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Abstract
This research describes a near-optimal feedback guidance, based on nonlinear orbit control, for low-thrust Earth orbit trans-
fers. Lyapunov stability theory leads to proving that although several equilibria exist, only the desired operational conditions 
are associated with a stable equilibrium. This ensures quasi-global asymptotic convergence toward the desired final orbit. 
The dynamical model includes the effect of eclipsing on the available thrust, as well as all the relevant orbit perturbations, 
such as several harmonics of the geopotential, solar radiation pressure, aerodynamic drag, and gravitational attraction due to 
the Sun and the Moon. Near-optimality of the feedback guidance comes from careful selection of the control gains. They are 
identified in two steps. Step (a) is an extensive table search in which the gains are changed in a large interval. Step (b) uses 
a numerical optimization algorithm that refines the gains found in (a), while minimizing the time of flight. For the numeri-
cal simulations, two scenarios are defined: (i) nominal conditions and (ii) nonnominal conditions, which arise from orbit 
injection errors and stochastic failures of the propulsion system. For case (i), gain optimization leads to obtaining numerical 
results very close to those corresponding to a known optimal orbit transfer with eclipse arcs. Moreover, for case (ii), extensive 
Monte Carlo simulations demonstrate that the nonlinear feedback guidance at hand is effective in driving a spacecraft from 
a low Earth orbit to a geostationary orbit, also in the presence of nonnominal flight conditions.

Keywords  Earth orbit transfers · Low-thrust space propulsion · Feedback guidance and control

1  Introduction

Orbit control is a crucial task in space missions and was 
extensively studied in the last decades. Many works focused 
on continuous-thrust and impulsive transfers, using optimal 
control theory. In recent years, near-optimal strategies are 
gaining increasing attention and relevance for spacecraft 
equipped with low-thrust propulsion systems, because 
similar approaches allow real-time compensation of orbital 
perturbations, while achieving satisfactory performance in 
terms of propellant consumption.

The study of nonlinear and near-optimal feedback guid-
ance for low-thrust spacecraft is a relatively new topic, with 
significant publications appeared over the last 3 decades. 
An important contribution is due to Gurfil [1], who utilizes 
nonlinear control with classical orbit elements for low-thrust 
orbit transfers. His study addresses asymptotic convergence 
from an initial elliptical orbit to any final elliptical orbit 
using the Gauss variational equations. Recently, Pontani 
and Pustorino [2] used modified equinoctial elements, in 
conjunction with nonlinear control for orbit injection and 
maintenance. This approach takes advantage of Lyapunov 
stability combined with LaSalle’s invariance principle. Gao 
[3] presents a linear feedback guidance technique that exhib-
its near-optimality for low-thrust Earth orbit transfers using 
orbital averaging. Kluever [4] proposed a simple closed-loop 
feedback-driven scheme for low-thrust orbit transfers that 
allows calculating sub-optimal trajectories. Petropoulos [5] 
developed a simple strategy based on candidate Lyapunov 
functions for low-thrust orbit transfers, while coining the 
term proximity quotient or Q-Law. There are several other 
studies based on Q-Law [6, 7], and they focus on mitigating 
the sub-optimality of this strategy.
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This research proposes a near-optimal feedback guidance 
based on nonlinear control for low-thrust Earth orbit trans-
fers. The dynamical system is modeled with the inclusion of 
the effect of the eclipse condition and all the relevant orbital 
perturbations, such as harmonics of geopotential, solar radia-
tion pressure, aerodynamic drag, and gravitational attraction 
due to the Sun and the Moon. Near-optimality of the feedback 
guidance is sought from careful selection of the nonlinear con-
trol gains. To do this, a two-stage process for gain selection 
is being presented and tested. For the numerical simulations, 
two flight conditions are defined: (i) nominal conditions and 
(ii) nonnominal conditions that account for the orbit injection 
errors and the stochastic failures of the propulsion system. 
The nonnominal flight condition is studied through extensive 
Monte Carlo simulations, to demonstrate both numerical sta-
bility and the convergence properties of the nonlinear feed-
back guidance at hand. To illustrate the performance under 
both conditions, orbit transfers from different low Earth orbits 
(LEO) to the geostationary orbit (GEO) are considered. In a 
specific illustrative example, the initial and final orbit elements 
are taken from an existing study on optimal orbit control [8], 
for the purpose of showing near optimality of the nonlinear 
feedback guidance.

