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Abstract 

The particle size distribution produced in particulate processes generally has a large impact on process economics, 
and the crystal size distribution produced in industrial crystallizers is no exception. Crystal Size Distribution 
(CSD) control is therefore desirable. Its establishment is the main objective of a joint research program between 
three research groups within the Delft University of Technology and several industrial participants. This paper 
presents a review of this project and intends (1) to illustrate the development of an on-line crystal size measuring 
technique, (2) to illustrate how information on CSD can be used to derive a dynamic process model and (3) 
to emphasize the need for effective process inputs and to make suitable suggestions in that direction. 

Crystallization from solution is an important unit 
operation in chemical engineering practice, giving a 
product of high purity at low energy costs. The process 
is employed in the production of bulk chemicals such 
as ammonium sulfate, sodium chloride and sucrose, 
and the production of fine chemicals such as aspartame. 
Usually the process yields a solid product which has 
a wide crystal size distribution (CSD). This CSD dictates 
the behaviour of the product in succeeding operations, 
such as filtration, drying, transport and storage, and is 
also defined by customer specifications. It is, therefore, 
desirable to control the CSD produced. This fact pro- 
vides a motive to improve the state-of-the-art in CSD- 
control. Within a joint research programme between 
Delft University of Technology and several industrial 
participants [l], the continuous evaporative crystalli- 
zation of ammonium sulfate in a draft-tube-baffled 
crystallizer serves as an example of the process. 

The number of studies reporting the attempted de- 
velopment and experimental verification of CSD-control 
schemes is limited. This is due to the lack of a reliable 
on-line CSD measuring technique, which is the first 
requirement for process control, in a field where sieve 
analysis has long been applied as the major CSD- 
measurement technique. Only comparatively recently 
have on-line CSD-measurement techniques, using 
laser diffraction, become commercially available. This 

technique is, however, restricted to slurries which con- 
tain solids at low concentration. It was applied, in a 
noteworthy attempt to establish CSD-control, by Ran- 
dolph and coworkers [2] to measure the CSD in a side 
stream of a crystallizer containing fines at low con- 
centration. A similar attempt was made by Rohani and 
Lee [3], who measured the fines concentration rather 
than the fines size distribution. Although the fines 
stream has some influence on the final product quality, 
it is obvious that, using this information only, the CSD 
cannot be fully controlled. 

The second requirement lacking for CSD-control is 
closely related to the deficiency of on-line measuring 
techniques. Dynamic modelling of crystallization pro- 
cesses is still rudimentary, especially in predicting the 
effect of phenomena affecting the population in transient 
conditions such as crystal birth, crystal growth or other 
crystal number-affecting events. Consequently, previous 
CSD-control attempts were limited to single input-single 
output (SISO) CSD-controllers [2,3], which were rather 
empirically designed. The main drawback of these simple 
proportional controllers is that transients and offsets 
of CSD-parameters, such as the mean and variance of 
the mass distribution, are still possible. In order to 
improve the control performance more inputs and out- 
puts must be introduced which, in turn, requires more 
powerful multivariable controllers to account for in- 
teractions between them. Most design methods for 
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multivariable controllers use a dynamic model m 
state-space representation. 

Broadly, two possibilities for obtaining such a model 
exist: (a) black box modelling and (b) physical modelling. 
In physical modelling the evolution of the CSD in time 
is modelled using the population balance approach [4]. 
An accurate understanding of specific population events 
such as crystal birth, crystal growth and attrition, to- 
gether with the crystallizer hydrodynamics is crucial in 
such an approach. A review of the steady state effects 
of these phenomena was given by Garside [5]. Unsteady 
state effects, however, have been generally neglected. 
Black box modelling offers an alternative to physical 
modelling. In black box modelling the process is dis- 
turbed by appropriate test signals and the resulting 
transients are recorded. The two are correlated using 
parameter estimation techniques, referred to as ‘System 
Identification’ in the field of control engineering [6] 
[7]. Such a procedure results in a dynamic model of 
the process in a state-space or equivalent representation. 

A third requirement for process control is the avail- 
ability of process inputs. Selective fines removal and 
subsequent dissolution was previously [8] identified as 
an important variable in CSD-manipulation. The use 
of size classification techniques, of which selective fines 
removal is just one example, appears to have an obvious 
need for size control. Research on size classification 
techniques is therefore an absolute necessity. 

