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ABSTRACT

In recent years various researchers have proposed an optimal control approach for the rejection of
turbulence-induced wavefront distortions in an AO system. The essential element in the design
of an optimal controller is the choice for the turbulence model, which predicts the turbulence to
compensate for the inherent delay in the AO control loop. In this paper various models as proposed
in literature are considered; ranging from first order temporal models to high-order full spatial-
temporal models. The various models are analyzed and the resulting 1-step ahead predictors are
derived. The performance of the predictors are compared for a von Kármán type of turbulence
with frozen flow propagation in and time-varying propagation directions.

Keywords: Turbulence modeling, Kalman filter, Autoregressive model, 1-step ahead predictor,
optimal control, adaptive optics

1. INTRODUCTION

In recent years several researchers have addressed the control performance of an adaptive optics
(AO) system and in particular the best achievable control performance. The resultant control
approach is often presented as optimal control or linear quadratic Gaussian (LQG) control, in
which the controller is designed such that the minimum value of the mean-squared wavefront error
is obtained. Various approaches to this control design issues have been presented, e.g.,1–3

The common philosophy behind these control approaches is to achieve the minimum value of
the time-averaged, summed squares of the wavefront errors. In general linear control systems,
the optimal controller is determined by a number of system properties, including the dynamic
model of the disturbance, the dynamic model of the plant and system noise like measurement
noise at the sensor and load noise at the actuator. This paper focuses on the dynamic model
of the disturbance and the effects of the model for the optimal AO performance. In designing
the optimal AO controller, the disturbance model is utilized for prediction of the distortion over
the loop delay horizon. In1–3 as well as4, 5 various disturbance models and predictors have been
proposed. These are based on autoregressive (AR) estimation theory or Kalman filtering.

In this paper we will derive and compare AR and state-space disturbance model approximations
for turbulence induced wavefront distortions; this will be done in Sec. 2. Because the turbulence
induces a disturbance which spectrum is nonrational, finite order AR and state-space models
can only approximate the turbulence induced disturbance. It turns out, however, that low order
state-space models provide a rather accurate description of the turbulence. In Sec. 3 the AR and
Kalman filter predictors are derived. Sec. 4 compares the AR and Kalman filter predictors for a
frozen flow von Kármán turbulence. The effect of variations in the flow propagation direction is
studied in detail. Finally, Sec. 5 concludes the paper.
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2. PARAMETRIC MODELING OF WAVEFRONT PHASE
FLUCTUATIONS

2.1 Correlation in space and time

In this paper we will assume that the spatial distribution of the turbulence is described by the von
Kármán model and its evolution in time by the frozen flow propagation assumption. Let φ(t, x, y)
be the wavefront phase at time instant t ∈ R and position (x, y) ∈ R

2, then in6 it is shown that
the spatial correlation according to the von Kármán model is given by

E (φ(t, x, y)φ(t, x − δx, y − δy)) = c

(
2πr

L0

)5/6

K5/6

(
2πr

L0

)
, r =

√
δ2x + δ2y (1)

and c = 2−5/6Γ(11/6)π−8/3 (Γ(6/5)24/5)5/6 (L0/r0)
5/3, where L0 is the outer scale of the turbu-

lence, r0 the Fried parameter, and E(.) the expectation operator, Γ(.) the Gamma function and
K5/6(.) the modified Bessel function of the third type of order 5/6. The frozen flow assumption
defines the propagation in time according to

φ(t+ δt, x, y) = φ(t, x− vxδt, y − vyδt) (2)

where vx and vy are the components of the propagation velocity in the x- and y-directions respec-
tively. Then, the correlation in space and time can be obtained by using Eq. (1) and (2) together,
which yields

R(δt, δx, δy) := E (φ(t, x, y)φ(t − δt, x− δx, y − δy)) = c

(
2πr

L0

)5/6

K5/6

(
2πr

L0

)
, (3)

where r =
√
(δx − vxδt)2 + (δy − vyδt)2.

