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Abstract—Aggregation of sufficiently large electric vehicle
(EV) fleets and control over their charging schedules enables
aggregators to utilise the flexibility of EV charging in the
Day Ahead Market. Optimising the charge scheduling of such
fleets enables time-shifting of electricity demand to hours when
electricity is cheaper, reducing the electricity cost for charging the
entire fleet. Time shifting with scheduled charging is expected to
influence the average carbon intensity of the energy used by these
vehicles. This work aims to quantify the change in the carbon
intensity of energy used by smart charged vehicles. It uses real
data collected from over 55,000 home charging sessions from
1031 chargepoints in the Netherlands in 2018. A simulation was
made with a commercial smart charging algorithm to create a
scheduled charging profile ex post from the historic EV charging
dataset. The simulation resulted in an average price reduction of
electricity for the fleet of about 25% relative to unscheduled
charging of the same fleet over the same period. The time
dependent average carbon intensity of electricity consumed in
the Netherlands was used to calculate the mean carbon intensity
of the electricity used to charge the fleet over the period in the
scheduled and unscheduled charging cases. The results revealed a
small decrease in carbon intensity by 1.2%. Analysis reveals that
price optimisation can have large effects on the mean carbon
intensity of individual sessions in the Dutch grid, but the net
effect is averaged out over a large number of sessions and over
the year.

Index Terms—electric vehicle, scheduling, fleet emissions, well-
to-tank

I. INTRODUCTION

In order to reduce emissions in the passenger mobility
sector, average emissions of new vehicles in the EU are
required to be limited to 95 gCOseq./km [1]. Based on the
EU electricity mix, electric vehicles (EVs) result in about 20%
lower emissions over their lifetimes than internal combustion
engine based vehicles based on Life Cycle Analyses [2],
[3]. The adoption of electric vehicles (EVs) is thus widely
supported as part of the shift to lower emission mobility.

Currently, most EVs charge in an unscheduled manner,
beginning to charge as soon as they are plugged in. The
alternative is scheduled or smart charging, whereby the charg-
ing profile is altered based on external data input. Scheduled
charging is seen as essential once the fleet share of electric
vehicles increases beyond a critical fraction. Alteration of the
charging profile can allow vehicles to charge in response to

978-1-7281-7100-5/20/$31.00 ©2020 IEEE

brecht.baeten @enervalis.com

Zofia Lukszo
Faculty of Technology,

Brecht Baeten
Algorithms division

Enervalis Policy and Management
Houthalen-Helchteren, Delft University of Technology
Belgium Delft, the Netherlands

z.lukszo @tudelft.nl

price signals, to contribute to maintaining local voltage quality,
reduce congestion in the distribution level network and to
provide frequency reserves, among other services [4]. Smart
charging to reduce the cost of EV charging is already a reality
with aggregated groups of EVs participating in energy spot
markets [5], [6].

Twenty-five of the twenty-six European aggregators sur-
veyed by Poplavskaya et al. were found to include participa-
tion in energy markets as part of their value proposition [6].
Although the share of aggregated fleets is currently small, it is
expected to rise in the future, together with the market share of
EVs. Since the carbon intensity in the electricity grid varies
with time, scheduled charging of fleets according to market
prices is expected to have an effect on the net emissions of
the fleet. The net emissions caused by use of EVs is highly
dependent on the emissions caused by the generation mix of
electricity used (Well-to-Tank emissions) [7], [8]. As such,
estimation of this effect is of considerable interest for accurate
assessment of current and future mobility related emissions.

This work aims to answer the question: How does the price-
based scheduling of electric vehicle charging in the current
Dutch grid affect the C'O, emissions of the electricity used
by the scheduled fleet?

A data-driven methodology is adopted in this investigation.
We use charging data of around 55,000 unscheduled charging
sessions of over 700 Dutch Battery Electric Vehicles (BEVs)
in 2018. A commercial smart charging algorithm is used to
build a new profile for the fleet ex post based on market based
price optimized charging. The volume of electricity charged
to EVs per charging session remains unchanged relative to
the unscheduled case. The hourly emission intensity based
on electricity consumed in the Dutch grid was used with the
original and new profiles to calculate the mean carbon intensity
of electricity consumed by the unscheduled and scheduled
fleets.