The purpose of this paper is to present the general 
concepts and techniques which are available to satisfy 
these three requirements. Experimental results obtained 
in a 20-litre crytallizer without fines removal and a 
970-litre crystallizer with fines removal will be used to 
illustrate these concepts. In the first section the ap- 
plication of laser diffraction techniques for on-line size 
measurement will be described. In the second section, 
results of both the physical and black box modelling 
techniques will be presented. In the third and final 
section, an assessment of a flat-bottomed hydrocyclone 
for use in a size classification step is described. 

On-line crystal size measurement in dense slurries 

The approach chosen is to adapt an existing laser 
diffraction technique. This technique is selected for its 
ability to measure in liquids, at high speed, and with 
reasonable reproducibility. However, high slurry den- 
sities cannot be accepted. A dilution unit has therefore 
been built and combined with a laser diffraction in- 
strument, specifically a Malvern 2 600~. This sizer, whilst 
using a 1000 mm lens, has a measuring range from 
0.5 pm to 1900 pm. This range is divided into 32 size 
classes [9]. 

The combination of particle size analyzer and dilution 
unit determines a crystal size distribution by volume, 
whereas for this application absolute values of the 
population density of the slurry are necessary, which 
requires a total solids measurement. An Endress & 
Hauser M-point mass flow meter was successfully used 
for this purpose [9]. 

Principles of laser difiaction 
In instruments based on the laser diffraction tech- 

nique, light emitted from a laser is expanded and 
illuminates the particle field. The particles present will 
either absorb or scatter the incident light according to 
their size, shape and refractive index. The scattered 
light is subsequently collimated by a Fourier transform 
lens and focussed onto a photodetector. In this way a 
composite scatter pattern developed from all the con- 
tributing particles is recorded as a function of the 
scattered angle. This scatter pattern must be decon- 
voluted in order to determine the crystal size distri- 
bution. 

The success of this measuring technique depends on 
two factors, the accuracy of the light scattering model 
and the accuracy of the deconvolution technique. The 
light scattering model may be based on ray optics, 
anomalous diffraction, Fraunhofer diffraction or Mie 
theory. Although in principle the Mie theory is ap- 
plicable for particles of any size, numerical computations 
may become unreliable for larger particles. During this 
investigation a combination of these theories, dependent 
mainly on the relative refractive index and particle size, 
was used to calculate the scatter pattern for ammonium 
sulfate crystals [lo]. 

The deconvolution procedure, which translates the 
recorded scatter pattern into a crystal size distribution, 
must be both fast and reliable. In this investigation the 
software has been developed based on a modified matrix 
inversion method first described by Heuer and Les- 
chonski [ll]. The main limitation when using this 
technique is the smoothing of the CSD, which must 
be assumed. Therefore, a weighted approach has been 
developed. A measurement usually records and averages 
a large number of sweeps for each detector element. 
In this programme the standard deviation on the sweep 
values are also calculated and used to improve the 
accuracy of the results obtained [12]. 

The main limitation, currently, to these instruments, 
is that multiple scattering effects are ignored, which 
generally restricts their use to slurries of low concen- 
tration. This limitation is the main reason for devel- 
opment of the dilution technique. 

The dilution technique 
Three decisions with respect to the method of dilution 

were made. First, a configuration in which a sample 
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is isolated in a measuring loop was chosen. This loop 
contains a pump which circulates the slurry and an 
optical cell. Second, saturated mother liquor was se- 
lected to be the dilution liquid in order to avoid 
dissolution or growth of crystals. This liquor is produced 
by feeding the stream to be measured through a hy- 
drocyclone, passing the overflow through a set of filters 
which can be backflushed for cleaning and using that 
liquor to dilute the rest of the sample. Third, a semi- 
batchwise dilution technique, shown in Fig. 1, was chosen 
[9]. Dilution is achieved by introducing clear liquid 
continuously to the measuring loop with a second pump. 
During each circulation of the slurry, the solids con- 
centration is reduced by the ratio of the circulation 
flowrate and the difference between the dilution flowrate 
and the circulation flowrate. This mode of operation 
permits varying dilution ratios to be achieved by varying 
the opening time of valves A and B. In order to avoid 
dissolution or growth of crystals, the whole unit is 
situated inside a temperature-controlled enclosure. 

