

The sensitive river scape, the sinuous territory

Transforming Dajia River Basin as a Water-Sensitive Landscape Infrastructure

Yun-shih Chen EMU graduation thesis presentation

FREQUENT DROUGHT

source: photo from LTN News

PROBLEM: RIVER + MOUNTAIN = OBSTACLE

LANDSCAPE CHARACTER

- short and steep river

Land

30%

70%

above 2500M

PROBLEM: RIVER + MOUNTAIN = OBSTACLE

LANDSCAPE CHARACTER

- short and steep river
- highly dynamic, sensitive, and fragile

DIFFICULT TO KEEP WATER

Rain

Unit-a	rea Yearl	y Rainfall		Water reso	urce per c	apita		
(mm/year)			Country	(cubic meter/year/person)				
2,000	2,000 1,000			20,	000	40,000		
		830	U.S.A	36,500				
		800	U.K.	3,490				
		760	France	7,810				
		810	Germany	3,360				
		980	Italy	5,330				
		790	Canada	344,000				
		660	Spain	9,470				
		840	China	9,720				
		1,220	India	6,600				
		1,630	Brazil	130,000				
		1,820	Japan	6,060				
3.	4 x	2,510	Taiwan	4,595	0.1	16 x		
wor	ld averag	e: 730		world ave	rage: 28,3	00		

Source: edited by author based on Data from National Taiwan Museum Water Resource exhibition

PROBLEM: RIVER + MOUNTAIN = OBSTACLE

WATER INFRASTRUCTURE

- ineffective / inefficient model

Reservoirs & dams

PROBLEM: RIVER + MOUNTAIN = OBSTACLE

WATER INFRASTRUCTURE

- ineffective / inefficient model
- reservoir capacity decreased 50% in 2030

HARD-ENGINEERED APPROACH **REACHING ITS LIMIT**

DAJIA RIVER VALLEY: AN EXTREME CASE

- Illustrative Taiwanese river landscape

DAJIA RIVER VALLEY: AN EXTREME CASE

- Illustrative Taiwanese river landscape
- Diverse interaction of human & nature
- Heavy-engineered infrastructuralization

Dajia catchment boundary

LIFE RISK

very high high medium low

PROPERTY RISK

very high high medium low

AGRICULTURE WATER RISKS

FLOOD SIMULATION

Flooding depth more than 2 meters 1-2 meters 0.5 - 1 meters

INDUSTRIAL WATER RISKS

DAJIA RIVER VALLEY: AN EXTREME CASE

- Illustrative Taiwanese river landscape
- Diverse interaction of human & nature
- Heavy-engineered infrastructuralization
- Threats of coming changes

WATER RISKS ESTIMATION IN 2035: LIFE / PROPERTY / FLOOD WATER USAGE OF DIFFERENT SECTORS (200-year return rainstorm in 24 hours)

very high higĥ medium low very low

very low

very high medium low very low

source: map redrawn by the author based on data from National Science and Technology Center for Disaster Reduction, Taiwan Government.

EXTERNAL THREATS

climate changes socio-economic shifts

PROBLEM FIELD

fragile and sensitive landscape

current approach of water infrastructure

RIVER + MOUNTAIN = OBSTACLE

RESEARCH OBJECTIVE

MAIN RESEARCH QUESTIONS:

How to rethink the mountainous river landscape as opportunities instead of obstacles, so as to achieve a more sustainable integration between artifact and nature?

Further on, how to build a stronger identity through the process of redesigning the mountainous riverscape as a water-sensitive infrastructure?

RESEARCH QUESTION

BEFORE 1850s

1850s - 1950s

THE CHANGING PATTERN

TODAY

		-	-	
	-			
		. 0.5	2.0	Ð
	- 224			S. 1

Rivers
Geological faults
Sediments accumulation

- Rivers Geological faults Human settlements Agricultural cultivation
- Anti-sediment dikes River dikes
- . Potential landslide
- Water power plant

- Primary roads ----
- ----- Railway
- Geological faults -----

- Collapsing area Reservoir

Primary roads (controlled)

hes

12

Sediment accumulation

THEORETICAL FOUNDATION: LANDSCAPE URBANISM

"Landscape has the capacity to critically engage the meta-physical and political programs that operate in a given society, that landscape architecture is not simply a reflection of culture but more an active instrument in the shaping of modern culture." --- James Corner, 1999

LEARNING FROM THEORIES

APPROACH:

LANDSCAPE INFRASTRUCTURE

"Standardization, mono-functionality, permanence, (characters of the 19-20th Century infrastructures) that overlook the powerful ecological flows and geographic patterns operating at large scales" --- Pierre Bélanger, 2009

"Landscape infrastructural design can be redefined as interdisciplinary design effort to establish a local identity that has tangible relationships to the region."

