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Classification of Gases With Single FET-Based
Gas Sensor Through Gate Voltage Sweeping

and Machine Learning
Lisa Sarkar, Soumen Paul , Avik Sett , Ambika Kumari, and Tarun Kanti Bhattacharyya

Abstract— Uncontrolled release of various harmful
gases from automobiles and chemical industries demands
accurate methods for gas classification and detection.
In this context, this article proposes an effective method
to classify and detect four gases—ammonia, formaldehyde,
toluene, and acetone using a single field-effect transistor
(FET)-based gas sensor. The gate voltage of the FET sen-
sor played a pivotal role in this classification mechanism.
L-ascorbic acid functionalized graphene oxide (GO) was
used as the sensing material of the FET device. Initially,
various features of the fabricated FET sensor (i.e., % of
response, response time, and recovery time) were cap-
tured by varying the applied gate voltage. Furthermore,
classification algorithms such as decision tree (DT), sup-
port vector machine (SVM), gradient boosting (GB), and
random forest (RF) were trained to automatically predict
the target gases. An accuracy of 73% was achieved for
all three classifiers other than the SVM classifier. The use
of machine learning algorithms was fruitful to accurately
detect four gases at different gate voltages when any
unknown one among the four was exposed to the single
gate-tuned sensor. Moreover, it also saved the system’s
power consumption as a single sensor was behaving like
several sensors.

Index Terms— % of response, field-effect transistor (FET)
sensor, gas classification/prediction, ML algorithms.

I. INTRODUCTION

RECENT advancement of chemical and pharmaceutical
industries gives rise to a serious problem of various toxic

gas emissions in the environment. Ammonia, xylene, benzene,
toluene, and formaldehyde are very common among those
emitted gases. Inhalation of those harmful volatile organic
compounds (VOC) and gases causes adverse health issues.
So, automatic detection of pollutant gases and VOCs garnered
significant interest in diverse fields ranging from personal
safety to industrial application [1], [2], [3], [4], [5].

Received 18 October 2024; accepted 21 October 2024. Date of
publication 26 November 2024; date of current version 31 December
2024. The review of this article was arranged by Editor M. M. Hussain.
(Lisa Sarkar and Soumen Paul contributed equally to the work.) (Corre-
sponding author: Tarun Kanti Bhattacharyya.)

Lisa Sarkar, Ambika Kumari, and Tarun Kanti Bhattacharyya are with
the Department of Electronics and Electrical Communication Engineer-
ing, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
(e-mail: tkb@ece.iitkgp.ac.in).

Soumen Paul is with the Department of Computer Science and Engi-
neering, Indian Institute of Technology Kharagpur, Kharagpur 721302,
India.

Avik Sett is with the Department of Microelectronics, TU Delft, 2628
CD Delft, The Netherlands.

Digital Object Identifier 10.1109/TED.2024.3486261

There are several seminal papers reporting a variety of
gas sensing mechanisms, such as resistive sensing, optical
sensing, electrochemical sensing, and field-effect transistor
(FET)-based sensing, to name a few. Among them, FET-
based sensing mechanism has captivated the researcher owing
to its ability of sensitivity amplification through optimiza-
tion of gate electrostatics [6], [7], [8], [9]. FET sensors
posses high sensitivity compared with other devices, as charge
carrier mobility can be modulated by controlling the gate
voltage [10]. Moreover, FET sensors have the inherent
advantages of miniaturization, low cost, and low power con-
sumption because of their CMOS compatibility. Numerous
metal oxides (ZnO, In2O3, SnO2, NiO, etc.) and 2-D materials
(graphene, rGO, MoS2) have extensively used for this purpose.
Metal-oxide-based gas sensors are popular for their high
response, large sensitivity, and simple operation [11], [12].
But they suffer from a serious bottleneck of high-temperature
sensing which leads high power consumption. On the other
hand, the 2-D material, reduced graphene oxide (rGO) is
well-known for room temperature sensing. For preparation
of rGO, graphene oxide (GO) is reduced by various reduc-
ing agents which in turn removes some oxygen containing
groups and incorporates defect states. As a result, it increases
active sites of rGO for gas adsorption and contributes toward
improvement in selectivity to specific gases.