Now, for sake of simplicity, suppose the telescope has a square apperture with dimension
D × D. We will consider the wavefront phase at discrete time instants t = iTs on a discrete
grid (x, y) = (Δ/2 + jΔ,Δ/2 + kΔ) for i = 0, 1, 2, · · · and j, k = 0, · · · , Ns − 1 where Ns the
largest integer less or equal than D/Δ. With some abuse of notation φ(t, x, y) for t = iTs and
(x, y) = (Δ/2 + jΔ,Δ/2 + kΔ) is denoted by φ(i, j, k) and

R(i, j, k) := E (φ(m,n, p)φ(m− i, n− j, p− k)) (4)

which can be determined from (3).

2.2 Cholesky approach

Suppose, that we want to simulate the turbulence φ(i, j, k) for all time instants i = 0, · · · , Nt − 1
and grid points j, k = 0, · · · , Ns − 1. One possibility is by means of a Cholesky factorization. To
this end, all elements φ(i, j, k) are stored in one big vector stacking over all temporal and spatial
grid points

ψ :=
[
ϕ(0)T · · · ϕ(Nt − 1)T

]
∈ R

NtN
2
s , (5)

where ϕ(i) the vector stacking over all spatial grid points at time instant i

ϕ(i) :=
[
φ(i, 0, 0) · · · φ(i, 0, Ns − 1) · · · φ(i, Ns − 1, Ns − 1)

]
∈ R

N2
s . (6)

Let Rψ := E(ψψT ) ∈ R
NtN

2
s×NtN

2
s be the covariance of the vector ψ, which can be computed by

making repetitive use of (4). Further, let

Rψ = QψQ
T
ψ (7)
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be the Cholesky factorization of Rψ, where Qψ ∈ R
NtN

2
s×NtN

2
s a lower triangular matrix. Then a

realization of ψ is given by:

ψ = Qψη, (8)

where η ∈ R
NtN

2
s a realization of a zero-mean random variable with unity covariance.

Though this method can be applied for any turbulence vector ψ with given positive definite
covariance (7), the method will be computationally very complex for large Nt and Ns since the
computational complexity of the Cholesky factorization scales with N3

t N
6
s and the matrix-vector

multiplication (8) scales with N2
t N

4
s . Sometimes, the matrix Rψ is sparse or is structured such

that the Cholesky factorization in (7) can be evaluated more efficiently, but still the method
is computationally rather cumbersome. Since we consider the wavefront phase φ(i, j, k) on an
equidistant grid in time and space, the Cholesky factorization and the matrix-vector multiplication
may be performed much more efficiently in the frequency domain by exploiting the Fast Fourier
Transform (FFT). However, because of the finite window in time and space, spectral leakage will
occur which leads to errors in the simulation of ψ.

When the velocity vector (vx, vy) is such that the propagation of the wavefront phase over one
sampling instant is matched to the discrete spatial grid, i.e.,

(vx, vy)Ts/Δ = (j, k) ∈ Z
2 (9)

then, it is sufficient to generate just a long phase screen and to shift this screen at each sampling
instant over (vx, vy)Ts/Δ grid points in the x- and y-direction. The standard case is a very
huge or wide rectangular screen for the case vx or vy equals zero, but skew rectangular screens
may be possible as well. This approach may reduce the number of elements in φ by a factor
NsΔ/(vxTs) such that the Cholesky factorization and the matrix-vector multiplication will scale
with N3

t N
3
s (vxTs/Δ)

3 and N2
t N

2
s (vxTs/Δ)

2 respectively, for the case vy = 0. However, for long
simulations (Nt is large) or large grids (Ns is large) or high velocities (vx is high) this may still
be computationally infeasible.

