].
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Our model, in conjunction with experimental data, indicates that cL,CO is a key factor

influencing the onset of solventogenesis. At high cL,CO, acetogenesis prevails; however, as

cL,CO decreases below ∼0.1 molm−3, ethanol production rate surpasses that of acetate

production. A phase guided by electron supply shortages and energy starvation has been

observed at very low dissolved gas concentrations (cL,CO < 0.05 molm−3). In this phase,

there is a net consumption of acetate: Acetate is reduced to ethanol, with CO serving as

an electron source essential for growth and maintenance (through ATP production via

Rnf). As the re-oxidation of the electron carriers occurs via the AOR route, acetate – which

freely diffused into the cell as acetic acid – is being converted into ethanol [233, 240]. This

phenomenon was also observed in the second reactor in [31], with biomass recycle and

high CO conversion and probably very low cL,CO, where both acetate and CO consump-

tion resulted into very high ethanol productivity, although this particular result could

also be linked to shortages of essential nutrients as vitamins and metals. It is well known

that acetate supplementation enhances the ethanol productivity [39, 41, 199], while it has

been demonstrated that exogenously introduced 13C-labelled acetate was converted into
13C-labeled ethanol on CO-grown C. autoethanogenum [199]. All these observations lend

support to the feasibility of this starvation-induced metabolism at low cL,CO.

A simple thermodynamic analysis could explain why more ethanol is produced at

lower cL,CO (Table D.5). During ethanol production, more ATP is produced compared to

acetate production (∼2 vs. 1.5 molATP/mol−1
product) [233, 245], since ethanol production

releases more energy (kJmol−1
CO) [32], and it is thus not a surprise that ethanol production

relates to growth, confirmed both experimentally [45] and in our model (Figure D.12).

When more CO is available, acetate might be produced since there is enough carbon and

energy resource for growth, relating to the hypothesis of maximum energy dissipation

[246]. The resulting acetic acid decreases pH (increasing the proton motive force used

for energy generation), safeguarding sustainable growth in the future. From an evolu-

tionary perspective, it might be that this presents a competitive advantage against other

microorganisms [247], and thus a survival strategy in nature. Ethanol production via

solventogenesis might then only be a (stress) reaction to preserve more energy at low dis-

solved gas concentrations, while in case with even lower cL,CO, the starvation metabolism

is employed for increased energy generation.

As large parts of the data used for the generation of Figure 5.5 were outside the cal-

ibrated range of the model (i.e., cL,CO < 0.025 molm−3), a similar figure was generated

without considering that data in this range (Figure D.10). Obviously, this led to higher

average cL,CO and a lower spread in cL,CO amongst lifelines. More interestingly is the

decreased qEtOH for the 5 gL−1 case (as noted in section 5.3.1), while the trends for all

compounds remained similar among the complete cL,CO domain. The gradient still led

to significant (p < 10−4) increases in qEtOH. The uncertainty in the very low cL,CO range

requires caution for quantitative analysis under these conditions.
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5.3.5. Metabolism during dynamic conditions

Figure 5.6: Metabolism of C. autoethanogenum during large-scale gas fermentation. 100 seconds of a lifeline for

the case with 3.75 gx L−1 is shown with its concentration (in molm−3) and rate (in molmol−1
x h−1) fluctuations.

Pool sizes and arrow thickness are approximative to the median concentrations and rates during the whole

lifeline. The metabolism in the cases with 2.5 and 5 gx L−1 are provided in the supplementary material (Figure

D.13 and D.14). Shaded areas in the plots mark zones with cL,CO < 0.025 molm−3.

The effect of the dissolved gas concentration fluctuations in the EL-GLR on the con-

centrations of metabolites and the modelled rates are schematically depicted in Figure 5.6.

This representation allows us to follow the route of the carbon (blue lines) and electrons

(green lines) and gives an impression on which processes drive the production of ethanol.

Following the carbon, a direct coupling between CO-uptake and acetate synthesis is

seen. The Wood-Ljungdahl pathway, represented with the ACAS flux (J AC AS ) in Figure 5.6,
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is almost always activate with fairly constant rate, although it gets an impulse during a

period at low cL,CO due to the increased NADH availability in the cell. Consequently, the

AcCoA concentration follows the peaks of dissolved CO, although it is slightly influenced

by the periods at low CO. The net amount of AcCoA slowly decreased during the analy-

sis, a trend also observed in the simulation with constant dissolved gas concentrations

(Figure D.2). The rate of acetate formation (JAcS) follows the CO availability, albeit slightly

lower than JACAS, since small amounts of AcCoA are also being used for the formation of

biomass and 2,3-BDO. The cell is continuously busy with the acetate import/export cycle:

High rates of JAcX and JHAcD were predicted (∼0.45 and ∼0.40 molmol−1
x h−1, respectively),

around three times higher than its formation rate via JAcS. Despite these efforts, there is

still some acetate accumulation in the cell. In the case with less biomass, there is more

acetate export, but also more intracellular acetate accumulation, while lower intracellular

acetate concentrations are obtained in the case with more biomass. In the latter case,

there is net consumption of acetic acid (JHAcD > JAcX), which leads to increased ethanol

production rates; the starvation-induced metabolism, as explained in the previous sec-

tion.

Most (∼75%) of the consumed CO is being used for electron capture with CODH,

thereby producing CO2 (JJCODH > JFDH), and reducing ferredoxin. cFd2−
red

follows the same

profile as cL,CO, but its fluctuations are slower and less steep, showing its electron buffer-

ing capacity. Around 70% of the reduced ferredoxin is re-oxidized due to Rnf activity, the

enzyme that shuttles the electrons from Fd2−
red to NAD+ [248], and translocates protons

across the cell membrane for the generation of the proton motive force and ATP [231].

NADH, in turn, is mostly used to drive the Wood-Ljungdahl pathway (ACAS) and for the

production of the NADPH (via Nfn) that is required for ACAS and FDH.

In a period with low cFd2−
red

, qH2 is increased which relates to increased qEtOH (Figure

D.8, D.11). The first observation could relate to inhibition of qH2 by reduced ferredoxin,

while a similar (but weaker) trend was obtained for CO-uptake. This caused that decreased

CO- and H2-uptake rates were actually observed at high reduced ferredoxin concentra-

tions, and not at high CO or H2 concentrations per se (cf. Figure D.7 and D.8). Inhibition

of gas uptake could thus, next to binding of CO to hydrogenases, also be explained by a

highly reduced intracellular state (i.e., too high intracellular concentrations of electron

carriers), as was hypothesised before [249]. Our model results and chemostat experiments

[45, 46] show that qH2 proportionally relates to qEtOH. The ferredoxin that is reduced due

to H2-uptake is probably instantaneously being re-oxidized again to drive EtS and Rnf

(Figure 5.6), Because of the temporary lack of reducing equivalents, this mechanism

guarantees electron inflow even at cL,CO.

At dynamic conditions, a direct relationship between and cFd2−
red

and cL,CO (cFd2−
red

increases with cL,CO) is observed (Figure 5.7a), while cFd2−
red

shows an inverse hyperbolic

relationship to qEtOH (Figure 5.7b). This indicates that, irrespective of other phenomena

occurring in the cell, qEtOH is mostly determined by the temporal cFd2−
red

. If other phe-
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Figure 5.7: Mechanism towards ethanol production in a lifeline. a) The relationship between the concentration

of electron carriers Fd2−
red (blue) and NADH (orange) is shown and their corresponding cL,CO (cFd2−

red
,max =

11.5 molm−3, cNADH,max = 0.04 molm−3). b) the relationships between acetate production (extracellular

+ intracellular) (black) and ethanol production (green) with cFd2−
red

. c) the rates of NADH production (Rnf,

darkblue) and consumption (Nfn, light blue; ACAS, green; Ethanol Synthesis, gold; BDO Synthesis; yellow) as

function of cFd2−
red

. The scatters mark temporal observations during a lifeline (between 100 and 1000 s), and their

density denotes the probability of occurrence. c) is an energy balance that can be made since τN AD H ≪ τFd2−
red

.

Shaded areas mark zones with cL,CO < 0.025 molm−3.

nomena would have influenced qEtOH, a larger spread in qEtOH would be observed at

the each cFd2−
red

. The NADH concentration shows a strong relationship with cFd2−
red

(cNADH

decreases with cFd2−
red

), so on its turn cNADH proportionally relates to qEtOH, as was shown

experimentally [233, 234, 250]. We could thus predict that, at some point, with low cL,CO

and thus low cFd2−
red

, high amounts of NADH and consequentially increased qEtOH are

obtained. The increased qEtOH is due to decreases acetate production (Figure 5.7b), this

way conserving mass balances (Figure D.5).

The delay that is observed between CO-uptake and ethanol production (a peak in

qEtOH ∼50 s; Figure 5.6) is present when cL,CO and, and consequentially cFd2−
red

, decreased

enough to stimulate ethanol production. For example, no clear increase in qEtOH is ob-

served after peaks in cL,CO, until cFd2−
red

decreases to ∼6 molm−3, when also JAcS slows

down, reducing acetate production. Therefore, the delay is caused by the dynamics in

the EL-GLR and causes that the microorganisms cycle between two states: one state with

high cL,CO and cFd2−
red

, and thus low cNADH and qEtOH, and another state with low cL,CO and

cFd2−
red

, but with increased cNADH and qEtOH.

Dissolved CO concentration fluctuations (e.g., with increased cx , Figure D.14) induce

the mentioned redox cycling and ethanol production. This happens at the expense of the

intracellular acetate pool and JAcS, and in the long term at the expense of the extracellular

acetate concentration. The non-linear behaviour of metabolism (here described by lin-
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log kinetics), the irregular duration and the large variation in cL,CO in low concentration

zones (< 0.05 molm−3) might cause that non-linear increases in ethanol productivity

are observed upon concentration fluctuations. The effect of such variations has never

been determined experimentally, a good start for experimental verification would be the

developed scale-down simulator in our previous paper [224].

The only reaction that reduces NAD+ to NADH in the CRD model is Rnf, which is

active in the whole cFd2−
red

domain (Figure 5.7c). The resulting NADH is mostly used in

the Wood-Ljungdahl pathway (by ACAS), while a small fraction is used for NADPH gen-

eration, which is also required in ACAS. At lower cL,CO and cFd2−
red

, Rnf activity increases

while the majority of the resulting NADH is re-oxidized via the Ethanol Synthesis path-

way. Thus, the increased Rnf activity at lower cFd2−
red

, can be associated to increases in

qEtOH. Metabolic models have previously predicted that increased Rnf activity relates

with increased ethanol production in syngas fermenting Clostridium spp. [44, 45, 90, 243],

although such relationships have never been observed experimentally. A proportional

relationship between Rnf and ethanol production was found, however, in C. thermocellum

grown on cellobiose [251].

The CFD-CRD model also predicts a coupling between ethanol production and growth

rate. At higher growth rates, more ethanol is produced (Figure D.12) which complies with

experimental observations (e.g., [45]). This might be because growth happens when there

is more ATP available and that is the case when Rnf is more active as Rnf increases the

proton motive force. No relation, however, between acetate production (qAcT ) and growth

rate was observed (Figure D.12), which might explain the contrasting experimental data

regarding growth rate.

5.3.6. Emerging hypotheses

By mathematically modelling syngas fermentation, we derived a mechanistic understand-

ing on how the dissolved gas concentration (and its fluctuations) influence the product

spectrum of C. autoethanogenum, which we could support with experimental evidence.

Thus far, experimentalists made statements that, for example, i) higher dilution rates

increase qEtOH [45, 240], ii) that lower mass transfer rates result in lower cL,CO [41], or iii)

that increased pressure leads to increased formate production [169]. But, by linking cL,CO

(and potentially qCO) to the product spectrum, we could merge such statements into one

overarching explanation, by suggesting that i) qEtOH is increased at lower cL,CO, ii) that

acetogenesis occurs at increased cL,CO and that iii) formate accumulates in over-reduced

situations (very high cL,CO and cFd2−
red

). In practice, this might mean that, for example, the

faster growth in [45], coupled to high qCO, might have let to the fall in cL,CO so that qEtOH

is increased. The inverse relationship between qCO and cL,CO indicates a very low KS

(supported by thermodynamics [32]) and low inhibition constant K I for Haldane kinetics,

consistent with the experimentally expected fast CO-uptake [33, 45, 229]. Meanwhile, the

increased acetate concentration should be noted in the discussion [39, 41]. To test our
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observations, the influence of cL,CO on qCO and qEtOH should be studied in chemostats

with CO measurements (e.g., using the protocol in [252] or estimated following [218]) and

with fixed operating conditions (i.e., constant growth rates and liquid phase concentra-

tions). As a result, researchers on gas fermentation should link their results to microbial

experiences, and thus dissolved gas concentration, and not to operational factors at the

reactor-level such as pressure, dilution, or mass transfer rate (e.g., governed by stirrer

speed).

The trends in Figure 5.7b might seem remarkable, from a steady-state point of view.

For example, in chemostats it has been observed that increased electron (or dissolved

gas) uptake rates increase qEtOH [45, 240]. As electron uptake is associated to reduction

of ferredoxin, which should lead to increased cNADH and thus qEtOH, it might seem con-

troversial that, in our results, high qEtOH is only obtained at low cFd2−
red

. We identified four

hypotheses why we observed this trend in Figure 5.7b.

The first i) is that cFd2−
red

is around 100 times higher than cNADH, causing that each

NAD+ molecule needs to be reduced and re-oxidized 100 times in order to re-oxidize

100 ferredoxin molecules. This might cause that NAD+ is the limiting component in

the Rnf reaction. This hypothesis might be tested by determining the cFd2−
red

/cNADH ratio

during over-reduced and under-reduced conditions, although it is experimentally very

challenging and never done so far in gas fermenting bacteria.

Another hypothesis ii) might be related to the thermodynamics of the AOR pathway

(acetate to ethanol reduction) as discussed in [234], where was stated that – at constant

cFd2−
red

, due to long-lasting batch conditions – there is a linear relationship between the

NADH/NAD+ ratio and the ethanol-to-acetate ratio (similar to our results, since qAcT

decreases when qEtOH increases). If the Fd2−
red/Fdred ratio is increased in their model, at a

constant ethanol-to-acetate ratio, a lower NADH/NAD+ ratio may be expected, similar to

our model results in Figure 5.7.