The most common method for detecting multiple gases is
to use a sensor array containing multiple sensors. It would
be really challenging and exciting if multiple gases can
be detected with less number of sensors especially with a
single sensor. This will also reduce the power consumption
drastically. Very few reports were published on single-sensor-
based gas discrimination methodology [13], [14], [15]. In one
approach, temperature sweeping was used to discriminate mul-
tiple gases using a single chemiresistive sensor [13]. Another
approach used transient feature analysis to enhance discrim-
ination and classification of gases using a single resistive
graphene sensor [14]. In another technique, discrimination was
performed by analyzing the low-frequency noise of graphene
in the presence of vapors of various chemicals [15]. In all the
above-mentioned reports, experiments were performed with
resistive gas sensor.

In this work, classification and accurate prediction of four
gases is presented using a single FET sensor where L-ascorbic
acid functionalized reduced GO (LA-rGO) was used as the
sensing material. The FET sensor was exposed to different
gases, and various features such as % of response, response
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time, and recovery time of the sensor were captured by
sweeping the gate voltage of the device and the concentra-
tion of gases. These three dependent features, along with
two independent features, were used for the classification of
gases. Consequently, different machine learning classification
algorithms such as decision tree (DT), support vector machine
(SVM), gradient boosting (GB), and random forest (RF)
were trained, which automatically detected different gases.
All three models, except the SVM, achieved similar detection
performance for our data. The primary motivation for using
machine learning algorithms in combination with the single
FET sensor is twofold. First, it reduces the system’s power
consumption due to the elimination of multiple sensors. Along
with that, it is also cost-effective as it is able to distinguish
multiple gases with a single sensor and statistical analysis of
the sensor’s data.

II. MATERIALS AND METHODS

A. Preparation of rGO
At first, GO was prepared from graphite powder using

modified Hummer’s method [16].
Furthermore, L-ascorbic acid was used to reduce the

as-prepared GO solution. About 40 mg of L-Ascorbic acid
was added to 40-mL GO solution (0.5 mg/mL) and kept in
vigorous stirring for 1–2 h. The final solution was then kept
in oven at 50 ◦C for 4.5 h to prepare rGO.

B. Fabrication of FET-Based Sensor
A heavily doped p-type Si wafer was used for FET sensor

fabrication. In this work, silk film was used as gate dielectric
instead of SiO2 as silk possesses high dielectric constant and
ultrasmooth surface [17]. For silk film preparation, at first silk
solution was prepared from raw silk thread (Bombyx mori).
Readily available raw silk was purchased from M/S Bombyx
Mori Silks and Textiles, Srinagar, India. Then this raw silk was
processed through a number of steps to prepare silk solution.
The detail procedure was illustrated in our previous work [18].
In this work, 10 wt% silk–formic acid solution was prepared.
This solution was then coated on Si substrate by spin-coating
to form a 1-µm-thick silk film. While spin-coating, whole
Si substrate was not covered by silk, and Si was exposed at
two edges to get connection for gate terminal. Following that,
Ti/Au layer of 20/200-nm thickness was deposited atop silk for
source and drain formation. The channel length was kept fixed
at 70 µm. The sensing material was dispersed in the channel
by drop casting the material using a 20-µL micropipette. The
schematic of the device is shown in Fig. 1.

C. Test and Measurement
The compositional analysis of rGO-LA was performed

through FTIR (SHIMADZU IRtracer-100), XPS, and RAMAN
(Witec alpha 300, 532-nm laser) studies. Morphological
measurement was carried out through FESEM analysis.
A semiconductor parameter analyzer (Agilent B1500A) was
used for electrical characterization of the FET sensor, i.e.,
transfer and output characteristics. A customized setup from
KYS Technologies was used to check the gas sensing mech-
anism of the fabricated sensor.

Fig. 1. Schematic of the FET-based sensor.

D. Machine Learning Methods for Gas Classification

The output characteristics of the sensor were exploited
for automatic identification of gases. A list of classification
algorithms was applied, which takes the sensor output charac-
teristics as a feature set and classifies them into a predefined
set of gases. We explored SVM, DT, GB, and RF algorithms
for our gas classification task. Among them, the DT model
predicts the target class by learning a set of decision rules
inferred from the input data points. This approach needs a
little data preparation and does not need data normalization.
SVM is a powerful technique that works best for a smaller
dataset. On the other hand, RF and GB methods work well
for large and complex datasets. Moreover, GB is an ensemble
method that builds models intelligently by giving more weights
to those data samples that are hard to classify. Alternately, the
RF classifier captures nonlinear relationships between input
and target variables and is less prone to overfitting problems.
We carefully selected these four machine learning models to
understand the behavior of our data distribution.