2.3 AR model approach

Another approach is to model the propagation of the wavefront phase fluctuations over the aperture
of the telescope by means of a finite order autoregressive (AR) or autoregressive moving average
(ARMA) model. Using finite order AR and/or ARMA models, the correlation of the turbulence
can only be modelled by an approximation due to the nonrationality of the von Kármán spectrum.
Let the wavefront phase at the spatial grid over the telescope aperture at discrete time instant
i be given by ϕ(i), c.f., eq. (6), then the p-th order AR model approximating the turbulence is
given by

ϕ(i) =

p∑
j=1

Ajϕ(i− j) + e(i), i ≥ 0 (10)

where ϕ(j) = 0 for j < 0, and e(i) ∈ R
N2

s is a zero-mean white noise stochastic process with

covariance Re := E(e(i)e(i)T ) ∈ R
N2

s×N
2
s and Aj ∈ R

N2
s×N

2
s are given by the solution to the

following Yule-Walker equations

[
Rϕ(p) · · · Rϕ(1)

]︸ ︷︷ ︸
=Rp:1

=
[
Ap · · · A1

]︸ ︷︷ ︸
=Ap:1

⎡
⎢⎢⎣

Rϕ(0) · · · Rϕ(p− 1)T

...
. . .

...

Rϕ(p− 1) · · · Rϕ(0)

⎤
⎥⎥⎦

︸ ︷︷ ︸
=Rp

(11)

where Rϕ(i) = E(ϕ(m)ϕ(m − i)T ). The covariance matrix Re is given by

Re = Rϕ(p)−Ap:1RpA
T
p:1. (12)
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Note, that the complexity of solving the Cholesky factorization (7) with complexity N3
t N

6
s

is replaced by solving the Yule-Walker equations which complexity scales with p3N6
s , where p is

the order of the AR-model which is usually much smaller than Nt. To generate e(i) a Cholesky
factorization of Re need to be made which complexity scales with N

6
s . Then, (10) for i = 0, · · · , Nt

can be performed with a computational complexity that scales with (p+ 1)NtN
4
s .

A even more efficient simulation of the turbulence can be performed if the propagation of
the wavefront phase per sampling instant is an integer number of grid points in either the x- or
y-direction. This will be further discussed in Sec. 2.5.

Also note that because of the equidistant sampling in time and space Eq. (11) is highly struc-
tured (the matrix Rψ has a hierarchic (block) Toeplitz structure). This structure can be exploited
by FFT based methods e.g., to solve (11) much more efficiently. For sparse systems (11) also
iterative sparse matrix techniques, like those based on Conjugate Gradients can be used; see e.g.7

2.4 State-space model approach

Still the order p of the AR model may be relatively high. The number of memory elements, i.e.
the state-dimension of the AR model, is given by pN2

s and may not be ‘minimal’. Therefore, we
also consider the state-space model description, which does not suffer from this drawback, i.e.
when the state-space model is controllable and observable its state-dimension is minimal, which is
denoted by the McMillan degree. Although the model structure of state-space models comprises
AR and ARMA models, finite dimensional state-space models can provide an estimate only of the
wavefront phase fluctuations.

The fitting of a state-space noise shaping filter which output is a time series which in approx-
imation has a prescribed correlation coefficients is a standard in time series analysis, see e.g.8 In5

this method has been applied to the estimation of von Kármán turbulence models. In9 a similar
method has been proposed that estimates a state-space model in the basis of a given (cross) power
spectral densities, and applied to approximate the Kolmogorov turbulence model. Here, we will
sketch the realization of a state-space model given the correlation coefficients as given in.8

Consider the following state-space model

x(i+ 1) = Ax(i) + w(i) (13)

y(i) = Cx(i) + v(i) (14)

where x(k) ∈ R
n the state and n the state-dimension, A ∈ R

n×n a stability matrix, C ∈ R
�×n the

output matrix, and w(i) and v(i) are zero-mean white noise stochastic processes with covariance

E

⎛
⎝[

w(i)

v(i)

] [
w(i)

v(i)

]T⎞⎠ =

[
Q S

ST R

]
. (15)

Then it can be shown by straightforward use of (13),(14) and (15) that, the correlation coefficients
Ry(i) = E(y(k)y(k − i)T ) are given by

Ry(i) =

{
CPCT +R, for i = 0,

CAi−1(AP + S), for i > 0,
(16)

and Ry(−i) = Ry(i)
T for all i, where P is the (positive definite) solution to the Lyapunov equation