The paper is structured as follows: Section II presents a
description of the set-up considered and the data used. Section
IIT describes the methods used for setting up the optimisation
and the calculation of the emissions. Section IV provides the
results and discusses their significance. Finally, Section V
presents the conclusions of this work.
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II. SYSTEM CONSIDERED AND SCOPE

We consider 1031 electric vehicle chargepoints at residential
locations in the Netherlands. Data was collected over eleven
months in 2018 (data from August was not available) from
these chargepoints. The chargepoints included single-phase
charging with 16 and 32 A rated cables as well as three-
phase charging with 16 A rated cables. These chargepoints
were used by both Battery Electric Vehicles (BEVs) and Plug-
in Hybrid Electric Vehicles (PHEVs), which were part of a
leased EV fleet. The Well-to-Tank emissions of PHEVs are
also influenced by the crude oil pathways for gasoline and
diesel delivery in addition to the electricity factors associated
with electric charging [1]. Since estimation of the emissions
associated with fossil fuel pathways was considered out of the
scope of this work, PHEVs were not considered in this study.
The vehicle charging was unscheduled and charging session
data was logged by the chargepoints for billing purposes.

We do not consider a specific EV fleet since there is no
information on charging sessions of vehicles at chargepoints
outside the 1031 under consideration. The scope, calculations
and conclusions with regards to energy related emissions are
therefore limited to the energy charged with these charge-
points. Three data sets were used in this study:

1) EV chargepoint data
2) Electricity market data
3) Time dependent carbon intensity data

A. EV chargepoint data

The data collected during every charging session is shown
in Table I

TABLE I
EV CHARGEPOINT DATA OVERVIEW

Chargepoint data

Unique charging session identifier
Unique chargepoint identifier

Unique vehicle charging pass identifier
Plug-in time

Plug-out time

Session plug-in duration

Session charging volume

\lCJ\U!-PbJI\)»—‘g

Certain charging sessions were considered to be the result
of logging errors and were excluded from the dataset. The
conditions for their exclusion from the dataset are given in
Table II.

TABLE II
OVERVIEW OF CONDITIONS FOR EXCLUSION OF CHARGEPOINT DATA

Condition for exclusion

Session charging volume <1 kWh
Session charging volume >100 kWh
Session plug-in duration >24 h
Missing data

Z
w3

The charging volumes lower than 1 kWh were expected to
be cases where the user plugged in the vehicle by mistake
and are therefore disregarded. Since the largest battery energy

capacity among the vehicles considered in the study was that
of the Tesla Model S at 100 kWh, it is not possible for charging
volumes to have been larger than 100 kWh within a single
plug-in session. Hence these values were excluded. Plug-in
duration exceeding 24 hours were expected to be caused by
users leaving the cables permanently plugged in rather than
placing them in the vehicle when driving away. These could
also have led to sessions with volumes greater than 100 kWh as
they included many consecutive sessions. Since these sessions
did not really represent the availability of the vehicle, they
were left out. Finally, sessions where data from the chargepoint
was missing in the data set were removed so as not to bias
the results.

The processed dataset used in this study finally consisted of
55,610 BEV charging sessions.

B. Electricity Market price data

The BEVs were scheduled to optimize their charging cost
on the Dutch Day Ahead Market prices for the year 2018.
This data set was taken from the European Network of
Transmission System Operators for Electricity (ENTSO-E) for
the year 2018 [9]. The Dutch Day Ahead Markets are currently
open for aggregators to participate in with sufficiently large EV
fleets.

C. Time dependent carbon intensity data

We use the time dependent carbon intensity data of elec-
tricity in the Dutch grid from the open source project electric-
ityMap Live. These values are based on realtime monitoring
of power plants with hourly time resolution and take cross-
border trade into account. The values account for emissions
arising from the entire lifecycle of power plants involved,
from construction to decommissioning. They are based on
consumption of electricity rather than generation, which can
create differences in numbers. Additional information on the
data sources and methodology may be found in [10], [11].