2 � Orbit Dynamics

Orbit dynamics is described in suitable reference systems. The 
initial frame of interest is the Earth-centered inertial frame 
(ECI) identified by a right-hand sequence of unit vectors (
ĉ1, ĉ2, ĉ3

)
 , where ĉ1 is the vernal axis and ĉ3 is aligned with the 

Earth rotation axis. The local-vertical-local-horizontal frame 
(LVLH) is associated with 

(
r̂, 𝜃̂, ĥ

)
 , where r̂ points toward the 

spacecraft position vector (taken from the center of the Earth), 
whereas ĥ is directed along the specific angular momentum.

Orbit dynamics can be described with the use of osculat-
ing orbit elements, i.e., semimajor axis a, eccentricity e, 
inclination i, right ascension of the ascending node (RAAN) 
Ω , argument of periapse � , and true anomaly �∗ . However, 
these elements lead to singularities in the Gauss planetary 
equations for circular and equatorial orbits. To avoid these 
issues, this study utilizes Modified Equinoctial Elements 
(MEE) [9], which avoid all singular conditions except in 
the occurrence of equatorial retrograde orbits. The defini-
tion of MEE is

It is convenient to express these in a compact form, by 
including 5 components in z , accompanied by the respective 
governing equation,  

(1)

p = a
(
1 − e2

)
n = tan

i

2
cosΩ

⋯

l = e cos (Ω + �)

s = tan
i

2
sinΩ

⋯

m = e sin (Ω + �)

q = Ω + � + �∗.

In Eq. (2), term a includes both perturbing and thrust 
accelerations acting on the spacecraft, whereas G(z, x6) is a 
matrix defined as

Letting x6 = q , the related time derivative is

where ah is the overall acceleration in the direction of angu-
lar momentum. From these definitions, some useful expres-
sions can be identified, such as r = p∕� , where r is the 
instantaneous orbital radius and � = 1 + x2 cos x6 + x3 sin x6.

This study assumes throttleable and steerable low 
thrust, with an upper bound Tmax on the thrust magni-
tude and the assumption that propulsion is only avail-
able when the spacecraft is illuminated. Two parameters 
identify the performance of the propulsion system: (a) 
u
(max)

T
= Tmax

/
m0 , i.e., the ratio of the maximum thrust 

magnitude to initial mass m0 , and (b) c, which is the (con-
stant) effective exhaust velocity. The following expressions 
characterize the mass ratio and its time derivative:

where m is the mass at a generic time instant, and ẋ7 identi-
fies the mass ratio depletion rate. From these relations, 
aT = uT∕x7 represents the instantaneous thrust acceleration 
projected onto the LVLH frame, while uT = ||uT || is con-
strained to the interval 

[
0, u

(max)

T

]
.

Expanding the a term in Eq.  (2) yields a = aT + aP , 
where aP refers to the perturbing acceleration. For this 
study, four types of orbit perturbations are considered: (1) 
Earth gravitational harmonics (specifically, the harmonics 
with ||Jl,m|| > 10−6 defined in the EGM2008 model [10], 
i.e., J2 , J3 , J4 , J31 , and J22 ), (2) solar radiation pressure, 
(3) third-body attraction due to the Sun and the Moon, and 
(4) aerodynamic drag. The latter is modeled by assuming a 
reference surface area of 23.569 m2 and ballistic coefficient 

(2)
z =

[
x1 x2 x3 x4 x5

]T
=
[
p l m n s

]T
ż = G(z, x6)a.