P = APAT +Q. (17)

The correlation coefficients can also be considered as the Markov parameters of the state-space
system

ξ(i+ 1) = Aξ(i) +Gζ(i) (18)

η(i) = Cξ(i) +Ry(0)ζ(i) (19)
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where G = (AP +S), such that a state-space realization algorithm, as given in e.g.,10 can be used
to determine the matrices A, G and C from the correlation coefficients Ry(i). Then P can be
determined by solving the Riccati equation

P = APAT + (G−APCT )(Ry(0)− CPCT )−1(G−APCT )T (20)

such that Q can be determined using (17) and S and R can be determined using (16).

Hence, given the correlation coefficients Rψ(i) of the time-series ϕ(i) we may find a state-space
realization of order n using this procedure, where Ry(i) is replaced by Rψ(i). Let this state-space
realization be denoted by

x(i+ 1) = Ax(i) + w(i) (21)

ϕ(i) = Cx(i) + v(i) (22)

where the covariance of w(i) and v(i) is given by (15).

The computational complexity of the state-space realization is dominated by a singular value
decomposition (SVD) of a Hankel type matrix of dimension pN2

s × pN2
s where p ≥ 2n and 2p

and determines the number of correlation coefficients, Rψ(i) for i = 0, · · · , 2p, that is taken into
account in the realization. The computational complexity of the SVD scales with p3N6

s , which is
of the same order of complexity as the estimation of the AR model in the previous subsection.
Also note, that again the Hankel type structure can be exploited to obtain a much more efficient
SVD. The complexity of solving the Riccati equation (20) scales with n3 and is not critical.

Then, given a state-space realization of order n the computational complexity to simulate ϕ(i)
for i = 0, · · · , Nt−1 scales with Nt(n+N

2
s )

2 which can be much more efficient than the AR model
provided n� pN2

s , where p the order of the AR model, which is true in general. The state-space
model can also be transformed to (observable or controllable) canonical forms which complexity is
linear in n, but usually at the expense of increased sensitivity to round-off errors. Other efficient
implementations that scale linearly with n but are less sensitive to round-off errors are given by
the input- and output-normal forms.11

2.5 Matched frozen flow propagation

As already brought up in Sec. 2.2 and 2.3, the computational complexity can be significantly
reduced if the propagation in a single sampling instant matches the spatial grid, i.e. (9) holds
true. To illustrate how the estimation of the AR and the state-space models are simplified, we
will limit to the case that vy = 0 and vx is such that

vxTs/Δ = nx, nx ∈ N. (23)

Note, that the general case, for which (9) holds true, can always be transformed to this case by a
reindexing of the spatial grid along and perpendicular to the propagation direction. In the case vx
satisfies (23) and vy = 0 each sampling instant the wavefront phase is shifted over nx grid points,
c.f. Fig. 1, i.e.,

φ(i+ 1, j, k) = φ(i, j, k − nx). (24)

As a consequence, the wavefront phase at φ(i, j, k+mnx) form = 1, 2, ... is equal to φ(i−m, j, k),
and thus when a AR or state-space model is given which models the turbulence over the reduced
spatial grid (j, k) ∈ [0, Ns] × [0, nx] is given the AR or state-space model over the whole grid
(j, k) ∈ [0, Ns] × [0, Ns] can be easily derived by adding time delays to the model. In this way
the complexity of solving the Yule-Walker equations (11) is reduced from p3N6

s to p3N3
sn

3
x and

the simulation of the AR model is reduced from (p + 1)NtN
4
s to (p + 1)NtN

2
sn

2
x. Similarly, the

complexity of determing the state-space realization is reduced from p3N6
s to p3N3

sn
3
x and the

simulation of the state-space model from (n+N2
s )

2 to (n+Nsnx)
2. Since, usually nx � Ns the

computational complexity is significantly reduced.
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0

Ns−2

Ns−1

0 nx−1 nx 2nx−1 (m−1)nx mnx−1

Figure 1. Matched frozen flow propagation, each sampling time the wavefront phase is shifted over nx grid
points along the x-axis.