Furthermore iii), the time scale in a chemostat (order of days) is significantly longer

than that of liquid circulation and mass transfer (usually > 20 s) and intracellular metabo-

lite and uptake (< 1 s; Figure 5.4), which could lead to concentration gradients at lab-scale

and similar cFd2−
red

/cNADH fluctuations.

The last hypothesis iv) relates to binding of dissolved CO to iron-sulfur complexes

present in Rnf [248, 253] or in ferredoxins [230], similarly to its binding to the Fe-S com-

plexes in hydrogenases [11, 254, 255], and thereby inhibiting Rnf activity. When cL,CO

(and cFd2−
red

) decreases, less Rnf inhibition might be obtained causing that its rate could be

increased.

Clearly, too little is known at this moment on the metabolism of acetogens at low dissolved

gas concentrations, and during dynamic conditions. To improve our understanding, ex-

periments should be performed wherein C. autoethanogenum is exposed to short (5 – 30
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s) shortages in cL,CO, so that the effect of a metabolic stall can be studied, which can be

used for model updates. Development of measurement methods for cFd2−
red

and cL,CO at

such conditions would be highly relevant. The ratio of reduced-to-oxidized ferredoxin

was estimated to be high during batch fermentations, while the NADH/NAD+ ratio was

more dynamic [234], although such results have not yet been obtained from chemostats

or during conditions with dynamic gas supply, such as in the scale-down simulator de-

scribed in [224].

We realise that the lin-log structure of the CRD-model bears several limitations. Re-

sults of lin-log models are good estimations around the reference conditions (i.e., around

which they have been calibrated) [236], but in the CFD-CRD model, intra- and extracellu-

lar conditions far away from the reference concentration occur (see Table D.1). Despite

the implemented rate-limitation modifications that were required for model stability,

the CFD-CRD model still contained, although significantly dampened, numerical er-

rors (Figure 5.2). We would therefore not recommend to use the lin-log structure for

CRD models if they are to be coupled with CFD models, but instead stick to hyperbolic

equations, analogous to [93, 94, 256] using mechanistic rate equations for intracellular

reactions. Another limitation is the ultra-long simulation time of our CFD-CRD model,

due to the large number of particles simulated (Np = 80,000), the short ∆tIC (0.1 ms)

for integration, and poor parallelisation of the particle-based metabolic model. As a

consequence, our simulations had a significant power consumption and environmental

burden (∼0.45 MWh and ∼200 kg CO2). The development and parameterisation time of

the kinetic model took one year, and incorporation in the CFD model lasted around 6

months, so that development of CFD-CRD models should not be considered to be trivial.

This demonstrates the balancing act between model purpose, complexity and resource

availability (section 1.4).

Lastly, the CRD model could be improved by implementing several additional reac-

tions. An export and back-diffusion cycle for formate should be added, together with

the reaction for CO2 reduction to formate with H2. Furthermore, there is some evidence

that hydrogen can be produced from formate, using a NADP+-based hydrogenase [249],

which might be the cause of the simultaneous formate and hydrogen production in [41].

The parameters regarding the acetate export cycle are probably not well calibrated in the

CRD model, since the model at low cx predict large intracellular accumulation of acetate

(Figure D.2). Implementation of an ATP balance or maintenance might also improve the

model in this respect.

The clear spatial discrepancy between ethanol and acetate production zones might

result in significant pH variations, in turn affecting the local qAcT/qEtOH ratio. Metabolic

models that can predict variations in extracellular pH should be developed, and coupled

with CFD to minimise the effect of non-ideal mixing and improve pH buffering.
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5.3.7. Towards better gas fermentation bioreactors
The presented CFD-CRD model and its results could enable ways towards rational opti-

misation of gas fermentation, by adjusting operating conditions, the reactor geometry,

and by strain engineering.

In terms of reactor operation, mass transfer limitations are desired: In case there are

no mass transfer limitations, CO inhibition prevails, leading to low CO and H2 conversion

rates, while lower cL,CO and higher conversion rates are obtained when there are mass

transfer limitations [224]. In order to sustainably obtain high qEtOH at industrial-scale,

the average cL,CO as experienced by the microorganisms should be kept in a narrow range,

around the predicted optimum cL,CO of 0.05 molm−3 according to our model (Figure 5.5e).

A lower cL,CO will induce too much acetate consumption, while at higher cL,CO acetate will

be produced at the expense of ethanol. When operating in a mass transfer-limited regime,

high operational flexibility regarding cL,CO can be obtained via the incoming gas flow rate,

as this directly influences the gas hold-up and thus the mass transfer rate. For example,

when there is too much acetate production (cL,CO is too high), one could decrease the

gas flow rate, which would decrease cL,CO, so that produced acetate might be consumed

again, leading to high ethanol productivities.

In terms of reactor geometry, clear zonation was obtained in the EL-GLR (Figure 5.3),

with CO-uptake and ferredoxin reduction in one zone, and the ferredoxin re-oxidation and

ethanol production in the other zone. As both processes can happen quite fast (order of

seconds), and cellular transition between the zones was found advantageous for ethanol

production, forced zonation can be an interesting way to increase ethanol productivity. To

improve industrial-scale reactor design, future (lab and modelling) research could focus

on determination of the ideal residence times in both zones, which can be implemented

by altering the interior and exterior reactor geometry, and related operation conditions.

Lastly, increases in JRnf were found to be directly related to increases in qEtOH (Figure

5.7c). Overexpression of Rnf (with deletion of hydrogenase) has been proven as a viable

method to increase ethanol production in C. thermocellum [251]. Overexpressing Rnf may

be a method to amplify JRnf at high cFd2−
red

/cNADH and might increase qEtOH even further

in C. autoethanogenum.
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5.4. Conclusion
In this work, we coupled a CFD model of an industrial-scale reactor for gas fermentation to

a metabolic kinetic model to study the influence of the dissolved CO concentration and its

gradient on the productivity and product spectrum of C. autoethanogenum. By comparing

our model results with experimental data, we uncovered that the cL,CO (and potentially

qCO) is a major factor steering the product spectrum: Very low cL,CO (< 0.05 molm−3) result

in high ethanol production rates by reducing extracellular acetic acid, in a starvation-

induced metabolism, slightly higher concentrations (0.05 < cL,CO < 0.1 molm−3) were

related to solventogenesis (CO to ethanol conversion), while high concentrations (cL,CO >

0.1 molm−3) were associated with acetate production. The gradient at industrial-scale

led to a ∼25% increase in ethanol production rate and yield, at the expense of acetate

production. This increase was explained by redox cycles of ferredoxin and NAD+, which

are imposed when there is a gradient in cL,CO. Due to the gradient, the concentration of

reduced ferredoxin gradually decreases, while cNADH increases due to Rnf activity. The

re-oxidation of the resulting NADH caused led to enhanced ethanol production rates. We

identified several hypotheses to support these results, made suggestions for follow-up

research and developed a mechanistic understanding on the gas fermentation process.
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A nice adaptation of conditions will make almost any hypothesis agree with the

phenomena. This will please the imagination but not advance our knowledge.

Joseph Black
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G as fermentation has been described as a process dominated by multiple multi-scale

phenomena. We characterised a commercial-scale bioreactor for gas fermentation

(Chapter 2), to investigate the gas and liquid flow pattern and the global mass transfer

rate (at the metre-scale). We hypothesised that the production of ethanol by the microbes

would lead to significantly reduced bubble diameters, thereby facilitating high mass

transfer rates. This led us zoom-in into the world of bubbles (Chapter 3) (millimetre-

scale), and how they are influenced by the specific compounds, such as ethanol and the

mineral medium (< 1 nanometre), and the biomass concentration, in the fermentation

broth. The impact of the biomass concentration, while considering small bubbles, on

the dissolved gas concentration gradient was estimated in Chapter 4. This was used to

develop a conceptual scale-down simulator, that could be used to mimic the concentra-

tion fluctuations from the large-scale in a lab-scale bioreactor (centimetre-scale). Such a

system can be used to examine how these concentration fluctuations influence microbial

metabolism. We developed several hypotheses for this by coupling a metabolic model of

C. autoethanogenum (micrometre-scale) to the model of the large-scale reactor (Chapter

5). The dissolved gas concentration was identified as an influential factor regarding the

product spectrum. The gradient resulted in increased ethanol production rates, which

correlated with the activity of the Rnf-complex (at the nanometre-scale).

All these phenomena indicate that in a complex multi-scale process such as gas fer-

mentation, the seamless integration of length scales and associated time scales is critical

for bioprocess understanding and scale-up. Such a comprehensive approach is essential

to assess the potential for bioprocess improvement from a broad physics- and biology-

based mechanistic perspective.

Section 1.5 introduces several research questions which were aimed to be answered

in this thesis. These answers will be briefly discussed below.

Mass Transfer
• What are the factors that should be considered to achieve sufficient mass transfer

rates for successful operation of a commercial-scale gas fermentation process?

A CFD model was developed, and validated on pilot-scale experimental data, to predict

the gas and liquid flow pattern in industrial-scale external-loop gas-lift reactors (Chapter

2). Based on the predicted hydrodynamic conditions, it was found that very small bubbles

(≤ 2 mm) were required to obtain the reported industrial-scale kL a (650 – 750 h−1) and

mass transfer capacity (7.5 – 8 gL−1 h−1). Such small bubbles may be due to the produced

ethanol as it could suppress bubble coalescence and also increase (potentially >30%) the

gas hold-up. The produced ethanol was therefore hypothesised to be the major contribu-

tor to high mass transfer performance at industrial-scale syngas fermentation.

This hypothesis was tested in Chapter 3 by adding 50 gL−1 of ethanol (the expected

concentration at industrial-scale) to water, fermentation medium (without biomass) and
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fermentation broths (including biomass), in a lab-scale bubble column. From deter-

mining the bubble size distribution, a structural decrease in bubble diameter (in d32)

was obtained upon the addition of ethanol: from ∼3 mm in demineralized water and

∼2 mm in salt-containing medium and fermentation broths, to ∼1 mm with ethanol. In

all cases, a more than 30% increase in gas hold-up was obtained after the addition of

ethanol, although a decrease in mass transfer coefficient kL was observed by adding

ethanol or biomass. In these analyses, significant increases were obtained in kL a: up to 6

times in pure water, and up to 4 times in fermentation broths and mineral medium. By

measuring the properties of all the mixtures, it was concluded that the typical engineer-

ing correlations (based on air-water mixtures) that are used for bioreactor scale-up, are

not suitable for fermentation broths with high salt, alcohol and biomass concentrations.

Therefore, lab-scale experiments should be carried out to investigate the specific mass

transfer properties of (expected) broths.

Pressure and temperature are operational variables that directly affect the solubility

and kL a of gaseous species (via εG ) (Figure 1.3). In Chapter 2 and 3, the influence of the

operating temperature was examined. A substantial (∼ 40%) increase in kL a was observed

with a temperature increase from 20 to 37 ◦C, irrespective of the ethanol concentration,

corresponding to commonly-used correlations. The effect of the headspace pressure on

kL a and mass transfer capacity (MTC ) was examined in Chapter 2. When the inlet gas

mass flow ṁG is kept constant, a proportional decrease in uG ,s is observed, leading to a

decreased εG and a, while a proportional increase in solubility is obtained. The result

was that the headspace pressure had no significant effect on MTC . When ṁG is adjusted

with pressure, MTC increases proportionally (but at higher operational costs).

In biotic operation at commercial-scale, mass transfer limitations were identified

as desirable in gas fermentation. Mass transfer (with small bubbles) and microbial gas

consumption were implemented in the CFD model of the large-scale reactor in Chapter

4. In cases with excess mass transfer a high dissolved CO concentration led to inhibition

of CO and H2-uptake and low gas conversion. With mass transfer limitations, however,

increased gas conversion rates were obtained due to the absence of CO inhibition. Gas

consumption in these cases led to lower (∼33%) εG and thus kL a. This demonstrates the

potential of the multi-scale coupling approach to investigate the effects of microbial gas

consumption and mass transfer on the global reactor performance.

Across this thesis, the influence of several factors on mass transfer in gas fermen-

tations has been investigated, such as pressure, temperature, reaction rate and, most

importantly, the broth composition. The concentration of the produced ethanol has been

pinpointed as a key factor for successful operation of commercial-scale gas fermentation.
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Downscaling gas fermentation
• What is an effective way to represent industrial-scale gas fermentation conditions

at bench-scale?

After evaluating how high mass transfer rates could be obtained in the EL-GLR, the dis-

solved gas concentration and gradient were estimated for a wide range of conditions

(Chapter 4). Based on lifeline analysis, microorganisms were likely to experience irregular

fluctuations (between 5 and 30 s) in dissolved gas concentration (of around 1 order of

magnitude), although with a wide spread in residence time in both peaks (moments with

high concentration) and valleys.

To investigate how these concentration fluctuations affect the metabolism of aceto-

gens, a conceptual scale-down simulator was designed. By imposing dissolved gas con-

centration fluctuations to a chemostat cultivation by irregularly modulating the stirring

speed (with similar time distributions as in the large-scale reactor), similar concentration

fluctuations can be experienced at both scales. By measuring metabolic properties like

the gas consumption and product formation rates in both cases (chemostat with and

without varied stirring speed), the influence of the gradient on variables such as qEtOH

could be determined.

The scale-down simulator was developed using the unstructured kinetic model for

both CO and H2-uptake. The structured model (Chapter 5) predicted a lower H2-uptake

rate than the unstructured model. This resulted in the absence of a dissolved H2 gradi-

ent, although this was predicted with the other model. For successful development of a

scale-down simulator regarding H2-uptake, more information on its kinetics should be

obtained.

Lastly, it can be argued that the experiments done in Chapter 3 are scale-down studies

with respect to mass transfer. With easy and standard methods, the influence of industrial-

scale conditions (the ethanol concentration) on gas-liquid mass transfer was studied in a

lab-scale bubble column. To do this more rigorously, a wider (> 0.15 cm [196]) and taller

(> 1 m [26]) column should be used, while considering the relevant medium composition

and biomass concentrations. Despite these features, this study gave good estimations

how mass transfer could be enhanced at industrial-scale.

Concentration gradient
• What is the influence of the dissolved gas concentration and its gradient on the

metabolism and product spectrum of C. autoethanogenum?