Results 
In this paper a selection of the results obtained will 

be presented. Additional results are presented else- 
where [9]. The results of the density measurement will 
be first discussed. Figure 2 shows a typical example of 
a run of 80 h which included step changes in the 
residence time. In this case first-order responses in 
solids concentration are predicted [13], since the crys- 
tallizer can be considered to contain well-mixed solids. 
A measurement was made every 2 s and a first-order 
filter, with a time constant of 120 s, was applied to 
reduce the measurement noise. From the measured 
slurry density the third moment of the distribution m3, 
which is equivalent to the total solids concentration, 
is calculated by: 

where ~~~~~~ = slurry density, pllquld = liquid density, 
psollds = solid density, k, = shape factor. 

The measured and the predicted values, given in 
Fig. 2, show an excellent fit. Two deviations at times 
of 1860 min and 2 900 min do appear which can be 
attributed to two process disturbances, forced batch 
operation and water injection respectively. 

The results which were obtained using the Malvern 
sizer and the dilution unit illustrate a CSD-transient 
during crystallizer start-up, when CSD changes are most 
significant. The measuring frequency was 30 times per 
hour. From the volume distribution measured by the 
Malvern sizer and the total solids concentration from 
the density measurement, the moments of the crystal 
size distribution are calculated according to [13]: 
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Fig. 1. Semi-batchwise dilution, (a) sampling, (b) diluting and 
(c) measuring. 
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In order to assess the accuracy of these results, they 
were compared with a sieve analysis of filtered and 
dried samples. These sieve results are only used to 
verify the trends, because the two techniques measure 
different particle dimensions and cannot be directly 
compared. Figures 3a and 3b present the results for 
both techniques for the area-based average size (m,l 
ma) and the mass-based average size (m,/m,). Despite 
their different basis, both techniques are in good agree- 
ment and the on-line technique shows excellent re- 
producibility. 

From the on-line, steady state values the reprodu- 
cibility of the measurement can be estimated. Relative 
standard deviations calculated from p measurements 
are given by: 

1 P-1 1 YJ 

= relative standard deviation (3) 

Values of sixth moments and the mass-based average 
size, (m,/m,), are given in Table 1. 

Table 1 indicates a low relative standard deviation 
for the mass-based average size, the second, fourth 
and, of course, the third moment. This results from 
the fact that the laser diffraction technique measures 
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Fig. 3. The area (a) and mass (b) -based average sizes for on- 
line Malvern and off-line sieve analysis durmg crystallizer start- 

up. 

TABLE 1. Relative standard devratlons of several moments 

calculated from the steady state portion of a crystalhzer operatron 

Moment Relative standard deviation 

(“ro) 

0 210 

1 4.9 

2 2.7 

3 2.3 

4 3.3 

5 6.6 

413 2.2 

a volume distribution. The zero moment is inaccurate. 
For this moment, the very small crystals in the first 
two size classes are heavily weighted. They amount to 
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less than 1% of the volume distribution and inaccuracy 
is, therefore, very probable. The third moment has a 
low standard deviation because the measurement noise 
is contributed by the density measurement only (see 
eqn. (2)). In the mass-based average size, on the other 
hand, the contribution of the third moment, and thus 
the measurement noise in the third moment, cancels 
out. 

Dynamic modelling 

A second requirement for process control is an 
accurate dynamic model. This model can be obtained 
by estimating the parameters of a ‘black box’ model 
or, alternatively, by determining a model based on 
physical laws. Both will be illustrated in this section. 
First a physical model, which contains a partial dif- 
ferential equation to describe the population dynamics, 
will be presented and the unknown parameters in this 
model defined. Subsequently the results obtained with 
a nonlinear parameter estimation technique, used in 
the estimation of the unknown parameters, will be 
illustrated using results from a 20-litre crystallizer. At 
this scale of operation only off-line CSD-analysis was 
used, because of the comparatively large volume of the 
dilution unit. 