(3)

G(z, x6) =

�
x1

�E

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
2x1

�
0

sin x6
(�+1) cos x6+x2

�
−

x4 sin x6−x5 cos x6

�
x3

− cos x6
(�+1) sin x6+x3

�

x4 sin x6−x5 cos x6

�
x2

0 0
1+x2

4
+x2

5

2�
cos x6

0 0
1+x2

4
+x2

5

2�
sin x6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(4)

ẋ6 =
√

�E

x31

(

1 + x2 cos x6 + x3 sin x6
)2

+
√ x1

�E

x4 sin x6 − x5 cos x6
1 + x2 cos x6 + x3 sin x6

ah,

(5)x7 =
m

m0

and ẋ7 = −
uT

c
,
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equal to 0.0576m2
/
kg . In addition, the solar radiation 

pressure is modeled using a fully reflective surface area, 
leading to a radiation pressure coefficient equal to 2. The 
assumed values for the reference surface, the ballistic coef-
ficient, and the radiation pressure coefficient correspond to 
upper bounds for the respective perturbing accelerations, 
for the purpose of proving that nonlinear feedback control 
is effective even in the presence of moderate (overesti-
mated) orbit perturbations.

The initial epoch for all simulations is March 20, 2025 
at 0:00 UTC.

In short, x =
[
zT x6 x7

]T
=
[
x1 x2 x3 x4 x5 x6 x7

]T 
identifies the complete state vector in compact form, whereas 
uT is the control vector.

3 � Nonlinear Orbit Control

The first goal of nonlinear orbit control is to identify a feed-
back law that can drive the spacecraft toward the desired 
orbit. Then, stability is studied through the fundamental 
principles of Lyapunov theory, under the assumption of 
perfect knowledge of the state. This also implies that noise 
and navigation errors are not considered in this study. In 
addition, a novel gain selection strategy for selecting the 
nonlinear control gains is proposed in this section.

3.1 � Feedback Law and Stability Analysis

The following developments regarding the Lyapunov stabil-
ity theory applied to nonlinear orbit control follow a recent 
paper by Pontani and Pustorino [2]. A target set is defined as 
�(z) = 0 . It is related to the desired final conditions. Because 
z only contains five elements, dim(�) ≤ 5 . Using the target 
set, the candidate Lyapunov function can be defined as

where K is a diagonal, positive-definite matrix of gains. 
From Eq. (6), it is apparent that V > 0 and V = 0 only if 
� = 0 . The following propositions can be used to identify a 
suitable and effective feedback law.

Proposition 1:  Let b ∶= G
T (��∕�z)TK� . If � and (��∕�z) 

a re  c o n t i n u o u s ,  |b| > 0  u n l e s s  � = 0  a n d 
u
(max)

T
≥
|||x7

(
aP + b

)||| , then the feedback control law

(6)V =
1

2
�

T
�� ,

(7)uT = −x7
(
b + aP

)

leads to a dynamical system governed by Eqs. (2), (4) and 
(5) to asymptotically converge to the target set associated 
with �(z) = 0.

Proposition 1 leads to obtaining the following expression 
for the time derivative of V:

Therefore, the feedback law, uT , is chosen in a way that 
makes V̇  strictly negative except when b = 0, forcing asymp-
totic convergence toward the target set. However, the preced-
ing proposition is useful only if ||uT || ≤ u

(max)

T
 . The following 

proposition addresses the saturation of the thrust magnitude.

Proposition 2:  Let b ∶= G
T (��∕�z)TK� . If � and (��∕�z) 

are continuous, |b| > 0 unless � = 0 , u(max)

T
< x7

||b + aP
|| , 

and bTaP ≤ 0 then the feedback control law

leads to a dynamical system governed by Eqs. (2), (4) and 
(5) to asymptotically converge to the target set associated 
with �(z) = 0.