The dissolved gas concentration and gradient were identified to be of major importance

regarding the product spectrum (Chapter 5). By coupling the developed CFD model of an

industrial-scale gas fermentor to a kinetic metabolic (CRD) model, for several biomass

concentrations, lifelines with a wide range of relevant dissolved gas concentrations were

obtained. The influence of the gradient was examined by comparing the CFD-CRD model
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results with these obtained from solving the CRD model at constant dissolved gas con-

centrations.

Via this method was determined that the dissolved CO concentration was a key driver

in the product spectrum. By comparing both model results with experimental chemostat

data, clear trends with respect to cL,CO were obtained. Acetogenesis was observed at high

cL,CO (> 0.1 molm−3), while solventogenesis is expected when (0.05 > cL,CO < 0.1 molm−3).

A starvation-induced metabolism wherein extracellular acetate is converted into ethanol

was predicted at even lower cL,CO.

The gradient was expected to significantly increase the ethanol production rate qEtOH

(with ∼25%). The model predicted clear zonation in the reactor between the CO concen-

tration and CO-uptake and qEtOH. In zones with high cL,CO ferredoxin could be reduced,

which was found to act as buffer for electron storage. In the zones with low cL,CO, the

reduced ferredoxin is re-oxidised, releasing its electrons in NADH which is subsequently

used for the conversion of acetate to ethanol. During the moments at low cL,CO increased

rates of the Rnf complex were likely (Rnf transports the electrons from reduced ferredoxin

to NADH and translocates protons across the cell membrane, leading to the production

of ATP). Several hypotheses were derived to explain this behaviour, and can be tested in

further research, for example using the developed scale-down simulator.
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Moving forwards

More research has to be done in this field.

Every scientist
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L ast but not least, it is time to discuss the future of gas fermentation. We will do this

by gradually zooming in from the role of gas fermentation in the bioeconomy, into

the bioreactor and the concentration gradients, into bubbles and mass transfer and lastly

into the bacteria. How could we make gas fermentation processes successful?

7.1. The landscape of gas fermentation
Gas fermentation recently gained a lot of industrial attention as many companies (from

start-ups to the major chemical producers) are considering it in their process(es). The

largest player in the gas fermentation field is LanzaTech, which is collaborating and licens-

ing out their technology to dozens of companies, with various gas feedstocks: off-gases

from the steel and ferroalloy industry, oil refineries and chemicals producers, but also

gasified orchard wood and municipal solid wastes [103]. Meanwhile, LanzaTech diversi-

fies its product portfolio, as they demonstrated acetone and isopropanol production with

high productivity and selectivity at pilot-scale [9]. Many different products have been

proposed, ranging from acids (lactic acid and 3-hydroxypropionate), ketones (acetone),

alcohols (butanol, 1,3-butanediol, octanol) to dienes (isoprene), using genetic modifica-

tion of C. autoethanogenum or synthetic co-cultures [7, 8, 11].

A preliminary thermodynamic assessment shows that the energy release by anaerobic

gas fermentation is very modest, compared to other bioprocesses (Table 7.1). Although

Cueto-Rojas et al. [83] mentions CO as a carbon source with high potential for anaerobic

processes given its high Gibbs free energy content per electron (−47 kJmol−1
e− ), the low

∆RGo (Table 7.1) requires high catabolic turnover rates for growth. Together with the

inherent mass transfer limitations of CO, any non-catabolic process will be a very slow

process, leading to poor growth rates and productivities. This causes that genetically

modifying C. autoethanogenum to introduce a product reaction [11] might not be the way

forward for gas utilisation.

Due to the limitations described here (i.e., low free energy release, mass transfer

limitations), only short-chain catabolic products may be of relevance in anaerobic gas fer-

mentation processes. Microbiologists should embrace these limitations, produce ethanol

or acetate at high selectivity and find good uses for the product. Ethanol and acetate could

both be used for production of single-cell protein via high-yield aerobic fermentation

[29, 220, 257], or into medium-chain fatty acids [221], while ethanol can chemically be

upgraded to (aviation) fuel or plastic. Therefore, anaerobic gas fermentation should be

regarded more as a process to utilise waste gases with high global warming potential, and

not so much as product-formation platform.

H2 supplementation to CO gas mixtures improves the sustainability of ethanol for-

mation, since less CO2 will be produced (Table 7.1). This process is complicated from a

bioprocess engineering perspective, since it is more challenging to steer qCO and qH2 in

the right ratio than to feed with the specific gas composition (see Section 7.2). CO/H2 fer-

mentation faces severe competition with catalytic processes (like Fischer-Tropsch), such
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that its application will be highly dependent on the gas composition (and impurities),

and economic and environmental indicators.

If we take the risk to add oxygen to the gas mixture, everything changes drastically, as

way more energy becomes available upon oxidation of CO and H2 (Table 7.1). This is in

favour of knallgas (CO2, H2, O2) fermentation (for which growth rates up to 0.42 h−1 have

been achieved, where kL,O2 a was almost 3000 h−1(!) [258]). The energy release per mol

carbon in this reaction is highly competitive with that of aerobic respiration processes.

This explains the high number of start-ups that are currently researching this technology

(amongst others, Deep Branch, Solar Foods) for production of protein or PHA [103, 259].

High mass transfer reactor designs (kL a > 1000 h−1) are required to make up for the very

low O2 content (< 6.9%) that is required to prevent flammable and/or explosive knallgas

compositions.

Table 7.1: Thermodynamics of several gas-based bioprocesses [30], with some companies commercialising

these processes [29, 103]. Anaerobic gas fermentation is compared with aerobic fermentation of gases and

liquid substrates in terms of the Gibbs free energy at standard conditions, per mol reactant and per mol carbon

[84].

Substrate Reaction
∆RGo ∆RGo

(kJmol−1) (kJmol−1
C )

Anaerobic gas fermentations

CO

4CO + 2H2O −−→ C2H3O2
– + H+ + 2CO2 -135.0 -33.8

LanzaTech

6CO + 3H2O −−→ C2H5OH + 4CO2 -224.7 -37.4

2CO + C2H3O2
– + H+ −−→ C2H5OH -89.6 -44.8

CO / H2
3CO + 3H2 −−→ C2H5OH + CO2 -144.6 -72.3

2CO + 4H2 −−→ C2H5OH + H2O -164.6 -54.9

H2 / CO2

2CO2 + 4H2 −−→ C2H3O2
– + H+ + 2H2O -104.5 -27.5

Synata Bio2CO2 + 6H2 −−→ C2H5OH + 3H2O -49.56 -52.3

2H2 + C2H3O2
– + H+ −−→ C2H5OH + H2O -49.6 -

Aerobic gas fermentations

H2 / CO2 CO2 + 6H2 + 2O2 −−→ CH2O + 5H2O -922.0 -922.0 Solar Foods

H2 / CO2 / CO HCOOH + 1
2 O2 −−→ CO2 + H2O -280.6 -280.6

CO CO + 1
2 O2 −−→ CO2 -55.0 -257.2

CH4 CH4 + 2O2 −−→ CO2 + 2H2O -818.0 -818.0 UniBio

Aerobic respiration

Methanol CH3OH + 3
2 O2 −−→ CO2 + 2H2O -1087.8 -1087.8 ICI

Ethanol C2H5OH + 2O2 −−→ 2CO2 + 3H2O -1318.5 -659.3

Acetate C2H3O2
– + H+ + O2 −−→ 2CO2 + 2H2O -893.8 -446.9

Glucose C6H12O6 + 6O2 −−→ 6CO2 + 6H2O -2872.3 -478.7 Quorn

Anaerobic gas fermentation has its name for a reason, and should be treated as such,

with preventing greenhouse gas emissions as main application. With the introduction

of externality costs (charging for the environmental costs of greenhouse gases via taxes
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or trading schemes) anaerobic gas fermentation processes become economically more

attractive. Interesting gas sources might be industrial off-gases (steel mills, refineries),

gasified municipal solid waste streams and (torrified) lignocellulosic biomass wastes. In

all scenarios, greenhouse gas emissions are prevented (or the carbon lifeline extended).

The large ethanol market makes it possible to anaerobically convert these gases into

useful products for society. Higher-value products might be produced by other fermenta-

tion processes, such as glucose or ethanol oxidation, with the knallgas reaction, or with

catalytic processes. Gas mixtures derived from air-captured CO2 and electrolytic hydro-

gen will possibly be expensive, requiring conversion to facilitate high-value (circular)

processes, into e.g., sustainable aviation fuels.

7.2. Bioreactor operation for gas fermentation
Bioreactor design
As the main goal of anaerobic gas fermentation is gas conversion (preventing greenhouse

gas emissions), bioreactors should be designed as such. High biomass concentrations and

mass transfer limitations will be the desired operational mode, since it prevents inhibition,

improves the gas-to-product yield and enables control possibilities. This should be done

by implementing methods that control the liquid flow rate and thus the gas hold-up, for

example with an axial pump in the downcomer.

Enhancing mass transfer rates (provided its limitations remain by increasing cx ) can

be done by increasing both headspace pressure and gas flow rate (at economic costs), by

decreasing the inert gas fraction, enlarging the gas inflow, or creating smaller bubbles

by changing the medium composition (increase ethanol and salt content [24], risking a

lower kL by creating rigid bubbles).

Implementation of perforated plates might have a profound impact on gas hold-up

and bubble size, and thus mass transfer. From simulations of an EL-GLR with perforated

plate (15 cm thickness, 20% open area) using a porous medium model (C2 ∼3100 m−1)

significantly reduced CO mass flows were expected after passing the plate, compared

to a model without plate (Figure 7.1). Overall, the plate increased CO conversion by

around 15%, although the 95% mixing time increased from 90 s to 300 s. Future (lab and

computational) research should focus on validation of the porous medium model for

CFD modelling of perforated plates, and its application in bubble columns since it is a

promising method to increase gas conversion.

The downcomer provides several operational advantages (e.g., enabling broth outflow,

medium inflow, cooling). It also enlarges riser gas and liquid velocities, which decrease

εG and kL a relative to a bubble column operational mode, while friction in the down-

comer increases mixing times [108]. An interesting subject for further study might be the

influence of the downcomer on axial gas mixing. If the downcomer decreases axial gas

mixing, then the gas behaves more like a plug flow in the riser, so that high gas fractions

of CO and H2 are obtained at locations with high hydrostatic pressure, while a well-mixed
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Figure 7.1: Influence of a perforated plate on the CO mass flow in EL-GLRs. a) CFD-simulation without

perforated plates, b) simulation with a perforated plate. See Chapter 4 for the configuration of the CFD

simulations (cx = 10 gL−1).

gas phase will lead to decreased yCO and yH2 , which in turn might decrease MTC . Biotic

and abiotic lab studies with gases (other than air) might be interesting for finding out

when (depending on gas composition and gas flow rates) an external downcomer leads to

increased mass transfer.

Gas composition
As discussed in the previous section, H2 supplementation increases the biomass-specific

ethanol production rate qEtOH, and is an attractive method to increase the sustainability

of the process. Operationally, it is not straightforward to match qCO and qH2 in the right

ratios, due to varying mass transfer coefficients, Henry coefficients and the strong effect

of CO inhibition on qH2 . With the ideal-mixing model of the EL-GLR (Chapter 4) a quick

assessment was done to estimate the optimal gas composition for ethanol production

and to minimise CO2 production.

From this assessment it turns out that the best gas composition for ethanol production

is rich in H2 (> 90%) and only has small traces (∼5%) of CO and CO2 (Figure 7.2). If more

CO2 is added to the gas, it accumulates in the liquid-phase due to its high solubility and

is simply not converted. To obtain net zero CO2 production a gas mixture with 40% CO

and 60% H2 should be used, different from the ratio in Table 7.1 (33.3% and 66.7%). The
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a) b)

Figure 7.2: Influence of the gas composition yi on qEtOH and qCO2 . For a wide range of gas compositions the

biomass-specific production rates for a) ethanol and b) CO2 (negative for consumption) were estimated using

the ideal-mixing model of a large-scale reactor for gas fermentation (Chapter 4) with mass transfer limitations

(kL,COa =180 h−1, cx = 25 gL−1), qCO2 = 4
6 qCO − 1

3 qH2 . No inert gas fraction was assumed.

results are clearly influenced by the high qmax
H2

since the qEtOH can be almost 50% higher

in a H2-rich gas compared to CO-rich gas.

An interesting path for future research would be to perform such analyses with more

detailed models for ethanol and CO2 production, such as the metabolic model in [40]

and considering the dynamic conditions in large-scale reactors, since the concentration

gradient has a substantial influence on the product spectrum (Chapter 5).

Ethanol concentration
Product inhibition is a frequently observed phenomenon in fermentation processes

(see Straathof et al. [63]). Alcohols were found to be a substantial inhibitor to growth of

Bacillus subtilis, as function of carbon chain length [260]. If this effect would also hold

for C. autoethanogenum then the ethanol concentration would be an important variable

in process design as it directly affects the costs of downstream processing (via heating

duty in distillation columns) [16]. Thus, high cEtOH decrease downstream processing

costs, would increase mass transfer rates due to coalescence inhibition (Chapter 3), while

increased reactor volumes are required due to the decreased productivity and qCO.

Ethanol inhibition was studied before in gas-fermenting Clostridium spp., although

the mechanism is still unclear. A linear relationship between growth and cEtOH (up to

35 gL−1) was obtained for C. carboxidivorans grown on CO [35], while [261] did not find

any inhibitory effects up to 15 gL−1 for syngas-grown C. ljungdahlii. Based on long-term

culture data with high cEtOH up to 50 gL−1 with C. ljungdahlii [262], de Medeiros et al.

[208] fitted a hyperbolic model for ethanol inhibition.

For successful process design, and determination of kinetic parameters for gas uptake,

ethanol inhibition has to be studied more rigorously. Crucial parameters that need to
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be determined are the critical inhibition concentration, the range of concentrations at

which inhibition does not play a role regarding growth, and how ethanol inhibition can

be mathematically described (linear, hyperbolic or exponential). This could be studied in

chemostats with C. autoethanogenum with step changes in cEtOH in the feed. Directed

evolution studies might be a possible way to alleviate the effect of high cEtOH in the

long term. With clearance on the ethanol inhibition mechanism, integrated bioprocess

design studies can be done to find out the optimal conditions for both the upstream and

downstream processes.