Most multivariable control system design methods 
use the linear state-space model structure or a structure 
that is easily obtained from the state-space model. For 
continuous-time systems, the linear state-space model 
is given by a set of first-order, ordinary differential 
equations. In matrix notation: 

i(t) =&,x(t) + B,u(t) (4) 

~(0 = C&r) + Dcu(r) (5) 

where x(t) = state vector, dimension (n x 1); u(t) = vector 
of process inputs, dimension (m x 1); y(t) =vector of 
process outputs, dimension (I x 1); A, = state matrix, 
dimension (n X n); B, = input matrix, dimension (n X m); 
C, = output matrix, dimension (1 xn); D, = direct transfer 
matrix, dimension (I Xm); II = number of states (order 
of the state-space model), m = number of process inputs, 
I= number of process outputs. Hence, the partial dif- 
ferential equation describing the physical model must 
be transformed in order to obtain a state-space model. 
Several techniques are available for that purpose [14], 
of which two (the method of lines and the system 
identification techniques) will be discussed below. 

For the 970-litre crystallizer, deviations, which require 
model refinement, do occur [15]. Although an extended 
model qualitatively predicts the observed deviations 
[15], its use for process control design is still dubious, 
especially since ‘black box’ modelling offers an attractive 

alternattve, which combines both parameter estimation 
and transformation into a state-space model in one 
procedure. This is illustrated later. 

Physical modeling of the 204itre crystallizer 
The contents of an evaporative MSMPR (Mixed 

Suspension-Mixed Product Removal) crystallizer which 
has no fines removal, are fully defined by the heat 
balance, the total mass balance, the solute balance and 
the population balance [14]. The differential equations 
which represent the dynamic heat, mass and solute 
balance can be simplified by applying two constraints 
for a constant volume, isothermal and Class-II crys- 
tallizer with size-independent crystal growth [13]. The 
Class-II assumption implies that the ammonium sulfate 
system is a fast-growing system in which the crystallizer 
concentration is constant with time and approaches 
equilibrium concentration. The heat and mass balance 
simplify into a constraint to the product flowrate: 

Q 
P 

(t) = {kl - wdt)lQ‘(t) -Pm(t) 
k, 

where Qp(t) = product flowrate, C,(t) = feed concentra- 
tion, Q,(t) = feed flowrate, PJt) = heat input, 
k 1,2,3 =constants [13]. The solute balance reduces, mak- 
ing the Class-II assumption, to a growth rate constraint. 

(7) 

where G(t) = crystal growth rate, C = crystallizer con- 
centration, V= crystallizer volume, mz(t) = second mo- 
ment of the CSD, k, =volume shape factor, p,=crystal 
density. 

The population balance describes the CSD-dynamics. 
If crystal breakage and agglomeration are neglected, 
crystals are assumed to form at a very small size and 
all crystals have the same growth rate, the well-known 
population balance [4] results. 

an@, 0 WL, 0 
- +G@) a~, at 

+ n(L, t) y =0 

where n(L, t) = population density, L = crystal size. 
The boundary condition for this hyperbolic partial 

differential equation is given by: 

B(t) no(t)= - 
G(t) 

which changes, by substitution of a power law relation 
for the nucleation rate B into: 

no(t) =kJT(t)m,“(t) (10) 

The jth moment of the distribution is defined by: 
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m 

m,(t) = 
s 

n(L, t)L’ dL (11) 
0 

Equations (6)-(11) present a dynamic model of a 
well-mixed crystallizer. This model contains the un- 
known parameters kb, i, j and k, which must be estimated 
from experimental results. Previously [13], a nonlinear 
parameter estimation technique was applied for this 
purpose. Using starting values for the unknown pa- 
rameters, a simulation of the overall model consisting 
of the population balance (eqn. (8)), the nucleation 
model (eqn. (lo)), the growth rate constraint (eqn. (7)) 
and the constraint for the product flowrate (eqn. (6)) 
can be made. The kinetic parameters are adjusted by 
a nonlinear optimization technique which minimizes 
the error between the model simulation and the mea- 
sured responses until some stop criterion is attained. 
A suitable measure of the deviation of the data from 
the model (objective function) must be defined. In this 
investigation a least squares objective function, which 
is the sum of squares of the residuals, was chosen. 
Typically, simulated datapoints are subtracted from the 
experimental ones, squared and summed. Weighting 
factors can be used to emphasize reliable observations 
and to scale the data. An identical criterion, denoted 
‘output error’, was used in the black box modelling 
approach discussed in the next section. 

where IZ = number of datapoints, y = experimental value, 
p = predicted value, wJ = weighting factor for jth signal, 
z = number of signals. 