--- Steffen Nijhuis & Daniel Jauslin, 2015

THEORETICAL FRAMEWORK

PRINCIPLES

Operative landscape structures as future spatial framework

Hybrid complexity & establish connection between activities

Recover hidden flows

Gravity as carrier

LEARNING FROM THEORIES & PRACTICES

Water infrastructure as visible, multi-functional daily-life spaces

Water management as local collective work / autonomous units

Balanced proportion of diverse land uses

Sediment recycle and

Slope stabilization by local material & simple construction technique

Source: map made by the author based on data from National Land Surveying and Mapping Center, MOI.

DISCORDANCE OF NATURAL & CULTURAL WATER FLOW

- Activities that increase runoff at areas with intense & abundant water flow

Average Yearly Rainfall (mm)

Source: map made by the author based on data from Central Geological Survey, MOEA, Taiwan Government.

DISCORDANCE OF NATURAL & CULTURAL WATER FLOW

- large amount of water passing through the bottleneck section of the river
- decreased quality of water (pollution, sediment) requires heavy treatment cost
- sediment paralyzed the river flow, requires large maintenance and protection spaces

WATER INFRASTRUCTURE SYSTEM

- Dam or reservoir along Dajia river
- Dam or reservoir of other river
- Hydro-power plants
- Agricultural irrigation demanded areas
- 📀 Water treatment plant for Dajia river
- O Water treatment plant for other rivers
- O Source or water supply
- → Main line or pipes of water supply

THE HEAVY-ENGINEERED INFRASTRUCTURALIZATION

Source: by the author based on data from WRA, MOEA, google maps, and GIS databases.

- Linear & mono-functional water infrastructure system -> fragile and unadaptable

- Dam or reservoir along Dajia river
- Dam or reservoir of other river
- 🖿 Dajia river Flooding plain

- Hydro-power plants

- Hydropower generates less than 1% of total electricity; high maintenance costs - High density of infrastructures -> environmental damages + high maintenance costs

INFRASTRUCTURE OF TRANSPORTATION

- Here Railway and high-speed railway
- Primary roads and motorway
- Other roads
- Dajia river catchment boundary

Flooding in case of 600mm/day rainfall

l-2m

0.5-1m

- Upstream: recurrent road breakdown, nature taking back its dominance. - Downstream: high density of infrastructure, deterioration of river landscape.

THE HEAVY-ENGINEERED INFRASTRUCTURALIZATION

Source: by the author based on data from GIS databases.

Forest conservation areas

Forestry

Hot-spring recreation tourism

Agricultural areas Paddy rice farms

Sugar canes

Flower

Vegetable

Fruits

Tea

Fishery

LOCAL INDUSTRY AND HUMAN ACTIVITIES

Industrial and technological areas

Science park

Precision Machinery Innovation Technology

Industrial area

DIAGNOSIS CONCLUSION

Continuous conflict between human life and nature

DISCORDANCE OF NATURAL & CULTURAL WATER FLOW

Social conflicts in competing for water resources

OVERALL STRATEGY

WATER FLOW / SYSTEM

establish tangible connection

ACTIVITY PATTERNS

Source: by the author based on GIS data and information from WRA, Taiwan.

CONCEPT #1: WATER SYSTEM TRANSFORMATION

- landscape infrastructure as future spatial framework

- Gradually reduce the reliance on heavyengineered infrastructures (dams and reservoirs)
- Multi-source, multi scale, multi-functional

hybridized multi-activity farming

integrating other activities

recycling reduce waste, biomass

reduce enter-cost attract young people

education agricultural research testing fields natural-farming method consultation

Source: by the author based on GIS data and information from WRA, Taiwan.