In real mission scenarios, the inequality bTaP ≤ 0 does 
not hold along the entire transfer path. Nevertheless, the 
following proposition provides an additional sufficient con-
dition that guarantees convergence toward the target set.

Proposition 3:  Let b ∶= G
T (��∕�z)TK�  . If �  and 

(��∕�z) are continuous, |b| > 0 unless � = 0 and 
x7
||aP|| < u

(max)

T
< x7

||b + aP
|| then the feedback control law 

(9) leads to a dynamical system governed by Eqs. (2), (4) 
and (5) to asymptotically converge to the target set associ-
ated with �(z) = 0.

The feedback laws (7) and Eq. (9) can be combined, to 
yield

This final form of the feedback law ensures asymptotical 
stability and accounts for the limitations of the propulsion 
system. Also, it identifies a sufficient condition for stability, 
which dictates that the convergence to the final orbit is guar-
anteed if the thrust acceleration is larger than the perturbing 
acceleration. Because it identifies a sufficient condition for 
stability, local violations of this statement do not necessarily 
lead to instability of the entire system.

(8)V̇ = −bTb, where b = G
T

(
𝜕�

𝜕z

)T

K� .

(9)uT = −u
(max)

T

aP + b

||aP + b||

(10)uT = −u
(max)

T

x7
(
b + aP

)

max
{
u
(max)

T
,
|||x7

(
b + aP

)|||
} .
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Once the feedback law is identified, the subsequent step 
consists of studying the stability properties referred to a spe-
cific target set. This paper considers the final operational 
orbit defined in terms of semilatus rectum, eccentricity, and 
inclination. Hence, the target set can be written as

where subscript d denotes the desired value of the respective 
variable. To study the stability of the desired conditions, the 
attracting set, associated with b = 0 , must be identified. This 
set turns out to contain five different subsets [11]:

(1)	 x1 = 0 (rectilinear trajectories)

(2)	 x1 = pd x22 + x23 = e2d x24 + x25 = 0 (equatorial elliptic orbits)

(3)	 x1 = pd x2
2
+ x2

3
= 0 x2

4
+ x2

5
= tan2

(
id
/
2
)
 (circular 

orbits with inclination id)
(4)	 x1 = pdx22 + x23 = 0x24 + x25 = 0

(equatorial circular orbits)
(5)	 x1 = pd x22 + x23 = e2d x24 + x25 = tan2

(

id
/

2
)

(target set).

Because the attracting set includes several subsets, the 
Lyapunov’s stability theorem states that the convergence 
to the desired conditions is only local. However, using the 
Lyapunov method and LaSalle’s invariance principle [12] 
subset 1 can be ruled out [11].

Furthermore, while subset 5 is associated with the global 
minimum of V, the subsets 2 and 3 correspond to saddle 
points, whereas subset 4 is associated with a local maximum 
for V. In conclusion, even though subsets 2–5 are equilib-
rium conditions, numerical convergence occurs toward the 
target set 5, and the feedback law (11) guarantees quasi-
global asymptotic stability for the dynamical system at hand.

3.2 � Gain Selection

Near-optimality of the feedback guidance comes from the 
gain optimization process described in this section. Since 
the target set has three components, the gain matrix K is 
a (3 × 3)-matrix. It is straightforward to notice that k1 is 

(11)� =

⎡⎢⎢⎣

x1 − pd
x2
2
+ x2

3
− e2

d

x2
4
+ x2

5
− tan2

id

2

⎤⎥⎥⎦
=

⎡⎢⎢⎣

�1

�2

�3

⎤⎥⎥⎦
= 0,

related to the semilatus rectum, k2 to eccentricity, and k3 
to the inclination

The gain selection method includes two sequential steps:
Step 1. Extensive table search that includes different gain 

combinations; each gain is changed with increment by 100.1 , 
in the interval ki =

[
1, 106

]
.