The mass-based average size was chosen to be fitted. 
The third moment is used in the calculation of the 
nucleation rate, as indicated in eqn. (13). More details 
of the optimization procedure have been presented 
elsewhere [13]. Figure 4 presents the fit for an ex- 
periment in which the heat input was increased step- 
wise from 2.0 kW to 3.3 kW at an operating time of 
16 500 s. The nucleation model can be fitted by the 
following expression: 

no = 2.7 1025G1.5m ‘O 3 (13) 

Figure 4 presents an excellent fit for the mass-based 
average size and thus, an acceptable representation of 
this parameter was achieved. However, the model equa- 
tions (6)-(11) did not have the required state-space 
representation (eqns. (4), (5)). Several techniques are 
available for the transformation of the partial differential 
equation [14]. If a fines removal procedure must be 
accounted for and general applicability is required, two 
major techniques remain, the method of lines and system 
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Fig. 4. The experimental VS. fitted mass-based average we for 
an optimized parameter combmation according to eqn. (13) for 
a step in heat mput from 2.0 kW to 3.3 kW at t = 16 500 seconds. 

identification techniques [14]. In the method of lines, 
the partial derivative with respect to size, eqn. (8), is 
replaced by a finite difference approximation in discrete 
gridpoints (L,). A first-order, backward difference, for 
example, is given by: 

a@w 4 _ f&5.) -n&4> 
aL Lp-Lp-1 (14) 

By substituting this approximation into eqn. (8), a 
number of ordinary differential equations for the pop- 
ulation dynamics in the gridpoints result which ap- 
proximate the original partial differential equation. This 
set of equations must be linearized at an operating 
point in order to obtain the required state-space rep- 
resentation [14]. The main disadvantage of this approach 
is the large number of equations required to approximate 
eqn. (8) with sufficient accuracy, in other words the 
high order of the state-space model obtained. Such 
high orders can cause severe problems in the design 
and implementation of a multivariable controller. 

System identification techniques offer an attractive 
alternative to the method of lines, in that the final 
state-space model is of much lower order [14]. As 
already stated, these techniques can also be applied 
directly to the experimental data, which constitutes a 
more direct approach. This approach will now be il- 
lustrated using experimental data obtained using the 
970-litre crystallizer. 

Black box modelling of the 970-l&e crystallizer 
System identification is a widely used modelling tech- 

nique in control engineering [6, 71. In system identi- 
fication, the response of the outputs of a system to the 



input signals are approximated by a black box model. 
The parameters in this model are determined by min- 
imizing a criterion function which is based on some 
difference between the measured input-output data 
and the responses predicted by the model. Different 
model structures can be chosen and, dependent on this 
structure, different criteria can be employed. In this 
investigation, a three-step identification procedure was 
used to obtain the state-space model. The system 
identification procedures are based on discrete-time 
models and therefore the parameters in the discrete- 
time equivalent of eqns. (4) and (5) are estimated. This 
model is given by: 

~{(k + l)A7j = &x(kAT’) + B&AT) 

y(kAT) = C&/CAT) + D,u(kAT) 

where AT= the sample interval. 

(15) 

(16) 

In the first step, an ARX-model is used, which has 
the form [6]: 

H(z-‘rv(kAT)=F(z-l)~(kbT) (17) 

where zpV is defined by z-“y(kAT) =y{(k-v)AT) and 

H(z-‘)=I~+H,z-~+H,z-z+ . . . &z-9 (18) 

F(z-~)=F,+F,z-~+F,z-~+ . . . Fprp (19) 

I, = the (I x I) identity matrix. 