A scatter plot of the Dutch Day Ahead Market prices and
the time dependent carbon intensity in the year 2018 is shown
in Fig.1 to illustrate the relation between these variables in the
Dutch grid.

o
a
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Time dependent hourly average Carbon Intensity
of electricity consumed in the Dutch grid
(gCO,/kWh)

250

0 25 50 75 100 125 150 175
Dutch Day Ahead Market Prices
(€/MWh)

Fig. 1. Carbon intensity vs. Dutch Day Ahead Market prices in 2018
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III. METHODS

The study consists of two different phases, each with its own
methodology. In section III-A, we describe the use of historic
EV charging data to generate a cost optimized charging profile
ex post for the plugged-in fleet. In section III-B, we describe
the methods used to calculate the mean carbon intensity of
electricity consumed by the EV fleet.

A. Ex post EV scheduling

In this work, historic data was used to simulate real-time
scheduled charging behaviour using a scheduling algorithm
made by the commercial aggregator, Enervalis [12]. The
process carried out is shown in Fig. 2. Initially, the Day
Ahead Market prices together with the entry and exit times
and electricity loads were input to the algorithm. A schedule
was made for the EVs, whose aggregated demand volume
was optimized for the lowest cost over the scheduling horizon
(24 hours). In the charging sessions of individual EVs, the
charging profile was assumed to follow the profile created as
part of the collective schedule. The scheduling of the fleet
resulted in an overall cost reduction of about 25% for charging
the fleet over the year.

1) Input: Future Day
Ahesad Market price daia,
future plug-in times of EV,
future EV electricity
demand

optimised charging of the entire fleet for lowest

aggregated price

2) Schedule EV charging profile based on cost
scheduling horizon

5) Repeat for next ]

A

3) Output: EV
charging profile

4) Last
scheduling
horizon?

Fig. 2. Scheduling for each historic charging session

A Python script was used on an Ubuntu based laptop
with an Intel® Core™ {7-7700HQ 2.80GHz CPU with 16 GB
RAM. The problem was formulated as a Mixed Integer Linear
Programming (MILP) problem and was solved using the open
source CBC solver to less than 1% optimality gap. Eleven
months of data were run as a simulation in this manner
to produce the scheduled charging profiles of each charging
session.
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B. Calculation of Carbon Intensities

The aim of this study is not carbon accounting for the
entire fleet or on a per-vehicle basis but rather to quantify the
relative change in emissions as a result of scheduled charging.
Thus, we use the indicator of carbon intensity (CI), which we
define as ‘the total greenhouse gas emissions emitted per unit
electricity consumed’ measured in grams of COseq./kWh
[13].

Most studies consider average annual values of carbon
intensity (CI) to measure the emissions impact of the elec-
tricity [14]. This is primarily because it is a straightforward
approach, understandable for stakeholders and can be easily
performed ex-post with low data requirements. However, in
countries where power plant portfolios having a mix of fossil
fuels and variable renewable energies, there can be significant
temporal variation (daily, weekly and seasonal) in the carbon
intensity of electricity in the grid [15]. In our case, the time
of charged electricity rather than its volume, is influenced by
the scheduling. A purely volume-based approach, such as the
annual average CI value, is not suitable for our case since
there would be no change in emissions based on scheduling.

The use of carbon intensity which is based on the time de-
pendent average electricity mix can lead to improved accuracy
in the assessment of fleet related emissions [14]. The drawback
of such an approach is that it does not consider the marginal
emissions caused due to increased load at a given timestep,
which depends upon the price-based merit order of power
plants within the energy mix at each timestep as well as the
capacity constraints of the highest cost deployed powerplant
[16].

Calculation of the marginal emissions, however, requires
either accurate energy modelling of the grid including the
market dispatch or detailed data of local energy markets [14].
Further, there are many factors due to which the dispatch
of powerplants is decided apart from merit order, including
plant availability, transmission constraints and powerplant op-
erational logistics [17]. Such an approach was considered out
of the scope of this work. As such, we use the CI based on
the time dependent average electricity mix. It is an approach
which is well-suited for local analyses [18], as is the case
here. Implicit in this approach is the assumption that the load
profile being changed is not large enough to cause structural
change in the electricity system under analysis. As our system
is relatively small: 1031 chargepoints in the Dutch national
grid, we take this assumption to be valid.