3. THE AR AND KALMAN PREDICTORS

Because of the delay in the wavefront sensor and the controller a predicition of the wavefront
phase need to be made, which will be discussed in this section. Suppose the measurements of the
wavefront sensor are given by

s(i) = ϕ(i) + v(i) (25)

where v(i) ∈ R
N2

s the measurement noise, which is assumed to be a zero-mean white noise stochas-
tic process with covariance E(v(i)v(i)T ) = σ2

vIN2
s
. Generally, the wavefront sensor does not provide

direct measurements of the wavefront phase, but a derived quantity, e.g., the slopes of the wave-
front in the direction of the x- and y-axis. In these cases, (25) is replaced by s(i) = Gϕ(i) + v(i)
where G the WFS geometry matrix. There may also be additional dynamics in the WFS, like
time delay due to read-out, communication and integration time of the CCD device. Here we
neglect, without lack of generality, the influence of the wavefront sensor and focus on the problem
of wavefront prediction in the presence of measurement noise. Hence, the problem can be stated
as: estimate ϕ(i+1) given the measurements s(j) for j = 0, · · · , i given in (25). As a performance
criterion we take the variance of the prediction error, i.e.,

J = tr
(
E
(
(ϕ(i+ 1)− ϕ̂(i+ 1|i))(ϕ(i+ 1)− ϕ̂(i+ 1|i))T

))
(26)

where tr(.) denotes the trace operator, and ϕ̂(i + 1|i) the 1-step ahead prediction given all the
past measurements over the complete sensor grid up to time instant i.

The solution to this minimum variance prediction problem is given by the following 1-step
ahead predictor

ϕ̂(i+ 1|i) = Aisi(i) (27)

where

si(i) =
[
s(i)T , s(i− 1)T , · · · s(0)T

]T
(28)

and Ai is obtained from

A0 = S̃0P̃0 (29)

where

P̃0 = (Rϕ(0) + σ2
vIN2

s
)−1 (30)

S̃0 = Rϕ(1) (31)
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and for i ≥ 1

Ai =
[
Ai−1 0

]
+ Ẽi−1

[
K̃T
i−1 −R̃−1

i−1

]
(32)

and

K̃i−1 = P̃i−1S̃i−1R̃
−1
i−1 (33)

R̃i−1 = Rϕ(0) + σ2
vIN2

s
− S̃Ti−1P̃i−1S̃i−1 (34)

Ẽi−1 = Ai−1S̃i−1 −Rϕ(i)
T (35)

P̃i =

[
P̃i−1 + K̃i−1R̃i−1K̃

T
i−1 −K̃i−1

−K̃T
i−1 R̃−1

i−1

]
(36)

S̃i =

[
Rϕ(i)

S̃i−1

]
(37)

This predictor is readily obtained using linear (recursive) prediction theory.12 However, the com-
putational complexity and memory of the predictor in (27) grows unboundedly in time. Only
when Ei given by (35) satisfies Ei = 0 for all i > p, the predictor remains constant for i > p
and the predictions are based on the finite data window {s(i), · · · , s(i− p+ 1)}. It can be shown
that for Auto-Regressive (AR) processes, indeed Ei = 0 for i > p where p is the order of the AR
process. Then the AR-p, i.e., AR predictor of order p is given by

ϕ̂(i+ 1|i) = Âp
[
s(i)T · · · s(i− p+ 1)T

]
(38)

for i ≥ p− 1, where Âp is obtained by

Rp:1 = Âp(Rp + σ2
vIpN2

s
) (39)

and Rp:1 and Rp are defined similar to (11).