The parameters in H(z-I) and F(z-‘) are estimated 
by minimizing the equation error criterion [6]. In the 
second step, this model is transformed into a state-space 
model by making an approximate realization [16]. This 
step includes the determination of the order of the 
state-space model (the dimension of the matrix A,), 
which is determined by inspection of the singular values 
of the Hankel matrix which is the matrix containing 
the impulse responses of the ARX-model. In the third 
step, the state-space model obtained from the second 
step is used as an initial parameter combination to fit 
the discrete-time state-space model to the actual data. 
Here the output error criterion [6] is minimized (See 
eqn. (12)). Because the output error criterion is highly 
nonlinear in the parameters of &, the first two steps 
were required to determine the order of the state-space 
model and to obtain a good initial parameter set for 
this third step, only. 

During the collection of experimental data to be 
used for system identification, Pseudo-Random Binary 
Noise (PRBN) signals are commonly used, as illustrated 
in Fig. 5. These signals are added to the steady state 
values of the input signals. PRBN signals are widely 
used because they are easy to generate and have 
characteristics which approximate those of uncorrelated 
white noise signals. The advantage of using uncorrelated 
input signals is that they can be added to the process 
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Fig. 6. The 9704itre crystallizer. 

inputs simultaneously, without affecting the ability of 
the identification algorithm to distinguish the contri- 
butions of each individual input to the output signals. 
This allows an efficient use of data. 

Three inputs are available for CSD-control in the 
present investigation, the heat input to the process 
(P,J, the product flowrate (Q,) and the rate of fines 
dissolution (Q$. They are illustrated in Fig. 6. Available 
software, described in [17] and [18], was used in the 
three step identification procedure. Figure 7 shows the 
measured third moment and the prediction by the 
identified state-space model, whereas Fig. 8 depicts 
the results for the mass-based average size. Both figures 
demonstrate a good fit to the data, which illustrates 
the usefulness of the technique in estimating a dynamic 
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model of a complicated crystallization process. Addi- 
tional results are presented elsewhere [19]. 

Hydrocyclone separation 

The number of inputs which are available for con- 
trolling crystallization processes is limited. The crys- 
tallizer temperature, residence time and rate of evap- 
oration affect the crystal size distribution (CSD) through 
overall changes in the nucleation rate and growth rate, 
and have therefore a confined effect. Size classification 
techniques, that is the selective removal and dissolution 
of fines, or product classification do discriminate with 

respect to size. However, the effect of fines removal 
and dissolution is also limited. The experimental results 
shown in Fig. 8 illustrate the relatively small variation 
in an average size of 650 pm which can be attained 
with variations in the input signals. This indicates that 
current inputs are insufficient to achieve full control. 
There is a clear need for a product classification step 
whereby coarse crystals are removed at a defined size. 

Hydrocyclones have a small volume, are simple to 
operate and are standard size-classification equipment 
in applications such as closed-circuit grinding. Recent 
development of a flat-bottomed hydrocyclone [20], which 
permits classification in a coarse size range, suggests 
the possibility of its use to control Crystal Size Dis- 
tribution. Furthermore, throttling a flat-bottom hydro- 
cyclone does not necessarily provoke blockage but allows 
continuous control of the cut size. There is a clear 
incentive for its use in this application, since it may 
provide an additional process input. 

We now present a selection of experimental results 
previously reported [21], obtained when using a 75 mm, 
flat-bottom cyclone (RWB 1613) provided by the Am- 
berger Kaolin Werke (AKW). The cyclone was tested 
in a batch operation, using the product formed by the 
20-litre crystallizer as feed. The purpose of these results 
is to illustrate the ability of the hydrocyclone to separate 
a coarse cut size and to illustrate the effect of a change 
in underflow diameter on its separation characteristics. 

The performance of a hydrocyclone is generally char- 
acterized by means of a grade-efficiency, or Tromp, 
curve which is the fractional mass recovery expressed 
as a function of particle size. By definition: 

8= 
solids underflow 

solids feedflow (20) 

The Tromp curve for the removal of coarse particles 
with the underflow is defined by: 

eAV(P)u 
eAV(P)u + Cl- WWP)~ 

= efficiency for interval p 

where AV(p), =volume 
porting to the overflow; 

_ 

fraction in the pth interval re- 
AV(JI)~ =volume fraction in the 

pth interval reporting to the underflow. 