7.3. Concentration gradients and scale-down
CO and H2 concentration gradients were expected in the EL-GLR of roughly one order

of magnitude (e.g., 0.02 – 0.2 molm−3, depending on cx ) with irregular peak and valley

duration in the order of seconds (5 – 30 s). With the proposed scale-down simulator in

Chapter 4, the impact of such concentration gradients can be studied at lab-scale.

Future work should employ the proposed scale-down CSTR bioreactor with variable

stirrer speed to investigate whether the concentration gradient is of any advantage to

ethanol production (see Chapter 5). With the data obtained from the scale-down setup,

metabolic models could be parameterised (preferably based on hyperbolic enzyme kinet-

ics), which can in turn be used to improve the CFD-CRD model and our understanding

on gas fermentation dynamics. Such work could also shed light on the ideal duration in

high and low concentration zones, which could in turn be used for improved bioreactor

design, at both pilot and full-scale.

At lab-scale, despite the typical ideal mixing assumption, dissolved gas concentration

gradients might also be obtained. This is most probably due to the specific flow pattern in

the reactor, fast reaction kinetics and the very low gas flow rates (usually varying between

0.01 vvm in [41] and 0.1 vvm in [45]) gas fermentations. Even at pilot [9] and full-scale

(Chapter 2) low gas flow rates <0.1 vvm were expected.

Based on short-cut CFD simulations of a typical lab-scale bioreactor [45], a cL,CO

gradient was expected between 0.02 – 0.05 molm−3 within a 0.75 L bioreactor (12 cm

liquid height) (Figure 7.3a). Although this gradient is less significant than the one at larger

scales, this was not expected with the ideal-mixing approximation. It was hypothesised

that this non-ideal mixing may have a positive impact on qEtOH.

The gradient arises probably due to depletion of CO from gas bubbles, and the fast

reaction rate compared to mass transfer and mixing. In Figure 7.3b is visible that closer to

the sparger the bubbles contain more CO than the ones near the walls and headspace.

The consumed CO is partly replaced by the produced CO2. To decrease the CO gradient,

axial mixing should be improved, for example by changing to an axial impeller.
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By compiling data from several lab-studies, qEtOH was found to be increased when

reaction is faster than mixing (Figure 7.3c). As was hypothesised that qEtOH may be in-

creased to the cL,CO gradient (Chapter 5), the conclusions obtained from these studies

may be influenced by the gradient. Future research should focus on the existence of

concentration gradients at lab-scale gas fermentations, and efforts should be made to

diminish their impact when it is not the main topic of research.

One interesting method to obtain constant concentrations, is using microfluidic biore-

actors [263, 264]. In microfluidic chips, the dissolved CO concentration can be controlled

via regulated mixing with a fully saturated flow (e.g., [265]) or via a fully controlled gas

chamber (e.g., [266]). In the microfluidic chip, acetogens can be cultivated at constant or

dynamic conditions (following a lifeline [267]), and used to study the influence of cL,CO

on gas uptake kinetics, the product spectrum, and their reaction to concentration gradi-

ents. In the future (when cheap microfluidic chip fabrication is available), microfluidic

cultivation is potentially an effective tool for strain selection and screening in scale-down

studies.

7.4. Gas-to-liquid mass transfer
In this work was highlighted that the medium composition had a significant impact on

mass transfer. In a follow-up review paper by Volger et al. [24], the influence of a wide

range of broth constituents (e.g., salts, proteins, biomass, products, antifoam) on bub-

ble column hydrodynamics and mass transfer was assessed. This made clear that the

combined effects of broth components is barely understood, as the scientific literature is

more focused on individual compounds. This all could lead to unexpected deviations in
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Figure 7.3: Gradients in lab-scale gas fermentations. a) Time-averaged cL,CO obtained using a short-cut Lattice-

Boltzmann CFD simulation (in M-Star) of a 0.75 L reactor with operating conditions based on [45] (1160 rpm,

72 mLmin−1, 1 mm bubbles, kL via Equation 2.5 and reaction as modelled in Chapter 4). b) Bubble dispersion

in that reactor, the bubbles are coloured with their yCO. c) Compilation of experimental data depicting the

relationship between qEtOH and the ratio between reaction and mass transfer time (values below 1 indicate

faster consumption than transfer).
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variables important for mass transfer, with respect to the typical engineering correlations.

Industrialists and academics working on gas fermentation should study kL a of their

reactor with water and broth. This is required for successful scale-up, and can be used to

calculate dissolved gas concentrations which can not yet be measured. Comparison of

broth kL a with water kL a should provide proper estimations, as is common practice in

wastewater treatment [185]. This can, for example, be done using the relatively simple

and cheap methods used in Chapter 3.

The large amount of kL a data in literature, could make it possible to develop databases

with broth compositions, for example via AI-based literature-scraping tools [268]. Pattern

recognition may indicate how specific components interact and influence broth kL a.

In gas fermentation experiments, significantly higher kL a were predicted from the gas

consumption rate (Equation 7.1) than the one expected from the gas inflow rate and the

amount of bubbles (Equation 7.2) (Figure 7.4a). For example, in a lab-scale reactor oper-

ated with 0.1 vvm [45] around 2000 bubbles were expected from simulations (Figure 7.3b)

and Equation 7.2, resulting in a (kL,COa)abiotic around 3 h−1 (db = 1 mm, kL = 1×10−4 ms−1,

bubble residence time τb = 1 s). This is significantly lower than the minimum biotic kL a

in [45] of 180 h−1. Only with very extreme assumptions such high (kL,COa)abiotic could be

obtained (db = 0.1 mm, kL = 3×10−4 ms−1, τb = 3 s). Therefore, it would be interesting to

determine how such high mass transfer rates are obtained at lab-scale, despite the small

gas flow rates.

(kL,COa)biotic =
rCO

csat
L,CO − cL,CO

= qCOcx

csat
L,CO − cL,CO

> qCOcx

csat
L,CO −0

≫ qCOcx

HCOpyCO,in −0
(7.1)

(kL,COa)abiotic = kL,CO ·ab ·Nb = kL,CO · 4πd 2
b

VL
· FG ,in

1
6πd 3

b

τb = 6kL,CO
FG ,in

VLdb
τb (7.2)

One possibility might be that the mass transfer coefficient kL is significantly enhanced,

hinting at bubble boundary layer effects, as was extensively described in [269]. Such en-

hancement could be due to the presence of a cell layer around the bubble and by gas

consumption in the boundary film layer. Very strong boundary layer effects (high Hatta

number) would reduce CO availability in the bulk liquid and thus underpredict qCO. This

might explain the fourfold increase in qmax
CO as predicted based on recent experiments

[270] relative to the one used in kinetic models (Table 4.1).

One method to measure biotic mass transfer enhancement during continuous gas fer-

mentation might be by mass transfer of inert gases. For example, dynamic measurement

of dissolved nitrogen1 concentration after step changes in yN2 [195] might reveal the abi-

otic kL,N2 a, which can be converted into an abiotic kL,COa via their diffusion coefficients

(Equation 4.13). This can then be compared with the biotic kL,COa as calculated using

Equation 7.1.

1possibly via Hach Orbisphere 315xx Nitrogen Sensors.
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Figure 7.4: Mass transfer uncertainties at lab-scale. a) Comparison of the minimum biotic kL a (Equation 7.1)

and estimations of abiotic kL a (Equation 7.2) for various experimental conditions. b) Gas depletion from a

bubble over time, calculated for various kL values. Abiotic kL a was estimated by assuming db = 1 mm, kL =

1×10−4 ms−1, τb = 1 s. Results in b) were obtained using a diffusion-reaction model around a 1 mm gas bubble

with initial yCO of 0.5, a boundary layer thickness of 2.71×10−5 m, and strong turbulent diffusion in the liquid

(Dturb = 1×10−3 m2 s−1), kinetics as in Chapter 4, cx of 1.56 gL−1 [45].

Gas bubbles are depleted faster due to mass transfer enhancement. With a diffusion-

reaction model was predicted that a twofold increased kL would reduce yCO by 50% within

1 s (Figure 7.4b). A tenfold higher kL would even lead to 95% CO depletion within that

second. The 20-times increases in consumption rate (as predicted above), were not ex-

pected with this model. The large discrepancies between yCO, in and yCO, out (for example

in [41]) challenge the estimation of CO solubility and thus kL a and cL,CO, so that the value

obtained with Equation 7.1 is at the lower side.

All in all, the high gas conversion rates in lab-scale gas fermentations with low gas

flows raise several questions that remain unanswered. Development of online dissolved

CO sensors is paramount for further research on this topic. A good first step is the ap-

proach used by Mann et al. [252].

7.5. Gas fermenting bacteria
As mentioned throughout this work, there is a clear knowledge gap regarding gas uptake

kinetics of acetogens. Although there are several experimental [33, 34] and modelling

[40, 208] works that propose gas uptake kinetics, there are big discrepancies between

the derived kinetic models and experimental results. The reason for this may be that

many conditions influence gas uptake rates (e.g., the concentrations of dissolved CO, H2,

acetate and intracellular reduced ferredoxin).

Future experiments to determine gas uptake kinetics should apply the dissolved CO

measuring technique from [252], while keeping product concentrations constant (pos-

sibly by supplying them in the inflow). A good approach to determine qmax is the one
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used in [270] (with smaller gas headspace volumes to shorten the cycles), while steady

chemostat experiment with varying yi ,in could be done to study KS and K I . Dissolved gas

gradients should be prevented by increasing axial mixing in the reactor and by working

with high volumetric gas flow rates.

As H2-uptake is inhibited by CO, the measurement of H2-uptake kinetics becomes

even more challenging. One interesting study could be to perturb CO2 and H2-grown

chemostat cultures with increasing amounts of CO and measure the variations in H2-

uptake rates from the off-gas.

In Chapter 5 several hypotheses were provided on the relationship between cFd2−
red

and

qEtOH. At this moment no methods are available for measurement of cFd2−
red

[271], so that a

direct proof cannot be obtained.

Interesting studies can be done, however, on the Rnf complex, which rate was found to

be related to ethanol production. For example, in chemostat cultures with varying cL,CO

(using the approach of [252]), next to obviously qCO and qEtOH, the concentrations of

NADH and NAD+ should be determined (e.g., [234]) as well as the Rnf activity (e.g., [249]).

This may identify whether the Rnf rate does indeed relate to qEtOH as was hypothesised in

Chapter 5.

Studies with cell extracts, similar to [249], could shed light on the inhibiting effect of

CO on Rnf, for example by varying yCO in the headspace or by saturation of demineralized

water with CO. Such studies might also reveal whether Rnf is more sensitive to variations

in Fd2−
red/Fdox compared to NADH/NAD+, as the latter one was expected to change more

frequently during concentration fluctuations.
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7.6. The end in mind
In this outlook chapter, we discussed the future of research on gas fermentation. The

topic is very dynamic, and although commercial-scale processes are established, there are

still too many unknowns compared to the more traditional fermentation processes. For

successful scale-up of this technology, the main research gap are the kinetics of acetogens

and their reaction to dynamically varying components (dissolved gases and products).

With increased understanding on the effect of the broth and the biotic enhancement

effect on mass transfer, the accuracy of CFD simulations can be improved.

With detailed kinetics and metabolic models, and increased understanding on gas-

to-liquid mass transfer, gas fermentation bioprocesses and operating conditions can be

optimised according to specific gas composition and desired end-products. Advances in

AI and computer hardware (and availability) will drastically speed-up CFD-CRD simu-

lations. Hydrodynamic-metabolic simulations might be run as a digital twin (fed with

off-gas data) to enable real-life control.

Gas fermentation with air-captured CO2 and electrolytic H2 could lead to carbon-

neutral production of commodities (fuels and chemicals) and even carbon-negative

production of materials (plastics). Fast development of gas fermentation processes is

crucial to combat climate change.

The future of gas fermentation is bright. Let’s make it happen!







References

[1] Bailey, J. E. (1998). Mathematical modeling
and analysis in biochemical engineering: Past
accomplishments and future opportunities.
Biotechnology Progress, 14(1), 8–20.

[2] Klasson, K. T., Ackerson, M. D., Clausen, E. C., &
Gaddy, J. L. (1991). Bioreactor design for synthesis gas
fermentations. Fuel, 70(5), 605–614.

[3] Vega, J. L., Prieto, S., Elmore, B. B., Clausen, E. C.,
& Gaddy, J. L. (1989). The Biological Production of
Ethanol from Synthesis Gas. Applied Biochemistry and
Biotechnology, 20(21), 781–797.

[4] Abrini, J., Naveau, H., & Nyns, E. J. (1994). Clostridium
autoethanogenum, sp. nov., an anaerobic bacterium
that produces ethanol from carbon monoxide. Archives
of Microbiology, 161(4), 345–351.

[5] Tanner, R. S., Miller, L. M., & Yang, D. (1993).
Clostridium ljungdahlii sp. nov., an acetogenic species
in clostridial rRNA homology group I. International
Journal of Systematic Bacteriology, 43(2), 232–236.

[6] Calvo, D. C., Luna, H. J., Arango, J. A., Torres, C. I., &
Rittmann, B. E. (2022). Determining global trends in
syngas fermentation research through a bibliometric
analysis. Journal of Environmental Management, 307,
114522.

[7] Diender, M., Stams, A. J., & Sousa, D. Z. (2016).
Production of medium-chain fatty acids and higher
alcohols by a synthetic co-culture grown on carbon
monoxide or syngas. Biotechnology for Biofuels, 9(1),
1–11.

[8] Köpke, M., & Simpson, S. D. (2020). Pollution to
products: recycling of ‘above ground’ carbon by gas
fermentation. Current Opinion in Biotechnology, 65,
180–189.

[9] Liew, F. E., Nogle, R., Abdalla, T., Rasor, B. J., Canter,
C., Jensen, R. O., Wang, L., Strutz, J., Chirania, P.,
De Tissera, S., Mueller, A. P., Ruan, Z., Gao, A., Tran, L.,
Engle, N. L., Bromley, J. C., Daniell, J., Conrado, R.,
Tschaplinski, T. J., Giannone, R. J., Hettich, R. L., Karim,
A. S., Simpson, S. D., Brown, S. D., Leang, C., Jewett,
M. C., & Köpke, M. (2022). Carbon-negative production
of acetone and isopropanol by gas fermentation at
industrial pilot scale. Nature Biotechnology 2022 40:3,
40(3), 335–344.