Step 2. Using the values found at step 1, the native “fmin-
search” MATLAB routine is utilized.

Step 2 refines the final values calculated at step 1 while 
minimizing the time of flight. To illustrate the gain selection 
method, the preceding two steps are completed for different 
initial orbits, associated with identical values of semima-
jor axis, eccentricity, RAAN, and argument of perigee, and 
different initial inclinations (cf. Table 1). The propulsion 
parameters for the gain optimization process are assumed to 
be c = 30 km/s and u(max)

T
= 10−4g0 , with g0 = 9.8065 m/s2 . 

These values correspond to the performance available from 
the current technology [13]. The dynamical model for the 
gain selection only considers the J2 harmonics of the Earth 
as the perturbing action, which is a valid assumption, since 
this is the dominant perturbation for low- and medium-alti-
tude Earth orbits.

The gain values found at step 1 are reported in Table 2. 
The best case is identified after using different combinations 
of gains. It is found that the best performance corresponds 
to k1 = 1 and k2 = k3 . The final gain values, yielded by the 

(12)K =

⎡
⎢⎢⎣

k1 0 0

0 k2 0

0 0 k3

⎤
⎥⎥⎦
.

Table 1   Initial and final orbit elements; i0 = {5◦, 10◦, 20◦, 30◦, 40◦}

a (km) e i (deg) Ω (deg) � (deg)

Initial orbit 6778 0 i0 0 –
Final orbit 42,164 0 0 – –

Table 2   Gain values for step 1, with the associated transfer time and 
final mass ratios

i0 (deg) k1 k2 k3 t
sim

(days) x7

5 1 105.1 105.1 52.07 0.8529
10 1 104.4 104.4 54.74 0.8454
20 1 103.5 103.5 61.49 0.8263
30 1 103.0 103.0 68.26 0.8072
40 1 102.7 102.7 75.85 0.7858

Table 3   Optimized gain values, with the associated transfer time and 
final mass ratios

i0 (deg) k1 k2 k3 t
sim

(days) x7

5 1.0908 126,679 119,132 51.88 0.8535
10 0.9949 25,577 24,945 54.72 0.8454
20 0.9993 3164 3317 61.07 0.8275
30 0.9722 1056 967 68.19 0.8074
40 1.0261 515 502 75.76 0.7860
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numerical optimization algorithm, are reported in Table 3. 
From its inspection it is apparent that k1 remains very close 
to 1; instead, k2 and k3 undergo exponential decay as the 
initial inclination increases.

Comparison of Tables 2 and 3 indicates that while most 
of the optimized gain values provide improvement for the 
objective (i.e., the time of flight), some values in Table 3 
remain very close to the respective values in Table 2.

4 � Example of LEO–GEO Orbit Transfer

This section is focused on a specific LEO–GEO orbit trans-
fer, for which the minimum-time solution (with eclipse arcs) 
is known from the scientific literature [8].

The near-optimal feedback guidance proposed in this 
study is tested under nominal and nonnominal conditions. 
For both cases, initial and final orbit elements, as well as the 
propulsion parameters, are taken from the existing study in 
Ref. [8]. The final orbit is the same as in Table 1, where the 
initial circular orbit is associated with a0 = 6927 km and 
i0 = 28.5◦ (while the remaining elements are those reported 
in Table 1). The propulsion parameters are c = 32.361 km∕ s 
and u(max)

T
= 3.348 ⋅ 10−4 m

/
s2 , and they characterize a low-

thrust propulsion system. These propulsion values equal 
those used to get the optimal solution [8].