Now, suppose that the turbulence-induced phase fluctuations are adequately modeled by the
state-space model (21),(22), then the minimum variance predictor is given by the Kalman filter,13

which is given by

x̂(i+ 1|i) = Ax̂(i|i− 1) +K(s(i)− Cx̂(i|i− 1)) (40)

φ̂(i+ 1|i) = Cx̂(i+ 1|i) (41)

where K the Kalman gain given by

K = (APCT + S)(CPCT +R+ σ2
vIN2

s
)−1 (42)

and P is the positive definite stabilizing solution to the Riccati equation

P = APAT − (APCT + S)(CPCT +R+ σ2
vIN2

s
)−1(APCT + S)T +Q. (43)

4. SIMULATION STUDY

4.1 AR and state-space turbulence models

To validate the accuracy of the AR and the state-space modeling approaches as described in Sec. 2.3
and 2.4 a simulation study has been performed on an Ns×Ns = 8×8 elements equidistant spatial
grid over a square telescope aperture of 1[m]×1[m]. The Fried parameter is r0 = 0.2[m] and the
outer scale L0 = 10[m]. The sampling time was chosen to be Ts = 6.25[ms] such that for the
propagation speed (vx, vy) = (20, 0)[m/s] of the turbulence matches the spatial grid, and at each
sampling time the turbulence is shifted over 1 grid point in the x-axis direction. Hence, following
the approach of Sec. 2.5, the wavefront phase at the grid points (j, k) for j = 1, 2, · · · , Ns − 1
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||
R

ϕ
(i

)
−

R̂
ϕ
(i

)|
| 1

Time lag (i)
Figure 2. 1-norm of the turbulence correlation coefficients and of the error in the correlation coefficients
obtained by AR and state-space models with 62 and 74 states.

can be derived from the grid points at j = 0 for all k = 0, 1, · · · , Ns − 1. Therefore, AR models
of order p = 1 and p = 2 and state-space models of order n = 8 and n = 16 are determined to
model the turbulence at j = 0 for k = 0, · · · , N − 1. Then, for all the Ns grid points along the
y-axis, Ns − 1 delays are added to model the propagation in time and space, such that in total
Ns(Ns − 1) = 56 states are added to the model at j = 0. As a consequence the number of states
of the model for (j, k) ∈ [0, Ns − 1]× [0, Ns − 1], including the delays, equals 64 and 72 for both
the AR model as well as the state-space model.

The correlation coefficients of the output signal of the AR and the state-space models that
should approximate Rϕ(i) are determined and denoted by R̂ϕ(i) for i = 0, 1, · · · , 100. Fig. 2
shows ||Rϕ(i)||1, i.e. the summation of the absolute values of all elements of Rϕ(i) (solid line) as

well as the 1-norm of the errors in the correlation coefficients ||Rϕ(i) − R̂ϕ(i)||1 obtained for the
AR models and the state-space models with 64 and 72 states.

We observe, that the accuracy of the AR model is increasing with increasing order, but also
that the state-space models are a much better approximating the correlation coefficients with the
same complexity. The reason is that the model class of the state-space models also comprises
moving average filters, and thus is a more general description than the AR model.

4.2 AR and Kalman filter prediction

We also computed the AR-1 (the order p = 1) predictor and the Kalman filter on the basis of the
state-space model with 64 states. The variance of the noise, σ2

v, has been set such that signal to
noise ratios (SNR’s) between 0 and 60dB are obtained. For comparison, we also computed the
prediction errors obtained by: the diagonal AR-1 predictor,

ϕ̂j(i+ 1|i) =
Rj,j(1)

Rj,j(0) + σ2
v

sj(i), for j = 0, · · · , N2
s − 1 (44)

where the prediction for each element of ϕ(i) is made independent of information from the other
elements, and also the the AR-1 smoother, i.e.,

ϕ̂(i|i) = Rϕ(0)(Rϕ(0) + σ2
vIN2

s
)−1s(i) (45)

so, ϕ̂(i|i) is used as an estimation of ϕ(i + 1) and finally by just taking the last value, i.e.,
ϕ(i). The predictors are determined for r0 = 0.2[m], L0 = 1[m] and a propagation velocity of
(vx, vy) = (20, 0)[m/s], and are evaluated on turbulence with the same velocity. Also, performance
evaluation has been done with the velocity vector rotated by 90o and 180o compared to the modeled
velecity vector. As a performance metric, we used the Strehl ratio as computed by