[10] Fackler, N., Heijstra, B. D., Rasor, B. J., Brown,
H., Martin, J., Ni, Z., Shebek, K. M., Rosin, R. R.,
Simpson, S. D., Tyo, K. E., Giannone, R. J., Hettich,
R. L., Tschaplinski, T. J., Leang, C., Brown, S. D., Jewett,
M. C., & Köpke, M. (2021). Stepping on the Gas to
a Circular Economy: Accelerating Development of
Carbon-Negative Chemical Production from Gas
Fermentation. Annual Review of Chemical and
Biomolecular Engineering, 12, 439–470.

[11] Liew, F. M., Martin, M. E., Tappel, R. C., Heijstra, B. D.,
Mihalcea, C., & Köpke, M. (2016). Gas Fermentation-A
flexible platform for commercial scale production
of low-carbon-fuels and chemicals from waste and
renewable feedstocks. Frontiers in Microbiology, 7,
1–28.

[12] Ail, S. S., & Dasappa, S. (2016). Biomass to liquid
transportation fuel via Fischer Tropsch synthesis -
Technology review and current scenario. Renewable
and Sustainable Energy Reviews, 58, 267–286.

[13] Perret, L., Lacerda de Oliveira Campos, B.,
Herrera Delgado, K., Zevaco, T. A., Neumann, A.,
& Sauer, J. (2022). COx Fixation to Elementary
Building Blocks: Anaerobic Syngas Fermentation vs.
Chemical Catalysis. Chemie-Ingenieur-Technik, 94(11),
1667–1687.

[14] Abubackar, H. N., Veiga, M. C., & Kennes, C. (2011).
Biological conversion of carbon monoxide: Rich syngas
or waste gases to bioethanol. Biofuels, Bioproducts and
Biorefining, 5(1), 93–114.

[15] Munasinghe, P. C., & Khanal, S. K. (2010).
Biomass-derived syngas fermentation into biofuels:
Opportunities and challenges. Bioresource Technology,
101, 5013–5022.
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Table A.1: Parameters and variables for determining kL a via the relationships in Table 2.1. 1: calculated using

[25] for EL-GLRs. 2: calculated using [114]. Flow rates for one EL-GLR.

Variable Symbol Value Unit

Riser diameter Dr 5 m

Riser surface area Ar 20 m2

Downcomer diameter Dd 1.5 m

Downcomer surface area Ad 1.8 m2

Dispersion height HD 25 m

Headspace pressure phead 101325 Pa

Bottom pressure pbot 344949 Pa

CO inflow ṅCO,in 136 kmolCO h−1

Syngas composition yi 50% CO, 50% N2 moli mol−1
G

Syngas molar inflow ṅG ,in 272 kmolG h−1

Gas molar volume at bottom VG,m,bot 0.0075 m3
G mol−1

G

Syngas inflow FG,bot 2031 m3
G h−1

Superficial gas velocity uG ,s,in 0.028 ms−1

Power-to-volume ratio1 P/VD 257 Wm−3
L

Gas hold-up2 εG 0.126 m3
G m−3

L

Liquid hold-up εL 0.874 m3
L m−3

L

Concentration of solids csolids 0 kgm−3
L

Physical constants

Universal gas constant R 8.314 Jmol−1 K−1

Gravity g 9.81 ms−2

Density ρL 993.37 kgm−3
L

Temperature T 310.15 K

Broth viscosity ηL 7.074×10−4 Pas

CO diffusion coefficient DL,CO 2.71×10−9 m2 s−1

Surface tension σ 0.072 Nm−1

Table A.2: Dimensionless numbers used for the determining kL a in the relations given in Table 2.1, based on

the definitions proposed by [25].

Name Equation Estimated value

Schmidt Sc = ηL
ρL DL,CO

∼260

Eötvös Eo = ρL g D2
r

σ ∼3.38×106

Galileo Ga = ρ2
L g D3

r

η2
L

∼2.40×1015

Froude F r = uG ,s,in
g Dr

∼40×10−3

Reynolds Re = ρL uG ,s,inDr
ηL

∼1.9×105

Sherwood Sh = kL Dr
DL,CO

-
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Table A.3: Results of the mesh refinement study. kL a and MTC (100 s time-averaged) were determined for the

three meshes with three different kL -relations from Table 2.2. For the calculations, bubbles of 3 mm diameter

were assumed as well as the hold-up increasing effect of ethanol and operation at 37 ◦C.

Mesh 1 Mesh 2 Mesh 3

Cells 370764 1688085 1929575

Relation kL a (h−1) MTC (gL−1 h−1) kL a (h−1) MTC (gL−1 h−1) kL a (h−1) MTC (gL−1 h−1)

1 672 5.86 624 5.68 620 5.69

2 688 5.82 637 5.68 632 5.70

5 480 4.13 461 4.30 469 4.35

Table A.4: Discretization schemes and relaxation factors used for the different CFD models. The gradient was

solved via the least-square cell-based scheme.

Pilot-scale Large-scale
Variable Discretization scheme Relaxation factor Discretization scheme Relaxation factor

Pressure PRESTO! 0.3 PRESTO! 0.3
Density First order upwind 1.0 First order upwind 1.0
Body Forces - 1.0 - 1.0
Momentum Second order upwind 0.2 First order upwind 0.7
Volume fraction First order upwind 0.5 First order upwind 0.5
Turbulent kinetic energy First order upwind 0.5 First order upwind 0.8
Turbulent dissipation rate First order upwind 0.5 First order upwind 0.8
Turbulent viscosity (eq.) - 1 - 1
Tracer mass fraction First order upwind 1 - -

b) EL-GLR: Mesh 1a) Pilot scale c) EL-GLR: Mesh 2 d) EL-GLR: Mesh 3

Figure A.2: Meshes used for CFD modelling. a) the mesh for the pilot-scale reactor model (grid size = 0.008 m).

b-d) meshes for the industrial EL-GLR (grid size = 0.20 m, 0.15 m, 0.10 m, respectively).
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Figure A.3: Dynamic variations in gas hold up and axial liquid velocity at the EL-GLR riser centreline at several

axial positions. Full line: transient values; dotted lines: rolling averages; dashed lines; 200 s time-averaged

values.
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Table A.5: Results from the pilot-scale reactor used by Young et al. [139] and the predictions made by the CFD

model. Given are the average values and the standard deviation along the radial direction, as well as the relative

difference in the value as predicted by the CFD model.

uG ,s cms−1 8.4 4.7
Pilot CFD dev Pilot CFD dev

uL,ax,r ms−1 0.85 ± 0.24 0.54 ± 0.31 -36% 0.62 ± 0.18 0.44 ± 0.24 -29%
Ir % 34.7 ± 6.4 22.2 ± 7.8 -36% 33.3 ± 6.6 15.9 ± 4.23 -52%
uL,ax,d ms−1 0.87 ± 0.44 0.93 ± 0.37 +6% 0.67 ± 0.34 0.80 ± 0.32 +19%
Id % 10.3 ± 2.7 12.1 ± 2.2 +17% 8.80 ± 1.4 13.9 ± 3.35 +58%
uG ,ax,r ms−1 0.96 ± 0.20 0.72 ± 0.40 -24% 0.79 ± 0.20 0.62 ± 0.34 -21%
εG ,r 0.12 ± 0.01 0.11 ± 0.01 -3% 0.09 ± 0.01 0.07 ± 0.00 -17%

uG ,s cms−1 2.1 0.96
Pilot CFD dev Pilot CFD dev

uL,ax,r ms−1 0.46 ± 0.17 0.32 ± 0.18 -31% 0.31 ± 0.14 0.24 ± 0.13 -23%
Ir % 36.4 ± 8.63 24.3 ± 12.5 -33% 34.6 ± 10.5 16.61 ± 6.14 -52%
uL,ax,d ms−1 0.53 ± 0.27 0.60 ± 0.25 +14% 0.42 ± 0.21 0.45 ± 0.18 +7%
Id % 8.48 ± 1.29 12.9 ± 4.75 +53% 8.12 ± 1.72 13.3 ± 3.62 +63%
uG ,ax,r ms−1 0.64 ± 0.17 0.50 ± 0.27 -23% 0.54 ± 0.14 0.42 ± 0.23 -23%
εG ,r 0.05 ± 0.01 0.04 ± 0.00 -15% 0.02 ± 0.01 0.02 ± 0.00 -4%

Figure A.4: Influence of the absolute headspace pressure on MTC (Equation 2.7) and power consumption [113]

by the compressor. b) Relation between the relative increases in compressor power consumption and MTC .

MTC and Pcomp are compared to a base-case with 101 kPa headspace pressure, considering that the gas-inflow

rate is increased proportional to the headspace pressure to obtain constant kL a.

Table A.6: For two sparger configurations, kL a and MTC are compared for three kL relations. Provided are

the 200 s time- and volume-averaged values, while the difference was calculated relative to the bottom-plate

sparger. Assumed are db = 3 mm, a 30% increase in gas-hold up compared to water due to the presence of

ethanol and a temperature of 37 ◦C. The gas hold-up in the configuration with sparger above the downcomer

was calculated to be 11% lower, explaining the difference in kL a values

Bottom sparger Higher sparger Difference (%)

kL a MTC kL a MTC kL a MTC

(h−1) (gL−1 h−1) (h−1) (gL−1 h−1) (h−1) (gL−1 h−1)

Higbie [127] 673 5.84 503 4.59 -10.8 -6.22

Calderbank and Moo-Young [128] 689 5.86 515 4.61 -10.9 -6.20

Lamont and Scott [131] 485 4.18 376 3.37 -7.49 -3.95
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c)
(g L-1 h-1)

a)         b)

(h-1)

G Lk a MTC

Figure A.5: Surface plots at the z y-plane (x=0) of the EL-GLR with the sparger 0.5 m above the downcomer outlet,

a) the 200 s time-averaged gas hold-up, b) kL a and c) MTC as determined via the Higbie relation, assuming db
= 3 mm, a 30% increase in gas-hold up and a temperature of 37 ◦C

CFD simulations with higher positioned sparger
Methods

An alternative geometry has been developed with the spider sparger (Figure 2.1b) po-

sitioned 0.5 m above the downcomer outlet, and meshed with 370,000 cells and 0.3

orthogonal quality. In ANSYS Fluent, interpolation has been performed using the estab-

lished flow field from the bottom-plate sparger (replace zone-option). Initialization has

been performed by setting all directions of the liquid and gas velocities as well as the gas

hold-up to zero, at 0.5 m above and below the sparger. Convergence (residuals < O(10−3))

was obtained with the following time stepping strategy: 0.01 s for 2 time steps, 0.02 s for 5

steps, 0.05 s for 5 steps and was then increased to 0.1 s, while decreasing the momentum

under-relaxation factor to 0.4 (raised back to 0.7 after 120 s). Results were obtained by

exporting data for 200 s (every 2.5 s) after 350 s simulation time, when a stable flow field

was obtained.
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Relations used for kLa determination by physical properties

Table B.1: Relations used for the prediction of kL a in bubble column reactors. Constants: Dr = 0.07 m, uG ,s =

1.8 mms−1, DL,O2 = 2.1×10−9 m2 s−1, g = 9.18 ms−2.

Dimensionless relations Equation

Akita and Yoshida [118] (Sh) a ·Dr = 0.6Eo0.62Ga0.3Sc0.5ε1.1
G

Kawase et al. [120] (Sh) a ·Dr = 0.452Eo0.62Ga0.3Sc0.5F r 1Re1

Nakanoh and Yoshida [119] (Sh) a ·Dr = 0.09Eo0.75Ga0.4Sc0.5F r 1

Uchida et al. [121] (Sh) a ·Dr = 0.17Eo0.62Ga0.3Sc0.5ε1.1
G

Vatai and Tekić [122] (Sh) a ·Dr = 0.031Eo0.75Ga0.4Sc0.5F r 1

Dimensionless numbers Equation

Schmidt Sc = ηL
ρL DL,O2

Eötvös Eo = ρL g D2
r

σ

Galileo Ga = ρ2
L g D3

r

η2
L

Froude F r = uG ,s,in
g Dr

Reynolds Re = ρL uG ,s,inDr
ηL

Sherwood Sh = kL Dr
DL,O2

Cultivation strategies and media composition
Fermentation broth 1 was effluent resulting from a CO fermentation by Clostridium au-

toethanogenum (DSM 10061) in a continuous stirred-tank reactor (CSTR). The cultivation

was carried out in a 1.5 L glass jacketed chemostat (Applikon, The Netherlands) with a

working volume of 1 L. The temperature was controlled at 37 ◦C, the agitation rate was set

to 500 rpm and the pH was maintained at 5.9. The bioreactor was continuously supplied

with a gas phase consisting of CO (6 mLmin−1) and N2 (6 mLmin−1). The sterile growth

media (composition reported in Table B.2) was supplied continuously at the dilution rate

of 0.024 h−1. The fermentation effluent was continuously sparged with 100% N2 to main-

tain anaerobic conditions, kept at room temperature (∼20 ◦C) and collected anaerobically

in a glass bottle during 4 days, and then used for the mass transfer experiments.

149
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Fermentation broth 2 was the effluent resulting from CO fermentations by C. au-

toethanogenum (DSM 10061) in a custom-built rotor-stator spinning disc reactor (RS-

SDR) coupled to a buffer tank. The fermentation broth was cultivated in a 600 mL glass

mixed buffer vessel (300 mL working volume) and recirculated though the RS-SDR (60

mL working volume), made of polymethyl methacrylate. The reactor was operated in a

sequential batch mode, with a cycle time of 24 hours. Each cycle, 10 mL of fermentation

broth in the buffer tank was exchanged by the same volume of fresh sterile feed medium

(composition reported in Table B.2). The headspace of the buffer tank (300 mL) was

completely refreshed with 100% CO once a day and kept at 1.5 bar of absolute pressure.

The buffer tank was placed on a heating stirring plate. The temperature was controlled be-

tween 35 and 37 ◦C, the broth was agitated at 200 rpm with a magnetic stirrer and the pH

was maintained between 5.3 and 5.8. The fermentation broth was recirculated through

the RS-SDR at a recirculation liquid flow rate of 120 mLmin−1. The RS-SDR operated at

varying rotation speeds (100, 500, 1000 or 1500 rpm). After 72 hours of cultivation, the

fermentation effluent was collected in 1 L plastic bottles and stored in the fridge (∼2 ◦C).