A significant advantage of the gain selection procedure 
is that once an optimized table of gains is identified, gains 
from this table can be used, even for different orbit transfer 

problems, with a variety of initial conditions and propul-
sion parameters. For the present illustrative example, the 
gains are chosen from Table 3 as k1 = 0.9722 , k2 = 1056 , 
and k3 = 967 . These gains refer to i0 = 30◦ , which is the case 
closest to the initial inclination assumed in this section. In 
addition, the dynamical model includes all the previously 
listed orbit perturbations, as well as the effect of eclipsing 
on the available thrust. The following inequalities are used 
to identify the transfer time and final mass ratio at the end 
of the transfer:

4.1 � Numerical Results in Nominal Conditions

This subsection reports the numerical results under nominal 
conditions, with spacecraft eclipsing, either in the absence or 
in the presence of orbit perturbations. The results are com-
pared to the minimum-time optimal transfer (cf. Table 4). 
Inspection of Table  4 reveals that the final mass ratio 
obtained with the feedback control law is very close to that 
corresponding to the optimal solution, whereas the time of 
flight differs by several days. Figure 1 shows the spacecraft 
trajectory in the ECI-frame, whereas Fig. 2 depicts the main 
orbit elements of interest. The insets in Fig. 2 show the oscil-
lations due to the perturbations dominating the orbit dynam-
ics under eclipse. In fact, because the thrust acceleration is 
unavailable during eclipse arcs, the natural orbit dynamics 
yields oscillations in the orbit elements. Figure 3 illustrates 
the time histories of the perturbing and thrust accelerations. 
At the beginning of the transfer, the magnitude of the per-
turbing acceleration is greater than that of the thrust accel-
eration. However, the perturbing term quickly decays to 
low values, mainly due to the decreasing effect of the Earth 
gravitational harmonics as the orbital radius increases.

Moreover, it is worth noting the effect of variable thrust 
at the end of the thrust acceleration plot. Because the desired 

(13)|p − pd| ≤ 10 km e ≤ 0.005 i ≤ 0.5◦.

Table 4   Time of flight and final mass ratio for the illustrative exam-
ple, using either optimal or feedback control

Optimal control 
(no perturbation)

Feedback control 
(no perturbation)

Feedback control 
(with perturba-
tions)

t
f
(days) 215.94 235.84 228.22

x7,f 0.8394 0.8241 0.8245

Fig. 1   Orbit transfer in the 
ECI-frame (blue arcs indicate 
eclipse)
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orbit elements are close to the desired final values and the 
perturbing acceleration is much lower than the thrust accel-
eration in this phase, thrust acceleration is time-varying and 
is ignited for the purpose of orbit maintenance. If only dis-
crete thrust levels were available, then suitable modulation 
schemes would be required, e.g., pulse width modulation or 
the multiple-level modulation addressed in Ref. [14]. How-
ever, this study assumes throttleable thrust, as mentioned 

in Sect. 2. Figure 4 portrays the time histories of the mass 
ratio, related to the propellant expenditure, and the Lyapu-
nov function. From the inset of the mass ratio time history, 
one can notice that constant regions, associated with eclipse 
arcs, separate the regions where the mass ratio drops. In 
addition, even though the Lyapunov function starts from 
a positive value and globally decreases, the value locally 
increases. However, this increase does not lead to instability, 

Fig. 2   Time histories of the 
main orbit elements of interest

Fig. 3   Time histories of the 
total perturbing and thrust 
accelerations
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since the feedback law proposed in this study only provides 
a sufficient condition for stability. Hence, this demonstrates 
that the nonlinear feedback strategy can generate solutions 
that are close to the optimal transfer. In conclusion, non-
linear feedback guidance can be considered as an option 
alternative to optimal strategies in problems where real-time 
compensation of orbit perturbations is required.