CONCEPT #2: ACTIVITY HYBRIDIZATION

- Agricultural hybridization as initiating thread/axis

- Establish connections between activities

- Enable incremental change and combination of local opportunities
- Betterment of environmental diversity and resilience to external impacts

contract platform ensure revenue and rights of farming activity

PRINCIPLES

Landscape operative structures as future spatial framework

Hybrid complexity & establish connection between activities

Recover hidden flows Gravity as carrier

reduction

STRATEGY: INTEGRATING THE ACTIVITY WITH WATER FLOW

Water infrastructure as visible, multi-functional daily-life spaces

Water management as local collective work / autonomous units

Balanced proportion of diverse land uses

Sediment recycle and

Slope stabilization by local material & simple construction technique

Maintainence points

- high mudslide risk streams

STRATEGIC PLAN

CORRIDOR

National Park

Horizontal corridors

Agriculture - dry farming (fruits/grains)

Agriculture - wet farming (rice)

- Vertical corridors along streams
- normal streams
- low mudslide risk streams
- medium mudslide risk streams
- high mudslide risk streams
- Dajia river catchment

OPERATIVE LANDSCAPE STRUCTURES

- vertical and horizontal ecological continuity
- allows permeability of elements and interaction of activities
- river landscape as the determinant framework for corridor structure

CORRIDOR

Source: map made by the author based on GIS data and data from Water Resources Agency, MOEA, and Central Geological Survey, MOEA, Taiwan Government.

- low mudslide risk streams
- —— medium mudslide risk streams
- —— high mudslide risk streams
- Slope > 50% areas
- Slope < 15% areas

Dajia river catchment

- Mudslide risk of streams
- Steepness of slopes

OPERATIVE LANDSCAPE STRUCTURES

STEEPNESS OF SLOPES

Determine the scales of vertical corridors

CORRIDOR

OPERATIVE LANDSCAPE STRUCTURES

Design the links for horizontal corridors

SLOPE

National Park

Horizontal corridors

Agriculture - dry farming (fruits/grains)

Agriculture - wet farming (rice)

Existing habitation

- Vertical corridors along streams
- normal streams
- low mudslide risk streams
- medium mudslide risk streams
- high mudslide risk streams

OPERATIVE LANDSCAPE STRUCTURES

- Prospering sustainable forestry to suppress agricultural sprawl

SLOPE

- Slope stabilization

Estructura biomecanica instalada

Acumulación de suelo

Vegetación establecida

OPERATIVE LANDSCAPE STRUCTURES

- Potential actors

eco-tourism guides

MOBILITY

- Existing forestry trails
- New forestry / slopework trails
- Maintainence points

.

- Machinary track for shipping
- Public transporation stops + moving kiosk & evacuation points (1 km coverage)

Existing habitation Dajia River catchment

Historical river courses

OPERATIVE LANDSCAPE STRUCTURES

MOBILITY

- Moving kiosks at public transportation

maintenance and management of the machinery track for shipping agricultural products.

OPERATIVE LANDSCAPE STRUCTURES

- Light shipping infrastructure

Source: FAO, UN.

PUBLIC SPACES

Horizontal corridors

🙀 Water infrastructure interventions

🖘 Groundwater infrastructures

Historical river courses 🕵 Existing habitation

Dajia River catchment

OPERATIVE LANDSCAPE STRUCTURES

landscape operative structures local area strategic plans zoom-in site interventions

DESIGN INTERVENTION

UPSTREAM DESIGN INTERVENTION

1850s

historical river courses historical urbanized area forest

current river courses river flooding plain urbanized area forest avalanched slopes mudslide-risk streams — motorway landslide threatened community

- ---- better connection
- ---- poorer connection

UPSTREAM DESIGN INTERVENTION

TODAY

UPSTREAM DESIGN INTERVENTION

WATER INFRASTRUCTURES

- self-installed facilities
- easily destroyed by rain
- could not ensure steady supply

UPSTREAM DESIGN INTERVENTION

Design Patterns

Hydrography interventions

- trenches/drainage
 on roads
- on public transport lines
 as wetlands or ponds
 small-scale reservoirs

/ phytodepuration ponds

Patches interventions

Agricultural hybridization:

- type a: river-road side system
- type b: slopes above neighborhood
- 💹 type c: slopes below neighborhood
- type d: water gathering areas
- 💓 type e: horizontal corridor
- [Re]forestration
- Slope stablization
- Alpine wetland
- Water intervention as public spaces
- Proposed bus stops as moving kiosk

Existing Patterns

- Forest
- Natural parks
- Agricultural-fruit/tea
- Agricultural-dry farming
- Built neighborhoods
- Cemetry
- Schools
- Religious spaces
- Local commercial services
- Agriculture market/ setl-point
- 🖿 Dajia river 📝

- Flooding areas of river Public transportation
- Potential inclusive of local actors

UPSTREAM DESIGN INTERVEN

	1				Ν
V	1				
r	~ r	^i	d	0	r

Source: https://kknews.cc

UPSTREAM DESIGN INTERVENTION

D: converging points of branch streams

UPSTREAM DESIGN INTERVENTION

HUANSHAN VILLAGE

UPSTREAM DESIGN INTERVENTION

HUANSHAN VILLAGE

- population around 800
- past: hunting, mixed rice farming _ present: extensive fruit-farming