The effluent of 8 consecutive independent fermentations was stored (during a maximum

4 weeks), mixed and then used for the mass transfer experiments.

Fermentation broth 3 was the effluent of a mixed culture converting CO into H2 and

acetate in a continuous stirred tank reactor (CSTR). The cultivation was carried out in a

500 mL chemostat with a working volume of 400 mL. The temperature was controlled

at 30 ◦C, the agitation rate was set to 800 rpm and the pH was maintained at 7.0. The

bioreactor was continuously supplied with a gas phase consisting of CO (2 mLmin−1),

N2 (1.06 mLmin−1) and CO2 (0.27 mLmin−1). The sterile growth media (composition re-

ported in Table B.2) was supplied continuously to maintain the dilution rate of 0.014 h−1.

The fermentation effluent was collected anaerobically into 1 L serum glass bottles sealed

with butyl rubber stoppers and aluminium caps, under N2/CO2 (80:20 v%) headspace, at

1.4 bar of absolute pressure. The effluent was stored at room temperature (∼20 ◦C) during

5 days, and then used in the mass transfer experiments.

Fermentation broth 4 was produced by the fermentation of CO by C. autoethanogenum

(DSM 10061) in batch bottles. The cultivation medium (which composition is reported in

Table B.2) was dispersed into 1 L glass bottles (300 mL working volume) sealed with butyl

rubber stoppers and aluminium caps. The headspace of each bottle (700 mL) was filled

with 100% CO to a final absolute pressure of 1.5 bar, using an anaerobic gas-exchange

system. The bottles were sterilised in a autoclave immediately after preparation, for 20

minutes at 121 ◦C. Each bottle was inoculated with 1% (v/v) of exponential growing in-

oculum, at initial pH of 5.9 and incubated without shaking at 37 ◦C until reaching optical

density at 660 nm (OD660) of 0.2. The fermentation broth from each bottle was then

collected and mixed, and used for bubble size characterisation (Figure B.1, Table B.3).
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Table B.2: Media composition used for the cultivation of the fermentation broths. Media compounds concentra-

tions are reported in gL−1 (mgL−1 in the case of metal trace elements and vitamins).

Mineral media Broth-1 Broth-2 Broth-3 Broth-4
(gL−1) (gL−1) (gL−1) (gL−1) (gL−1)

Ammonium chloride 0.9 0.9 0.3 0.3 0.3
Sodium chloride 0.9 0.9 0.3 0.3 0.3
Magnesium sulfate heptahydrate 0.2 0.2 0.1 0.03 0.03
Monopotassium phosphate 0.7 0.7 0.408 0.408 0.408
Dipotassium phosphate 1.5 1.5 - - -
Sodium phosphate dibasic dihydrate - - 0.534 - -
Calcium chloride dihydrate 0.02 0.02 0.11 0.11 0.11
Sodium bicarbonate - - 4.0 4.0 4.0
Resazurin sodium salt 0.0005 0.0005 0.0005 0.0005 0.0005
Yeast extract 0.5 0.5 1.0 0.1 0.1
Triptone - - 1.0 - -
L-cysteine hydrochloride monohydrate - 0.75 0.5 0.1 0.1
Sodium sulfide nonahydrate - - 0.24 - 0.24

Metal trace elements (mgL−1) (mgL−1) (mgL−1) (mgL−1) (mgL−1)

Iron(II) chloride tetrahydrate 1.50 1.50 1.50 1.50 1.50
Iron(III) chloride hexahydrate 2.50 2.50 - - -
Zinc chloride 0.07 0.07 0.07 0.07 0.07
Manganese(II) chloride tetrahydrate 0.10 0.10 0.10 0.10 0.10
Boric acid 0.006 0.006 0.062 0.062 0.062
Cobalt(II) chloride hexahydrate 0.190 0.19 0.119 0.119 0.119
Copper(II) chloride dihydrate 0.002 0.002 0.017 0.017 0.017
Nickel(II) chloride hexahydrate 0.024 0.024 0.024 0.024 0.024
Sodium molybdate dihydrate 0.040 0.040 0.024 0.024 0.024
Sodium selenite 0.004 0.004 0.017 0.017 0.017
Sodium tungstate dihydrate 0.200 0.200 0.033 0.033 0.033

Vitamins (mgL−1) (mgL−1) (mgL−1) (mgL−1) (mgL−1)

Biotin 0.02 0.02 0.02 0.02 0.02
Nicotinamide 0.20 0.20 0.20 0.20 0.20
P-aminobenzoic acid 0.10 0.10 0.10 0.10 0.10
Thiamine 0.20 0.20 0.20 0.20 0.20
Pantothenic acid 0.10 0.10 0.10 0.10 0.10
Pyridoxamine 0.50 0.50 0.50 0.50 0.50
Cyanocobalamin 0.10 0.10 0.10 0.10 0.10
Riboflavin 0.10 0.10 0.10 0.10 0.10
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Bubble size method cross-validation
With broth-4, and in the same conditions as used with the other mixtures, bubbles were

obtained that could be analysed using both methods (the one designed for the small

bubbles with the photo-optical probe (SOPAT) and the one for the larger bubbles with

the CANON EOS 200D camera). The resulting bubble size distributions (BSDs) are given

in Figure B.1. As can be seen, the resulting BSDs are very similar, with the exception that

the method used for the small bubbles is not able to capture bubbles bigger than 1.3 mm

and that it has a slightly higher probability peak between 0.5 - 0.75 mm. As the obtained

average bubble diameters, Sauter mean bubble diameters and standard deviations (Table

B.3) were similar, it was concluded that both methods could be used for bubble size

comparison purposes.

Figure B.1: Bubble size distributions obtained using the method designed for a) the smaller bubbles, and b) the

larger bubbles.

Table B.3: Bubble diameter method cross-validation. For broth-4, the average bubble diameters, Sauter mean

bubble diameter, and the standard deviation of the bubble diameter were determined via both methods.

SOPAT method CANON method

db (mm) 0.78 0.77

d32 (mm) 0.98 1.11

σdb
(mm) 0.29 0.36
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Water, 0 g L-1 ethanol Water, 50 g L-1 ethanol

Figure B.2: Photographs of bubbles in the STR with and without supplemented ethanol.

Mineral medium, 0 g L-1 ethanol Mineral medium, 50 g L-1 ethanol

Figure B.3: Photographs of bubbles in the BCR with mineral medium with and without supplemented ethanol.

In the solution without ethanol, small but less stable, wobbling, bubbles were observed, while the ethanol leads

to rigid, spherical, bubbles.
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Figure B.4: Bubble size distributions obtained for the different mixtures. A: water, B: mineral medium, C: broth-1,

D: broth-2, E: broth-3, 1: without ethanol, 2: with ethanol.
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Figure B.5: kL as a function of the mixture viscosity. Error bars: standard deviations. Filled symbols: mixtures

with ethanol, empty symbols: mixtures without ethanol.





Appendix C
Supplement Chapter 4

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3  z, y coordinates
0.5, 0
3, 0
5, 0
10, 0
15, 0
20, 0
22.5, -2
22.5, 2

a)

t (s)

c tr
ac

er
 /c

 tra
ce

r,∞
 

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3  Position 
inlet
upper bend
middle
lower bend
outlet

b)

t (s)

c tr
ac

er
 /c

 tra
ce

r,∞
 

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3  z, y coordinates
0.5, 0
3, 0
5, 0
10, 0
15, 0
20, 0
22.5, -2
22.5, 2

c)

t (s)

c tr
ac

er
 /c

 tra
ce

r,∞
 

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3  Position 
inlet
upper bend
middle
lower bend
outlet

d)

t (s)

c tr
ac

er
 /c

 tra
ce

r,∞
 

Figure C.1: Mixing study in the EL-GLR. A tracer with the same properties as the fluid phase was injected at

the outlet of the downcomer and its normalised concentration recorded at several positions in the riser (a, c –

coordinates in m) and downcomer (b, d). The 95% mixing time tm is obtained when all curves are within the

dashed lines representing a 5% deviation around the final tracer concentration. tm was recorded for a case

without reaction (only the hydrodynamic model was enabled) (a, b) and a case including mass transfer and

reaction at 25 gL−1 biomass without CO2 production (c, d). tm without reaction is around 80 s, while with

reaction it is around 115 s. This difference is explained by the lower gas hold-up in the case with reaction since

the syngas is consumed. The circulation time tc is estimated from the mixing time as tm ∼ 3−5tc [71].
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Table C.1: Characteristics of the scale-down simulator [25, 207].

Reactor type and dimensions Applikon 3L Glass bioreactor

Volume reactor (L) 3

Height (m) 0.234

Diameter (m) 0.13

Impeller diameter, dimp (m) 0.06

Power number, NPo 1.5

Liquid volume, VL (L) 2

Mass transfer parameters
α 0.783

β 0.459

Fixed operating conditions
Temperature (◦C) 37

Pressure (kPa) 101

pH 5 (for solventogenesis)

Ethanol concentration (gL−1) 50 (if possible because of inhibition)

Acetate concentration (gL−1) 12

Dilution rate (h−1) 0.021

Gas flow rate (vvm) 0.05

Statistical analysis of lifelines
It was determined how many lifelines were required to obtain statistically independent

probability density distributions of the residence time in peaks and valleys. This was done

by calculating the Kullback-Leibler divergence DK L (Equation C.1) or the relative entropy

for the variables of interest (e.g., the residence time distribution in peaks and valleys for

CO and H2). DK L is a common tool in data sciences to measure dissimilarity between

two probability distributions [272] . By minimising DK L of a distribution with respect

to a given (“true”) distribution, it can be determined how close a distribution is to the

true distribution [118, 272]. As a “true" distribution (with Np , Ntc →∞) was not available,

it was assumed that the distribution obtained with all peaks and valleys, P
(
Np Ntc

)
∞, is

sufficiently representative of the “true” distribution.

DK L
(
P

(
Np Ntc

)
∞||P (

Np Ntc

))= k∑
i=1

Pi
(
Np Ntc

)
∞ ln

[
Pi

(
Np Ntc

)
∞

Pi
(
Np Ntc

) ]
(C.1)

From the analysis became clear that with Np Ntc ∼O(105) DK L approaches zero (Fig-

ure C.2) for the probability distributions describing the duration of a peak in CO concen-

tration. One could argue that even around ∼O(104) the information gain by extending the

set of lifelines is small. These results give an indication of the required number of particles

and run time for lifeline analysis of environmental fluctuations, which is considerably

lower than the numbers typically applied for such analysis (e.g. O(106) [56, 57, 165]. As an

exception, McClure et al. [200] only used ∼O(104) while obtaining statistically satisfactory

results. It must be noted that our analysis is only applicable when particles act as passive

tracers. When the simulated biomass particles affect the Eulerian flow or concentration
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field (e.g., two-way coupling with metabolic models) [58, 99], a higher Np is required to

achieve a sufficiently homogeneous spatial biomass distribution [78]. In syngas fermenta-

tion modelling, this could be applicable if one wants to study the effect of local microbial

CO2 production or consumption, using a detailed kinetic metabolic model.

By calculating DK L , we saved a significant amount of simulation and data processing

time: the analyses with 10 and 25 gL−1 (650 s and 40,000 particles) only required 20 GB

of data instead of 200 GB with the 5 gL−1 case (1000 s and 160,000 particles). Next to

checking whether the Lagrangian averages matches the Eulerian average [56], which

is – in case of sufficient mixing – usually after 3 mixing times per particle, we suggest

calculating DK L as well to check variability of the results.
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Figure C.2: Kullback-Leibler divergence DK L determined using an increasing Np Ntc of the residence time

distribution a) in a CO peak, b) CO valley, c) H2 peak, and d) H2 valley. Blue: DK L obtained from distributions

derived from lifelines with 5 gL−1 biomass with
(
Np Ntc

)
∞ ∼ 3×106, green (10 gL−1) and red (25 gL−1) with(

Np Ntc

)
∞ ∼ 6×105.
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Figure C.3: Surface plots of the 200 s time-averaged gas hold-up in the z y-plane (x = 0) of the EL-GLR, obtained

with a) 25 gL−1 biomass without CO2 production, b) 25 gL−1 biomass while including CO2 production and c)

2 gL−1 biomass without CO2 production.
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Figure C.4: Variation of a) dissolved CO and b) dissolved H2 concentrations within the EL-GLR reactor volume

in the cases without and with CO2 production (with 25 gL−1 biomass). In the boxplot each quartile represents

25% of the dispersion volume with a specific concentration.
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Figure C.5: For the varying biomass concentrations the Eulerian results for a) CO and b) H2 conversion (blue

bars) and consumption rates (red markers) are given.
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Figure C.6: Surface plots of the dissolved CO concentration in the z y-plane (x = 0) of the EL-GLR, for several

concentrations of biomass (2, 5, 7.5, 10, 25 gL−1) (a-e).
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Figure C.7: Surface plots of the dissolved H2 concentration in the z y-plane (x = 0) of the EL-GLR, for several

concentrations of biomass (2, 5, 7.5, 10, 25 gL−1) (a-e).
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Figure C.8: The probability of a microbe to experience a specific H2 concentration peak or valley. Each dot

represents a peak or valley with such a concentration and time, and is coloured by the probability of occurrence.