III. RESULTS AND DISCUSSION

A. Compositional and Morphological Analysis

FTIR analysis was carried out to check the composition
of synthesized material. FTIR data are plotted in Fig. 2(a).
GO exhibits a broad intense peak at 3424 cm−1 corresponding
to hydroxyl (O–H) bond stretching [19]. GO also exhibits
another prominent peak at 1630 cm−1 which represents the
C=C bond. Few more peaks are also visible at 1220, 1052, and
872 cm−1 which are assigned to the stretching of C-OH bond,
C–O–C bond, and epoxy ring [20], respectively. The FTIR
spectrum of L-ascorbic acid reduced rGO is also shown in
Fig. 2(a) where only two peaks located at 3424 and 1630 cm−1

are visible. The intensity of these two peaks reduces
drastically.

Fig. 2(b) and (c) depicts the RAMAN spectra of GO
and rGO. The D- and G-band of GO appears at 1354 and
1609 cm−1, respectively. After reduction by L-ascorbic acid,
the D-band shifts to 1363 cm−1, whereas the G-band is at
the same place 1609 cm−1. The FWHM of the D- and G-
band of both GO and rGO is computed by deconvoluting the
Raman spectra. The ratio of ID and IG is found to be 0.94 and
1.56 for GO and rGO, respectively. The D-band basically
represents sp3 carbon or defects on the graphene sheet, and
the G-band represents the in-plane vibration of sp2 carbon
atom. Various functional groups in GO were removed with
the reduction while leaving some dangling bonds or defects.
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Fig. 2. (a) FTIR of GO and L-ascorbic acid reduced rGO. (b) RAMAN spectrum of GO. (c) RAMAN spectrum of rGO. (d) and (e) XPS high-resolution
scan of rGO for oxygen and carbon. (f) FESEM image of L-ascorbic acid reduced rGO at 2.5 K magnification.

Fig. 3. FET sensor’s (a) transfer characteristics for different Vd, (b) output characteristics for different Vg, and (c)–(f) transfer characteristics upon
exposure to NH3, toluene, HCHO, and acetone.

Those defects result in the formation of sp3 clusters [21]. The
higher ID/IG value indicates various defect states generated
in rGO during functionalization which act as active sites for
the physisorption of gases during sensing [22]. XPS analysis
was also carried out to reaffirm the chemical composition of
L-ascorbic acid reduced rGO. Fig. 2(d) and (e) shows the
wide energy survey scan to identify the elements. The peak at
531.6 eV [Fig. 2(d)] represents the presence of OH bond and
the peak at 284.6 eV [Fig. 2(d)] is attributed to C=C bond,
respectively. The presence of these two bonds was also noted
in the FTIR spectrum.

The FESEM micrograph of rGO was also captured for
morphological analysis, and the FESEM image is shown
in Fig. 2(f). A wrinkled sheet-like structure is observed.

The presence of defects in rGO is the most probable reason
for those wrinkles.

B. Electrical Measurements and Working Principle of
FET Sensor

The transfer characteristics (Id versus Vg) of the FET sensor
is plotted in Fig. 3(a). It is seen that gate voltage Vg was
varied from −5 to 5 V and the corresponding drain currents
(Id ) were measured for different Vd (0–1 V). It is also noted
that for a fixed drain-to-source voltage, Id decreases with the
increase in Vg . The drain current decreases due to depletion of
a majority of carrier holes in the channel as rGO behaves like
a p-type material. The same characteristic was followed for
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Fig. 4. Transient response (Id versus time) of the sensor towards (a)–(c) ammonia gas exposure, (d)–(f) toluene gas exposure, (g)–(i) formaldehyde
gas exposure, and (j)–(l) acetone gas exposure at different gate voltages and gas concentrations.

Fig. 5. Gate-voltage-dependent response of the sensor upon exposure of (a) NH3, (b) toluene, (c) formaldehyde, and (d) acetone.

another drain voltages (Vd ) while the drain current increases
with Vd . The output characteristic of the fabricated FET sensor
was also captured and is plotted in Fig. 3(b) for different Vg

(−5 to 5 V). It is seen that the drain current increases linearly
with the increase in Vd for Vg = 5 V, showing linear regime
characteristics of FET. For Vg = 3 to −3 V, the drain current
increases with Vd up to a certain Vd and then it saturates. The
output characteristic also reveals the p-type nature of rGO as
it is observed that the drain current decreases with the increase
in gate voltage. The majority carrier hole decreases with the
positive gate voltage. From transfer characteristics, the ON-
current-to-OFF-current ratio of the FET device was calculated
as 29 for a drain voltage of 1 V. The lower ON/OFF ratio
is attributed to structural defects, residual oxygen groups in
the rGO lattice, and adsorbed oxygen molecules from air.
However, the structural defects give rise to a large number
of vacancies, and therefore, the carrier concentration reduces.