S = e−σ
2

(46)
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Figure 3. Prediction error in terms of Strehl versus SNR for various predictors determined from the
correlation obtained by a propagation velocity of (20, 0)[m/s] evaluated on turbulence with a propagation
velocity of (20, 0)[m/s], (0, 20)[m/s] (90o rotated) and (−20, 0)[m/s] (180o rotated). The outer scale was
set to L0 = 1[m].

where σ2 the variance of the wavefront phase averaged over all grid points in space.

Fig. 3 shows the resulting Strehl ratio versus SNR curves obtained by the various predictors.
We clearly observe, that the Kalman and the AR-1 predictor significantly enhance the performance
when the predictor is based on a proper turbulence model that is consistent with the propagation
direction and speed. The reason is, that the original temporal error is relatively large, since the
propagation within one sampling time instant is over a distance between two neighboring grid
point in space. For higher sampling rates, it may be expected that the performance enhancement
with the AR-1 and Kalman predictors are less significant. This suggests that - without considering
wavefront sensor effects - the sampling time may be increased without significant performance loss
when AR-1 and/or Kalman predictors are used. We also observe, that the AR-1 predictor yields
about the same performance as the Kalman predictor, only for low SNR’s the performance of the
Kalman predictor is better, which can be explained by the fact that the Kalman filter is able to
better average the effect of noise.

The AR-1 and the Kalman predictor, however, are also more sensitive to variations in the
propagation speed or direction, as is clear from the middle and the right graph in Fig. 3 that
show the Strehl obtained for changes in the propagation direction. The performance of the AR-1
smoother, the diagonal AR-1 predictor and taking the last value as a prediction, are not sensitive
to propagation direction at all, since they do either not make a prediction, or are not depending
on the spatial correlation, which changes with the propagation direction. This means, that they
are robust for variation in the propagation direction, at the expense of a (significant) performance
loss for the case that the propagation direction is taken into account in the model. Similar results
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have been obtained for turbulence with larger outer scales L0 = 10[m] and L0 = 100[m], though
the Strehl ratios are lower because the turbulence for larger outer scales is stronger.

5. CONCLUSIONS

In this paper finite order AR and state-space models have been derived that approximate the
correlation of the frozen-flow turbulence induced wavefront disturbance. It turned out that even
with relative low dimensions of the state, state-space models are able to accurately describe the
turbulence induced disturbance. Also the predictors corresponding with the AR and the state-
space model structures using noisy measurements, i.e., the AR-1 and the Kalman predictor, have
been derived. Validation on a simulation example shows that significant performance enhancement
may be achieved by accounting for the spatial and temporal correlation, as in the AR-1 and
Kalman predictor. For high SNR’s the performance of the AR-1 and the Kalman predictor was
almost the same, for low SNR’s the performance of the Kalman predictor was better because of its
ability to better average the effect of measurement noise. Validation on frozen flow disturbances
with different propagation directions showed that the AR-1 and Kalman predictor are sensitive to
variation in the propagation direction.

Future research will be on the performance versus computational complexity trade-off that can
be achieved for various predictors. Also sparsity in the space-time correlation coefficients will be
studied as well as the data-driven tracking of the propagation direction and speed.

REFERENCES

[1] Le Roux, B., Conan, J.-M., Kulcsár, C., Raynaud, H.-F., Mugnier, L., and Fusco, T., “Opti-
mal control law for classical and multiconjugate adaptive optics,” J. Opt. Soc. Am. A 21(7),
1261–1276 (2004).

[2] Looze, D., “Minimum variance control structure for adaptive optics systems,” J. Opt. Soc.

Am. A 23(3), 603–612 (2006).

[3] Hinnen, K., Verhaegen, M., and Doelman, N., “A data-driven H2-optimal control approach
for adaptive optics,” J. Opt. Soc. Am. A 16(3), 381–395 (2008).
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