Each row represents data obtained with a specific concentration: (a, b) 5, (c, d) 10 and (e, f) 25 gL−1. Peaks are

in the left column of plots (a, c, e) and the valleys are at the right (b, d, f).
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Figure C.9: Minimisation of the Kullback-Leibler divergence for a) the number of peaks used as input for

the scale-down simulator, and b) the operational time of the scale-down simulator. DK L was calculated by

comparing the probability distribution of the residence time in the peak (blue line) or valley (red line) from the

scale-down simulator with their respective CFD-derived counterpart. The probability distributions from the

scale-down simulator were derived without assuming mass transfer and reaction.
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Figure C.10: Comparison of the probability density functions obtained by the scale-down simulator (bars) with

the CFD results (lines). Probability density functions for a) the concentration of dissolved H2 during the peaks

(blue) and the valleys (red), as well as the residence time in a b) valley or c) peak, obtained with 5 gL−1 biomass

and simulating 2000 peaks.
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Figure C.11: Comparison of the probability density functions obtained by the scale-down simulator (bars) with

the CFD results (lines). Probability density functions for a) the concentration of dissolved CO during the peaks

(blue) and the valleys (red), as well as the residence time in a b) valley or c) peak, obtained with 10 gL−1 biomass

and simulating 2000 peaks.
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Figure C.12: Comparison of the probability density functions obtained by the scale-down simulator (bars) with

the CFD results (lines). Probability density functions for a) the concentration of dissolved H2 during the peaks

(blue) and the valleys (red), as well as the residence time in a b) valley or c) peak, obtained with 10 gL−1 biomass

and simulating 2000 peaks.
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Figure C.13: Comparison of the probability density functions obtained by the scale-down simulator (bars) with

the CFD results (lines). Probability density functions for a) the concentration of dissolved CO during the peaks

(blue) and the valleys (red), as well as the residence time in a b) valley or c) peak, obtained with 25 gL−1 biomass

and simulating 2000 peaks.
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Figure C.14: Comparison of the probability density functions obtained by the scale-down simulator (bars) with

the CFD results (lines). Probability density functions for a) the concentration of dissolved H2 during the peaks

(blue) and the valleys (red), as well as the residence time in a b) valley or c) peak, obtained with 25 gL−1 biomass

and simulating 2000 peaks.
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D.1. Detailed CRD model description
D.1.1. Metabolic kinetic model
The kinetic model describes the microbial biomass, six metabolites that are in exchange

with the cellular environment (CO, H2, CO2, acetic acid, ethanol and 2,3-butatendiol),

and six intracellular compounds (formate, acetyl-CoA, intracellular acetate, reduced

ferredoxin, NADH and NADPH). Transport across the cell membrane is regarded as in-

stantaneous (i.e., the concentration of CO in the cell equals the concentration outside

the cell and its import does not require energy), except for intracellular acetate, which is

actively excreted while extracellular acetic acid passively diffuses back into the cell. The

acid-base equilibrium of acetate is considered so that the total extracellular acetic acid

concentration equals the dissociated acetate concentration and the undissociated acetate

concentration (AcT = HAc + Ac−IC). An overview of the metabolites, their reference concen-

trations, the provided initial concentrations and the minimum concentrations, which are

required for model stability in case the concentrations get too low, are provided in Table

D.1. The minimum concentrations prevent negative results of the ODE system, and were

used in a correction scheme to prevent excessive rates in case lower concentrations were

obtained.

With the lin-log based kinetic model, 11 intracellular rates were calculated (Table

D.2), with which the metabolite pools were updated. These rates were calculated using

a given set of reference concentrations and rates from the steady-state model, and a

state-independent elasticity matrix (Table D.3) [40]. Some of the rates were considered

irreversible, in line with their physical relation, to increase model stability and to prevent

nonphysical model results.

For a given set of concentrations ci in the particle (based upon their environment

and history), the intracellular, lin-log corrected flux J (in molmol−1
x h−1) for reaction j ,

was calculated using Equation D.1, in which r l l
j is the dimensionless lin-log-correction

term. The back-diffusion rate of acetic acid into the cell was calculated using Equation

D.2 (with the cell surface area, ax (321 m2 mol−1
x ), and the acetic acid diffusivity, kHAC,D

(3.8× 10−5 mh−1)). It should be noted that the lin-log formulation may decrease the

accuracy of reaction rates far away from the reference concentration [236]. To minimise

model exceptions, such as negative concentrations and excessive rates in such regions,
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Table D.1: The metabolites and their characteristic concentrations for solving the CFD-CRD model.

Compound Reference concentration Initial concentration Minimum concentration

i cref
i (molm−3) ci ,0 (molm−3) ci ,min (molm−3)

CO 0.157 0.1 10−10

H2 0.155 0.08 10−10

CO2 9.21 9 0.1

AcT 110 90. 0.1

EtOH 63.4 119.7 0.1

BDO 1.28 3.2 0.1

AcCoA 0.21 0.041 10−8

NADH 0.011 0.01 10−12

NADPH 0.184 0.133 10−12

AcIC 34.8 70 10−12

For− 18.6 1 10−4

Fd2−
red 9.13 6 10−12

Table D.2: The modelled reactions in the CFD-CRD model. Reversibility is noted with 1, irreversibility with 0. a:

After the simulations we realised that Rnf could be a reversible reaction. We have not observed a tendency of

Rnf towards zero, so we do not expect major variations in our results because of its modelling as an irreversible

reaction.

Reaction name Abbreviation Reversibility Reference rate

j r ref
j (molmol−1

x h−1)

Formate dehydrogenase FDH 1 0.182

AcCoA synthesis ACAS 0 0.182

CO dehydrogenase CODH 1 0.686

Fd-NADPH-Hydrogenase Hyd 1 0.01

Acetate synthesis AcS 0 0.16

Ethanol synthesis EtS 1 0.078

2,3-butanediol synthesis BDOS 1 0.003

Nfn complex Nfn 1 0.131

Rnf complexa Rnf 0 0.575

Anabolism Ana 0 0.039

Acetate export AcX 0 0.426

the concentrations used in Equation D.1 were constrained at the minimum concentration

(Table D.1).

J j = r ref
j · r l l

j = r ref
j

(
1+

n∑
i=1

ε j i ln

[
max

(
ci ,ci ,min

)
cref

i

])
(D.1)

rHAc,D = ax kHAc,DcHAc,o with cHAc,EC = cAcT
10pKa

10pHEC +10pKa
(D.2)

With the known intracellular fluxes and the calculated acetate back-diffusion rates,

the volumetric rates and intracellular balances were then solved according to Equations

D.3 – D.14. The derivatives of the compounds that are in exchange with the environment

(Equations D.3 – D.8) are calculated as function of the local liquid volume (units in
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Table D.3: Elasticity matrix used for solving the CRD model. Elasticity coefficients εi , j are provided for each

metabolite i in reaction j .

εi j j \ i CO H2 CO2 AcT EtOH BDO AcCoA NADH NADPH Ac−IC For− Fd2−
red

FDH 0 0 0.16 0 0 0 0 0 1.11 0 -0.15 0.98
ACAS 0.49 0 0 0 0 0 -0.47 3.81 -0.57 0 -0.004 0.45
CODH 0.26 0 0.02 0 0 0 0 0 0 0 0 -0.45
Hyd 0 -0.96 -0.11 0 0 0 0 -0.65 0.02 0 -0.97 -0.08
AcS 0 0 0 0 0 0 0.6 0 0 0.98 0 0
EtS 0 0 0 0 -0.51 0 0 1.41 0 0.07 0 -0.77
BDOS 0 0 0.7 0 0 1.66 -0.46 10.2 0 0 0 1.08
Nfn 0 0 0 0 0 0 0 -0.98 0.07 0 0 0.01
Rnf 0 0 0 0 0 0 0 -0.81 0 0 0 -0.37
Ana 0 0 0 0 0 0 -0.01 0.5 0.79 0 0 -0.81
AcX 0 0 0 0.99 0 0 0 0 0 0.13 0 0

molm−3
L h−1), while for the intracellular metabolite pools (Equations D.10 – D.14), for

which dilution by cell growth is considered, the derivatives are calculated in molm−3
x h−1,

considering the molar volume of bacteria, Vx (5.89×10−5 m3 mol−1
x ). The anabolism flux

was regarded as the growth rate (µ= JAna).

dcCO

d t
=− (JACAS + JCODH)cx (D.3)

dcH2

d t
=−2JHydcx (D.4)

dcCO2

d t
= (JCODH − JFDH)cx (D.5)

dcAcT

d t
= (

JAcX − rHAc,D
)

cx (D.6)

dcEtOH

d t
= JEtScx (D.7)

dcBDO

d t
= JBDOScx (D.8)

dcAcCoA

d t
=

(
JACAS − JACS −2JBDOS − 1

2
JAna

)
1

Vx
−µcAcCoA (D.9)

dcNADH

d t
=

(
JRnf −2JACAS + JETS − 1

2
JBDOS − JNfn

)
1

Vx
−µc NADH (D.10)

dcNADPH

d t
=

(
JHyd +2JNfn −

1

2
JFDH − JACAS

)
1

Vx
−µcNADPH (D.11)

dcAc−in
d t

= (
JAcS + rHAc,D − JEtS − JAcX

) 1

Vx
−µcAc−in (D.12)

dcFor

d t
= (JFDH − JACAS)

1

Vx
−µcFor (D.13)

dcFd2−
red

d t
=

(
− 1

2 JFDH + JACAS + JCODH + JHyd

− JEtS − JBDOS − JNfn − JRnf

)
1

Vx
−µcFd2−

red
(D.14)
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D.1.2. Increasing the model stability
After calculation of the volumetric derivatives (Equations D.3 – D.14), their physical

correctness is checked (i.e., is there enough metabolite/dissolved gas available). This

is done by calculating a maximum rate, considering that the concentrations cannot be

lower than the minimum one and that multiple Lagrangian particles could be present in

the current volume element Np,VE, decreasing the substrate availability per particle (this

term is not included for the intracellular compounds).

This was done by calculating the maximum rate to be dci
d t

∣∣∣
max

= ci−0.9ci ,min
Np,VE∆tIC

with tIC as

the integration time step of 0.1 ms, while a factor 0.9 was used to prevent zero-divisions

when ci = ci ,min. In the case that for one of the other metabolites j the maximum rate

is exceeded,
dc j

d t > dc j

d t

∣∣∣
max

, the entire metabolism is proportionally scaled to maintain

model stability without violation of the mass balance (Equation D.15). When for multiple

metabolites the maximum rates are exceeded, this re-scaling is conducted based on the

rate that had the smallest relative excess.

dci
d t

dc j

d t

=
dci
d t

∣∣∣
cor

dc j

d t

∣∣∣
max

thus
dci

d t

∣∣∣∣
cor

= dc j

d t

∣∣∣∣
max

·
dci
d t

dc j

d t

(D.15)

After integration via the Runge-Kutta 4th order algorithm using a fixed integration

time step ∆tIC, the viability of the results were checked by comparing the updated con-

centration with a predicted range of values determined by the forward Euler method.

In case the new concentrations determined by the Runge-Kutta integration method are

more than 100 times outside the predicted range from the forward Euler method, the

concentrations are not updated (0.15% of the particles). In the case that computations

caused invalid (nan) results (0.5%), then no changes in concentration were considered

during that particle time step. These steps were required for solving the CFD-CRD model

in a highly parallelised environment supercomputer with 128 CPU cores. Solving the

model on a less parallelised system lasted significantly longer, but was computationally

more stable.

From the obtained lifelines the rates could be back-calculated considering the modifi-

cations, by solving a system of linear equations. In this case the equations D.3–D.14 are

considered as a system of linear equations, which could be solved for the reaction rates J j

using the known concentrations, stoichiometry’s, and derivatives in MATLAB.
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D.1.3. Model verification as a batch process
Several simulations have been performed to check whether the implementation of the

kinetic model in Ansys FLUENT was done correctly. The original kinetic model was

written in MATLAB, then it was rewritten into C and subsequently adjusted to use with

Ansys FLUENT’s DPM_SCALAR_UPDATE macro. Its validity was checked by calculating

the concentration trajectory in a 50 s liquid-phase “batch” fermentation from the initial

concentrations (Table D.1), in MATLAB, the C code and the FLUENT code, for which simu-

lations were performed in the Snellius supercomputing infrastructure. In C and FLUENT,

the system was integrated using the Runge-Kutta 4th order algorithm as described above,

while in MATLAB the system was integrated using ode15s.

From the metabolite trajectories (Figure D.1) became clear that there are two distinc-

tive regions during the batch fermentation. In the first region (0 to ∼3.5 s ) all the models

produced the same results and the model was found to be applicable to solve kinetic

interactions. But in the other region, the lin-log model was found not to be applicable

so that the results were determined by the imposed modifications. In order to prevent

nonphysical results, the additional modifications imposed in the Ansys FLUENT script

cause that nothing changes (the cell is on “stand-by”).

The ode15s solver in MATLAB was unable to provide results in the region with low

concentrations. Although tests were done with other ODE solvers in the C-script (i.e.,

the explicit Runge-Kutta-Cash-Karp and the Bulirsch-Stoer algorithms with adaptive

time stepping as well as the implicit Kaps-Rentrop and the semi-implicit extrapolation

methods [273]), they did not increase stability in the region of instability, nor changed

the results of the simulation during the first ∼3.5 s. The poor validity of the lin-log model

structure in regions with low concentrations, should be kept in mind when developing

kinetic models that have to be coupled with CFD simulations.

The modifications imposed in the FLUENT script and the supercomputing infras-

tructure probably caused smaller deviations from the endpoint at 3.5 s, compared to the

C-script, wherein larger acetate and H2 consumption rates are predicted. The imposed

minimum concentrations (min O(10−12)), and the numerical error (O(10−16)) can result

into derivatives of O(104), which might lead to excessive rates, which were in turn limited

as much as possible using the rate-limitation mechanism described above.

Currently, experimental data regarding the impact of short-term (order of seconds)

fluctuations on C. autoethanogenum metabolism are unavailable; such results are re-

quired to validate the model predictions under the simulated conditions. The kinetic

model, was however, parameterised on an experimental data set with metabolic oscilla-

tions in the time-scale of hours [40, 204]. Our model predictions should thus be regarded

as a hypothesis regarding cellular response under large-scale conditions, which are to be

explored further.
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Figure D.1: Verification of the model implementation strategies, by comparing metabolite concentration (in

mol/m3) trajectories during a batch (t in s) fermentation in the liquid phase, with cx = 5 gL−1. Based on

the provided initial concentrations (Table D.1) the three implementations of the metabolic-kinetic models in

MATLAB (green line), C (blue dashed line) and Ansys FLUENT (red line) were solved. The three models produce

the same results in the uncoloured region (hence the overlapping lines), while the predictive capacity of the

model becomes more limited in regions with lower metabolite concentrations (shaded with grey), where the

MATLAB model was unable to provide results.