This can bring the degradation of the ON/OFF current ratio of
the device. The ON/OFF ratio of the device will increase for a
higher value of drain voltage.

The transfer characteristic of the FET was also captured
after exposing it to different gases such as ammonia, formalde-
hyde, toluene, and acetone. Fig. 3(c) shows Id versus Vg

plot of the sensor in bare condition and after exposing it
to ammonia of different concentrations. The device shows
same type of transfer characteristics as seen earlier. The
output current decreases with its exposure to gases. Upon
exposure of ammonia, transfer of electrons take place from
ammonia to rGO, reducing the number of majority carrier
holes, and therefore, the effective drain current decreases.
A similar behavior was exhibited upon exposing the sensor
to formaldehyde, toluene, and acetone. The Id versus Vg plot
of the device in bare condition and in formaldehyde, toluene,
and acetone vapors is shown in Fig. 3(d)–(f). In both the cases,
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Fig. 6. Data distribution with respect to two independent parameters gate voltage and concentration of gas and one dependent parameter.
(a) % of Response. (b) Response time. (c) Recovery time. (d)–(f) Data distribution after applying PCA.

Fig. 7. Confusion matrix on the test dataset for (a) SVM, (b) DT, (c) GB, and (d) RF classifier.

Fig. 8. Sensitivity plot for all four classifiers.

current decreases with gas exposure. On the other hand, a shift
in threshold voltage was also noted upon exposure to gas.
The threshold voltage can be determined by extrapolating the
Id to Vg intercept, and it is figured out that a negative shift
in threshold voltage occurs when the device is exposed to all
four gases.

Furthermore, the transient responses of the device were
evaluated upon exposure to different concentrations of the
above-mentioned gases (NH3, HCHO, toluene, and acetone).
The transient responses were captured at seven different gate
voltages while keeping Vd fixed at 200 mV. Those responses

of the device are delineated in Fig. 4 for three negative gate
voltages. With exposure of gases, device current starts to fall.
This phenomenon can be described in terms of adsorption
and desorption of gas molecules in active sites of rGO.
Electrons transfer take place from gas to rGO during adsorp-
tion, therefore decreasing the majority carrier hole through
recombination. The consequences are an increment in channel
resistances and reduction in overall device current. As soon as
the gas flow is off, the active sites of rGO get occupied by the
oxygen atoms and desorption of gas molecules occurs. As a
result, electrons get removed from the sensing layer leaving
the holes behind. Hence, the current increases and returns to
its initial position. The device behaves in similar manner for
all four gases. From transient responses, various features of the
sensor, i.e., % of response, response time and recovery time
are extracted. The % of response of the device was estimated
for different gate voltages using

Response =
Rair − RHCHO

Rair
∗ 100%. (1)

Fig. 5 shows the steady-state response of the sensor as a
function of different gate voltages. The results indicate that
sensor exhibited highest response at a particular gate voltage
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Fig. 9. Repeatability of the FET sensor upon exposure to 200 ppm (a) formaldehyde, (b) toluene, and (c) ammonia. (d) Stability test of the sensor.

of −2.3, −2.4, −1.7, and −1 V for ammonia, toluene,
formaldehyde, and acetone, respectively. The response of the
device becomes maximum when the number of holes in the
channel is such that the fraction of holes lost is maximum
due to the contribution of electrons from gases. If the gate
voltage is further increased, the number of holes reduces,
reducing interaction probability with the incoming electrons.
However, a further decrease in gate voltage leads to more
holes in the channel. Even though the interaction probability
increases, the fraction of holes lost during sensing reduces,
degrading the sensor device’s response.

C. Data Processing Using Machine Learning Algorithms
Following the gas sensing measurements, we extracted

relevant features from the response profiles of each of the
four gases. The features such as the percentage of response,
response time, and recovery time of each gas at different con-
centrations were considered. Unlike other research [13], [23],
we did not further process these features for our classification
task. For example, Kanaparthi and Singh [13] used a ternary
logic based on the response profiles of gases. However, in our
case, all the gases generate the same ternary logic features.
Conversely, Huang et al. [23] used exponential functions and
fit the exposure and flushing phases of the response profiles
to obtain a total of 11 features. However, we used only the
magnitude of extracted features (% of response, response time,
and recovery time) in our machine learning analysis. A total
of 32 features were recorded for each gas, which produced
128 features for four gases. We visualized our data points
with respect to two independent parameters, such as gate
voltage and gas concentration, and three dependent parameters,
respectively, in Fig. 6. It is clear that the gases are not clearly
differentiable other than formaldehyde, which is perceptually
separated in Fig. 6(a).