4.2 � Monte Carlo Analysis

This subsection focuses on nonnominal flight conditions, 
which account for the orbit injection errors and the stochas-
tic failures of the propulsion system. The propulsion param-
eters, initial and final orbits, and gain values are identical to 
those in the nominal case. However, possible orbit injection 
errors may occur, and they are modeled through randomi-
zation of the initial orbit elements. First, the initial perigee 
and apogee radii are uniformly distributed in their respective 
intervals as

where rp is the perigee radius, ra is the apogee radius, and RE 
denotes the Earth radius. The semimajor axis and eccentric-
ity are easily found from rp and ra . Moreover, the initial incli-
nation has uniform distribution in [22.5, 34.5] deg . Finally, 
the remaining orbit elements are uniformly distributed, as 
follows:

The stochastic failures of the propulsion system are 
defined through two parameters: (i) starting point tfail and (ii) 
duration tdur . Once again, these obey a uniform distribution, 
with intervals [1, 100] days and [5, 20] days , respectively. 
Using these definitions, a Monte Carlo campaign composed 
of 1000 simulations is performed. Figure 5 shows all the 
orbit elements of interest. The insets of each figure refer 

(14)
rp ∈ [350, 549] km + RE and ra ∈ [549, 750] km + RE,

(15)Ω ∈ [−�,�] � ∈ [−�,�] �∗ ∈ [−�,�].

to the first simulation and represent the interval when the 
stochastic failure occurs.

Even though the initial conditions are uniformly distrib-
uted and stochastic propulsion failure occurs, the feedback 
control successfully drives the spacecraft to the desired 
orbit. Table 5 reports the results and compares the proposed 
feedback guidance and the existing optimal solution. Com-
paring the results of the Monte Carlo Analysis with the nom-
inal solution reveals a 3.59% increase in transfer time and a 
0.13% decrease in the final mass ratio. In the end, the nonlin-
ear feedback strategy is effective and only implies a modest 
performance penalty, in terms of time of flight. Although the 
latter is the objective to minimize, it is worth noting that the 
final mass ratio found with nonlinear orbit control is very 
close to that obtained through optimal control.

5 � Concluding Remarks

This paper proposes and applies a recently introduced 
near-optimal feedback guidance strategy with gain tun-
ing, to perform low-thrust Earth orbit transfers. The feed-
back law considers the thrust saturation, and is proven 
to enjoy quasi-global stability properties, under certain 
conditions. More specifically, the stability analysis, based 
on Lyapunov stability theory and the LaSalle’s invariance 
principle, leads to identifying the attracting set, composed 
of five subsets, including the target set. However, the tar-
get set is demonstrated to be the only subset associated 
with a stable equilibrium. A novel, two-step gain selec-
tion strategy is developed to achieve near-optimality. The 
first step (a) is an exhaustive table search where the gains 
are incrementally changed in a large interval, using dif-
ferent combinations. The second step (b) is a numerical 
refinement process that tweaks the gain values found in 
(a) to minimize the time of flight. Effectiveness of the gain 
selection and the stability of the feedback law are numeri-
cally tested, with reference to an existing minimum-time 

Fig. 4   Time histories of the 
mass ratio and the Lyapunov 
function
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solution coming from numerical optimization. Two differ-
ent flight conditions are assumed: (i) nominal conditions 
and (ii) nonnominal conditions, which originate from orbit 
injection errors and stochastic failures of the propulsion 
system. In the numerical simulations, orbital perturba-
tions and spacecraft eclipsing are modeled. Nonnominal 
conditions are studied through an extensive Monte Carlo 
Analysis, composed of 1000 simulations. The results 
point out that the feedback law is stable, even in the pres-
ence of nonnominal stochastic conditions. Moreover, the 
numerical results are also compared to the optimal solu-
tion reported in the literature. In conclusion, the nonlinear 
feedback strategy proposed in this work turns out to be 

effective and only implies a modest performance penalty 
with respect to the optimal solution.
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Fig. 5   Time evolution of some 
orbit elements of interest 
(Monte Carlo analysis)

Table 5   Statistical results of the Monte Carlo analysis and compari-
son with the optimal solution

Mean Standard deviation Optimal solution

t
f
(days) 236.41 10.5069 215.94

x7 0.8234 0.0063 0.8394
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