D.1.4. Lifeline reconstruction in C and comparison with constant con-
centration case

To check the influence of the computing infrastructure on the metabolite concentrations,

a lifeline obtained from the CFD-CRD model, was reconstructed via the C-script (Fig-

ure D.2). The dissolved CO, H2 and CO2 concentrations were used as input parameters

for this model, as well as the local number of particles (required for the rate-limitation

mechanism). As the data export resolution was 750 times higher than ∆tIC, linear in-

terpolation between two subsequent data points was done. Generally, a pretty good

overlap is observed between the CFD results (red) and the reconstructed CFD-results

(black lines). Negligible deviations only occurred in the cases with very low dissolved gas

concentrations for AcCoA, NADH and NADPH. This made us conclude that our modelling

algorithms and workflow were well implemented and suitable for metabolism predictions

on dissolved gas concentration fluctuations.

To inspect how the metabolite behaviour with 2.5 gL−1 biomass deviates from a case

with constant dissolved gas concentrations, the model with constant dissolved gas concen-

trations was applied at the average CO concentration during that lifeline of 0.29 molm−3.

Because the average cL,CO is relatively high and its characteristic time was in the similar
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order of magnitude as the mass transfer characteristic time, no large spatial gradient

was expected in the CFD model. The causes that there is high similarity between the

general trend from the CFD-CRD model results and the model with constant dissolved

gas concentrations. The fluctuations in cL,CO have strong effects on the metabolism, as

can be seen by the depletion of formate and the increases in ethanol production during

moments with low cL,CO.

Figure D.2: Comparison of metabolic fluctuations during a lifeline (c in molm−3 and t in s) from the CFD-CRD

model (red), its reconstruction in C (black dashed line) and the constant concentration model (blue), cx =

2.5 gL−1, with an average cL,CO of 0.29 molm−3.

D.1.5. Choice of∆t f and Np

A considerate decision had to be made regarding the number of particles Np which the

kinetic model was solved for. Simulating more particles could increase accuracy of the

solution, but would lead to longer simulations. The build-up of the simulation time per

time step was determined for a varying number of particles for which the metabolic

model was solved (Np [0 - 250,000]) (Figure D.3a). Obviously, the simulation time of the

flow, species, turbulence and particle displacement models were independent from the

number of particles for which the metabolic model was solved for. The total time required

to solve the metabolism, increased linearly with the number of particles. Per particle

solving the CRD model took around 0.04 ms (with ∆t f = 5 ms and 128 CPUs), which

turned out to be the limiting mechanism in terms of simulation time. The cumulative CO

and H2 consumption rates did not vary significantly with more than 80,000 particles. In

order to test the accuracy of the simulation results with respect to the number of particles

and the Eulerian time step ∆t f , the CO and H2 uptake rates (volume integral of Equation
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Figure D.3: The influence of the number of simulated particles on simulation time and accuracy. a) The built-up

of the simulation time per Eulerian time step (∆t f ) as a function of the number of particles for which the

metabolic model was solved. The influence of the number of particles on the b) total CO and c) H2 consumption

rate. The data was obtained using∆t f of 5 ms and 250,000 well-distributed Lagrangian particles, during 200 flow

time steps at 128 CPU cores. FLUENT: leftover between the total wall time and the provided simulation times for

all the sub-models, attributed to communication and parallelisation gains and losses; Other models: the species

model (for CO, H2 and CO2), gas-liquid mass transfer and the turbulence models; Particles: displacement of the

250,000 particles, which time was determined by not solving the metabolism.

5.1, in kgs−1) were determined for the cases with 80,000 and 250,000 reacting particles,

with varying time steps (1 - 10 ms) (Figure D.3b,c). From the analysis became clear that

the accuracy increase between 80,000 and 250,000 particles is very limited, compared to

the twofold increase in computation time, rendering it unworthy to use more than 80,000

particles. From the time step variation, the inverse proportional relationship with run

time became visible, and consequently we chose to use a 5 ms time step, since that one

showed low variations in uptake rates, for an acceptable simulation time.

Large deviations were expected between the uptake rate predicted by the metabolic

model at the beginning of the Eulerian time step, dci
d t

∣∣∣
p,t

, and the one that has been

realised at the end of ∆t f ,
ci |t+∆t f

− ci |t
∆t f

∣∣∣∣
p

, in case of large time steps (since ∆t f » ∆tIC).

Since the species balances are only calculated at the beginning of the flow time step, and

not while solving the metabolic model, one has to be sure that the deviation between

these becomes not too big. Using as source term would not guarantee intracellular mass

balance closure, and could lead to unstable solutions in cases with low metabolite con-
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centrations. Instead, the cumulative integration term in the source term guarantees mass

balance closure and increases model stability, but requires the use of smaller ∆t f . To test

the choice of ∆t f , the average percentage of deviation between the two approaches was

determined for the examined range of ∆t f (Equation D.16, Figure D.4). The deviations

were considered to be small enough (< 10%) using a 5 ms time step.

deviation(%) = 1

Np
·

Np∑
p=1

∥∥∥∥∥∥∥∥∥
dci
d t

∣∣∣
p,t

−
ci |t+∆t f

− ci |t
∆t f

∣∣∣∣
p

dci
d t

∣∣∣
p,t

∥∥∥∥∥∥∥∥∥ ·100% (D.16)

Figure D.4: Influence of the Eulerian time step and the number of particles for which the kinetic model is solved

on a, b) the accuracy and run time of the CFD-CRD and c) the mass balance deviation. Accuracy was measured

as a) the CO-uptake rate (blue) and b) the H2 uptake rate (red), while run time (black) was determined as time

taken per second simulation time. The mass balance deviation was calculated using Equation D.16. Squares

and circles denote the simulations with 250,000 and 80,000 reacting particles, respectively. All uptake rates and

run times were based on their average during 0.2 s simulation time.
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D.1.6. Mass balance during a lifeline
The carbon and electron balances were computed during lifelines for each cx case, and

analysed as a function of the temporal cL,CO (Figure D.5) in order to determine the mass

balance error due to the model correction terms. Generally, the mass balance closes

each moment in time, although at low concentrations (the dashed region) there is some

intracellular formate generation (see Section 5.3.1).

Figure D.5: a, c ,e) Carbon and b, d, f) electron balances during varying cL,CO of a lifeline for varying cx : a, b)

2.5; c, d) 3.75; e, f) 5 gL−1. The shaded area below the calibrated cL,CO range. The metabolite rates (colouring

in legend) were sorted along their respective cL,CO and smoothened using smoothing factor 0.4 for improved

visualisation.
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D.2. Relationship between dissolved CO and H2

Figure D.6: Relationship between cL,CO and cL,H2 . The scatters represent the average cL,CO and corresponding

cL,H2 for 4000 lifelines for each biomass concentration. The resulting linear approximations were determined

using linear regression in MATLAB and checked by calculating R2.

Table D.4: Cases for which the CRD model with constant dissolved gas concentrations was solved for. The CO

concentration was varied in a specific range for each biomass concentration, which resulted in a corresponding

H2 concentration. The CO2 concentration was kept as a constant value, based on its time- and volume-averaged

concentration in the EL-GLR during the last 900 seconds of the CFD-CRD simulation.

cx (gL−1) cL,CO range (molm−3) cL,H2 (molm−3) cL,CO2 (molm−3)

5 0.005 — 0.05 1.99 cL,CO + 0.074 21.4015

3.75 0.05 -– 0.12 1.43 cL,CO + 0.110 17.5929

2.5 0.125 -– 0.35 0.846 cL,CO + 0.0885 24.5735
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Figure D.7: Comparison of uptake rates for CO and H2 between the CRD model (Metabolic model) and the

steady-state (Monod and Haldane) models as a function of their concentration in the liquid phase. Black line:

steady-state kinetics (Table 4.1); dashed black line: Ks according to the steady-state model; coloured dashed

lines: results from CRD model with constant dissolved gas concentrations.

D.3. CO and H2 uptake kinetics and inhibition by ferredoxin
From the models with constant dissolved gas concentrations, qCO and qH2 were deter-

mined as function of the dissolved gas concentration (Figure D.7) (considering the ratio

between CO and H2 (Figure D.6)). The CO-uptake rate in the CRD model is slightly higher

than the one in the case of Haldane kinetics. The inhibition effect at increased cL,CO is not

visible in the CRD model. The H2-uptake rate is clearly lower than was predicted with the

Monod model, and an inhibition effect due to increased cL,CO (and cL,H2 ) was observed.

From the lifeline results in the CFD-CRD model, was derived that inhibition of CO-

and H2-uptake could occur due to high concentrations of reduced ferredoxin (Figure D.8).

When cFd2−
red

is around 5 molm−3, qH2 starts to decrease significantly, which could indicate

a certain inhibition mechanism by reduced ferredoxin. The spread that is observed in the

H2 and CO data regarding H2-uptake at high concentrations, suggests that the inhibition

effect is not directly caused by the CO and H2 concentrations themselves.
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Figure D.8: Relationships between a) dissolved CO and b) H2 concentration, the reduction state of the cell

(cFd2−
red

), and the uptake rate of the respective gas qi . The scatters mark temporal observations during a lifeline

from the CFD-CRD simulation with cx = 5 gL−1 (between 100 and 1000 s), the scatter density denotes its

probability of occurrence., cL,CO,max = 0.25 molm−3, cL,H2 ,max = 0.42 molm−3, cFd2−
red

,max = 11.25 molm−3.

Shaded areas mark zones with cL,CO < 0.025 molm−3.

D.4. Formate production

Figure D.9: The relationship between a) cFd2−
red

and b) qH2 and the formate concentration. The scatters mark

temporal observations during a lifeline from the CFD-CRD simulation with cx = 2.5 gL−1 (between 100 and

1000 s), their density denote the probability of occurrence.
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D.5. Ethanol production during lifelines

F
ig

u
re

D
.1

0:
C

o
m

p
ar

is
o

n
o

fl
if

el
in

e-
av

er
ag

es
fr

o
m

th
e

C
F

D
-C

R
D

m
o

d
el

(a
ft

er
re

m
ov

in
g

c L
,C

O
<

0.
02

5
m

o
lm

−3
)

w
it

h
th

e
co

n
st

an
tc

o
n

ce
n

-

tr
at

io
n

m
o

d
el

an
d

ex
p

er
im

en
ta

ld
at

a.
T

h
e

av
er

ag
e

b
io

m
as

s-
sp

ec
ifi

c
ra

te
s

an
d

yi
el

d
s

ar
e

p
lo

tt
ed

ag
ai

n
st

th
e

av
er

ag
e

c L
,C

O
:a

)
q

C
O

,b
)

q
A

cT
,

c)
q

E
tO

H
,d

)t
h

e
el

ec
tr

on
-t

o-
et

h
an

ol
yi

el
d

q
E

tO
H

/q
e−

(q
e−

=
1/

2(
q

C
O

+
q

H
2

),
an

d
e)

th
e

ac
et

at
e-

p
er

-e
th

an
ol

ra
ti

o
q

A
cT

/q
E

tO
H

.T
h

e
sc

at
te

rs
,

w
it

h
va

ry
in

g
tr

an
sp

ar
en

cy
to

re
d

u
ce

ov
er

p
lo

tt
in

g,
re

p
re

se
n

t9
00

s
av

er
ag

es
fo

r
∼4

00
0

li
fe

li
n

es
fo

r
ea

ch
c x

si
m

u
la

ti
o

n
(b

lu
e

2.
5;

gr
ee

n
3.

75
;

ye
llo

w
5

g
L
−1

),
th

e
d

as
h

ed
li

n
e

si
m

u
la

ti
o

n
s

w
it

h
co

n
st

an
td

is
so

lv
ed

ga
s

co
n

ce
n

tr
at

io
n

s
at

th
e

in
d

ic
at

ed
b

io
m

as
s

co
n

ce
n

tr
at

io
n

s,
an

d
th

e

m
ar

ke
rs

re
co

n
ci

le
d

[2
18

]e
xp

er
im

en
ta

lc
h

em
o

st
at

d
at

a:
♦

[4
4]

;■
[4

6]
(C

O
+

H
2

);
•[

46
](

C
O

);
▲

[9
0]

;Î
[4

5]
.c

L
,C

O
in

Ï
[8

9]
,w

as
es

ti
m

at
ed

u
si

n
g

th
ei

r
p

ro
vi

d
ed

k
L

a
.



Ethanol production during lifelines

D

183

Figure D.11: Relationship between qH2 -uptake and qEtOH. The scatters, with varying transparency to reduce

overplotting, represent 900 s averages for ∼4000 lifelines for each cx simulation (blue 2.5; green 3.75; yellow

5 gL−1), the dashed line simulations with constant dissolved gas concentrations at the indicated biomass

concentrations, and the markers reconciled [218] experimental chemostat data: ♦ [44]; ■ [46] (CO + H2); • [46]

(CO); ▲ [90]; Ï [45]. cL,CO in Î [89], was estimated using their provided kL a

Figure D.12: Relationship between the growth rate µ and qEtOH and qAcT. The scatters mark temporal observa-

tions during a lifeline from the CFD-CRD simulation with cx = 3.75 gL−1 (between 100 and 1000 s), their density

denotes the probability of occurrence.
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Table D.5: Catabolic reactions towards ethanol and acetate production from CO, including the Gibbs free energy

at standard conditions per mol product and CO [84].

Reaction ∆r Go (kJmol−1
product) ∆r Go (kJmol−1

CO)

Acetogenesis – 4CO – 2H2O + C2H3O2
– + H+ + 2CO2 -135.04 -33.76

Solventogenesis – 6CO – 3H2O + C2H5OH + 4CO2 -224.66 -37.44

Starvation – 2CO – C2H3O2
– – H+ – H2O + C2H5OH + 2CO2 -89.62 -44.81

D.6. Metabolism

Figure D.13: Metabolism of C. autoethanogenum during large-scale syngas fermentation. 100 seconds of a

lifeline of the case with 2.5 gx L−1 is shown with its concentration (in molm−3) and rate (in molmol−1
x h−1)

fluctuations. Pool sizes and arrow thickness are approximative to the median concentrations and rates during

the whole lifeline.
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Figure D.14: Metabolism of C. autoethanogenum during large-scale syngas fermentation. 100 seconds of

a lifeline of the case with 5 gx L−1 is shown with its concentration (in molm−3) and rate (in molmol−1
x h−1)

fluctuations. Pool sizes and arrow thickness are approximative to the median concentrations and rates during

the whole lifeline.
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