For every electric vehicle charging session, we multiply
the energy demand in each hour by the carbon intensity in
that hour to get the net hourly emissions. The summed value
across all sessions is the divided by the net energy demand to
calculate the mean CI of electricity used. Mathematically, the
average CI for m charging sessions, each of which lasted n
hours, are calculated as:
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where E;; is the energy demand of the it" chargepoint at
the j*" hour of the session in kWh

and C1I; is the carbon intensity of electricity consumed in the
Dutch grid at the j** hour of the session in g.COqeq./kWh
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IV. RESULTS AND DISCUSSIONS

The mean carbon intensity of electricity used by the un-
scheduled BEVs was calculated to be 464 gCOseq./kWh,
a value slightly lower than the annual average value of the
Dutch grid, 468 gCOqeq./kW h. The mean carbon intensity
of electricity used by EVs scheduled according to prices in
the Dutch Day Ahead markets was slightly lower, at 459
gCOsqeq./kWh. The effect of scheduling thus resulted in a
1.2% reduction in the mean carbon intensity of the electricity
used - a relatively small change.

Given the data used and methodology, in the present Dutch
scenario, the use of time dependent values of carbon intensity
together with the charging times rather than average annual
values with charging volumes does not make a large difference.
This remains the case for both unscheduled and scheduled
charging. In our approach, where the final value of carbon
intensity was weighted by the hourly values and volumes
when EVs were charged, the final results proved quite similar.
This provides a validation of earlier studies considering annual
average CI values. However, it should be noted that this is a
reflection on the Dutch case rather than the methodology, as
the use of time dependent CI values is expected to provide
a better estimation of the Well-to-Tank emissions of electric
vehicles.

Initial investigation suggests that the price optimisation of
charging does not lead to large deviation from unscheduled
charging in terms of mean carbon intensity. However, the
annual mean value across all sessions does not reveal the vari-
ation in carbon intensities in individual charging sessions. Fig.
3 shows the difference in session CI between the scheduled
and unscheduled cases.

—— Mean
—— Standard deviation

200 -

150 4

100 4

50 4

—50 4

—100 4

Difference in session carbon intensity
(gram CO; eq./kWh)

—150 4

0 10000 20000 30000

Charging session number

40000 50000

Fig. 3. Difference in carbon intensity between scheduled session and
unscheduled sessions over all sessions considered

Fig. 3 shows that the effect of scheduled charging on the
mean CI of individual sessions can be significant. The mean
CI may increase or decrease in individual sessions, but these
are balanced out over a large number of sessions and over
the year. It reveals that price optimisation does have an effect
on the reduction of CO2 emissions, but only under certain
conditions. Identification of the conditions under which price
optimisation reduces C'Oy emissions may help scheduling of
charging achieve multiple objectives and suggests a direction
for further research.

The results further raise interesting questions related to the
impact of price based charging in grids which include a greater
fraction of renewable electricity. Higher price volatility may
also be considered as an influencing factor on the emissions
impacts of price based charging. Such investigations can lead
to interesting future work.

V. CONCLUSIONS

The study aims to investigate the effect of price optimized
scheduled charging on the mean carbon intensity of EVs
charged in the Dutch fleet. A data driven method is adopted,
making use of the EV charging data of 1031 chargepoints
at residential locations in the Netherlands over a year. A
commercial charge scheduling algorithm was used to generate
anew EV charging profile optimized for the Dutch Day Ahead
market prices. The same volume of electricity was charged to
the vehicles in both cases.

Time dependent average electricity mix based carbon in-
tensity was used to calculate the mean carbon intensity of
electricity over all the sessions in the two profiles. The results
reveal that in the Dutch case, the use of time dependent carbon
intensity does not have a large influence on the mean carbon
intensity used by EVs in the Dutch situation, unscheduled
or otherwise. Scheduling of charging based on price resulted
in a small reduction of mean carbon intensity by 1.2%. The
mean carbon intensity of individual sessions is found to vary
considerable with price optimisation, but over a large number
of sessions and periods of the year, scheduling does not have
significant influence on mean carbon intensity of electricity
consumed. Consideration of other schedules, locations with
higher renewable shares and deeper analysis into the findings
here represent avenues for future research.
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