Therefore, principal component analysis (PCA) was applied
to analyze our dataset. The PCA is a nonparametric statisti-
cal technique primarily used for dimensionality reduction of
the data with the aim of maintaining most of the relevant
information. The first principal component explains 80.3% of
the variance, while the second and third components explain
18.4% and 1.2% of the variance, respectively. We did not
consider the last two components as they did not represent
any information related to the data. The PCA score plots of
our dataset are presented in Fig. 6(d)–(f). Here also, the data
points of formaldehyde gas are clearly distinguishable from

other gases. It is obvious that given the type of device we
used, the formaldehyde gas will be clearly detected. However,
we want to distinguish other gases also, for which we explored
four different classification mechanisms.

Four different classification mechanisms, such as SVM, DT,
GB, and RF, were explored to analyze the sensor’s capability
to distinguish all four gases. We used our 128 data points cor-
responding to the four gases to train each classification model.
All the feature values were first normalized with zero mean
and unit variance. This reduces the bias and inconsistency of
the trained model and also improves its stability. The whole
dataset was then divided into the training and evaluation set
in an 80:20 ratio with scuffling, to investigate the prediction
accuracy of each classifier. The fivefold hold-one-out cross-
validation was used during the training of each classifier to
ensure better generalization. It also reduced the chance of
overfitting during training. Fig. 7 shows the confusion matrix
achieved by all four classifiers on our test data. Other than
SVM, all three classifiers achieved an accuracy of 73% on the
test data. However, SVM only classified the formaldehyde data
properly with a sensitivity value of 0.83 and poorly classified
all other gases. The sensitivity plot for all four classifiers is
illustrated in Fig. 8. It can be argued that all three classifiers
other than the SVM recognize each gas with a similar sensitiv-
ity, which also proves the classifier’s generalization. Our result
also indicates that the model cannot differentiate all gases
with high accuracy due to the generation of almost similar
feature values for all three gases except formaldehyde (shown
in Fig. 6). A curation of data may be required to achieve higher
accuracy of classification models, which will be done as part
of future work.

D. Repeatability and Stability Testing
Finally, the reliability of the FET sensor was evaluated

through repeatability and stability testing. Fig. 9(a)–(c) shows
the repeatability curves of the device toward 200 PPM
formaldehyde, toluene, and ammonia vapors, respectively.
Repeatability testing in formaldehyde, toluene, and ammonia
vapors was carried out at Vg = −1.7, −2.4, and −2.3 V,
respectively where highest response was achieved. From the
result, it is seen that the variation in response for multiple
cycles is minimum. The sensor was put to a stability test for
six-week duration against 400 PPM concentration of each gas.
Fig. 9(d) depicts the same stability plot where it is observed
that the response is stable over time.
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From the results of all the experiments listed above, it can be
deduced that the proposed method is effective for the detection
of four gases including ammonia, toluene, formaldehyde, and
acetone using a single FET sensor.

IV. CONCLUSION

In summary, this article presents a method for the automated
prediction of target gases with a single FET-based gas sensor
through gate voltage sweeping and machine learning algo-
rithms. The sensing material, i.e., L-ascorbic acid reduced rGO
behaved like a p-type semiconducting material and forming
the channel of the FET sensor. Various features of the sensor
were recorded as a function of gate voltages and concentration
after exposing it to different target gases. Later, those extracted
features were used for gas prediction. A list of classification
methods, such as DT, SVM, GB, and RF, were adopted to
train the prediction model using the extracted features to
detect the gas. Among them, DT, GB, and RF achieved the
highest accuracy of 73% for our dataset. We also saw that
each classification model could generalize our data prop-
erly despite using raw response profiles and considering its
complexities.

As per the author’s knowledge, this is the first time a
gate-tuned sensor has been developed that can discriminate
four gases at different gate voltages, when an unknown
gas among the four is exposed to the sensor. The sen-
sor behaves differently at different gate voltages. Therefore,
several sensors in a sensor array can be replaced by one
single sensor (behaving like several sensors at different gate
voltages) and analyzed at different gate voltages. Furthermore,
the sensor also exhibits high sensitivity, repeatability, and
stability.
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