(21) 

Figure 9 shows the grade efficiency curves deter- 
mined at a flowrate of 1.4 1 s-’ using apex diameters 
of 10 mm and 16 mm respectively at a cyclone length 
of 0.25 m. The results illustrate the variation which 
can be obtained by varying the apex diameter. The 
effect of throttling is significant, which suggests that 
an additional process input can indeed be created. A 
shift in the grade-efficiency curve of about 100 pm is 
found to be possible. Figure 10 shows the size distri- 
butions of the feed, the underflow and the overflow, 
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Fig. 9. Two grade-efficiency curves for product classification at 
an apex diameter of (Cl) 10 mm and (+) 16 mm at a flowrate 
of 1.4 1 s-‘. 

Fig. 10. The volume distributions in the (0) feed, (+) overflow, 
and (0) underflow, at a flowrate of 1.4 1 s-’ and an apex diameter 
of 10 mm. 

using an apex diameter of 10 mm and a flowrate of 
1.4 1 s-l. At these conditions the difference in size 
between the feed and the underflow is most pronounced 
at a value of 100 pm. 

These experimental results demonstrate the ability 
of a flat-bottom hydrocyclone to separate the coarse 
fraction of ammonium sulfate crystals from a slurry 
which contains crystals of a wide size range. It appears 
that the grade-efficiency curve, which predicts the prob- 
ability of a particle reporting to the underflow of the 
cyclone, can be adjusted by a change in the underflow 
diameter of the hydrocyclone. These two observations 
lead to the suggestion of using hydrocyclone separation 
to reduce the crystal size distribution which is produced 
in crystallizers, that is, using a variable underflow di- 
ameter as an additional input for process control. This 
is a current thrust of these investigations. 

Conclusions 

The application of an on-line CSD-measuring tech- 
nique, combining a laser diffraction instrument, a specific 
scatter and deconvolution model, and a dilution unit, 
has been illustrated. 

Two complementary modelling techniques have been 
presented. Physical modelling requires a detailed model 
of the process. If such a model is available, it has the 
advantage of being a more transparent technique. It 
delivers, however, a model which must still be trans- 
formed. Black box modelling, on the other hand, does 
not require a detailed physical model and can be applied 
directly to experimental data to estimate a model in 
the required state-space representation. As such, the 
technique has a wider range of applications. 

The effect of existing inputs such as the product 
flowrate, the heat input and the rate of fines dissolving 
proved to be limited. The use of hydrocyclone separation 
to improve CSD-control is therefore now being de- 
veloped. 
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List of symbols 

4, A, 
B,, Bd 
B 

cc, Cd 
Dc, Dd 
F 
G 
H 
i, k 

j 
kb 
kw 
k 

kl, kz, k, 
1 
L 
Msl 
m 

m, 
n 

state matrices dimension (n x n) 
input matrices dimension (n X m) 
nucleation rate [#/(m’ s)] 
output matrices dimension (I X n) 
direct transfer matrices dimension (lxm) 
polynomial matrix dimension (I x m) 
growth rate [m s-l] 
polynomial matrix dimension (I X m) 
empirical constants 
used to denote the moments 
nucleation constant 
shape factor ( = 0.26) 
index 
constants 
number of process outputs 
crystal size (m) 
slurry density (kg rnp3 slurry) 
number of process inputs 
jth moment of the distribution (& mW3) 
number of states (order of the state space 
model) 
population density at zero size (#/m”) 
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a&, 

P,” 

P 
4 
Q 
t 
V 

u(t) 
wi 
x(t) 
YW 
z 

4 population density at size L (#/m”) 
heat input (Watt) 
index 
index 
flowrate (m’ s-r) 
time (s) 
crystallizer volume (m”) 
vector of process inputs, dimension (nz X 1) 
weighting factor 
state vector, dimension (n X 1) 

vector of process outputs, dimension (IX 1) 
shift operator 

Greek letters 
AV(L,, t) volume fraction in the pth size class 

A4 width of a size interval p (m) 
AT sampling interval (s) 

P density (kg r.n3) 

PC crystal density (kg me3) 
r residence time (s) 
e mass recovery 

Indices 
i denotes feed 
0 denotes over-How 

P denotes product 
u denotes underflow 
no index denotes crystallizer contents 
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