- river (Dajia upstream) existing forest fruit farming built area motor roads
- buildings

UPSTREAM DESIGN INTERVENTION

UPSTREAM DESIGN INTERVENTION

MAIN CONCEPTS

- 1. slope activity hybridization
- 2. self-sufficient water system

UPSTREAM DESIGN INTERVENTION

1. SLOPE ACTIVITY HYBRIDIZATION

slope geomorphology

- stabler land structure
- 3. avalanched area
- 4. river

private households

UPSTREAM DESIGN INTERVENTION

2. SELF-SUFFICIENT WATER SYSTEM

monthly water demand drinking water: ~ 8,000m³ slope activity: ~ 13,110m³

1M depth / 50% for water

self-sufficient water supply

10,100m³

9,250 m³

UPSTREAM DESIGN INTERVEN

				J		
				_		
-						
7						
1	1					
	1					
		No. of Lot, House, No.	-			
					1	60
				1	37	2
		-	-	-	A	-
_	and the	-	25	1		
\$	1	1	-			
e	2	-				
-						
2						

public or public-oriented buildings private building for public/visitor service public-initiated water spaces modification of existing retaining walls

private households joining renovation

recycling reservoir sediment

UPSTREAM DESIGN INTERVENTION

recycling reservoir sediment

DOWNSTREAM DESIGN INTERVENTION

1850s

1.0	U.N.	12	79	m	
					l
		-			

contact of mountain and plain historical river courses historical urbanized area

NU BANTERI (T

primary roads railway contact of mountain and plain current river courses flooding plain urbanized area

Source: made by the author based on GIS data, google maps, & historical maps.

DOWNSTREAM DESIGN INTERVENTION

TODAY

- River constrained -
- Marginalized and deteriorated living spaces
- Main economic activity often forced to fallow -

- Recover* the historical river courses

*[Recover]: something once lost, devalued, forgotten, or misplaced has been found again, retrieved, and brought forward with renewed vitality. — James Corner, 1999

DOWNSTREAM DESIGN INTERVENTION

~1 meter floodable Aquatic vegetable farming deepen the fields for 1.2M

DOWNSTREAM DESIGN INTERVENTION

MAIN CONCEPTS

1. recover historical river courses as the activating vein

2. collaboration of local patches

Hydrography interventions on existing trenches – on roads on public transport lines as crossings as wetlands or ponds small-scale reservoirs

DOWNSTREAM DESIGN INTERVENTION

Patches interventions

Grain sunning places + residential buildings

DOWNSTREAM DESIGN INTERVENTION

DOWNSTREAM DESIGN INTERVENTION

IMPLEMENTATION

TODAY - 2030

mitigate the urgent problems

PHASING THE TRANSFORMATION

IMPLEMENTATION

POTENTIAL ACTORS

g

¢

farmers

farmers

illegal factory owner

family in shabby houses

PROPOSED INSTITUTIONAL MECHANISM

INSTITUTIONAL FRAMEWORK

illegal factory owner

• • • •

left-behind forestry specialists

forest park

operator

farmers

NGOs, associations

family in dangerous

SYNTHESIS AND OUTLOOK

GEOMORPHOLOGY AND **INFLUENCES BETWEEN** INTERVENTIONS

LEVEL OF IMPORTANCE

IMPORTANCE

MUTUAL INFLUENCES OF THE INTERVENTIONS

SYNTHESIS AND OUTLOOK

MAIN RESEARCH QUESTIONS:

How to rethink the river landscape as opportunities instead of obstacles, so as to achieve a more sustainable integration between artifact and nature?

Further on, how to build a stronger identity for the living environment through the process of redesigning a mountainous river landscape as water-sensitive infrastructure?

RIVER + MOUNTAIN = OPPORTUNITY

- connection-establishing process = the incremental transformation of landscape as infrastructure
- space-making process recovers the tangible people-land relationships

CONTRIBUTION

- identify the urgency and necessity
- possibility of connection establishing and spatial influences
- feasible solutions that allows testand-adjust
 - institutional model and suggestions to the current planning system

REFLECTION

RECOMMENDATIONS FOR FURTHER RESEARCH

- related disciplines: hydrology, technology, ecology, and innovation of enterprises
- landscape urbanism take the active and initiative role
- catchment boundary and international relationships

